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Abstract—Predictive coding is possibly one of the most

influential, comprehensive, and controversial theories of

neural function. While proponents praise its explanatory

potential, critics object that key tenets of the theory are

untested or even untestable. The present article critically

examines existing evidence for predictive coding in the

auditory modality. Specifically, we identify five key assump-

tions of the theory and evaluate each in the light of animal,

human and modeling studies of auditory pattern process-

ing. For the first two assumptions – that neural responses

are shaped by expectations and that these expectations

are hierarchically organized – animal and human studies

provide compelling evidence. The anticipatory, predictive

nature of these expectations also enjoys empirical support,

especially from studies on unexpected stimulus omission.

However, for the existence of separate error and prediction

neurons, a key assumption of the theory, evidence is lack-

ing. More work exists on the proposed oscillatory signa-

tures of predictive coding, and on the relation between

attention and precision. However, results on these latter

two assumptions are mixed or contradictory. Looking to

the future, more collaboration between human and animal

studies, aided by model-based analyses will be needed to

test specific assumptions and implementations of predictive

coding – and, as such, help determine whether this popular

grand theory can fulfill its expectations.

This article is part of a Special Issue entitled: Sequence

Processing. � 2017 The Author(s). Published by Elsevier

Ltd on behalf of IBRO. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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INTRODUCTION

How does the brain make sense of the world? A popular

theory addressing this question is predictive coding

(PC). Simply put, PC states that the brain infers what is

‘out there’ by constantly predicting what is out there,

and then improving those predictions. More technically,

PC proposes that the brain constructs a hierarchical,

generative model of the world – a model capable of

generating patterns of activity ‘from the top-down’ that

external stimuli would elicit ‘from the bottom-up’. The

perceiving brain continuously tries to ‘fit’ such models by

predicting the incoming sensory input. Bad fits signal

prediction errors that leverage increasingly accurate

estimates (recognition); and, over time, a modified

model (perceptual learning).

As a biological basis for Bayesian theories of

perception and cognition, PC offers compelling

explanations for phenomena from psychology (Knill and

Pouget, 2004) neuroanatomy (Friston, 2005) and electro-

physiology (Rao and Ballard, 1999). Hailed by some as

providing a ‘grand unified theory of the brain’ (Friston,

2010) the framework has drawn a considerable amount

of attention (Hohwy, 2013; Clark, 2013, 2016). But predic-

tive coding faces many challenges. By ascribing a central
ons.org/licenses/by-nc-nd/4.0/).
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role to top-down expectations of bottom-up inputs, PC

advocates a radical break with traditional feed-forward

accounts of perception. A break, some worry, too radical

since core tenets of the theory are, at best, untested

(Egner and Summerfield, 2013) or, at worst, untestable

(Kogo and Trengove, 2015).

Initially, PC was conceptualized in the context of

visual processing (Rao and Ballard, 1999; Lee and

Mumford, 2003). However, the auditory system quickly

became a popular test bed, with many studies capitalizing

on the auditory Mismatch Negativity (MMN; Näätänen

et al., 1978, 2007), perhaps the most well-studied neural

signature of surprise or error processing. The present

review critically evaluates the evidence for PC in auditory

cortex. In keeping with this Special Issue, we will limit our-

selves to relatively low-level auditory patterns (as

opposed to e.g. speech and language; but see Arnal

et al., 2011; Sohoglu et al., 2012; Gagnepain et al.,

2012). There exist several recent reviews of predictive

representation in audition (Winkler and Schröger, 2015;

Schröger et al., 2014, 2015; Winkler and Czigler, 2012;

Winkler et al., 2009). In contrast, the present analysis

specifically attempts to delineate key assumptions shared

by different PC models (cf. Rao and Ballard, 1999; Rao,

2005; Friston, 2005, 2010; Bastos et al., 2012;

Spratling, 2008a,b, 2010; see Spratling, 2015 for review)

and assess whether these assumptions are supported by

empirical evidence in the auditory modality.

In the next section we will briefly recap these basic

assumptions and their empirical ramifications, before

evaluating them in more detail in the light of recent

evidence.

125

Fig. 1. Different arrangements of error and expectation neurons in auditor

Columns denote hierarchically arranged cortical columns corresponding to p

standard PC (left), errors flow upward and predictions downward; error units

units with deep layers (V/VI). Prediction units at higher levels can suppre

connections (black circles). In Biased Competition models of PC (Spratling, 20

at input layer IV, prediction units suppress error units only via intracolumnar in

Please note that this schematic is intended to illustrate differences in laminar p

the distinction between excitatory and inhibitory populations, and between hid

models, and possible physiological mappings, see Shipp (2016), Bastos et al

was adapted from Winer (1985).
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PREDICTIVE CODING IN CORTEX –
FOUNDATIONS AND ASSUMPTIONS

Sensory cortex is organized hierarchically. At each

processing level, neurons integrate information from

multiple neurons at the level below, thus encoding

increasingly abstract information over ever larger

temporal and spatial scales. But cortex is reciprocally

connected, so neurons also receive input from the level

above (Felleman and van Essen, 1991).

Traditionally, higher levels were assumed only to

modulate lower levels, e.g. by prioritizing the processing of

certain inputs over others. But in PC, following the

proposal by Mumford (1992), the abstract information at

higher levels informs and potentially drives neurons at lower
levels by signaling a (prior) ‘best guess’ of their activity. At

the lower level, the difference between the predicted and

actual activity elicits a prediction error that is propagated

back to the level above, where it is used to generate a new

and improved (posterior) estimate. This routine is repeated,

simultaneously throughout the hierarchy, until themost likely

estimate is reached and the stimulus is perceived.

In this scheme – arguably the standard version of PC

(Rao and Ballard, 1999; Friston, 2005; Bastos et al.,

2012) – a strict cortical asymmetry exists between back-
ward connections (carrying predictions) and forward con-

nections (carrying prediction errors). Since forward

connections originate in superficial (II/III) pyramidal neu-

rons, and backward connections originate in deep (V/VI)

pyramidal neurons (Felleman and van Essen, 1991) this

asymmetry has a straightforward anatomical conse-

quence: prediction neurons reside in deep layers, and

error neurons in superficial layers (Fig. 1).
y cortex implied by different formulations of Predictive Coding (PC).

rimary (A1), secondary (A2) and higher order (An) auditory areas. In

are therefore identified with superficial layers (II/III) and expectation

ss error units at lower levels via (poly-synaptic) top-down inhibitory

09; right), expectations flow upward and downward, error is computed

hibition, and top-down connections are fully excitatory (black arrows).

rofiles only. For simplicity, various details have been omitted, such as

den causes and hidden states. For a more detailed exposition of the a

. (2012), and Spratling (2009, 2017). Laminar image of auditory cortex

there evidence for predictive coding in auditory cortex?. Neuroscience
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Note that this ‘standard model’ is not the only

implementation of PC. Other models propose different

arrangements, some dispensing with the functional

asymmetry between forward and backward connections,

and locating prediction and error neurons differently

(Spratling, 2008a,b, 2010; SeeFig. 1).However, all formula-

tions assume that predictions and errors are computed by

separate neurons in different cortical layers – as such, pre-

diction and error responses are assumed to have distinct
laminar profiles.

In PC, attention is formalized as a process that infers the

level of predictability of sensory inputs. Again, models differ

in details (Feldman and Friston, 2010; Rao, 2005; Spratling,

2008a,b, 2010) but all conceptualize attention as theweight-

ing of sensory signals by their precision (inverse variance).

The brain thus not only generates (first-order) predictions

about the content of a signal, but also generates (second-

order) estimates about its reliability.When this is low, devi-

ations are down-weighted and may go unnoticed; when it is

high, deviations are amplified and prioritized for further pro-

cessing. Physiologically, this is thought to be implemented

by the post-synaptic gain on superficial (error or prediction)

neurons tuned to the attended dimension (e.g. feature-

based or spatial attention).

Finally, different PC-variables are sometimes

associated with different cortical rhythms: error cells are

thought to propagate their messages forward via the

gamma-band (>30 Hz), while deep layers send

downward predictions via lower, especially beta-band

(12–30 Hz), frequencies (Arnal and Giraud, 2012;

Bastos et al., 2012). Since this assumption is based on

known oscillatory differences between forward and back-

ward signals (e.g. van Kerkoerle et al., 2014) it only

applies to standard PC, which postulates a strict func-

tional asymmetry between backward connections (carry-

ing predictions) and forward connections (carrying errors).

In sum, PC makes a number of key assumptions with

clear empirical consequences:

230
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P

(

(1) Sensory cortex implements a hierarchical, gen-
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252
erative model of the world: neurons at higher

processing stages generate predictions that bias

processing at lower levels.

(2) Population responses (i.e. gross activity measured

with MEG, EEG or BOLD) reflect (at least in part)

‘transient expressions of prediction error’ (Friston,

2005, p.829) – therefore, neural responses should

be shaped by (hierarchically nested) expectations.

(3) Prediction-generation and error-detection are

implemented by separate neural subpopulations

that reside in different cortical layers – as a con-

sequence, prediction and error computations

should have distinct laminar profiles.

(4) Attention is the weighting of sensory input by its

reliability – accordingly, thegainonupwardprojec-

tions should reflect (estimated) sensory precision.

(5) In standard PC, top-down predictions and

bottom-up errors have distinct oscillatory pro-

files: predictions are conveyed via lower frequen-

cies (mostly beta) and (precision-weighted)

prediction errors via higher frequencies (gamma).
lease cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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In the next sections, we will evaluate each assumption
in the light of recent evidence.
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ANIMAL STUDIES

Prediction in auditory cortical neurons

Most animal research on auditory prediction and surprise

focusses on Stimulus Specific Adaptation (SSA). SSA

refers to the selective attenuation of responses to

repeated (common) stimuli and can be seen as a single-

cell analog of MMN. Although their exact relation

remains debated, SSA is probably not a direct substrate

of MMN, since the phenomena differ in latencies,

NMDA-dependence, and sensitivity to certain

regularities (Khouri and Nelken, 2015). There is a large lit-

erature on SSA, most of which is beyond the scope of this

review as it does not address key features of PC such as

prediction (but see Khouri and Nelken, 2015 for review).

Interestingly, it is unclear whether SSA, despite what

the name implies, is caused by simple adaptation.

Ulanovsky et al. (2004) showed that SSA – here defined

as the difference in responses to the same sound pre-

sented with different probabilities – depended not just

on local context but also on a longer stimulus history,

beyond the order of seconds at which habituation pro-

cesses like synaptic depression are thought to occur.

Moreover, SSA is observable for tones with frequency dif-

ferences smaller than typical tuning curves, which also

cannot be explained by models of synaptic habituation

(Taaseh et al., 2011; Yaron et al., 2012).

Recently, Rubin et al. (2016) re-analyzed the data

from Ulanovsky et al. (2004), in a first attempt to quantify

the longer-term dependencies. Anesthetized cats were

exposed to ‘Bernouli sequences’ with two tones occurring

independently with a fixed probability. The authors rea-

soned that some representation of (long-term) stimulus

history influenced responses; moreover, this representa-

tion was not a one-to-one copy but a reduced representa-
tion. Assuming that only stimulus probability was

represented, rather than transitional probability (but see

Meyniel et al., 2016; Mittag et al., 2016) the authors com-

puted the predictive power of representations reduced to

a different degree. The key assumption here was that

responses reflected prediction error, expressed as nega-

tive log probability. The prediction error account offered

good fits, explaining up to 50% of observed variability.

Interestingly, representations incorporating less than 10

preceding stimuli (7.3 s) were almost never in the top

10% with the most power. The authors concluded that

neurons in A1 signal prediction errors, based on reduced

representations incorporating long-term stimulus history

‘to generate predictions about the future’ (2016, p.2).

Although the authors are agnostic about the underlying

mechanism – which may or may not resemble schemes

envisioned by PC – the interpretation forms a departure

from earlier accounts of SSA, which (as the name sug-

gests) tend to focus on stimulus-driven explanations such

as synaptic depression.

More fundamental insights are presented by Gill et al.

(2008) who explored surprise as a model for auditory

receptive fields. At several levels in the Zebra Finch audi-
there evidence for predictive coding in auditory cortex?. Neuroscience

http://dx.doi.org/10.1016/j.neuroscience.2017.07.061
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tory hierarchy, the authors compared three receptive field

models: first, a traditional approach modeling neurons as

responding to specific spectrotemporal patterns of intensi-

ties (STRF); secondly, a derivative approach, modeling

changes in intensities; finally, a model describing neurons

as responding to surprise, quantified as the inverse condi-

tional probability of a range of frequencies, given the pre-

ceding frequencies, based on naturalistic Zebra Finch

song. This ‘surprise model’ substantially outperformed

traditional models. Interestingly, its advantage depended

on hierarchical level: in area MLD (homolog of inferior col-

liculus) models did not differ significantly. In field L (homo-

log of thalamorecipient neurons in A1) surprise was 20%

better than STRF models on average. And in CLM (homo-

log of higher-order auditory cortex) the surprise model

performed a striking 67% better on average. The authors

concluded that expectations are increasingly important at

higher levels, leading to an ever sparser neural code that

eventually only propagates input not expected on the

basis of preceding input. The authors stress that these

‘expectations’ were based on very short preceding time

windows (3–7 ms), and that the effect is thus not a direct

substrate of high-level (conscious) ‘surprise’. The paper is

also silent on how the expectations are implemented. But

it does show that, at a fundamental level, ‘expectations . . .
form a key part of the [auditory] neural code’ (2008 p.,

218).

The laminar profile of prediction

Laminar differences between prediction and error signals

(Assumption 3) are a key tenet of predictive coding

theories. This important notion remains woefully under-

studied; we have only found two papers relevant to this

assumption. The first is by Szymanski et al. (2009), who

studied the laminar profile of SSA in rat auditory cortex

using an oddball paradigm. To the best of our knowledge,

this is the first auditory study comparing laminar profiles

for expected and unexpected stimuli. Remarkably, their

results seemed opposite to what PC predicts: the authors

found no clear differences between layers. In all layers,

neurons responded more strongly to deviants than to

the same stimulus when it was a standard (SSA). If any-

thing, this difference seemed to be stronger for deeper

layers. If SSA is an expression of prediction error, this

effect seems to contradict PC schemes that identify deep

layers as ‘prediction layers’. It is worth noting, however,

that the rats where anesthetized with ketamine, an

NMDA-antagonist that, probably by blocking NMDA-

dependent plasticity, impairs MMN (Umbricht et al.,

2002) and abolishes global mismatch responses (Uhrig

et al., 2016) leading to a pattern of effects that has been

interpreted (Strauss et al., 2015) as a ‘disruption of pre-

dictive coding’ (see Section Expectation and surprise

along the auditory hierarchy).

A recent study in awake animals did find strong

laminar-specific effects. The authors (Rummell et al.,

2016) trained mice to press a lever that generated noise

bursts. Every 5–10 s the bursts were also generated ran-

domly, allowing the researchers to compare responses to

the same sound when it was self-generated and when it

occurred randomly (Fig. 2A). Clear attenuation of
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is

(2017), http://dx.doi.org/10.1016/j.neuroscience.2017.07.061
responses to self-generated sounds was observed in pri-

mary auditory cortex, replicating non-invasive work in

humans (Baess et al., 2009). The predictive, stimulus-

specific nature of this effect was confirmed when the

authors replaced the noise bursts by pure tones that

had one frequency in 75% of trials and another in 25%.

Responses to common (‘expected’) self-generated

sounds were attenuated more strongly – suggesting that

auditory cortex embodied a stimulus-specific expectation

of the generated sound. Multi-site recordings from audi-

tory thalamus, auditory cortex and hippocampus revealed

increasing attenuation, often resulting in near-silencing in

hippocampus (see Fig. 3). This again points to a familiar

picture of the auditory hierarchy in which predictable com-

ponents are progressively ‘filtered out’.

Intriguingly however, the authors found that

attenuation was much stronger in deep layers. This

again seems to contradict the idea that deep layers

encode predictions, since it should be the error that is

suppressed. Conclusions should be drawn with care,

however, since predicting the sensory consequences of

motor commands may be very different from sensory

prediction in general, so that evidence for the one (see

Eliades and Wang, 2008; Keller and Hahnloser, 2009

for earlier evidence for auditory efference copy) is not

necessarily evidence for the other.

Finally, Jaramillo and Zador (2011) studied expecta-

tion in rat auditory cortex. Rats were presented a train

of short pure tones containing a frequency-modulated tar-

get. The target, which appeared either ‘early’ (450 ms) or

‘late’ (1500 ms), signaled if the correct (rewarded)

response was right or left. Expectation was manipulated

over blocks in which the target appeared early in 85% of

trials and late in 15%, or vice versa. Behaviorally, rats

responded faster and more accurately to targets appear-

ing at the expected time-window. Expectation also modu-

lated single-unit and LFP responses, and this modulation

correlated with performance. For both the preceding stim-

ulus and the target itself, expectation increased rather

than attenuated the neural response, which apparently

contradicts the notion that neurons signal surprise. How-

ever, the stimulus of which expectancy was manipulated,

was also the target. As such, prediction (what is likely?)

and attention (what is relevant?) are confounded. This

confound characterizes many common paradigms,

including the classic Posner task (Posner, 1980), where

attention is controlled by manipulating probability

(Fig. 2B). In such situations, PC makes similar predictions

as conventional accounts of attention: enhanced gain on

the relevant (informative) feature, which is prioritized for

processing. Hence, to distinguish assumptions of PC,

attention and prediction must be manipulated indepen-

dently (see Section Expectation and surprise along the

auditory hierarchy).

Discussion

In sum, animal-model studies relevant to the assumptions

of predictive coding are scarce and show mixed results.

None of the discussed studies explicitly tested PC,

which may contribute to the inconclusiveness of the

results. Nevertheless, they report some remarkable
there evidence for predictive coding in auditory cortex?. Neuroscience

http://dx.doi.org/10.1016/j.neuroscience.2017.07.061


374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

Fig. 2. Paradigms often used in the literature to study the effects of context and predictability on behavioral and brain responses. In the schematic

representations below colored squares represent sounds. (A) The ‘Self-Generated vs. Random sounds’ paradigm compares responses to sounds

when they are self-generated (triggered by a button press; and therefore predictable) or randomly generated by a computer (and therefore

unpredictable; a). Another version of the paradigm (b) compares self-generated sounds (triggered by a button press) to omissions (when the

participant pressed the button but no sound was presented). (B) The ‘Posner paradigm’ is a class of experimental designs where a ‘cue’, which can

be implemented as specific stimulus or a context which is induced during the experimental session, that predicts the target with a certain probability.

The paradigm therefore allows to measure responses to the target as a function of its predictability. (C) The standard MMN Oddball paradigm

involves the presentation of a repeating standard tone, occasionally replaced by a deviant tone. (D) The standard MMN omission paradigm is similar

to the Oddball paradigm except the deviant tone is replaced by silence. (E) The Roving standard paradigm is a variation of the oddball paradigm that

replaces the deviant stimulus with a variable standard. After a number of repetitions, the standard changes, creating a ‘deviant’ that becomes a

‘standard’ – while remaining physically identical. (F) The unexpected repetition paradigm consists of pairs of sounds that are infrequently replaced

by a repetition. The schematic here shows a simple version of the paradigm where the tone pairs consist of the same sounds, but instances where

different pairs are presented are also used. (G) The ‘Repetition vs. Expectation’ paradigm is used to dissociate the effects of prediction from simple

effects of repetition. The paradigm depicted here was used in Todorovic and de Lange (2012). The stimulus set consisted of 3 different tones

(illustrated here by the use of different colors) arranged in pairs but such that the first tone in a pair was predictive of the second one. For example

tone1 (green) was predictive of tone2 (blue) in 75% of the trials but was occasionally (in 25% of the trials) followed by tone2 (purple). Tone2 (blue)

was predictive of an omission but which was replaced in 25% of the trials by tone 3 (green), etc. (H) The Local/Global paradigm is designed to

dissociate responses to local deviants from responses to global deviants. In the example depicted here the stimulus consists of ‘standard’

(commonly occurring) and ‘oddball’ (rarely occurring) sequences. The last tone in each ‘standard’ sequence is a local deviant; In contrast, ‘global

deviance’ is manifested here by the absence of change. A similar approach with expected and unexpected tone omissions is also commonly used.

(I) The ‘Emergence of regularity’ (RAND-to-REG) paradigm introduced by Barascud et al. (2016) is based on rapid tone-pip sequences which

contain transitions from a random (RAND) frequency pattern (in yellow) to a regularly repeating (REG; predictable) frequency pattern (in orange). In

this example the REG pattern consists of a cycled sequence of 4 different tones.

M. Heilbron, M. Chait / Neuroscience xxx (2017) xxx–xxx 5

NSC 17938 No. of Pages 21

8 August 2017
findings. Firstly, in support of Assumption 2, expectation
appears to shape neural responses in auditory cortex.

Surprise – both task-based at timescales of several

seconds (Rubin et al., 2016), and species-based at time-

scales of milliseconds (Gill et al., 2008) – offers a good

model for neural responsiveness. The methodological dif-

ferences between these studies, and the fact that both did

not address the mechanisms of prediction, unfortunately

limit their conclusiveness with respect to PC. However,

both studies make the conceptual shift from charac-

terizing neurons as encoding bottom-up data features,

to encoding hypotheses or predictions, and propagating

only the divergence from these predictions. In support of

Assumption 1, there is also evidence for the idea that

the effects of expectations are hierarchical, in the sense
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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that expected components seem to be progressively fil-

tered out (Rummell et al., 2016; Gill et al., 2008). Atten-

tion, as shown by Jaramillo and Zador (2011), can

influence processing in A1 in an anticipatory way – how-

ever, it remains unclear whether this form of modulation

is in line with attentional modulation as described by

PC. Finally, the two studies that investigated laminar dif-

ferences in processing of expected versus unexpected

stimuli – a signature characteristic of PC – found (under

ketamine anesthesia) no distinct laminar profiles and

(using self-generated sounds) strong expectation sup-

pression in the deep rather than superficial layers of cor-

tex. Although methodological issues prevent strong

conclusions from being drawn, the animal-model literature

contains fascinating results that call for more experiments
there evidence for predictive coding in auditory cortex?. Neuroscience
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in awake animals, since only studies of this type can ulti-

mately confirm or falsify key assumptions of predictive

coding.

HUMAN IMAGING AND ELECTROPHYSIOLOGY

Predictive coding and MMN

Human auditory studies on predictive coding often use

some variation of the Mismatch Negativity or ‘MMN’

paradigm. MMN is measured using a method in which a

sequence of stimuli (typically a repeated tone)

establishes a regularity that is violated by a ‘deviant’

stimulus (‘oddball paradigm’; Fig. 2C). MMN is the

negative component of a difference wave, obtained by

subtracting the ‘standard’ from the ‘deviant’ response,

and is found at 100–250 ms.

Traditionally, two main hypotheses on MMN exist.

According to the memory-based hypothesis (Näätänen

et al., 1978; Winkler and Czigler, 1998), MMN is gener-

ated by a system comparing auditory inputs with a mem-

ory template. When a difference is detected, the system

signals an error, and adjusts the template. According to

the adaptation hypothesis (May et al., 1999;

Jääskeläinen et al., 2004; May and Tiitinen, 2010) cells

tuned to repeated ‘standard’ tones simply adapt – due

to passive processes such as synaptic depression – while

neighboring inputs tuned to ‘deviants’ remain unadapted

and elicit stronger responses. By implication, the

oddball-evoked MMN is not a separate evoked potential

but rather a delayed and attenuated N1, that appears sep-
arate only in the difference wave.

In this dispute, PC takes a middle ground position.

Like all memory-based accounts, PC interprets MMN as

a mismatch signal – a mismatch, however, between the

input and a prospective prediction, rather than a

retrospective template. But like the adaptation

hypothesis, PC considers MMN not as a separate

evoked response, but simply as an amplified contrast

between an expected (standard) response and a

surprising (novel) response. In the adaptation

hypothesis, however, both the response and its

suppression are stimulus-driven: there is no error signal.

Under PC, every response is an expression of error and

can be larger or smaller depending on predictions. This

last point – the dependence on predictions – is also

what makes PC considerably less parsimonious than

the adaptation hypothesis. Applying Ockham’s razor, we
3

Fig. 3. Brain responses to predictable and unpredictable sounds. Top: Progr

cortical regions of a mouse model (Rummell et al., 2016). The progressive we

the existence of an increasingly sparse code, in which eventually only non-p

Repetition suppression and expectation dissociated in time (Todorovic and d

MEG responses (40–60 ms). Expectation (but not repetition) attenuated the r

expectation affected the late response (200–500 ms). Gray horizontal bars u

between conditions. Bottom: In contrast to the oft reported attenuation of bra

opposite effect: Brain responses to rapid tone sequences that transitioned from

in the MEG response. This finding demonstrates that the brain appears to e

MMN). As discussed in Barascud et al. (2016) the DC shift appears to vary c

pattern.
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can only consider evidence in favor of PC if it cannot be

explained by a simpler process – which, in audition, is

often simple adaptation. Beyond the simple oddball

paradigm, the MMN literature has shown that listeners

are sensitive to the violation of potentially very complex

patterns (see Paavilainen et al., 2007 for review), which

is usually interpreted as evidence for the exquisite sensi-

tivity of auditory cortex to patterns in sound. Unfortu-

nately, most studies with an explicit focus on predictive

coding in the auditory modality (see reviewed below) have

used the simple oddball paradigm or its variations in

which predictability, or regularity, is manipulated by repe-

tition, which makes adaptation all the more difficult to

exclude.
Repetition suppression – Adaptation or expectation?

The neuroimaging analog of the physiological

phenomenon of adaptation is repetition suppression

(RS). As reviewed by Grill-Spector et al. (2006), multiple

mechanisms for RS have been proposed. We can distin-

guish between mechanisms that explain RS via passive

adaptation effects, sometimes called ‘neural fatigue’,

and accounts that interpret it as a signature of increased

processing efficiency. PC belongs to the second type: it

ascribes the suppression not only to the repetition itself,

but also to the expectations it induces. Interesting support

for this account comes from Costa-Faidella et al. (2011)

who recorded EEG responses in a roving standard para-

digm (Fig. 2E). This is a variation of the oddball paradigm

that replaces the deviant stimulus with a variable stan-

dard. After a number of repetitions, the standard changes,

creating a ‘deviant’ that becomes a ‘standard’ – while

remaining physically identical. The authors used two con-

ditions, with predictable and unpredictable timing. In the

predictable condition, Inter Stimulus Intervals (ISI) were

fixed. In the unpredictable condition, ISIs varied ran-

domly. The suppressive effect of repetition (reduction of

the response to the standard tone) was reduced in the

condition with unpredictable timing. Because the average

ISI and number of stimulations were identical between

conditions, this suggests that repetition suppression is

(at least in part) modulated by predictability.

Also in a roving paradigm, Lieder et al. (2013) used

computational modeling to compare prediction and adap-

tation. For each stimulus presentation they calculated the

‘MMN amplitude’, by subtracting the final (‘standard’) pre-
essive attenuation of responses to self-generated sounds at different

akening often resulted in near-silencing in hippocampus, and suggests

redicted components are propagated for further processing. Middle:

e Lange, 2012): Repetition (but not expectation) attenuated the early

esponse at an intermediate latency (100–200 ms). Both repetition and

nder the figure indicate the time intervals with a significant difference

in responses to predictable sounds, Barascud et al. (2016) found the

a random to repeating pattern are manifest as a substantial increase

ncode the state (RAND vs REG) rather than the transition (as in e.g.

onsistently with the predictability (negentropy) of the ongoing stimulus

there evidence for predictive coding in auditory cortex?. Neuroscience
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sentation from the earlier (‘deviant’) presentations. The

authors then compared different models to explain trial-

by-trial fluctuations in this MMN amplitude. The first model

was an adaptation model. This model was ‘phenomenolo

gical’ in the sense that it made no assumptions on the

mechanism behind adaptation, but simply embodied fluc-

tuating responsiveness of populations tuned to different

frequencies. This ‘phenomenological’ approach was con-

trasted to a computational approach in which MMN ampli-

tudes were compared to several parameters in a hidden

Markov model which tracked transition probabilities.

Overall, parameters of the computational model explained

the fluctuations better than adaptation. Interestingly, most

variance was explained not by prediction error, but by

model-adjustment. Together, the authors write, this sug-

gests that attenuation observed in a roving paradigm is

best explained as a form of learning, rather than as

adaptation.

More modeling results are found in Wacongne et al.

(2012) who present a PC model of A1. Contrary to Lieder

et al. (2011) and the DCM studies (see Section Effective

connectivity – clues from DCM) Wacongne et al. (2012)

specified their model at the level of individual spiking neu-

rons, thus committing to a much more detailed implemen-

tation of PC. The model comprised two cortical columns,

each selectively responsive to a different tone (A or B).

Crucially (and unlike standard PC) error units are located

in the thalamorecipient granular layer. In that same error

layer, GABA-ergic neurons receive excitatory input from

predictive units in layer II/III, effectively subtracting the

prediction from the incoming input, resulting in an error

term. This error term is sent to the predictive layers,

where it forms a memory trace used to adapt the internal

model via spike-timing dependent plasticity at NMDA-

weights. Using the sum of postsynaptic currents in each

layer as a proxy for the ERP, Wacongne et al. (2012)

show that this set-up – intentionally lacking synaptic habit-

uation mechanisms – can account for an array of phe-

nomena from the MMN literature, such as the

parametric modulation of MMN amplitude by stimulus

probability (e.g. Sams et al., 1983); MMN to unexpected

repetition (Fig. 2F; e.g. Saarinen et al., 1992; Horváth

and Winkler, 2004); MMN to omission (Fig. 2D; e.g.

Yabe et al., 1997; Raij et al., 1997); and blindness to con-

text (Wacongne et al., 2011, see below).

To further dissociate adaptation and PC based

accounts, Wacongne et al. (2012) performed a MEG

experiment on the ‘repetition MMN’. Participants listened

to tone-pairs that were overwhelmingly alternations

(AB), and only rarely repetitions (AA; Fig. 2F). PC predicts

that an unexpected repetition (AA) should evoke a stron-

ger response – an inversion of the standard MMN. The

adaptation-based explanation (May and Tiitinen, 2010)

suggests this reflects adaptation at higher order neurons,

tuned to the AB tone-pair. To exclude this possibility,

Wacongne et al. (2012) inserted an interval of 10 s

between each pair – much longer than the recovery time

of synaptic depression. In every individual participant, AA

indeed elicited an MMN, while no difference between BA

and BB was observed. Although this result seems highly
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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suggestive, a replication with a larger number of

participants is needed, since Wacongne and colleagues

tested only 5.

Using a similar paradigm, Todorovic et al. (2011) mea-

sured RS for expected and unexpected repetitions.

Expectancy was manipulated in blocks where either

75% of stimuli were tone-pairs and, 25% single tones

(repetition expected) or vice versa (repetition unex-

pected). Clear RS was observed in the 100–500 ms

range, that was strongly reduced in the unexpected con-

dition, suggesting that RS itself might comprise an expec-

tancy effect. However, since the blockwise manipulation

affected the overall occurrence of the tones – and the

authors used an inter-trial interval of 4–6 s – the effect

could, theoretically at least, be explained by passive

adaptation.
612
Expectation and surprise along the auditory
hierarchy

In a follow-up study, Todorovic and de Lange (2012)

addressed this issue by adding an extra hierarchical level

of expectations, that allowed them to manipulate repeti-

tion and expectation orthogonally (Fig. 2G). Each trial

consisted of either an identical or non-identical tone-

pair, or a single tone. Orthogonally to this, the frequency

of the first tone predicted that of the second tone with a

high validity. Using MEG, the authors observed a dissoci-

ation: repetition (but not expectation) attenuated the early

response (40–60 ms) and expectation (but not repetition)

attenuated the intermediate response (100–200 ms). By

contrast, both repetition and expectation affected the late

response (200–500 ms; Fig. 3). This suggests that RS

might be non-unitary, consisting of a late stage, which

reflects the effects of expectation, and an early stage,

which does not (cf. Grotheer and Kovács, 2015). How-

ever, the results may also be compatible with PC, if one

casts repetition as a special, low-level form of expectation

(cf. Auksztulewicz and Friston, 2015b).

Similar findings were reported by Wacongne et al.

(2011), who recorded MEG and EEG responses to viola-

tions of local and global regularities (Fig. 2H). Participants

passively listened to stimuli consisting of five tones, of

which the first four were always identical and the last

one varied. Within each block, a particular variation (e.g.

‘xxxxY’) was dominant, occurring 75% of trials. In the

remaining 25% of trials, the last tone was replaced by

either a deviation (e.g. ‘xxxxX’ within ‘xxxxY’ blocks) or

an omission (‘xxxx_’. The authors found that local devi-

ants (i.e. ‘xxxxY’ even when it was the common stimulus)

were always accompanied by a measurable MMN (at 80–

150 ms), but that in xxxxX blocks (where the local deviant

‘xxxxY’ was also globally unexpected) this deflection was

larger. By contrast, global deviant responses were found

at later latencies (150–600 ms), although no interaction

was reported for this dissociation. Note that, for xxxxY

blocks, a global deviant amounts to an unexpected repe-

tition eliciting a stronger response than an expected alter-

nation – an inversion of the MMN.

Recently, Dürschmid et al. (2016) provided more evi-

dence for a hierarchical organization of mismatch signals,
there evidence for predictive coding in auditory cortex?. Neuroscience
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dissociating not time-scales but brain regions, using high-

gamma (>60 Hz) activity as an index of local spiking.

Dürschmid et al. (2016) were able to measure high-

gamma components using ECoG recordings from

patients with frontal and temporal electrodes, who lis-

tened to predictable and unpredictable deviants embed-

ded in an uninterrupted train of tones. In the predictable

condition, the deviant tone (550 Hz) always occurred after

four consecutive standard tones (500 Hz), rendering the

deviant ‘globally’ predictable. In the unpredictable condi-

tion, the deviant tone occurred randomly after at least

three presentations of the standard tone, rendering the

deviant fully unpredictable. The authors found no main

effect of block type, but they did find an interaction: high

gamma was found for unpredictable, but not predictable

deviants at frontal electrodes, while at temporal elec-

trodes both deviant-types elicited high-gamma

responses. The authors interpreted this as demonstrating

that frontal cortex monitors ‘the bigger picture’. This inter-

pretation is compatible with the source reconstruction

results by Wacongne et al. (2011), who also found that

global (but not local) deviants activated a broad fronto-

parietal network. However, this claim could have been

stronger had Dürschmid et al. (2016) manipulated local

and global regularities independently, instead of compar-

ing repeating versus random patterns.

Strauss et al. (2015) did present such an independent

manipulation. In the same MEG-EEG paradigm as used

by Wacongne et al. (2011), the authors showed that

late-latency responses to global deviants disappeared

categorically in all stages of sleep, concluding that predic-

tive coding was ‘disrupted’. This is remarkable, because

the MMN persists during sleep (Sculthorpe et al., 2009)

and even coma (Fischer et al., 2000; but see Dykstra

and Gutschalk, 2015). However, Strauss et al. (2015)

demonstrate that the persisting ‘sleep MMN’ is strongly

reduced and lacks sustained fronto-parietal activity. Over

and above these differences in degree, sleep-MMN also

seemed to be qualitatively different. Strauss et al.

(2015) showed this by training a classifier to distinguish

local standards and deviants. When trained and tested

on responses recorded during wakefulness, the algorithm

reliably distinguished signals from early (76 ms) to late

(620 ms) latencies. However, when the classifier – trained

on wakefulness data – was tested on sleep data, it only

generalized to early (76–100 ms) and late (212–588 ms)

signals. For signals from the MMN latency (100–

200 ms) it did not generalize at all, and failed to perform

better than chance. The authors interpret this result as

new evidence for the idea that MMN might be a conse-

quence of several independent processes: an automatic

process arising from passive adaptation (May and

Tiitinen, 2010) and therefore persistent under sleep, as

well as an independent process arising from predictive

coding.

Interestingly, the effects of sleep were corroborated in

the realm of anesthesia. Uhrig et al. (2014) had earlier

reported the first neural signature hierarchical novelty

responses (potentially an index of PC) in non-human ani-

mals, using primate fMRI in macaque. They found that

only globally deviant sequences recruited a large
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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fronto-parietal network known in humans as the neuronal

workspace (Dehaene et al., 1998). Recently, Uhrig et al.

(2016) repeated the experiment under varying degrees

of anesthesia. Both anesthetics (propofol and ketamine)

weakened local and distorted global mismatch responses.

Ketamine was especially powerful, effectively abolishing

the global mismatch effect. Since both plasticity

(Collingridge and Bliss, 1987) and intra-regional feedback

(Self et al., 2012) are thought to be NMDA-dependent,

and ketamine impairs MMN even at light dosages

(Umbricht et al., 2002), this is perhaps unsurprising. How-

ever, ketamine is a popular anesthetic, used by three of

the five animal studies here reviewed (Szymanski et al.,

2009; Jaramillo and Zador, 2011; Rubin et al., 2016).

Since it abolishes global mismatch responses, and the

persisting responses may be qualitatively different

(Strauss et al., 2015), these findings underline that future

studies of PC should avoid the use of ketamine – and, ide-

ally, of anesthesia altogether.

Finally, Lecaignard et al. (2015) manipulated (global)

predictability of auditory deviants, but found no hierarchi-

cal effects. Deviant predictability affected ERP amplitudes

at early (<70 ms), MMN (100–250 ms) and late

(>300 ms) latencies. Puzzlingly, however, the biggest

effect of global predictability was found at the earliest

time-window (<70 ms), where the MMN was completely

abolished only in the globally predictable condition; an

effect which stands in contrast to other studies on hierar-

chical PC and hierarchical deviance detection more gen-

erally (Grimm and Escera, 2012; Cornella et al., 2012;

Escera and Malmierca, 2014).

Altogether, hierarchy is central to PC and converging

evidence now demonstrates that effects of prediction

depend on hierarchical processing level. Nevertheless,

some ambiguities remain. A first issue is whether

hierarchically ‘high’ and ‘low’ effects reflect a single

mechanism. Some human electrophysiology studies

claim they do not (Todorovic and de Lange, 2012;

Strauss et al., 2015; López-Caballero et al., 2016). These

studies associate effects on early processing with passive

adaptation (e.g. the early, sleep-persistent MMN in

Strauss et al., 2015) and effects on later, ‘higher’ process-

ing with prediction (see also Grotheer and Kovács, 2015).

However, this hard dichotomy seems at odds with results

from animal electrophysiology which report prediction

effects already at A1 (Rubin et al., 2016; Rummell et al.,

2016; Gill et al., 2008; Ulanovsky et al., 2004). What adds

to the ambiguity is that most studies used repetitions or

Bernoulli sequences to manipulate prediction, causing

expectation and adaptation to be confounded. A second,

more subtle ambiguity is whether the discussed interac-

tions between hierarchy and prediction constitute evi-

dence for hierarchical prediction, in the sense of

hierarchical Bayesian inference. Theoretically, interac-

tions as those in the animal literature – showing that pre-

diction effects become stronger at higher hierarchical

levels (Rummell et al., 2016; Gill et al., 2008) – do not

necessarily support the notion of hierarchically nested

predictions, which would require a task which manipulates

multiple, nested (or hierarchically dependent) regularities

– as only few studies have done so far. Accordingly, while
there evidence for predictive coding in auditory cortex?. Neuroscience

http://dx.doi.org/10.1016/j.neuroscience.2017.07.061


735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

10 M. Heilbron, M. Chait / Neuroscience xxx (2017) xxx–xxx

NSC 17938 No. of Pages 21

8 August 2017
there is clear evidence for the effect of expectations on

responses (Assumption 2) and suggestive clues for hier-

archical organization of expectations (Assumption 1) pro-

gress will now depend on studies using stimuli with

multiple nested regularities, and which manipulate expec-

tation in a way not confounded by adaptation.

Hearing silences: Omission as a window into
prediction

When omitting a highly expected sound such as a tone in

a beat, listeners can ‘hear’ the absence. In such

circumstances, neural responses time-locked to the

omitted sound have been observed (Yabe et al., 1997;

Raij et al., 1997; Fig. 2D). These ‘omission responses’

offer an appealing vantage point to study top-down pre-

diction decoupled from bottom-up input, and have

become a popular method for studies on predictive

coding.

Theoretically, detecting silences could happen either

retrospectively (by comparing perceptual input and

memory template after the input is processed) or

prospectively (by directly matching predictions to input,

as proposed by PC). Bendixen et al. (2009) attempted

to dissociate these possibilities. Participants listened to

isofrequent tone-pairs of which either the first or the sec-

ond tone was occasionally omitted. If the second tone

was omitted, it could nonetheless be predicted by the first

tone (‘predictable’ condition). But if the first tone was omit-

ted, its identity could only be ‘restored’ after hearing the

second tone (restorable condition). The authors com-

pared evoked responses to a control condition in which

the tones were neither predictable nor restorable. When

comparing the amplitudes of the early component (up to

50 ms post tone/omission onset) the authors found omis-

sion responses in the predictable condition which were

essentially identical to responses evoked by actually pre-

sented tones, but not in the restorable condition. This was

interpreted as pre-activation of the sensory representa-

tions of the predicted tones. The authors concluded that

auditory expectation works prospectively and not retro-
spectively. However, since they looked for main effects

at very short latencies (<50 ms post onset, identical to

the duration of the tone), and focused exclusively on

evoked (as opposed to not time locked) responses the

analysis may have been biased to finding prospective

pre-activations, and not retrospective memory effects.

Hughes et al. (2001) took a similar approach to test

whether change-detection involves prediction. Patients,

undergoing intracranial recordings from temporal cortex,

performed an oddball paradigm with tones or tone-pairs

as standards and silences as oddballs. Strikingly, in all

patients, channels firing to tones also fired to omissions,

often more strongly. Furthermore, 5 of 10 patients exhib-

ited ‘omission selective’ channels that only responded to

unexpected omissions, and to other unexpected stimuli

like bird-chirps. Finally, and contrary to other demonstra-

tions of omission responses (Raij et al., 1997; Chennu

et al., 2016) the effects seemed wholly independent of

attention. The omission-selective channels may have

been the first recordings of error-units. Unfortunately,

Hughes et al. (2001) did not reconstruct the exact location
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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or depth of their electrodes, other than being associative

(non-primary) auditory cortex, which makes the striking

findings somewhat anecdotal.

A different approach is described in SanMiguel et al.

(2013a,b), who used self-generated sounds to elicit omis-

sion responses (Fig. 2A). Participants were asked to

press a button every 600–1200 ms, after which a sound

was generated in 88%, 50% or 0% of trials. To control

for motor activity, the response after button presses that

were never followed by a sound (the 0% block) was sub-

tracted from the omission AEP evoked by the unexpected

‘silence’. After subtraction, significant omission responses

were present in the 88% block, but not in the 50% (ran-

dom) block. In a follow-up experiment, SanMiguel et al.

(2013b) showed that omission responses to self-

generated sounds were only elicited if a button press

was predictive of both the identity and timing of the eli-

cited sound, rather than just the timing, which suggests

that timing alone is not enough to form an accurate pre-

diction of a stimulus.

Chennu et al. (2016) compared omission responses

recorded with EEG and MEG. Using a local–global para-

digm (Fig. 2H), the fifth tone was a global standard in 74%

of trials, and a global deviant or omission in 13% of trials.

To confirm that omission responses reflected expectation
effects and not passive carry-over effects such as oscilla-

tory entrainment (May and Tiitinen, 2010), unexpected

omissions of a fifth tone (occurring 14% of trials) were

compared to ‘expected omissions’ from sequences in

which the fifth tone was always omitted. In the EEG

recordings, this revealed clear omission responses that

were modulated by attention. Surprisingly, in the MEG

data the omission response was absent. This divergence

between MEG and EEG is interesting but difficult to inter-

pret, and most likely arises from the orientation of the neu-

ral sources or measurement noise. However, it might also

be consistent with a specific interpretation of omission

responses as reflecting prediction units only, which may

reside in deeper layers and should therefore be more dif-

ficult to detect with MEG.

Fujioka et al. (2009), who also used MEG, induced

(and violated) expectations by using a regular musical

beat, from which tones were occasionally omitted. Each

tone elicited a short gamma (>40 Hz) burst, as is typical

for external stimuli. However, the authors also observed a

slow, oscillatory modulation of the beta band that was

phase locked with the occurrence of the tone. This slow

power-modulation steadily decreased after each beat,

reaching its peak just before the occurrence of a new

tone, thus indicative of a potential internal oscillatory or

rhythmic anticipation signal (see also Fujioka et al.,

2012). Intriguingly, when a tone was unexpectedly omit-

ted from the beat, the decrease in beta power was not

observed, but a (stimulus-like) sudden peak in gamma

was observed. This observation not only supports sen-

sory prediction during beat perception, but also, indirectly,

the notion that beta (‘prediction’) and gamma (‘error’)

bands signal different computational variables (see Sec-

tion The rhythms of prediction).

Finally, a number of earlier discussed studies also

reported omission responses of a varying extent.
there evidence for predictive coding in auditory cortex?. Neuroscience
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Todorovic et al. (2011) and Todorovic and de Lange

(2012) reported higher field strengths after unexpected

than expected silences. However, their effects were

rather small and in Todorovic and de Lange (2012) limited

to late latencies (200–500 ms). More akin to ‘real’ evoked

responses are the omission responses in Wacongne et al.

(2011), who also compared expected with unexpected

omissions and found (contra May and Tiitinen, 2010) sig-

nificant responses only for unexpected omissions, in both

MEG and EEG.

Altogether, evidence from EEG (Bendixen et al., 2009;

SanMiguel et al., 2013a,b; Chennu et al., 2016), MEG

(Wacongne et al., 2011; Todorovic et al., 2011;

Todorovic and de Lange, 2012; Andreou et al., 2015;

Chennu et al., 2016) and ECoG (Hughes et al., 2001)

shows that omissions can evoke responses that are

time-locked to the omitted stimulus and appear to be gen-

erated in auditory cortex and superior temporal gyrus.

Crucially, omission responses seem to occur only after

unexpected omissions (Wacongne et al., 2011; Chennu

et al., 2016) – challenging the suggestion that they could

reflect passive carry-over effects – and if the omitted

sounds are prospectively predictable (Bendixen et al.,

2009) – suggesting a predictive mechanism (cf. Assump-

tion 1). However, the literature also shows some remark-

able variability. For instance, using MEG, Todorovic et al.

(2011) and Todorovic and de Lange (2012) find small and

late deflections, unlike ‘real’ auditory-evoked fields, and

Chennu et al. (2016) find no omission responses at all.

Using EEG, Chennu et al. (2016) and Bendixen et al.

(2009) find clearer omission responses. However, they

are still quite different from ‘real’ AEPs, or from the spec-

tacular responses in SanMiguel et al. (2013a,b) or the

ECoG omission responses in Hughes et al. (2001). More-

over, while the MEG/EEG omission responses in Raij

et al. (1997) and Chennu et al. (2016) are strongly

affected by attention, attention had no effect on the ECoG

omission responses in Hughes et al. (2001).

Beyond the empirical variability, there is some

theoretical variability in how omission responses should

be interpreted. For some authors (e.g. SanMiguel et al.,

2013a,b; Schröger et al., 2015) they are simply expres-

sions of prediction error. This would render omission

responses as perhaps the signature finding of PC, by

showing that evoked responses fundamentally reflect sur-
prise – even in the absence of sensory input. However, as

Wacongne et al. (2012) point out, this interpretation criti-

cally depends on how prediction error is calculated. If

one uses subtraction, performed by a focussed inhibitory

pulse that ‘subtracts’ predictions from sensory input, it is

difficult to see how omissions could elicit prediction error

without allowing negative firing rates. In that case, omis-

sion responses are perhaps better interpreted as reflect-

ing purely prediction (or pre-activation) signals, which

speaks to its relative weakness and variability. Due to

these ambiguities, it is difficult to directly interpret the

implications of omission responses to (specific formula-

tions of) predictive coding. Nevertheless, collectively,

these studies present highly suggestive, converging evi-

dence of anticipatory mechanisms, operating without con-

scious expectation, in auditory cortex.

977
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Predictability and precision

Results with the MMN paradigm demonstrate that

listeners are sensitive to the violation of a variety of

sound patterns, including very complex regularities. This

has been interpreted as (indirect) evidence for the

brain’s remarkable sensitivity to acoustic patterning.

However, a crucial missing link is an understanding of

the process by which the brain acquires an internal

model of regularities in the environment.

Recently, Barascud et al. (2016); see below for repli-

cation by Southwell et al. (2017) presented direct evi-

dence of the discovery and representation of acoustic

patterns, using rapid, statistically structured sequences

of tone-pips that transitioned from random to regular,

and vice versa (Fig. 2I). Methodologically, this paradigm

constitutes a departure from previous paradigms in two

ways: firstly, the use of very rapid sequences precludes

conscious discovery of regularity, instead mostly tapping

bottom-up-driven processes. Secondly, regularity was

manipulated independently from repetition, thus decou-

pling the effects of predictability from low-level adaptation.

Behaviorally, Barascud et al. (2016) first observed that

listeners were extremely quick at detecting the emer-

gence of regular patterns, performing on par with an ideal

observer model. Brain responses measured from naı̈ve

listeners were equally rapid. Remarkably, the onset of

regularity manifested as a large-scale increase in sus-

tained amplitude (Fig. 3). Offsets of regularity (transitions

toward randomness), by contrast, were associated with a

large drop in sustained power. Source reconstruction

identified a network of sources in auditory cortex (AC),

inferior frontal gyrus (IFG) and the hippocampus. AC

and IFG sources are commonly reported in the context

of the MMN and interpreted as supporting the re-entrant

error-minimizing process underlying it (Molholm et al.,

2005; Opitz et al., 2002; Garrido et al., 2009b; see Sec-

tion Dynamic Causal Modeling of MMN).

The finding that emergence (and disappearance) of

regularity in unfolding sound sequences is associated

with large-scale sustained responses is interesting for

various reasons: firstly, it suggests the brain encodes

the state (‘regular’ vs ‘random’) rather than just the

transition (as in e.g. MMN). Secondly, the amplitude

pattern [(regular) > (random)] is not easily interpretable

in terms of simple physical attributes of the signal –

adaptation, for example, would result in the opposite

pattern. Finally, the neural signature of complex

regularity detection (i.e. enhanced responses) is

opposite to that of simpler regularity detection (i.e.

attenuated responses) observed in many previous

experiments, for example using the roving standard

paradigm.

Interestingly, the effect is also opposite to all PC

effects we have been considering so far, in which

predictability is associated with weaker responses.

Barascud et al. (2016) suggested precision-weighting

could underlie this inversion: if regularity is an index of

reliability or precision, PC predicts that regular signals

are up-weighted and prioritized for further processing

(see Section Attention as precision). As many biological

stimuli unfold as regularities over time, it also seems bio-
there evidence for predictive coding in auditory cortex?. Neuroscience
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logically useful to prioritize such signals, for instance for

subsequent auditory object formation or scene analysis.

Evidence in line with this interpretation was

subsequently presented by Sohoglu and Chait (2016b)

who used artificial ‘scenes’ consisting of concurrent

tone-pip streams (modeling acoustic sources) which were

temporally regular or random. Participants were quicker

and more accurate to detect an object appearing in a tem-

porally regular scene, and enjoyed an additional slight

benefit if the object itself was regular. MEG responses

in both passive listeners and listeners actively engaged

in detecting the occasional appearance of a new source

within the scene revealed increased sustained activity in

scenes comprised of regular sources. Over and above

this ‘scene effect’, new source appearance in regular sce-

nes was also associated with increased responses rela-

tive to random scenes – an effect interpreted as

evidence for a mechanism that infers the precision of sen-

sory input and uses this information to up-regulate neural

processing toward more reliable sensory signals.

More clues on the amplifying effect of regularity are

found in Hsu et al. (2015). Subjects listened to sequences

of tones with ascending frequencies in which the final tone

varied. In 75% of trials, the tone complied with the local

regularity (predicted condition). In 12.5% of trials, the last

tone was unexpectedly lower than the first tone, violating

the expectation induced by the ascending sequence

(‘mispredicted’ condition). Finally, in 12.5% of trials, the

sequence was jumbled altogether. The authors found that

while predicted tones elicited a weaker N1 deflection than

mispredicted ones (a well-documented expectation

effect), wholly unpredicted tones elicited an even weaker

N1 still. According to Hsu et al. (2015), this is because

predicted and mispredicted responses express both a

prediction and a (small or large) prediction error, but

unpredicted responses reflect only prediction error and

are therefore weakest. However, as remarked by Ross

and Hansen (2016), it seems at odds with the probabilistic

nature of PC to assume predictions are absent in the

unpredicted condition: rather, what distinguishes the

unpredicted condition is the low predictability of the signal.

The attenuated N1 to wholly unpredictable stimuli might

be understood as inversion of the enhanced response to

predictable stimuli in Barascud et al. (2016) and

Sohoglu and Chait (2016b): the brain might consider the

jumbled tone ladder as noisy and uninformative, hence

down-weighting the response.

In sum, accumulating evidence suggests that, at least

under certain conditions, predictability may enhance,

rather than suppress, neural responses. This result fits

into the PC framework if one considers effects of

precision: sequences of random stimuli may be ‘flagged’

as uninteresting noise (low precision) and hence down-

weighted, while streams containing a regularity are

considered informative and are hence up-weighted.

Since precision can explain effects that are opposite to

‘traditional’ PC effects, invoking it begs the question

when, exactly, predictability is supposed to suppress

neural responses and when it should enhance them. As

we will see, this need for a ‘principled account’ will be a
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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recurring theme in studies that examine the main

manifestation of precision-weighting — i.e. attention.
Attention as precision

Because the world is variable and the brain noisy, a

degree of prediction error is inevitable. Distinguishing

such ‘residue error’ (related to noise) from relevant error

(related to incorrect beliefs or changes in the world)

requires that not all prediction error is treated equally. A

Bayes-optimal approach, successfully applied in

engineering (Kalman, 1960) as well as neuroscience

(Yu, 2014) is to weight errors by their reliability, typically
quantified as the uncertainty of predictions relative to

the that of observations, a coefficient known as Kalman
gain (Kalman, 1960; Anderson and Moore, 1979). When

the gain (precision) is high, inputs are up-weighted and

will dominate inference; when it is low, inputs are down-

weighted and predictions dominate inference. Several

authors in the predictive coding field (Rao, 2005;

Spratling, 2008a,b, 2010; Feldman and Friston, 2010;

see also Dayan and Zemel, 1999; Yu and Dayan, 2003;

Yu and Dayan, 2005a,b) have used such optimal handling

of uncertainty as a framework for attention, since it offers

normative principles that can explain selective processing

by motivating why some signals are computationally more

relevant than others.

Uncertainty-weighting affects inference and learning

differently; here, we will focus on perceptual inference
(but see Yu, 2014, for a treatment of Bayesian

approaches to attention which also covers learning).

During inference, reliable inputs are weighted more

strongly, and PC proposes that attending to a feature

amounts to expecting that signals with this feature will

be reliable or informative, and should thus be prioritized

for processing (Feldman and Friston, 2010). Response

strength should therefore always be a function of both

the size of the error and its precision. In other words,

every brain response should be sensitive to attentional

modulation. This proposal implies a departure from

accounts of MMN that describe MMN as pre-attentive

(Garrido et al., 2009b; Jääskeläinen et al., 2004;

Winkler and Czigler, 1998).

Preliminary support is found in Chennu et al. (2013).

The authors recorded EEG while presenting blocks of

tone sequences to one ear, occasionally replacing the fifth

tone by either a different tone in the same ear (monaural

deviant) or by the same tone in the opposite ear (interau-

ral deviant). Additionally, participants counted deviant

tones (attend tones) or deviant sequences (attend

sequences) or performed a visual task (distraction).

Focussing here on local deviants at MMN latencies, both

monaural and interaural MMN were reduced during dis-

traction compared to attending sequences. Attending

tones, however, instead of amplifying the MMN (by

increasing gain of error-neurons), attenuated it. The

authors suggest their manipulation may have been con-

founded: counting deviant tones did not only focus atten-

tion on tones (just as counting sequences did) but might
there evidence for predictive coding in auditory cortex?. Neuroscience
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have also increased conscious expectation of unexpected

tones, thus decreasing overall surprise.

To circumvent this confound, other studies

manipulated attention and prediction orthogonally.

Auksztulewicz and Friston (2015a) used a roving stan-

dard paradigm in which participants attended to one of

two time time-windows (early or late), after which the rov-

ing standard was presented at each window with an inde-

pendent probability of 50%. Participants reported if there

was no stimulus at the attended latency. Only trials where

the tone was presented at both latencies were included,

thus rejecting all possible motor artifacts. A significant

interaction effect was found; specifically, MMN was

observed in attended, but not in unattended time-

windows. This attentional enhancement of MMN is com-

patible with precision weighting. Note, however, that the

non-significance of MMN outside the scope of attention

seems to contradict earlier findings that MMN is not

dependent on attention; note, too, that the effects

reported by Auksztulewicz and Friston (2015a) are rela-

tively late and relatively short – for instance, the MMN

only reached significance between, 190 and 210 ms and

the deviance-attention interaction only between 193 and

197 ms. Both may have been related to a lack of power

after rejecting so many trials.

Another independent manipulation was reported by

Hsu et al. (2014). The authors presented two streams of

tone pairs: in one stream, the frequency of the second

tone in a pair was always two natural keys higher than

the first; in the other stream, the relationship between

the first and second tone was random. Attention was

manipulated by asking participants to report occasional

tones with decreased loudness in one of the streams.

The authors found an interaction of attention and predic-

tion on N1 amplitudes. Specifically, attended/predictable

tones elicited a stronger response than all other tones,

between which differences were non-significant. This

includes attended versus unattended unpredictable

tones, hence the authors concluded that attentional

enhancement of N1 depends on prediction. Note, how-

ever, that this interacting effect between attention and

prediction (attention reversing the effect of prediction) is

at odds with Auksztulewicz and Friston (2015a), who

found the opposite (attention enhancing prediction

effects) 100 ms later.

A recent EEG study by Garrido et al. (2017) compared

the two accounts explicitly. Participants were presented

Gaussian white noise to both ears and instructed to detect

silent gaps in one or both ears. Embedded in the noise,

task-irrelevant oddball sequences were presented. The

authors formulated two models of the interplay between

attention and prediction: in the first, attention could

reverse the effect of prediction (Hsu et al., 2014; see also

Kok et al., 2012 in vision). In the second model, attention

enhanced responses, predicted and unpredicted alike.

The authors observed an MMN, and found that attention

enhanced it, but contrary to Hsu et al. (2014) they found

no interaction. In line with this observation, Bayesian

model comparison favored the opposition model. Con-

trary to Auksztulewicz and Friston (2015a), but in line with
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is
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the MMN literature, MMN was also found in the absence

of attention.

Rather than deliberately directed, attention is

sometimes automatically attracted to a stimulus. Stimuli

with this capacity are called salient (Itti et al., 1998). Pre-

dictive coding accounts for salience by appealing to the

intrinsic precision of stimuli. Intense stimuli, for instance,

can be seen as having a high signal-to-noise ratio due

to sheer signal strength; inversely, regular stimuli would

enjoy high precision by virtue of low variance. Indeed, this
latter effect was proposed by Barascud et al. (2016) to

explain large increases in MEG signals induced by audi-

tory regularities (Fig. 3). Such up-weighting of regular

sounds seems ethologically sensible, as regular patterns

often carry stable, behaviorally relevant information about

the world. The account also has a straightforward empir-

ical consequence – regular stimuli should attract atten-

tion. In vision, a recent study indeed demonstrates this

effect (Zhao et al., 2013).

Southwell et al. (2017) tested this idea in the auditory

domain. Using EEG, the authors first replicated the MEG-

effects observed by Barascud et al. (2016): task-irrelevant

regular sequences (as used by Barascud and colleagues)

induced large increases in sustained EEG amplitude.

Next, the authors tested behaviorally whether the same

regular patterns would capture attention more strongly,

measured as the interference with concurrent tasks.

Remarkably, their results suggested that regularity was

not more distracting (if task-irrelevant) or more salient (if

task-relevant) than random patterns. The fact that neu-
rally, regularity induces marked sustained amplitude

increases, but behaviorally the same patterns are not

more salient, contradicts the attentional gain explanation

proposed by Barascud et al. (2016). Southwell et al.

(2017) suggest that this leaves us with three alternative

hypotheses: Either the gain in amplitude reflects an

upsurge of (poly-synaptic) inhibition or explaining away

by higher regions, which is not dissociable from excitation

using M/EEG. Alternatively, it may reflect a number of

quite distinct processes. Or finally, it could reflect some

form of precision-weighting which does not manifest as

high-level attentional capture. This last possibility, how-

ever, would imply that under PC attention is (by definition)

adaptive precision-weighting, but adaptive precision-

weighting is not (always) attention. While logically possi-

ble, this creates an awkward disconnect between neural

responses and cognition, and calls for a more principled

approach to decide when precision weighting is ‘high-

level attentional’ or not.

Altogether, the depiction of attention as the weighting

of sensory signals by their (expected) precision (Feldman

and Friston, 2010; see also Rao, 2005; Spratling, 2008a,

b) elegantly integrates many known attentional effects

into the realm of prediction. However, the increased

opportunities this creates for post-hoc explanations are

– at least in the auditory domain – not yet met by a propor-

tional increase in rigorous confirmatory results. For

endogenous attention, studies explicitly testing the

account report small and sometimes conflicting effects

(Chennu et al., 2013; Hsu et al., 2014; Auksztulewicz
there evidence for predictive coding in auditory cortex?. Neuroscience
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and Friston, 2015a; Garrido et al., 2017). For exogenous

attention, precision-weighting offers a compelling expla-

nation for the enhancing effect of regularity (Barascud

et al., 2016; Sohoglu and Chait, 2016b; Hsu et al.,

2015; Southwell et al., 2017); however, the direct conse-

quence of this claim (that regularity should be salient) was

consistently not found (Southwell et al., 2017). More

research is needed to test and potentially revise the

notion of auditory precision-weighting, and to explore dif-

ferences with vision where it may apply more readily (e.g.

Kok et al., 2012; Zhao et al., 2013).

The rhythms of prediction

In systems neuroscience, distinct oscillatory signatures

for feedforward processing (operating mainly via the

gamma band) and feedback processing (using alpha

and mainly beta bands) have been demonstrated in

considerable detail (van Kerkoerle et al., 2014;

Buschman and Miller, 2007). In standard PC, this oscilla-
tory asymmetry is hypothesized to be linked to the func-

tional asymmetry between (upward) errors and

(backward) predictions. In other words, predictions and

errors should have distinct oscillatory signatures (Arnal

and Giraud, 2012; Bastos et al., 2012). However, evi-

dence for this claim has remained indirect (see Arnal

et al., 2011 for a demonstration in speech perception;

van Pelt et al., 2016 in causal cognition).

Recently, Sedley et al. (2016) provided more direct

evidence, using a simple parametric task to generate

auditory stimuli while recording local field potentials using

ECoG. Three human subjects listened to short (300-ms)

sequences of harmonic complexes of which only the fun-

damental frequency varied. In any given trial there was a

7/8 chance that f0 would be sampled from the same

Gaussian population, and a 1/8 chance that it would be

sampled from a new one. Assuming that subjects uncon-

sciously tracked the statistics, the authors used a Bayes-

optimal inversion of their generative algorithm to calculate

trial-by-trial estimates of four key inferential variables:

prediction error, surprise, prediction change and predic-
tion precision (where surprise is the precision-weighted

variant of prediction error). The authors correlated these

estimates with a time–frequency analysis of the LFP

trace. As expected, the authors found that gamma was

correlated with surprise (more than prediction error).

Moreover, prediction change correlated with an increase

in beta-band around 400 ms. Finally, and not explicitly

predicted by PC, the authors found significant correlations

between the alpha band and precision of predictions,

although this effect was less pronounced than that in

the beta and gamma band.

Among the earlier discussed studies, only Fujioka

et al. (2009) reported effects similarly compatible with

PC. There, an oscillatory stimulus (a beat) induced an

oscillatory modulation of the beta band that was time-

locked to the beat. When a tone was omitted, the immedi-

ate decrease in beta-power was not observed, suggesting

that the beta-power may have been an oscillatory expec-
tation. Moreover, omissions did induce short gamma

bursts, characteristic of stimuli (or surprise). Other stud-

ies, however, did not report clear oscillatory dissociations.
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Signatures of prediction in the beta-band, for instance,

were absent in Dürschmid et al. (2016) who reported

ECoG recordings to predictable and unpredictable devi-

ants. The authors made sure they compared electrodes

with similar sensitivity for different frequency bands, and

nevertheless only found effects seemed in the high-

gamma band (>60 Hz) and at low frequencies related

to evoked potentials, but hardly in between.

El Karoui et al. (2015) presented ECoG recordings of

patients performing a local–global paradigm and found a

decrease in sustained beta power after global mis-

matches (which would arguably involve more prediction-

change). However, the global deviants were also the

behavioral target, confounding attention and prediction,

and making interpretation difficult. Finally, Todorovic

et al. (2015) found effects of attention and expectation

only in the beta-band, which decreased in power after

unexpected tones, but only if attention was directed to

another, earlier time window.

To summarize, evidence for distinct oscillatory

signatures of prediction and error processing is limited,

indirect and mixed: only two of six studies revealed

spectral patterns compatible with the predictions of PC.

Methodological differences make it difficult to draw an

unequivocal conclusion on the existence of oscillatory

differences between prediction and error processing.

Given the increasing evidence for laminar differences

between alpha/beta and gamma band dominance (e.g.

Scheeringa et al., 2016), oscillatory differences are a

potential tool to test the standard implementation of PC,

and future studies using parametric methods like Sedley

et al. (2016) may offer much needed confirmatory evi-

dence. However, simply interpreting different bands as

reflecting different variables without employing a paramet-

ric approach to calculate the relevant variables on a trial-

by-trial basis seems empirically unwarranted given the

highly variable results of studies without such a model-

based approach.

EFFECTIVE CONNECTIVITY – CLUES FROM
DCM

Measurement in neuroscience typically allows for high

spatial or high temporal resolution. Accordingly, many

studies probe the ‘when’ or ‘where’ of neural responses.

However, this provides little insight in how responses

emerge. Causal modeling techniques attempt to

overcome this by estimating changes in causal

influences between sources underlying effects of

interest. One of these techniques – Dynamic Causal

Modelling (Friston et al., 2003) – has been extensively

used to test predictive coding, especially in relation to

the MMN. Since DCM is a theory-driven method which

makes several enabling assumptions, we will briefly reca-

pitulate the ideas behind DCM before discussing the stud-

ies that used it.

DCM for MEG and EEG

DCM is a hypothesis testing framework, which works by

predicting neural responses based on several

hypotheses, and then comparing these predictions to
there evidence for predictive coding in auditory cortex?. Neuroscience
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the data. Predictions are generated by combining a

neuronal and an observational model. In DCM for M/

EEG (Kiebel et al., 2006, 2008), the observational model

is a lead field as used in source reconstruction, which

maps hidden dipoles in the skull to observable deflections

at the scalp. DCM goes beyond this ‘common’ reconstruc-

tion method by using a neuronal model to explicitly model

intracranial current flow. Neuronal models in DCM for M/

EEG (see Moran et al., 2013 for review) are mostly mass
models, which do not capture the complex dynamics

between large numbers of individual neurons (as found

in the skull) but rather the simpler dynamics between

massively synchronized populations of neurons (as mea-

surable at the scalp). Typically, a region is described with

three or four sub-populations of inhibitory and excitatory

neurons (each modeled using an ordinary second-order

differential equation) that operate as a dampened linear

oscillator (David and Friston, 2003; David et al., 2006).

In DCM, hypotheses are embodied as architectures:
cortical sources connected in a specific, directional way.

Responses can be generated by injecting a Gaussian

impulse into one source (e.g. A1), after which the

current flow ensuing from the network is passed through

the lead field to generate observational patterns for the

modality in use (EEG or MEG). Between-trial effects are

modeled as changes in extrinsic or intrinsic connectivity.

Extrinsic connectivity refers to coupling strength

between regions, is modeled by directional coupling

parameters, and can be thought of as inter-regional

synaptic modulation (c.f. learning). Intrinsic connectivity
refers to the strength with which a signal is propagated
Fig. 4. Graphical specification of connectivity models underlying the MMN as

frontotemporal network, combined with neuronal excitability modulations in A

and modalities (Garrido et al., 2008, 2009a; Phillips et al., 2015, 2016; Ch

including left IFG and frontal ‘expectancy inputs’ which was found to best expl

or omissions (Phillips et al., 2015, 2016; Chennu et al., 2016).

Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is

(2017), http://dx.doi.org/10.1016/j.neuroscience.2017.07.061
within a region. It is adjusted by changing the maximum

firing rate of excitatory populations, and can be thought

of as changing the excitability of a region (c.f.

adaptation). Ultimately, the architecture that can most

readily explain the effect – yielding the best fit with the

least complexity – is deemed most likely.
By virtue of these assumptions, DCM aims to provide

an in silico environment for testing hypotheses about both

the neural architecture underlying experimental data, and

the changes within this architecture that best explain

between-trial effects of interest.
Dynamic Causal modeling of MMN

The first application of DCM to MEG and EEG is

described in Garrido et al. (2007a,b) who modeled the dif-

ference between standard and deviant ERPs from an

oddball paradigm. Garrido et al. (2007a,b) found that the

difference between standard and deviant responses was

best explained by bidirectional connectivity changes

between Heschl’s Gyrus (A1), superior temporal gyrus

(STG) and right inferior frontal gyrus (rIFG). Garrido

et al. (2007b) replicated this basic result at the group-

level and verified that backward modulations were espe-

cially important for explaining ERP differences at later

latencies (200–400 ms).

Having established these foundational results,

Garrido et al. (2008) used DCM to compare theoretical

accounts of MMN. In the study, the authors modeled a

series of responses from the roving standard paradigm,

from deviant (first tone) to standard (last tone). They then
suggested by DCM. Left: connectivity modulations in an asymmetric

1, was shown to best explain the MMN across a variety of paradigms

ennu et al., 2016; Barascud et al., 2016). Right: connectivity model

ain MMN responses to temporal irregularities (duration and silent gap)

there evidence for predictive coding in auditory cortex?. Neuroscience
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compared which MMN–hypothesis could explain the

associated ERP differences – and thus the differential

MMN – best. Each MMN hypothesis was embodied as a

different variation of the frontotemporal architecture out-

lined above (see Fig. 4). The adaptation hypothesis was

modeled as a network in which only the excitability of

A1 varied over trials. The model-adjustment hypothesis

(which explains the MMN as a fronto-temporal memory-

adjustment; cf. Näätänen et al., 1978, 2007) was modeled

as a network in which only the between-region connectiv-

ity varied between trials. Finally, predictive coding was

embodied in a model in which both the excitability of A1

and inter-regional connectivity varied. The idea was that

PC incorporates both adaptation and model adjustment

(see also Section Predictive coding and MMN) – in this

view, changes in excitability of A1 and fronto-temporal

coupling are expressions of belief-updating at different

hierarchical levels (intra-regional microcircuitry versus

inter-regional network connectivity). Model comparison

showed that the hybrid PC model explained the ERP dif-

ferences best. The superiority of hybrid model was later

replicated in a study using the ‘classic’ frequency oddball

(Garrido et al., 2009a).

Temporal deviants and top-down predictions

Within the same model space, Phillips et al. (2015) repli-

cated this result using MEG and stimuli that deviated

across various dimensions, such as frequency, intensity,

or duration. To study all these deviant dimensions, the

authors used an optimized oddball paradigm (Näätänen

et al., 2004), in which each block starts with several stan-

dard tones, after which standards start alternating with dif-
ferent deviants – e.g. standard, frequency-deviant,

standard, duration-deviant, standard, etc. First, within

the model space of Garrido et al. (2008, 2009a), the

model with forward, backward and intrinsic modulations

in A1 was confirmed to ‘win’ for all dimensions. Subse-

quently, the model space was extended to include archi-

tectures with left IFG and models with an additional,

frontal input. Usually, Gaussian impulse functions are

models of sensory inputs, and are only ‘injected’ at thala-

morecipient regions. By contrast, Phillips et al. (2015)

located a second input at IFG (‘expectancy inputs’; see

Fig. 4). Interestingly, models that included a prefrontal

‘expectation’ input only provided a better fit for temporal

deviants – that is, either tones containing a short silent

gap in the center, or tones that deviated in duration. Mod-

els with an additional IFG were more likely across all stim-

ulus dimensions.

In a follow-up study, Phillips et al. (2016) first repli-

cated these findings by performing the same analysis on

a new MEG recording of 50 subjects. They then extended

the analyses to ECoG data. As explained above, in DCM

for MEG and EEG current flow ensuing from the network

is passed through a lead field to generate observational

patterns specific to M/EEG. As this additional model

may introduce uncertainty, it is important to verify whether

inverting a DCM without observation model (i.e. using sig-

nals directly from cortex) yields similar results. The

authors recruited two patients: one with electrodes over

right IFG and STG, and one with electrodes over left
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IFG and STG. The ECoG DCM results matched earlier

DCM results with respect to the relative importance of for-

ward/backward interactions. However, the frontal expec-

tancy input ‘won’ only in the patient with left-lateralized

electrodes. Strikingly, this asymmetry was also found in

the MEG results: temporal deviants were best explained

by models with a left, rather than bilateral, IFG input. This

apparent lateralization is remarkable and calls for a repli-

cation, since earlier studies did not consider left IFG a

‘main MMN generator’ (Opitz et al., 2002; Garrido et al.,

2008, 2009a,b; Chennu et al., 2016). Alternatively, the

effect may be related to differences in electrode locations

of left versus right IFG. This artifact would be propagated

to the MEG results because the coordinates from the

ECoG electrodes were used as source coordinates in

the observation model.

Finally, Chennu et al. (2016) performed a DCM analy-

sis on MEG and EEG data from a local–global paradigm

that included omissions. In two conditions, participants

either counted uncommon sequences (attend-auditory)

or performed an unrelated visual task (attend-visual).

For deviant tones, the ‘classic’ architecture used by

(Garrido et al., 2007a,b, 2008, 2009a) best explained

the data both in the attended and unattended condition.

For the omission responses, by contrast, an architecture

that included bilateral IFG and a frontal expectancy input

(which replaced the thalamic sensory input) best

explained the data, which is compatible with the idea that

omission responses reflect top-down prediction (rather

than prediction error).

Discussion

To summarize, DCM studies show that models which

modulate both A1 excitability and fronto-temporal

connectivity explain deviant responses in oddball

paradigms (Garrido et al., 2007a,b, 2009a) and variations

thereof (Garrido et al., 2008; Phillips et al., 2015, 2016;

Chennu et al., 2016) better than models that modulate

only A1 excitability or fronto-temporal connectivity. More-

over, responses to tones that deviate temporally, or are

omitted altogether, are best explained by models with

frontal ‘expectation inputs’ which replace (Chennu et al.,

2016) or augment (Phillips et al., 2015, 2016) the thalamic

sensory input.

These patterns of effects are in line with PC by

describing MMN not only via A1 adaptation or long-

range connectivity, but via a mechanism that combines

both. Moreover, an interesting analogy might be drawn

between the need for frontal inputs to explain temporal

deviants in DCM (Phillips et al., 2015, 2016) and the fact

that temporal deviants constitute a key difference

between network-level MMN, which is sensitive to tempo-

ral deviants, and neuron-level SSA, which is not (Khouri

and Nelken, 2015). Although this post-hoc analogy would

require further investigation, the fact that only intracellular

recordings and DCM appear to consistently distinguish

temporal deviants from other deviants illustrates the

potential of the technique to extend beyond traditional

analysis of non-invasive data.

However, the DCM studies have several limitations.

The first issue is that DCM relies on assumptions and
there evidence for predictive coding in auditory cortex?. Neuroscience
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simplifications which are not fully validated. The neural

mass models used in most DCM for M/EEG studies are

even abstracted to such degree that some parameters

don’t have obvious physiological substrates. One

response to this is to develop more complex models

with more biologically meaningful parameters (Moran

et al., 2013); an approach that is showing promising

results (Gilbert et al., 2016). However, this does not yet

address the issue of validation. Although initial studies

have established the face validity of DCM for M/EEG

(Garrido et al., 2007a,b, 2009a,b) and the extensively

replicated MMN results demonstrate predictive validity
(Phillips et al., 2015, 2016; Chennu et al., 2016) much

needs to be done before DCM can be said to have con-

struct validity. Combining different techniques, such as

in Phillips et al. (2016), will be critical in this process. Note

however that Phillips et al. (2016) only partially validated

the observation model, which was arguably the least

controversial.

A second issue is to what extent these results support

predictive coding. Even if we fully accept the network

modulations suggested by DCM, this doesn’t mean that

these changes necessarily reflect predictive coding, or

even a single underlying mechanism. Indeed, it is

difficult to see why changes in A1 excitability and STG-

IFG connectivity should be uniquely characteristic of

predictive coding. This problem is reinforced by the fact

that the discussed studies have mostly used designs in

which expectation and adaptation are confounded,

which makes arbitrating between predictive and non-

predictive interpretations even more difficult. As such,

while the discussed studies constitute exciting

methodological developments in the analysis of non-

invasive electrophysiological data, their strength as

empirical support for predictive coding theory seems

rather limited.
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CONCLUSION

In this review we aimed to provide a comprehensive

empirical evaluation of five key assumptions of

predictive coding theory in the context of auditory

pattern processing. Findings from animal, human and

computational neuroscience provide converging

evidence for the fundamental influence of expectations

on neural responses and specifically the notion of

prediction error as a model of sensory responsiveness

(Assumption 2). Studies on unexpectedly omitted stimuli

provide support for the anticipatory, predictive nature of

these expectancy effects (Assumption 1). Moreover, the

dissociation of expectancy effects at different

hierarchical levels in both animal and human literature

seems suggestive of the hierarchical nesting of

predictions, as postulated by predictive coding theory

and implied by Dynamic Causal Modeling results

(Assumption 1), although more experiments are needed

that explicitly manipulate multiple, nested regularities.

As to the remaining three assumptions, the picture is

less clear. Critically, for the existence of separate

prediction and error neurons residing in distinct cortical

layers (Assumption 3), there is currently no evidence in
Please cite this article in press as: Heilbron M, Chait M. Great expectations: Is

(2017), http://dx.doi.org/10.1016/j.neuroscience.2017.07.061
the auditory domain in line with this idea (but see Bell

et al., 2016; Kok et al., 2016, for recent studies in vision).

The recent development to conceptualize attention as the

weighting of sensory input by sensory precision (Assump-

tion 4), has provided elegant post-hoc explanations for a

broad range of phenomena, but has yet to provide rigor-

ous a priori confirmatory results. Finally, the dissociation

between different frequency bands and computational

variables in PC (Assumption 5) has been demonstrated

by one study which explicitly estimated the variables on

a trial-by-trial basis; studies that did not use such a

model-based approach however mostly failed to find sim-

ilar associations. Looking to the future, progress in the

field will critically depend on investigating these assump-

tions in order to test and revise or falsify specific imple-

mentations of PC. Doing so will require closer

collaboration between sub-disciplines, in particular

between animal and human research, where methodolog-

ical and conceptual differences currently create interpre-

tational difficulties. Finally, to test crucial theoretical

distinctions (e.g. prediction error versus precision-

weighted prediction error) there is an ongoing need for

computationally explicit analyses in both human and ani-

mal neuroscience.

In short, over the past decade a broad range of

findings in auditory neuroscience have pointed to a

fundamental role of expectations and prediction errors in

sensory processing. Going from these findings to the

alternative, overarching framework envisioned by PC,

however, requires a number of theoretical steps

between which the empirical links are currently missing.

Uncovering, revising or potentially refuting these

‘missing links’ is difficult but feasible, and provides an

exciting neuroscientific challenge for the years to come.
UNCITED REFERENCES

Barascud et al. (2014), Chen et al. (2015), Denham and

Winkler (2006), Körding and Wolpert (2004), Malmierca

et al. (2009), Nelken et al. (2003, 2013), Paavilainen

(2013), Sohoglu and Chait (2016a), Sussman et al.

(1998), Ulanovsky et al. (2003), Wallace et al. (2008)

and Angela (2014).

Acknowledgments—We are grateful to Jesse Geerts, Florent

Meyniel, Maxime Maheu, James Kilner and Karl Friston for

insightful discussions and helpful comments, and to Roman Stri-

jbos for the Illustrator lessons. This work was funded by a

BBSRC project grant to MC, and Prins Bernhard Cultuurfonds
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SanMiguel I, Saupe K, Schröger E (2013b) I know what is missing

here: electrophysiological prediction error signals elicited by

omissions of predicted ”what” but not ”when”. Front Hum

Neurosci 7. http://dx.doi.org/10.3389/fnhum.2013.00407.

SanMiguel I, Widmann A, Bendixen A, Trujillo-Barreto N, Schröger E
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Schröger E, Marzecová A, SanMiguel I (2015) Attention and

prediction in human audition: a lesson from cognitive

psychophysiology. Eur J Neurosci 41:641–664. http://dx.doi.org/

10.1111/ejn.12816.

Sculthorpe LD, Ouellet DR, Campbell KB (2009) MMN elicitation

during natural sleep to violations of an auditory pattern. Brain Res

1290:52–62. http://dx.doi.org/10.1016/j.brainres.2009.06.013.

Sedley W, Gander PE, Kumar S, Kovach CK, Oya H, Kawasaki H,

Howard MA, Griffiths TD (2016) Neural signatures of perceptual

inference. Elife 5. http://dx.doi.org/10.7554/eLife.11476.
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