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Introduction

The invention of electroencephalography (EEG) in the early 20" century facilitated
a revolutionary insight into the dynamic behaviour of the human brain. For the first
time, clinicians and researchers were able to examine direct evidence of brain func-
tion, in both normal human participants and patients with neurological conditions
(Jung & Berger 1979). Clinically this new way of assessing brain function has had
significant impact on our understanding of a number of neurological and psychiatric
conditions, but none more so than epileptic seizure disorders.

Epilepsy is the label given to a number of heterogeneous conditions characterised
by an enduring risk of epileptic seizures — because of their heterogeneity, these con-
ditions are now often referred to as ‘the epilepsies’ (Panayiotopoulos 2005). The
term epileptic seizure describes the transient occurrence of signs and symptoms
caused by abnormally excessive or synchronous activity in the brain (Fisher et al.
2014). Whilst the concept that abnormal electrical activity causes epileptic seizures
predates the invention of EEG, much of our current physiological understanding
and clinical decision making is based on EEG recordings from patients suffering
from epilepsy (Eadie & Bladin 2001).

Descriptions and analyses of EEG recordings have remained virtually unchanged
since its conception. Its clinical use largely rests on the description of visually rec-
ognisable features and their phenomenological categorisation, with the exception of
some recently adopted advanced source localisation algorithms (Zschocke &
Hansen 2012). But relying just on these visually apparent pathological patterns do
not capture the entire breadth of information that is available in an EEG recording.

One of the main advantages of EEG (which it shares with magnetoencephalog-
raphy, MEG) over other methods assessing brain function is its temporal resolution,
which still remains unparalleled when it comes to investigating the human brain in
vivo. This results in rich datasets, which capture interacting fluctuations of electric
activity across frequencies that may be two or three orders of magnitude apart.
Whilst surface EEG recorded non-invasively from the scalp has a limited spatial
resolution, it does allow for the simultaneous recording of neuronal activity across
almost the entirety of the cortical surface. Furthermore, the spatial resolution limi-
tations have been addressed by developing invasive EEG recording devices that can
be implanted neurosurgically where a better understanding of the spatial origins of
an EEG signal are deemed clinically necessary.

Much of the information contained within these datasets is not accessible through
visual inspection alone, but rather needs to be elicited utilising more quantitative
analysis methods (Tong & Thakor 2009). Applying such quantitative analysis meth-
ods has led to the description of a wide variety of novel electrophysiological find-
ings. For example, analysing the correlation between the time series of individual
EEG channels will yield a matrix of channel-to-channel correlation measures. These
can be read as indicators of functional connectivity, with the results interpreted in a
graph theory framework for functional network analysis (Bullmore & Sporns 2009).
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Another example can be found in the recent emergence of cross-frequency coupling
as a potentially important mechanism for neuronal computation: Quantitative anal-
ysis of power at different EEG frequencies in humans has shown that amplitude
fluctuations are measurably modulated and time locked to the phase of concurrent
slower frequency oscillation, known as phase-amplitude cross-frequency coupling
(Canolty & Knight 2010).

At the same time as advances in the detailed quantitative analysis of macroscopic
EEG signals in health and disease, there has been an exponential increase in our
understanding of the molecular, and to some extend cellular basis of many of the
epilepsies (Helbig et al. 2008; Thomas & Berkovic 2014). Increasingly, knowledge
of associated molecular abnormalities, such as the presence of relevant gene muta-
tions or specific autoantibodies against synaptic targets, influences prognosis, clin-
ical management and specific treatment decisions for patients with epilepsy.

Features of these disease-associated molecular abnormalities have also lead to a
putative understanding of the pathophysiological mechanisms underlying different
epileptic seizure disorders. For example, the frequency of mutations in ion channel
genes has led to the concept of epilepsies and other paroxysmal neurological disor-
ders being channelopathies, i.e. disorders in neuronal ion channel function (Spillane
etal. 2015), which can be further investigated in appropriate animal model systems.

However, with the increase in knowledge, new challenges arise. The availability
and increased clinical use of testing for specific mutation and autoantibodies has
quickly led to the realisation that even apparently specific molecular abnormalities
are associated with a wide variety of disease pictures in human patients. The same
mutation in the voltage gated sodium channel gene SCN1A for example, can cause
a diverse selection of phenotypes within the same family: ranging from compara-
tively mild phenotypes consisting of childhood febrile seizures, to a severe epileptic
disorder characterised by difficult to control frequent daily seizures associated with
global developmental delay (Miller & Sotero de Menezes 2014). Similarly, muta-
tions in the GRIN2A gene, coding for a subunit of the N-methyl-D-aspartate recep-
tor (NMDAR), can cause a range of electroclinical syndromes, even within the same
family (Lesca et al. 2013).

This opens an explanatory gap: On one side there is an increased understanding
of the putative molecular and cellular causes of dynamic disorders of the brain; on
the other there are macroscale measures of abnormal brain function that, whilst
loosely associated with some microscale abnormalities, do not allow a direct one-
to-one mapping. Bridging this gap is likely to require an intermediate step — a con-
ceptual bridge that can link information about molecular dysfunction with its ex-
pression in neuronal function at an intermediate level, the mesoscale, in order to
understand the emergence of phenotypic variability observed in human patients.

In other fields within neuroscience, this approach is emerging as a necessary step
for linking observations at the microscale (e.g. cellular neuronal circuits) with the
observations at the macroscale (e.g. organism behaviour). Whilst descriptions of
the cellular circuitry may include too many particular details to understand their
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functional contributions to the overall behaviour, evaluating only a behaviour in the
whole organism may not sufficiently represent the complexity of the underlying
neuronal processes. Bridging this gap requires the identification recurrent themes at
an intermediate functional level, such as neuronal computations, which may be im-
plemented through differing neuronal circuits, but produce similar effects
(Carandini 2012).
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Fig. 1. Understanding epileptic dynamics at different scales: Different lines of evidence lead
to descriptions of pathology on different scales. Clinical syndromes often rely on the description
of recognisable phenotype at the macroscale. Recent advances in understanding associated molec-
ular abnormalities have improved our pathophysiological understanding of many diverse epilep-
sies, but robustly linking clinical phenotypes with microscale abnormalities has proven difficult.
Including an intermediate consideration of network dynamics may aid both prediction, and allow
for addressing the inverse problem of inferring pathophysiology from whole-brain electrophysio-
logical measurements.
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In the context of clinical neurology, a similar approach would suggest that in
order to link putative molecular causes (microscale) with diverse disease pheno-
types observed in patients (macroscale), we need to consider the intermediate step:
Dysfunction at the level of neuronal computations (mesoscale, Figure 1). Linking
molecular abnormalities to in vivo neuronal dysfunction is now a standard compo-
nent of identifying disease mechanisms in emerging genetics and autoimmune con-
ditions (Pal & Helbig 2015). Attempts in relating macroscale findings to models of
mesoscale neuronal dynamics have been less forthcoming, and will be the focus
here.

This chapter will discuss the use of computational models of neuronal circuit
function to link abnormalities in clinical neurophysiological measurements to path-
ophysiological mechanisms. An introduction of population models of neuronal
function will be followed by an in-depth discussion of how such models can be used
to make inference on the mechanism underlying specific electrophysiological
changes. This approach will then be illustrated using an exemplar clinical case with
a known underlying molecular diagnosis of NMDAR antibody encephalitis.

The Scientific Problem

The functional validation of possible molecular causes of neurological diseases is
an essential step in any description of new pathophysiological mechanisms. In order
to increase confidence that a genetic mutation that is epidemiologically linked with
a specific phenotype could actually play a causative role in the disease, some evi-
dence that this can have an effect on neuronal function is considered a standard
requirement (Quintans et al. 2014).

This approach usually relies on replicating the molecular abnormality in a model
organism or system and evaluating the model for any resultant deficits, particularly
in regards to neuronal function. For example, to provide evidence for the direct
pathogenicity of NMDAR antibodies in the recently described NMDAR-antibody
associated encephalitis (Dalmau et al. 2008), the antibody-rich patient cerebrospinal
fluid was applied to murine hippocampal slices prepared for voltage-clamp record-
ings in order to measure the effects of antibody exposure on glutamate transmission.
This provided evidence both for acute antagonism of the NMDAR by the antibody,
as well as chronic reduction of NMDAR associated with antibody exposure
(Hughes et al. 2010).

Whilst this approach is powerful, and necessary in order to evaluate candidate
molecular causes of neurological disorders in the context of neuronal function, sev-
eral problems remain unsolved when relying on this approach alone:

e Animal models for human disease: Model systems used to assess the patho-
logical effects of molecular abnormalities are usually non-human organisms or



tissues, leaving uncertainty as to whether similar effects would be evident in the
human brain.

e Emergent properties at different scales: There may be a gap between individ-
ual cell and small circuit abnormalities assessable in an experimental model sys-
tem, and the inference drawn on larger networks and systems. These models are
particularly prone to neglecting emergent properties at different scales (e.g. bi-
stability of a network), and the effects of unknown modulators in the whole sys-
tem that may enhance or suppress the observed microscale abnormality

e Human phenotypic variability: An unexpected result of the recent increase in
molecular diagnoses in neurology is the discovery of large phenotypic variability
even where a molecular cause has been identified and well characterized
(Hildebrand et al. 2013). Functional investigations in homogeneous model sys-
tems do not address the mechanisms underlying phenotypic diversity.

Issues of disease pathology in humans, understanding whole-organism, and deline-
ating relevant categories within phenotypically diverse groups are essential for
translating basic neuroscientific findings into clinically relevant advances. In order
to start addressing these issues, the inverse problem has to be addressed: How do
macroscale abnormalities relate to underlying pathophysiology?

The EEG signal, despite containing a lot of rich information, is a poor measure
of neuronal function at the cellular, or synaptic level: because of the spatial inaccu-
racies and the summation of many million individual neurons’ activity into a com-
posite signal, there are an infinite number of possible neuronal constellations that
could cause the same measureable EEG signatures. Attempting to relate this com-
posite, diffuse signal to underlying neuronal dysfunction is thus an ill-posed prob-
lem, where no unique solution exists.

I1l-posed problems are common in neuroscience, both in terms of problems re-
searchers encounter when investigating nervous systems (e.g. the source localiza-
tion problem for EEG signals, (Friston et al. 2008), and problems that nervous sys-
tems themselves have to address (e.g. the feature binding problem, (Di Lollo 2012)).
These problems are not impossible to solve, as is evident in the successful applica-
tion of source-reconstruction algorithms in identifying epileptogenic brain areas for
surgery (Lantz et al. 2011), and the brain’s successful and reliable decoding of vis-
ual information (Kawato et al. 1993).

With underdetermined ill-posed problems, providing constraints to the possible
solutions is crucial (Friston 2005). Constraining the problem reduces the space of
possible solutions and makes the problem more tractable. These constraints also
help in keeping inverse solutions more interpretable and relevant to the scientific
question at hand.

One way to constrain such inverse problems in neuroscience is the use of com-
putational models of neuronal populations as a mesoscale representation of neuronal
dynamics. This casts the inverse problem of attempting to infer microscale causes
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of macroscopic phenomena into a more restricted problem: Assuming basic mech-
anisms of neuronal function and organization are met (i.e. the neuronal model ap-
plies), which setup of the known circuitry could produce an observed effect (i.e.
which specific set of model parameters can produce the observed macroscale re-
sponse)?

In the following, we will use advanced computational methods to address this
problem, inferring underlying neuronal circuitry abnormalities from clinical EEG
recordings of a patient with a known molecular abnormality: Specifically we will
use mesoscale neuronal modelling to assess what synaptic abnormalities underlie
paroxysmal EEG abnormalities in a paediatric patient with NMDAR antibody en-
cephalitis.

NMDAR antibody encephalitis is a recently described autoimmune encephalitis
(Dalmau et al. 2008), i.e. an inflammatory condition of the brain associated with,
and most likely caused by, autoantibodies against molecular targets relevant for
synaptic function. EEG abnormalities are commonly associated with the condition
and have some diagnostic value (Gitiaux et al. 2013), but are very varied between
patients (Florance et al. 2009) and evolve over time (Nosadini et al. 2015). In pae-
diatric patients the common abnormalities described include non-specific sharp
wave paroxysms, longer runs of rhythmic activity and more clearly epileptic spike
and wave discharges (see Figure 2 for examples from our own clinical cohort).

Fig. 2. EEG abnormalities observed in paediatric patients with NMDAR antibodies: The
figure collates three different EEG findings from separate paediatric NMDAR antibody encepha-
litis patients. Abnormalities range from non-specific sharp wave paroxysms (left panel), to rhyth-
mic activity with or without impairment of consciousness (middle panel) to clearly epileptic spike-
wave activity (right panel).



In the following sections we will discuss mesoscale models of neuronal function
and how they can be used to explain observed EEG phenomena by constraining the
inverse problem. We will then highlight a specific computational approach — dy-
namic causal modelling (DCM) — and apply the method to EEG abnormalities ob-
served in one NMDAR antibody encephalitis patient. We will then discuss our re-
sults in terms of their relation to other findings regarding the pathophysiology in
NMDAR, as well as further implications for computational methods in the age of
exponential discovery of candidate molecular mechanisms in neurology.

Computational Methods

In this section we will discuss how computational models of neuronal function can
be used to make inference on causative mechanisms underlying phenomena ob-
served in human EEG recordings. This will be done in three parts — the first will
give a short overview of generative models of neuronal function and different ap-
proaches to linking them to empirical data. In the second part we will introduce the
approach applied to our empirical case — namely dynamic causal modelling — in a
little more detail. And in the concluding part of this section we will illustrate how
dynamic causal modelling can be used to fit a generative neuronal model to empir-
ical EEG data and make inference on underlying mechanisms using an illustrative
case of NMDAR encephalitis.

Generative Models of Neuronal Population Activity

Neuronal systems are highly nonlinear coupled systems (Werner 2007). This means
that predicting input-output relationships is challenging and often counterintuitive.
One of the great strengths of computational models is that they can be used to ex-
plore input-output relationships systematically and help in identifying some of the
unexpected effects produced by nonlinear interactions.

The pioneering work by Hodgkin and Huxley (Hodgkin & Huxley 1952) pro-
duced one of the first such computational models, and by some measures the most
successful one developed so far. Using empirical voltage clamp measurements from
the giant squid axon, they elegantly developed a model of neuronal membrane dy-
namics based entirely on voltage dependent ion channels, that could predict many
patterns of neuronal behaviour observed empirically.

Since then, models are being developed on a multitude of different neuronal
scales, ranging from subcellular compartment dynamic models, to models describ-
ing the output of whole neuronal populations. Because of the spatial scales of meas-
urement, those models that represent whole neuronal populations are particularly
informative when relating them to EEG measurements.
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One of the earliest such models was the Wilson and Cowan neural mass model
(Wilson & Cowan 1972) — they describe the behaviour of a whole set of intercon-
nected neurons not individually but as whole aggregates, based on similar ap-
proaches in particle physics. They also provide a justification for this method based,
interestingly, not just in its computational tractability, but rather the conceptually
different inference this approach enables:

“It is probably true that studies of primitive nervous systems should be focused on
individual nerve cells and their precise, genetically determined interactions with other
cells. [...] [S]ince pattern recognition is in some sense a global process, it is unlikely that
approaches which emphasize only local properties will provide much insight. Finally it is
at least a reasonable hypothesis that local interactions between nerve cells are largely
random, but that this randomness gives rise to quite precise long-range interactions.”
(Wilson & Cowan 1972)

Using this approach they arrive at a system of two ordinary differential equations
describing a neuronal oscillator consisting of two different populations, one excita-
tory, one inhibitory:
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This system describes two neuronal populations, whose current states (E, I: pro-
portion of cells in the population firing) influence each other through weighted con-
nections (c,_,, weights of population connections, see Figure 3A). This coupling is
mediated through a sigmoid activation function (S, ;), which acts like a switch in-
tegrating all incoming synaptic influences and translating them into a postsynaptic
state change within a defined dynamic range (i.e. 0 — 1). The sigmoid functions are
population specific (and can therefore be parameterised independently) and are the
source of non-linearity in the model.

Even despite the extreme simplification of these models of neuronal function, a
whole range of dynamic behaviours can be reproduced with WC-type models at the
scale of neuronal populations or cortical patches (Meijer et al. 2015; Wang et al.
2014; Heitmann et al. 2012). Because of the coupled nonlinearities, however, ‘for-
ward’ predictions of model behaviour given specific parameters is non-intuitive and
usually requires simulation of the model response. Recurrent simulations for vary-
ing parameter values can then be used to establish a link between model parameter-
isation and overall dynamic response (Figure 3B).

These parameter/response relationship can be exploited to make inference on
model parameters underlying a given observations. Faced for example, with noisy
measurements of a population oscillation (Figure 3C), one can use systematic vari-
ations of a model parameter to identify the specific parameter value that best fits the
data (Figure 3D, illustrated for the stimulating current parameter P). However, even
adding a single additional free parameter (e.g. the connection parameter c,) creates
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a complex model prediction error landscape that is much more difficult to optimise
(Figure 3E) — an important problem that we will return to later.

10 1 > et oy 7 ge" .

! " 18 » et b model input
Ppara, error -

“rameter 12 B 16 (Pparameter)

Fig. 3. The Wilson-Cowan neural mass model: A) The model consists of one inhibitory and
one excitatory neuronal population, coupled through synaptic connections of a specific con-
nection strength (ci parameters). These can be excitatory (black) or inhibitory (red). The system
receives external stimulating current input (P parameter) and acts as a neuronal oscillator. B)
The model generates particular oscillation patterns for different parameter constellations — this
figure illustrates steady state oscillatory responses with decreasing values for the input param-
eter P. Excitatory populations are represented by the solid lines, inhibitory populations by
dashed lines. C) Synthetic data illustrating a noisy measurement of neuronal population oscil-
lation driven with P=1.4. We show how oscillatory frequency alone can be used to derive the
P-parameter from noisy measurements such as this: D) Estimates of steady state oscillatory
frequency can be derived from the model for a range of different values for P. Plotting the
squared difference between estimated frequencies and that derived from the noisy synthetic
signal, we can identify the P value that produces the minimal error. This approach identifies
P=1.4 as the value producing the minimal error (indicated by the red arrow). E) If more than
one parameter is allowed to vary (e.g. input P, and self-excitation strength c1) the error land-
scape becomes more complex and error minimisation alone does not produce unambiguous
results — the red arrow indicates the same parameter constellation identified in 3D).

The model specifications were taken directly from the model’s original description (Wilson &
Cowan 1972). Parameters for the modelling were taken from one of the known oscillatory states
and unless otherwise stated were: c1=16, c2=12, c3=15, cs=3, P=1.25.
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WC models allow for generation of complex dynamics that remain computation-
ally tractable enough to explore different parameter compositions and attempt in-
ference on parameter combinations producing a certain dynamic response. How-
ever, in the original formulation consisting of a single excitatory and inhibitory
population, they are limited in how well they can represent the range and complexity
of cortical dynamics observed in the laminate cortex.

A major extension of the WC model was introduced by Jansen and Rit in 1995
(Jansen & Rit 1995) building on an extant literature of adaptations of the WC-type
models (Lopes da Silva et al. 1974). The Jansen and Rit (JR) model explicitly mod-
els dynamics of a local cortical circuit by ascribing different neuronal populations
to specific cortical lamina and describing their dynamics in terms of differential
equations. In this model, an additional excitatory neuronal population is added al-
lowing separate parameterisation for two excitatory neuronal populations.
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This constellation of neuronal populations allows a diverse spectrum of fre-
quency mixtures to be modelled, and is capable of producing a host of response
dynamics also observed in empirical measurements of cortical potential fluctuations
(Jansen & Rit 1995; Aburn et al. 2012; Goodfellow et al. 2012). An additional ben-
efit that emerges from the laminar specificity of the JR model, is that it relates nat-
urally to commonly available brain recordings in humans — specifically MEG and
EEG. The electromagnetic activity measurable at the scalp is thought to mainly re-
flect postsynaptic currents in the apical dendrites of populations of pyramidal cells
(Lopes da Silva 2010). These are explicitly modelled in the JR model, so that their
selective contribution to EEG/MEG measurements can be distinguished from the
activity of other cell populations.

The laminar specificity and the wide range of physiological frequencies that can
be modelled mean that JR-type models are commonly employed in computational
models of cortical function. They currently form one of model-based approaches
for the analysis of large scale brain dynamics, such as the dynamic causal modelling
(DCM) framework, which will be discussed in more detail later (David et al. 2006).
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Because they aim to represent biophysical connectivity patterns found in actual cor-
tical microcircuits, their architecture is also congruent with computational motifs
thought to be the basis of cortical processing (e.g. predictive coding, (Bastos et al.
2012)).

A) The Canonical Microcircuit (CMC) model of cortical column intrinsic connectivity
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Fig. 4. The Canonical Microcircuit (CMC) Model : A) This extension of the Jansen-Rit
model consists of four neuronal populations (left panel) mapping onto different cortical laminae
(right panel). The middle panel shows the intrinsic excitatory (black) and inhibitory (red) con-
nections contained in the model (for simplicity, recurrent self-inhibition present for each pop-
ulation is not shown). B) Two operators define the evolution of population dynamics: First a
synaptic kernel performs a linear transformation of presynaptic input into an average postsyn-
aptic potential, dispersed over time (left panel). This is parameterised by synaptic gain param-
eters and averaged time constants. Second there is a nonlinear transformation of average mem-
brane potential into population firing rates, described as a parameterised, population-specific
sigmoid function (right panel).

Within the DCM framework, several extensions of existing neuronal models
have been developed to address specific hypotheses regarding neuronal function
(Moran et al. 2013). One of the extensions to the classical JR model employed in
DCM is the so-called ‘canonical microcircuit’ or CMC (Figure 4). Here the single
JR pyramidal cell population is separated into distinct ‘superficial” and ‘deep’ py-
ramidal cells. This allows not only for afferent and efferent projections to be sepa-
rated into distinct cortical laminae, but also accommodates differences in spectral
output among different layers of the same cortical column - that are seen empirically
in invasive measurements (Buffalo et al. 2011).



13

The model consists of a simple extension of the differential equations given in
equations 2.1 — 2.6. Using the mean-field approximation the model can also be re-
conceptualised in terms of average membrane potentials and firing rates interacting
through specific kernels that summarise the activity-dependent integration of input
at the postsynaptic membrane, and the nonlinear transformation of all input into an
output firing rate (Figure 4B) (David & Friston 2003).

Modulation of CMC connectivity parameters produces charateristic frequency response patterns
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Fig. 5. Changes in intrinsic connectivity produce characteristic responses: Gradual changes
to the recurrent self-inhibition gain parameter g; are introduced to a CMC model of the cortical
column at around 1s, changing the intrinsic modulation from 0 to -0.5, 0.5, and 1.5 respectively
(left, middle, right panels). These changes produce characteristic signatures in the spectral out-
put, apparent in both the time traces (top panels), and the spectral densities (bottom panels),
with increases in self-inhibition leading to high power high frequency oscillations.

Because the architecture of the CMC model represents neuroanatomical features
of the cortex, most of the modelling parameters are neurophysiologically meaning-
ful and thus easily interpretable. The model parameters can be directly manipulated
to reproduce many different dynamic behaviours — increasing the degree of self in-
hibition in superficial pyramidal cells for example will produce high frequency os-
cillations (Figure. 5, (Papadopoulou et al. 2015)).

Clearly the more intriguing question is whether inference on the model parame-
ters can be made from empirical measurements, to identify which functional abnor-
mality in the microcircuitry produced an abnormal measurement. This problem usu-
ally has more than one possible solution — meaning that many different possible
constellations of parameters may cause identical appearing measurements, particu-
larly where only some of the system’s states are measureable, or observable (e.g.
local field potentials), whilst many remain hidden (e.g. intracellular ion concentra-
tion fluctuations); the problem is ill-posed. This becomes particularly problematic
where many different parameters can be used to explain a limited set of observed
states. Even for the WC models with very few free parameters, simple optimisation
routines as indicated in Figure 3D-E quickly become intractable, with complex mul-
tidimensional error landscapes that cannot be comprehensively mapped. The flexi-
bility afforded by the increased number of free parameters in the CMC model comes
at the cost of increased complexity of the space of possible solutions, making it
difficult to evaluate which best explains observed behaviours.
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There are several possible approaches to addressing this ill-posed problem, many
of which have been employed in the computational modelling of epileptic seizures
and EEG abnormalities. In the following, we will introduce a few of these ap-
proaches, with a focus on dynamic causal modelling. This will then be applied to
address the question as to what abnormalities in the functional architecture can ex-
plain the paroxysms observed in patients with NMDAR antibody encephalitis.

Model Inversion for EEG Abnormalities

One of the most intuitive strategy to inversely link observed EEG features to
changes in the parameters of an underlying generative model — i.e. to invert the
model — is to systematically vary the parameters and evaluate how well the model
simulations then fit the observed measurements. This can be done ‘by hand’, choos-
ing individual parameter ranges and assessing the individual modelling outcomes
(illustrated in Figure 3D-E for the simple case of estimating input currents produc-
ing a specific frequency output in the WC model). This approach can be informa-
tive, even in complex models of laminar cortical connectivity (Du et al. 2012), but
is limited to a small numbers of varying parameters if comprehensive parameter
mapping is attempted.

This limitation can be overcome by finessing (1) how the space of possible pa-
rameter values is explored to find a model that explains the data better (termed op-
timization algorithms), and (2) by utilising different measures to rank models
against each other, i.e. to evaluate which model is the ‘better’ model (e.g. using a
cost function). A large number of different approaches to both of these issues exist,
of which a variety have been employed in inverting models of neuronal function to
fit EEG data.

Optimisation algorithms

Optimisation algorithms describe computational strategies to identify parameter
constellations within a range of possible values that produce a model output that
best matches the observed results. There is a large literature regarding competing
optimisation methods in a whole host of different areas of science and engineering,
so in this section we will only discuss a few algorithms applied in fitting neuronal
models to EEG data.

One of the most commonly applied algorithms is that of gradient descent (or as-
cent, depending on whether one is attempting to find minima or maxima). The basic
idea is that from a random starting point, in order to find a minimum, one could
iteratively take steps following the direction of the steepest downward gradient until
no more changes are made at each step, i.e. the algorithm converges. Because the
local gradient is defined by the first derivative of the cost function at any point, the
cost function has to be locally differentiable for gradient ascent to be applicable.
This approach is intuitive and easy to apply to a range of optimisation problems,
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such as seizure classification (Thomas et al. 2008), or to refine aspects of EEG
source reconstruction (Hansen & Hansen 2015).

There are a two major limitations to this approach, however, which apply to the
problem at hand — namely inverting complex, multi-parameter neural mass model
to fit EEG data:

(1) The gradient descent approach relies on the cost function to be smooth and
continuous in order to be able to calculate the derivatives. Furthermore, in
systems where there are unobserved variables in addition to unknown pa-
rameters that need to be inferred, calculating the derivatives directly is often
not possible because of recursive dependencies between variables and pa-
rameters.

(2) It is designed to identify a local optimum, not the global optimum. Where
the cost function is complex and has multiple local extrema, the local opti-
mum identified in this approach may be far from the global optimum possi-
ble in the parameter ranges.

There are several alternative optimisation algorithms that address these prob-
lems. Genetic algorithms for example resemble the process of natural selection by
producing random parameter variations and propagating the most ‘successful’ ones.
After iteratively varying some of the parameters (introducing mutations) and then
choosing the best variants (selection), the algorithm will converge to the best global
solution, without requiring estimation of local gradients for its progression. This has
been applied to fitting parameters of a detailed phenomenological model of individ-
ual EEG abnormalities in clinical EEG recordings, identifying patient-specific dif-
ferences in the transition through parameter space (Nevado-Holgado et al. 2012).
Similarly, algorithms such as particle swarm optimization, or simulated annealing
use direct search strategies that do not rely on knowledge of the gradients. Thee
algorithms converge to a global maximum without getting stuck in local optima. A
variety of these have been used in model based analysis of EEG signals (Shirvany
etal. 2012; Gollas & Tetzlaff 2005; van Dellen et al. 2012).

Therefore we have two broad classes of algorithms: (1) global direct search strat-
egies, that yield robust convergence to global optima but come at a high computa-
tional cost, and (2) gradient descent algorithms that are more computationally effi-
cient but may get stuck in local optima and not yield a global resolution. The balance
of these competing limitations dictates which optimisation algorithm is most appro-
priate in a given situation.

When making inference on models with relatively few parameters, it is often
possible to use one of the global algorithms for a model inversion, as the computa-
tional requirements for inverting a model of only a few parameters are usually man-
ageable. However, in models, such as the CMC, where there are many free param-
eters that need to be fitted, the computational expense of these stochastic algorithms
can be prohibitive and the more efficient gradient descent algorithms are called
upon. In this setting, prior constraints are used to ensure model inversion is less
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susceptible to arresting in local optima. Paradoxically, the local minima problem
can also be finessed by have many free parameters (as ‘escape routes’ are more
likely to be present where there are many different dimensions of parameter space).

The gradient descent approach can be further finessed to address some of the
remaining problems: local linearization can be used to estimate gradient where the
underlying cost function is expensive to calculate; expectation-maximisation (EM)
algorithms can be employed to invert probabilistic models where not all variables
are observed (Do & Batzoglou 2008), hierarchical model inversion can help to avoid
local extrema (Friston et al. 2016). Each of these strategies is employed within the
DCM framework, but crucially hinge on the cost-function employed — i.e. what is
being optimised.

Cost Functions

In order to apply optimisation routines and improve how well a model represents
data, we need to define which measure should be optimised. Often the most intuitive
approach is to calculate the difference between the numerical predictions of the
model states and the empirical measurements, and try and reduce the sum of squared
errors between model prediction and empirical measurement. This approach has
been successfully applied to EEG in a variety of ways (Sitnikova et al. 2008;
Babajani-Feremi & Soltanian-Zadeh 2010).

If closeness of the model fit is the only criterion for the optimisation function, all
free parameters within the models will be adjusted in order to produce the best
model fit. Especially in models with many free parameters, this can lead to idiosyn-
cratic results that resemble specific features of a given dataset, but show poor gen-
eralisability across different, similar datasets — a problem that has been termed over-
fitting. Several strategies can be employed to avoid overfitting and ensure
generalisability of the modelling results.

One such approach has emerged naturally from reformulating the cost function
not in terms of an absolute error that needs to be reduced, but rather in terms of the
Bayesian model evidence (also known as the marginal likelihood) that needs to be
maximised. The evidence is simply the probability of getting some data under a
model of how those data were caused. This is generally evaluated by trying to es-
timate the underlying parameters of a model. In more detail: within the Bayesian
framework, one estimates the probability of a given parameterisation 9, given a set
of observations, or data y, by assuming that these were produced from a model m as
follows:

P

This posterior probability is not easy to estimate directly, but various approaches
can be used to approximate it. Variational Bayes is a generic approach to the anal-
ysis of posterior probability densities. In this approach, the free energy represents a



17

bound on the log of the model evidence and can therefore be used in optimisation
routines to identify optima in the model evidence distribution (Friston et al. 2007).
The (log-) evidence or marginal likelihood is defined as follows (where D (||) de-
notes the Kulback-Leibler, or KL divergence — a measure of the difference between
two probability distributions; y denotes data; m denotes the model; 9 denotes a set
of model parameters; g(9) denotes the variational density, i.e. the approximating
posterior density which is optimised; thus - (In ¢(3) )q denotes the entropy and (L (%) )q
denotes the expected energy; F denotes the free energy):

= \L\W)lqg T\ YL\ ) /g <)

The log evidence itself can be split into an accuracy and a complexity term, and
thus automatically contains a penalty for overly complex models that are prone to
overfitting. In the context of DCM the complexity of the model is established on
the basis of how far parameters deviate from their prior values. Therefore, maxim-
izing this Bayesian estimate of model evidence provides a compromise between
goodness of model fit, and the generalizability of the model.

Specifically in regards to epilepsy there are further specific problems that need
to be addressed: Often the changes of a parameter that varies with time are of inter-
est (for example whilst trying to track network changes during the transition into a
seizure). If no account were taken of the temporal contiguity between individual
time steps, the already computationally expensive model inversion needs to be fully
repeated at each time step, treating each window as independent sample.

For dynamic systems, where there is a temporal dissociation between fast vary-
ing states and more slowly changing underlying model parameters, this problem can
be overcome through optimization approaches that take into account the temporal
dependencies between parameter values at neighboring time points. One of the most
successful of these approaches it the Kalman filter. This was originally developed
for linear systems, but soon extended to nonlinear systems (Julier & Uhlmann
2004). The Kalman approach has been used very successfully to estimate parame-
ters underlying transitions into seizure state, where it has proved to benefit from its
ability to estimate unobserved (hidden) states (Freestone et al. 2014).

A similar (and mathematically equivalent) approach can be implemented within
the DCM framework, where each time step receives the preceding model inversion
posteriors as prior expectations, resulting in evidence accumulation (also known as
Bayesian belief updating) across the whole modelling time (Cooray et al. 2016).
More recently, a generic approach to estimating parameters at two modelling levels
has allowed to accommodate arbitrary relationships between individual model in-
version steps in a computationally efficient way (parametric empirical Bayesian ap-
proach, Friston, Zeidman, et al. 2015; Friston, Litvak, et al. 2015).
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In summary, a Bayesian framework for the cost function allows incorporation of
the required constraints to solve the inverse problem as prior beliefs regarding the
parameters (consisting of expected value, and uncertainty measures). The use of
priors furthermore allows the model evidence to be cast directly in terms of accu-
racy — complexity, and therefore preventing overfitting of excessively complex
models. Furthermore, several computationally efficient techniques are available to
accommodate modelling of time series data. We will now illustrate these procedures
using a worked example.

Workflow for Analysis of NMDAR Antibody-Related Paroxysms

Patients with NMDAR antibody encephalitis show a whole variety of apparently
different EEG paroxysms. The aim of the subsequent analysis is to identify possible
causative mechanisms of how the molecular pathology is translated into an observ-
able abnormal dynamic state. In order to address this aim, we call on the computa-
tional mechanisms introduced above.

Specifically, we utilise recent advances in parametric empirical Bayes within the
DCM framework (Litvak et al. 2015; Friston et al. 2015; Friston et al. 2016), which
allows for a two-stage modelling approach:

1. Fit parameters of canonical microcircuit neural mass model to both
background and paroxysmal conditions separately, in order to find the
parameter constellation that provides the best fit

2. Estimate the evidence for models of reduced complexity (i.e. fewer free
parameters) to identify subset of parameters that explain most of the
changes between background and paroxysms using Bayesian model
comparison

The workflow for the analysis of an individual patient is illustrated in Figure 6.
Note that in line with recent advances in dynamic causal modelling, first a “full’
model is inverted — i.e. all typically changing parameters are freed up and are al-
lowed to change in order to explain observed data. Bayesian model comparison is
conducted between models with reduced complexity, where the differences between
conditions are explained by only a pre-defined subset of parameters. This second
step allows for direct comparison of competing hypotheses (about which specific
synaptic parameters mediate seizure onset) within the Bayesian framework.
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Fig. 6. Analysis workflow: A) Abnormal paroxysmal activity is visually identified on the EEG
and source localised to a single source (Cooray et al. 2016) in order to extract a single “virtual
electrode’ local field potential-like trace that contains the main spectral features of the activity.
A matching number of time windows of background EEG activities is selected from artefact-
free portions of the EEG. B) Dynamic causal modelling is used to respectively fit a single
source canonical microcircuit to the paroxysmal, and the background activity. C) Parametric
empirical Bayes is used estimate the free energy for models that explain both background, and
paroxysmal activity with changes in only a subset of free parameters. D) Bayesian model com-
parison estimates the evidence for each of the reduced models from the previous step and is
used to decide which model is most likely to have caused the observed data features.
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The specific hypotheses tested in this analysis are founded in the existing
knowledge of the molecular mechanism associated with abnormal EEG features:
NMDA receptor antibodies affect glutamatergic, excitatory connections. Here we
want to explore whether the resultant effects in the microcircuit mainly have an ef-
fect on the time constant of specific neuronal populations (parameterised as time
constant, ), or on the connection strength of excitatory connections (parameter-
ised as g). The specific parameters of interest are summarised in table 1.

Table 1. Model parameters and combinations for reduced model comparison

Model parameters evaluated in reduced models
T, superficial pyramidal cells g1 connection from ss to sp
T, spiny stellate cells 92 connection from dp to ii
T3 inhibitory interneurons g3 connection from ss to ii
Ty deep pyramidal cells
Reduced models (i.e. combination of free parameters to explain both conditions)
Model 1 Ty Model 16 g1
Model 2 T, Model 17 92
Model 3 T3 Model 18 g3
Model 4 Ty Model 19 91,92
Model 5 Ty, Ty Model 20 91,93
Model 6 Ty, T3 Model 21 92,93
Model 7 Ty, Ty Model 22 91,92, 93
Model 8 Ty, T3
Model 9 Ty, Ta
Model 10 T3, Ty
Model 11 Ty, T, T3
Model 12 T1,T2, Ta
Model 13 Ty, T3, Ty
Model 14 T1,T2, T3, Ts

Thus, the Bayesian model comparison in the second stage of the analysis will
be used to decide whether changes in the connection strength of excitatory con-
nections, or the temporal integration dynamics of individual neuronal subpopula-
tions best explain the observed transitions from background EEG to paroxysmal
abnormalities.
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Results

Here we report a single case analysis of fitting a neuronal mass model of cortical
dynamics to paroxysmal abnormalities in a patient with NMDA receptor encepha-
litis. Utilising the laminar and cell-type specificity of the canonical microcircuit and
the computational efficiency of the variational Bayes approach to fitting the param-
eters, allows estimating the most likely constellations of biophysically relevant pa-
rameters that explain the observed EEG patterns.

A - Example EEG signal — Bayesian Model Selection C - Individual parameter changes

*

. *

T1,72,73,T4

background

Posterior Probability o8 w

models

f each model with changes in only: 8 & &
time constants (t) connection strengths (g)

individual individual |
. T, T, T3 Ty
selection selection

all four all three

episodic

Fig. 7. Bayesian model selection and parameter averages: A) Two-second windows around
all paroxysms (total: 12) and an equal number of background EEG windows were selected
visually from the whole-scalp EEG - an exemplar single time window is shown here for back-
ground (top) and episodic (bottom) activity. B) Single source canonical microcircuits were fit-
ted to average source localised background, and episodic power spectral densities respectively.
Models that explained the difference between background and episodic activity with a limited
set of free parameters (cf. Table 1) were then compared through Bayesian Model Selection -
the winning model here was one where changes in all time constants were required to explain
the difference between background EEG and episodic EEG. C) Bayesian model averaging was
performed to estimate the parameter differences that explain the transition from background to
episodic activity. A significant increase of time constants was estimated in spiny stellate, in-
hibitory interneuron and deep pyramidal cell populations.

Variables. time constants: 11 - superficial pyramidal cells, 72 - spiny stellate cells, 3 - inhibitory
interneurons, t4 - deep pyramidal cells; connection strengths: g: - spiny stellate to superficial
pyramidal cells, g2 - deep pyramidal cells to inhibitory interneurons, gs - spiny stellate to inhib-
itory interneurons.

Time windows of 2 seconds around visually defined episodic EEG activity (Fig-
ure 7A shows an example) is source localised to a single point and their power
spectral densities are averaged across time windows (total number = 12). The same
number of time windows is randomly selected from artefact free background activ-
ity and source activity is estimated at the same cortical source for estimation of the
power spectral densities.
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In the first stage of the analysis, a single source canonical microcircuit is fitted
to the empirical spectral densities for each of the two conditions separately. This
results in two fully fitted DCMs, where all parameters are allowed to change be-
tween background and episodic activity. In order to assess which of these parameter
changes is necessary for the observed differences conditions, Bayesian model se-
lection was performed over a set of reduced model, where only a subset of parame-
ters are allowed to change between episodic and background activity. This model
space is laid out in detail in Table 1 - and broadly divides models into those with
different combinations of changes in the synaptic dynamics (i.e. time constants,
models 1-14), and the synaptic connection strengths (models 16-22). Comparing
these models, the model with changes in all time constants provides the best fit
(posterior probability ~ 0.76), followed by the model with changes in T2, 13, and 74
only (posterior probability ~ 0.13) as shown in Figure 7B.

Bayesian model averaging further provides estimates of the size and direction of
changes of each parameter between background and episodic activity, shown in
Figure 7C. Because the Bayesian model averaging takes into account uncertainty
over specific parameter estimates, this allows for the calculation of a Bayesian con-
fidence interval, and inference whether any given parameter change has a probabil-
ity exceeding a certain significance threshold (here 99%). According to these esti-
mates, we find that the episodic spectral densities are associated with a significant
increase of time constants in the spiny stellate (12), inhibitory interneuron (t3) and
deep pyramidal cell (t4) populations.

The model fits can be seen in Figure 8. Figure 8A and B show the fits of the
independently inverted full DCMs, whilst Figure C and D show the model fits for
the reduced winning model where parameters across both conditions are identicial
apart from the time constants 71, T2, T3, and t4. The paroxysms have a clear frequency
peak in the low beta frequency range, which are present in both the full model fits
(8B) and the reduced fits (8D) of that condition. Whilst the model fits for the full
model are better for both he episodic and the background activity, most of the im-
portant differences between them are preserved well even in the reduced models
where only a small subset of parameters contributes to explaining the differences
seen. Most notably, the emergence of an additional frequency component in the beta
range with an identical peak frequency is modelled well, whilst the relative power
of high and low frequencies is not preserved as well in the reduced model prediction.
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A Spectral density of background activity C Spectral density of background activity
Full dynamic causal model Reduced causal model
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Fig. 8. Model fits for power spectral densities: Model fits are shown for the full DCM inver-
sions (A, B) and the winning reduced models (C, D), where the differences between episodic
and background activity are explained by changes in the time constants only. The top panels
show the background activity, whilst the bottom panels show the paroxysmal, episodic abnor-
mality. Model predictions and power estimation range from 4 - 60 Hz.

These findings are interesting in two ways. Firstly, identifying changes in pa-
rameters that carry biophysical relevance means that results from human EEG meas-
urements can be used to evaluate hypotheses that emerge from molecular findings.
Specifically for our case, a significant body of work has already established that
antibodies against NMDAR have direct effects on glutamate transmission dynamics
in a mouse model of NMDAR antibody encephalitis (Hughes et al. 2010).

These experiments investigating the blockade of NMDAR transmission show
that (1) it affects mostly the temporal dynamics of the glutamate response, and not
its size (as the latter is largely determined by the preserved AMPA-receptor re-
sponse); and (2) the most significant effect on NMDAR availability in the mice
treated with NMDAR antibody positive CSF was not within the dendritic spines
(the sites of classical synaptic transmission), but on extrasynaptic NMDARs.

Our hypothesis space for the analysis presented was specifically designed to ad-
dress the first aspect: In humans, can dynamic abnormalities on the EEG caused by
NMDAR antibody exposure be best explained by changes in the time constants (as
predicted from mouse models), or by a change in excitatory connection strengths.
The findings from the Bayesian model selection in fact support changes in temporal
dynamics underlying the observed EEG abnormalities, providing the first evidence
from human studies that the mechanism observed in other model systems may ex-
plain the pathological features seen in patients.
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However, our analysis pathway tried to explain transitions between background
and paroxysmal activity within an individual patient (and during a single EEG re-
cording) through changes in network parameters, even though the presumed under-
lying cause — the NMDAR antibody — are present and active throughout the record-
ing. Our interpretations of the findings therefore do not suggest that NMDAR cause
a permanent change in the time constants, but rather promote a volatility in time
constants that facilitates the transient appearance of paroxysmal abnormalities.

Time constants themselves are known to be a composite measures that depend
on particular physiological states and are therefore not actually constant, but are
themselves dynamic in their expression (Koch et al. 1996). One identified mecha-
nism of activity-dependent changes in the temporal profile of postsynaptic integra-
tion is the recruitment of extrasynaptic NMDAR during excessive stimulation at
AMPAR-only synapses (Clark & Cull-Candy 2002). The observations made in an-
imal models suggest that NMDAR antibodies change the balance between extra-
synaptic and synaptic NMDAR, and are therefore likely to change the dynamics of
time-constant changes governing physiological synaptic transmission, making the
transient changes in temporal dynamics described in our model a plausible patho-
physiological mechanism.

The main effect as estimated from the canonical microcircuit is an increase of
the time constants in a variety of neurons. The increased time constants may facili-
tate temporal integration of neuronal signal and therefore result in an increase in the
coupling between superficial and deep pyramidal cells, potentially explaining the
high amplitude paroxysmal activity observed on the EEG.

Limitations

In this study we applied DCM to episodic abnormalities in patient EEGs. In the
process of this study, many simplifying assumptions are required to render such an
empirical inversion tractable.

We have chosen to investigate intrinsic changes in neuronal population coupling
and dynamics, based on a single trace extracted from a ‘virtual electrode’ at a source
location estimated from the paroxysmal abnormalities. Thus we have not specifi-
cally addressed any larger scale topographic heterogeneity or network level inter-
actions in this study.

Furthermore, the current analysis describes only the state switching between
short paroxysmal abnormalities and the patient-specific background, and not the
transition into pathological EEG patterns at the onset of illness (as this data is rarely
available). This means that the inference we draw is one regarding fluctuations in
an already pathological state, that may explain the variations in the EEG phenotypes
observed.

The study also is specifically designed to investigate different mechanisms in-
trinsic to a single cortical source - we therefore do not model differences in input or
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extrinsic connectivity. However, these are likely to contribute to state switching be-
tween the different dynamical states illustrated here, and will be the focus of further
modelling research.

Take home message for Clinicians

This chapter offers an introduction to using empirical electrophysiological data
to inform the parameterisation of advanced mesoscale neuronal models. This ap-
proach is particularly suited to link conditions where long-lasting, or even perma-
nent pathologies (such as a lesion, or a molecular abnormality) find their pathophys-
iological expression only transiently in abnormal neuronal dynamics. The prime
example for this is epilepsy, where abnormalities in the neuronal network produce
intermittent and unpredictable abnormal states — epileptic seizures; but the same
approach is also relevant to neuropsychiatric conditions, or the encephalitides, as
discussed in this chapter.

Linking macroscopic, and often transient observations — such as clinical features,
or EEG measurements — to underlying causes, even where they are understood in
some detail is far from intuitive. Whilst the discovery of NMDAR binding antibody
in the context of clinical autoimmune encephalitis clearly suggest a direct patho-
physiological role for the antibody, understanding how it affects synaptic transmis-
sion in order to produce the abnormalities observed in neuronal states still remains
difficult. This currently limits the prognostic and diagnostic value of EEG record-
ings, as well as hindering the development of targeted therapies.

The chapter introduces mesoscale computational modelling as a possible link
between molecular or microstructural pathology, and macroscale phenotypes. Ex-
ploiting recent advances in both neuronal models of cortical function, and the fitting
of parameters to empirical data within the well-established framework of Dynamic
Causal Modelling allows for the testing of specific mechanistic hypotheses. The
approach presented here allows researchers to directly address specific questions
emerging from other disease models and evaluate whether evidence for similar
mechanisms can be identified in human patients.

These computational models can facilitate a thorough understanding of the dy-
namic effects of apparently static abnormalities within an organism. Whilst they are
not set up to reproduce the complexity of whole organisms, they allow the mapping
of changes in the model parameters and dynamic outputs of the model. They are
therefore an ideal tool to further explore hypotheses derived from newly identified
genetic mutations, other molecular causes, or animal models of specific conditions.

Regarding the example of NMDAR encephalitis, the computational approach
presented here provides empirical evidence for electrophysiological abnormalities
being caused by changes in the temporal dynamics of synaptic transmission, rather
than changes in connection strength. This replicates findings from animal models,
providing converging lines of evidence that the observations made in the animal
models is in fact related to the dynamic abnormalities we see in human patients.
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Take home message for Computationalists

Advanced computational modelling in the analysis of electrophysiological sig-
nals is currently limited to a few source localisation algorithms in routine clinical
practice. Yet recent advances both in machine learning algorithms, and the in-
creased availability of computational resources provide an opportunity to integrate
advanced computational analysis of neuronal signals into clinical practice.

The approach presented in this chapter is deliberately using empirical data to
parameterise an existing, full generative model of neuronal population function (as
opposed to more data driven machine learning approaches): The generative model
both constrains the inverse problem we face by attempting to make inference on
mesoscale mechanisms from macroscale recordings. But crucially it also forces the
results of the computational analysis to be cast within biophysically plausible terms.

The work presented here should not be seen in isolation, but instead provides a
novel, and necessary perspective on an existing scientific question. When attempt-
ing to identify causative mechanisms in NMDAR encephalitis, neither computa-
tional nor animal-based approaches will give us the full answer. Rather the strength
of the evidence lies in the use of existing evidence from other model systems to
constrain the computational analysis to only address specific, competing hypothe-
ses. This ‘evidence accumulation’ is easiest where all lines of evidence refer to sim-
ilar neurophysiological concepts (e.g. connection strengths, time constants, gain pa-
rameters). Indeed on can foresee the application of dynamic causal modelling to
data from animal models to provide a formal integration of animal and human meas-
urements.

The Dynamic Causal Modelling approach presented here furthermore has the
benefit that it will provide estimates of model evidence (to decide between compet-
ing hypotheses) as well as individual parameter estimates (to evaluate specific ef-
fects), derived from fitting the model to empirical data. This combines the benefits
of data driven analysis: the DCM can provide direct empirical measures for, or
against specific hypotheses, as well as being utilised as a generative model of neu-
ronal dynamics whose parameter space can be explored in detail.

The example presented shows that the approach is uniquely flexible and can be
applied to a wide variety of contexts. All software used here, including model in-
version techniques, canonical microcircuitry models and classical EEG analysis
modules, is freely available as part of the Statistical Parametric Mapping (SPM)
academic freeware (www.fil.ion.ucl.ac.uk/spm).
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