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Abstract. In persuasion dialogues, the ability of the persuader to model the per-
suadee allows the persuader to make better choices of move. The epistemic ap-
proach to probabilistic argumentation is a promising way of modelling the per-
suadee’s belief in arguments, and proposals have been made for update methods
that specify how these beliefs can be updated at each step of the dialogue. How-
ever, there is a need to better understand these proposals, and moreover, to gain
insights into the space of possible update functions. So in this paper, we present a
general framework for update functions in which we consider existing and novel
update functions.

1 Introduction

The aim of persuasion is for the persuader to change the mind of the persuadee, and
the provision of good arguments, and possibly counterarguments, is of central impor-
tance for this. Some recent developments in the field of computational persuasion have
focused on the need to model the beliefs of the persuadee in order for the persuader to
better select arguments to present to the persuadee. For instance, if the persuader wants
to persuade the persuadee to give up smoking, and the persuader knows that the per-
suadee believes that if he gives up smoking, he will put on weight, then the persuader
could start the dialogue by providing a counterargument to this, for example by saying
that there is a local football team for ex-smokers who are looking for new players.

One approach to modelling the persuadee is to harness the epistemic approach to
probabilitic argumentation [11]. In this, an argument graph (as definded by Dung [4]) is
used to represent the arguments and attacks between them, and a probability distribution
over the subsets of arguments is used to represent the uncertainty over which arguments
are believed. The belief in an individual argument is then the sum of the belief in the
subsets that contain this argument.

When a persuader starts a dialogue with a persuadee, the persuader identifies an
appropriate probability distribution to represent what s/he thinks the persuadee believes.
Then during the dialogue, the moves are made by the participants according to some
protocol. After each move, the belief is updated using an update function (see Figure
1). Some initial proposals for update functions have been made (e.g. [10]) which seem
intuitive and well-behaved, but there is a lack of a general understanding of what an
update function is, of what the space of options are, and of how alternatives could be
defined. The aim of this paper is to address these questions by proposing some basic
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Fig. 1. Schematic representation of a dialogue D = [m1, . . . ,mn] and user models Pi. Each user
model Pi is obtained from Pi−1 and move mi using an update method.

properties for update functions, and then proposing a framework for update measures
in which we show how existing and some useful novel update functionss are situated.

2 Basics

We consider a finite argument graph G with arguments Args and attacks Attacks. For
A ∈ Args, we let A− = {B ∈ Args | (B,A) ∈ Attacks}. Form denotes the set
of propositional formulas over Args. That is, Form is the smallest set that contains
Args and is closed under application of the usual logical connectives like ¬ and ∧. An
interpretation of Form is a subset X ⊆ Args. X satisfies an atomic formula A ∈ Args
iff A ∈ X and we write X |= A in this case. The satisfaction relation is extended
to complex formulas in the usual way. For instance, X |= F1 ∧ F2 iff X |= F1 and
X |= F2. A probability distribution over Args is a function P : 2Args → [0, 1] such
that

∑
X⊆Args P (X) = 1. We let P denote the set of all probability distributions over

Args. When speaking of topological properties of subsets of P , we regard probability
distributions as probability vectors and consider the usual topology on Rn. Note that we
can do so because 2Args is finite (because Args is finite). For F ∈ Form, we let P (F ) =
P ({X ⊆ Args | X |= F}). A complete conjunction over a subset X ⊆ Args is a
conjunction of the form

∧
A∈X LA, where either LA = A or LA = ¬A. Let Conj(X)

denote the set of all complete conjunctions over X . In the following, we will make use
of the fact that there is a 1-1 relationship between Conj(Args) and the interpretations
2Args. More strictly speaking, a complete conjunction

∧
A∈Args LA corresponds to the

interpretation {A ∈ Args | LA = A} that contains all arguments that appear positive in
the conjunction. Conversely, an interpretation X ⊆ Args corresponds to the complete
conjunction

∧
A∈X A ∧

∧
A∈Args\X ¬A.

Intuitively, a probability distribution over Args represents the epistemic state of an
agent. Given an argument graph G, we want to impose certain constraints on probabil-
ity distributions. We can consider some of the following rationality postulates for the
epistemic state represented by P [11].

– RAT: P is rational iff for all (A,B) ∈ Attacks, P (A) > 0.5 implies P (B) ≤ 0.5.
– COH: P is coherent iff for all (A,B) ∈ Attacks, P (A) ≤ 1− P (B).
– SFOU: P is semi-founded iff A− = ∅ implies P (A) ≥ 0.5.
– FOU: P is founded iff A− = ∅ implies P (A) = 1.
– SOPT: P is semi-optimistic iff A− 6= ∅ implies P (A) ≥ 1−

∑
B∈A− P (B).

– OPT: P is optimistic iff P (A) ≥ 1−
∑
B∈A− P (B).



For a subset R ⊆ {RAT,COH,SFOU,FOU, SOPT,OPT, JUS} of rationality
postulates, we write P |= R iff P satisfies all constraints in R and for a subset T ⊆ P ,
we write T |= R iff P |= R for all P ∈ T .

3 Properties of Update Functions

We can model the change of an agent’s epistemic state in a dialogue by an update
function [10]. Our goal here is to investigate the space of possible update functions sys-
tematically. Formally, we regard an update function as a function U : P ×Form→ 2P

that takes a probability distribution and a formula and maps them to a set of probability
distributions U(P, F ) that satisfy F in some way. In the following, we list several prop-
erties that might be interesting in this context. We start with a list of general properties.

– Uniqueness: |U(P, F )| ≤ 1.
– Completeness: If F 6≡ ⊥ then |U(P, F )| ≥ 1.
– Tautology: U(P,>) = {P}.
– Contradiction: U(P,⊥) = ∅.
– Representation Invariance: If F ≡ G then U(P, F ) = U(P,G).
– Idempotence: If U(P, F ) = {P ∗} then U(P ∗, F ) = {P ∗}.
– Order Invariance: U(U(P, F1), F2) = U(U(P, F2), F1).

Uniqueness says that the solution of the update is always unique. Completeness says
that a solution always exists when the new information is consistent. Tautology says that
updating with a tautology should not change the epistemic state because we do not add
any new information. Since our generated epistemic state should be consistent, Contra-
diction demands that updating with a contradictory formula should yield the empty set.
Representation invariance says that semantically equivalent formulas should result in
the same update. Idempotence says that if the update yields a unique solution, then up-
dating again with the same information should not change the result. Order invariance
says that the order in which we update does not affect the result.

Next, we consider some semantical properties. To begin with, we might want that
updates take the structure of the argument graph into account. Therefore, we consider
the following property for subsets R ⊆ {RAT,COH,SFOU,FOU, SOPT,OPT}
of rationality postulates:

– R-Consistency: If P |= R then U(P, F ) |= R.

In addition, the probability distributions in U(P, F ) should satisfy F in some way. We
consider the following satisfaction conditions.

– STRICT: P satisfies F strictly iff P (F ) = 1.
– ε-WEAK: P satisfies F ε-weakly iff P (F ) ≥ 0.5 + ε for ε ∈ (0, 0.5).

Remark 1. Note that strict satisfaction implies ε-weak satisfaction for all ε ∈ (0, 0.5).

For a satisfaction condition S ∈ {STRICT, ε-WEAK} and a formula F ∈ Form, we
write P |=S F iff P satisfies F with respect to S and for a subset T ⊆ P , we write
T |=S F iff P |=S F for all P ∈ T . Analogous to rationality postulates, we consider
the following property for S ∈ {STRICT, ε-WEAK}:



– S-Consistency: U(P, F ) |=S F .

For a set of rationality postulates R and a satisfaction condition S, we define the set of
R-S-models of F ∈ Form by

ModR,S(F ) = {P ∈ P | P |= R,P |=S F}

We call F R-S-consistent if ModR,S(F ) 6= ∅ and R-S-inconsistent otherwise. If F is
R-S-inconsistent, the condition of S-consistency becomes ∅ |=S F and is trivially true.
The following example illustrates an R-S-inconsistency.

Example 1. Consider an argument graph over A,B with Attacks = {(A,B)}. Let
R = {RAT,FOU}. Then FOU implies P (A) = 1 for all P ∈ ModR,S(>) and
therefore RAT implies P (B) ≤ 0.5. Hence, ModR,ε-WEAK(B) = ∅ for all ε > 0.

Finally, we might want to update the epistemic state such that we minimally change
the prior state. To this end, we can consider different change functions over P . The first
class of change measures that we consider measure the difference in probability mass
that is assigned to interpretations.

– Manhattan Distance: d1(P, P ∗) =
∑
X⊆Args |P (X)− P ∗(X)|.

– Least Squares Distance: d2(P, P ∗) =
∑
X⊆Args(P (X)− P ∗(X))2.

– Maximum Distance: d∞(P, P ∗) = maxX⊆Args |P (X)− P ∗(X)|.
– KL-divergence: dKL(P ∗, P ) =

∑
X⊆Args P

∗(X) · log P∗(X)
P (X) .

Note that the KL-divergence is not a metric. In particular, it is asymmetric and we use
the prior distribution P as the second argument. If we have P ∗(X) > 0 = P (X) for
some X ⊆ Args, we let dKL(P ∗, P ) =∞ as usual.

When updating our belief with respect to a set of literals Φ, we might be interested
only in the change with respect to atoms not appearing in Φ. The following two distance
measures capture this intuition. Here, X ⊆ Args denotes a set of arguments that is
supposed to be updated.

– Atomic Distance: dXAt(P, P
∗) =

∑
B∈Args\X |P (B)− P ∗(B)|.

– Joint Distance: dXJo(P, P ∗) =
∑
C∈Conj(Args\X) |P (C)− P ∗(C)|.

Both measures can be zero even though the distributions are unequal. This happens,
when they have equal marginal probabilities on Args \X for the atomic distance mea-
sure and when they have equal marginal probabilities on Conj(Args \X) for the joint
distance measure. Hence, they are not metrics. However, they are pseudometrics as we
explain in the full version3. We illustrate the different change measures in Figure 1.

We consider the following minimality properties for each change measure d, set of
rationality postulates R and satisfaction condition S:

– R-S-d-minimality: If P ∗ ∈ U(P, F ), then P ∗ minimizes the distance to P over
ModR,S(F ).

R-S-d-minimality demands that we update in such a way that we minimize the distance
to the prior distribution among all probability distributions that satisfy the argument
graph and the new information with respect to the chosen semantics.

3 Full version is at http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/updatefunctionfull.pdf



A B P0 P1 P2 P3 P4 d d1 d2 d∞ dKL d
{A}
At d

{A}
Jo

0 0 0.3 0.4 0.5 0.5 0.3 d(P0, P1) 0.3 0.03 0.1 0.16 0.1 0.1
0 1 0.3 0.2 0.2 0.4 0.3 d(P0, P2) 0.4 0.06 0.2 0.09 0.1 0.2
1 0 0.3 0.2 0.2 0.1 0.2 d(P0, P3) 0.6 0.1 0.2 ∞ 0 0
1 1 0.1 0.1 0.1 0 0.2 d(P0, P4) 0.2 0.02 0.1 0.05 0.01 0.2

Table 1. Illustration of different change measures.

4 Refinement-Based Update functions

In [10], several update functions have been proposed that are defined by means of the
following refinement function. They are restricted in the sense that they are defined only
for literals.

Definition 1. Let L ∈ Formulae(G) be a literal, let P be a probability distribution,
and let λ ∈ [0, 1]. The refinement function Hλ : P × {A,¬A | A ∈ Args} → P is
defined by Hλ(P,L) = P ∗ as follows where X ⊆ Args

P ∗(X) =

{
P (X) + λ · P (hL(X)) if X |= L

(1− λ) · P (X) if X |= ¬L,

where hL(X) = X \ {A} if L = A and hL(X) = X ∪ {A} if L = ¬A for some
A ∈ Args.

If we think of interpretations as bit vectors (b1, . . . , bn) where bi is the truth state
of the i-th argument, redistribution with respect to Ai can be explained as follows: for
each bit vector (b1, . . . , bn), if bi = 1, then move a fraction λ of the probability mass of
(b1, . . . , bi−1, 0, bi+1, . . . , bn) to (b1, . . . , bn). We illustrate this in Table 2.

Let us note that refinement functions are actually commutative in the sense that
Hλ2

(Hλ1
(P,L1), L2) = Hλ1

(Hλ2
(P,L2), L1), see [10], Proposition 8. Since the or-

der in which we add literals is not important, refinement functions can also be applied
to sets of literals Φ recursively, where we let Hλ(P, ∅) = P and Hλ(P,Φ ∪ {L}) =
Hλ(Hλ(P,L), Φ). As the following lemma explains, for λ = 1, updating with multiple
literals comes down to shifting probability mass to the interpretations that satisfy the
conjunction of these literals.

Lemma 1. Let X = {A1, . . . , Ak} ⊆ Args and for i = 1, . . . , k, let Li ∈ {Ai,¬Ai}.
Let P be a probability distribution and let H1(P, {L1, . . . , Lk}) = P ∗. Then for all
C ∈ Conj(X) and D ∈ Conj(Args \X),

P ∗(C ∧D) =

{
P (C ∧D) +

∑
C′∈Conj(X)\{C} P (C

′ ∧D) if C =
∧k
i=1 Li

0 else.

We will now analyze some refinement-based update functions from [10] by means
of the properties introduced in the previous section. Since the refinement-based update



A B C P H0.75(P,A) H1(P,A) Una(P,B) Utr(P,B) Utr(P,A) Ust(P,B) Ust(P,A)

0 0 0 0.2 0.05 0 0 0 0 0 0.2
0 1 0 0.5 0.125 0 0.7 1 0 0.7 0.5
0 0 1 0 0 0 0 0 0 0 0
0 1 1 0.1 0.025 0 0.1 0 0 0.3 0.1
1 0 0 0 0.15 0.2 0 0 0.7 0 0
1 1 0 0 0.375 0.5 0 0 0 0 0
1 0 1 0.1 0.1 0.1 0 0 0.3 0 0.1
1 1 1 0.1 0.175 0.2 0.2 0 0 0 0.1

Table 2. Illustration of refinement-based updates for a graph with C attacks B and B attacks A.
Note, by definition, H1(P,A) = Una(P,A) and H1(P,B) = Una(P,B).

functions are only defined for atoms or literals, Tautology, Contradiction and Represen-
tation Invariance are not interesting here. However, it is reasonable to consider Idempo-
tence and Order Invariance restricted to literals.

The naive update function shifts the probability mass from an interpretation X that
violates L to the corresponding interpretation that is obtained from X by flipping the
truth state of the argument in L.

Definition 2 ([10]). The naive update function Una : P × {A,¬A | A ∈ Args} → P
is defined by Una(P,L) = H1(P,L).

Una satisfies the following properties.

Proposition 1. Una satisfies Uniqueness, Completeness, Idempotence, Order Invari-
ance and STRICT-Satisfaction.

The naive update function is intended to model persuadees who believe any argu-
ments that are posited in a dialogue. The function does not take the structure of the
argument graph into account, and therefore can generally violate all rationality postu-
lates that we introduced over argument graphs. However, given an update literal over
the argument A, the naive update is guaranteed to be minimal with respect to d{A}Jo - in
fact, the change with respect to d{A}Jo is 0 as we show in the full version of this paper.

The next two update functions maintain consistency with the argument graph by
also considering arguments that are connected to the argument whose state we update.
They are restricted to atomic arguments, however.

The trusting update refines the naive update by also shifting the probability mass
from all interpretations that satisfy the attackers and attackees of the update argument.

Definition 3 ([10]). The trusting update function Utr : P × Args → P is defined by
Utr(P,A) = H1(P,Φ), where Φ = {A} ∪ {¬C | (A,C) ∈ Attacks(G) or (C,A) ∈
Attacks(G)}.

Utr satisfies the following properties.

Proposition 2. Utr satisfies Uniqueness, Completeness, Idempotence, Order Invari-
ance, STRICT-Satisfaction and R-Satisfaction for all R ⊆ {RAT,COH}.



Utr can violate the remaining R-Satisfaction properties, but it does guarantee that
the joint distance to the prior distribution is 0. However, the joint distance is now not
only defined with respect to the update argument, but also with all of its attackers and
attackees as we show in the full version.

The strict update function conditionally updates the probability of an argument to 1.
In order to maintain consistency with the argument graph, the update is only performed
if no attackers of the argument are believed in the current epistemic state. If the update
is performed, the belief in attacked arguments will additionally be set to 0.

Definition 4 ([10]). The strict update function is a function Ust : P × Args → P .
For A ∈ Args, let Φ = {A} ∪ {¬C | (A,C) ∈ Attacks} and let the constraint C(P )
be true iff for all (B,A) ∈ Attacks, P (B) ≤ 0.5. Then Ust(P,A) = P ∗ where

P ∗ =

{
H1(P,Φ) if C(P )
P else

Ust satisfies the following properties.

Proposition 3. Ust satisfies Uniqueness, Completeness, Idempotence and R-
Satisfaction for all R ⊆ {RAT,COH,SFOU,FOU}.

Ust does not satisfy Order Invariance, but it satisfies all semantical constraints ex-
cept R-OPT and R-SOPT. Ust again guarantees joint distance 0, this time with respect
to the update argument and all of its attackees. We refer again to the full version of this
paper for more details and proofs.

In [10], H0.75 is considered as an alternative to H1 in the above definition, and
this is used to model skeptical agents who do not entirely believe an argument when
updating.

5 R-S-d Update Functions

We now consider another class of update functions. Whereas refinement-based update
functions are based on the idea of shifting probability mass in a specific way, we will
now consider a more declarative approach using tools from numerical optimization.
R-S-d Update Functions are defined by minimizing some notion of distance subject to
semantical constraints.

Definition 5. Let R ⊆ {RAT,COH,SFOU,FOU, SOPT,OPT}, S ∈
{STRICT, ε-WEAK} and d ∈ {d1, d2, d∞, dXAt, d

X
Jo}. An R-S-d Update Func-

tion UR,S,d : P × Form→ 2P is defined by

UR,S,d(P, F ) = arg min
P ′∈ModR,S(F )

d(P, P ′).

Let us first note that most R-S-d update functions have some nice analytical proper-
ties.



A B C P UR1,S,d(P,A) UR1,S,d(P,B) UR2,S,d(P,A) UR2,S,d(P,>)

0 0 0 0.2 0 0 0 0.17
0 1 0 0.5 0 1 0 0.49
0 0 1 0 0 0 0 0
0 1 1 0.1 0 0 0 0.07
1 0 0 0 0.45 0 0 0.02
1 1 0 0 0 0 0 0.5
1 0 1 0.1 0.55 0 1 0.09
1 1 1 0.1 0 0 0 0.12

Table 3. Illustration of R-S-d updates with R1 = {COH}, R2 = {COH,SOPT}, S =
STRICT and d = d2.

Lemma 2. For each R ⊆ {COH,SFOU,FOU, SOPT,OPT} (we left out RAT),
S ∈ {STRICT, ε-WEAK} and d ∈ {d1, d2, d∞, dm, dKL, dXAt, d

X
Jo}, computing

UR,S,d(P, F ) corresponds to a convex combination problem. In particular, the set
UR,S,d(P, F ) will be non-empty, convex and compact whenever ModR,S(F ) 6= ∅.

If R includes RAT, UR,S,d(P, F ) will be non-empty and compact whenever
ModR,S(F ) 6= ∅.

We have the following general guarantees for R-S-d update functions.

Proposition 4. For all R ⊆ {RAT,COH,SFOU,FOU, SOPT,OPT}, S ∈
{STRICT, ε-WEAK} and d ∈ {d1, d2, d∞, dm, dXAt, d

X
Jo}, UR,S,d satisfies Complete-

ness (if the update argument is R-S-consistent), R-consistency, S-consistency and R-S-
d-minimality.

If we exclude RAT from R and d ∈ {d2, dKL}, UR,S,d also satisfies Uniqueness,
Tautology, Contradiction, Representation Invariance and Idempotence.

We can give some stronger guarantees for some special cases, see the full paper for a
detailed analysis.

Order Invariance can be violated for many combinations of semantical constraints
and change measures. We give a simple example for the Euclidean distance without
semantical constraints on the argument graph.

Example 2. Consider an argument graph over A,B, let R = ∅, S = STRICT and
d = d2. Let P be defined by P ({B}) = 0.5, P ({A,B}) = 0.5. Then P1 =
UR,S,d(UR,S,d(P,A), B) is given by P1({B}) = 0.125, P1({A,B}) = 0.875, whereas
P2 = UR,S,d(UR,S,d(P,B), A) is given by P2({A}) = 0.25, P2({A,B}) = 0.75.

What can we say about the relationship between refinement-based update functions
and R-S-d update functions? We first note that R-S-d-update functions generalize the
naive update function in the following sense.

Proposition 5. Consider an arbitrary set of semantical constraints R ⊆
{RAT,COH,SFOU,FOU, SOPT,OPT}, a probability distribution P ∈ P and
let L ∈ {A,¬A} be a literal for some A ∈ Args. If there is a P ∗ ∈ ModR,STRICT (L)

such that d{A}Jo (P, P ∗) = 0 then U
R,STRICT,d

{A}
Jo

(P,L) = {Una(P,L)}.



Remark 2. Note that if there is no P ∗ ∈ ModR,STRICT (L) such that d{A}Jo (P, P ∗) =
0, then applying the Naive update function will violate some semantical constraint in R
(because the probability distribution resulting from the naive update will have distance
0). Hence, U

R,STRICT,d
{A}
Jo

agrees with Una whenever Una is consistent with R. Oth-
erwise, U

R,STRICT,d
{A}
Jo

will select probability distributions that are consistent with R
and minimize the joint distance.

In particular, the Naive update function can be thought of as a special case of the fol-
lowing R-S-d-update function.

Corollary 1. U∅,STRICT,d{A}Jo

(P,L) = {Una(P,L)}.

The trusting method can similarly be generalized by an R-S-d-update function.

Proposition 6. Consider an arbitrary set of semantical constraints R ⊆
{RAT,COH,SFOU,FOU, SOPT,OPT}, a probability distribution P ∈ P and
let L ∈ {A,¬A} be a literal for some A ∈ Args. Let X ′ = {C | (A,C) ∈ Attacks(G)
or (C,A) ∈ Attacks(G)} and X = {A} ∪X ′. If there is a P ∗ ∈ ModR,STRICT (L)
such that dXJo(P, P

∗) = 0 then UR,STRICT,dXJo
(P,L ∧

∧
C∈X′ ¬C) = {Utr(P,L)}.

Corollary 2. U∅,STRICT,dXJo
(P,L ∧

∧
C∈X′ ¬C) = {Utr(P,L)}.

We could get a similar result for the strict update using the joint distance over the
update argument and its attackees. This would require a case differentiation analogous
to the case differentation that is used for the strict update.

6 Conclusions and Future Work

Most proposals for dialogical argumentation focus on protocols (e.g., [14], [15], [5],
[2]) with strategies being under-developed. See [18] for a review of strategies in multi-
agent argumentation. There are proposals for modelling the likelihood of the moves
that an opposing agent might make (e.g. [16, 6, 7, 17]). Note, however, that none of the
above proposals consider the beliefs of the opposing agent. In [1], a planning system
is used by the persuader to optimize choice of arguments based on belief in premises.
However, there is no consideration of how the beliefs are updated during the dialogue.

The epistemic approach to probabilistic argumentation offers a formal framework
for modelling a persuadee’s beliefs in arguments. There are methods for updating be-
liefs during a dialogue [10], for efficient representation and reasoning with the pesuadee
model [8], and for harnessing decision-theoretic decision rules for optimizing the choice
of arguments based on the persuadee model [9]. Therefore, the framework for update
functions presented in this paper clarifies and extends the space of update functions that
we can harness in persuasion dialogues.

There are several interesting directions for future work. First, we can investigate dif-
ferent ways to deal with the problem of non-unique solutions. We might focus on some
best solution or represent epistemic states by sets of probability distributions rather than
by a single one. Second, we can deal with inconsistencies like in Example 1 in different
ways. We might consider priorities over different semantical constraints [12] or select



solutions that violate the constraints in a minimal way [3, 13]. Third, we can try to in-
clude more expressive argumentation frameworks by introducing numerical constraints
for other relations than attack relations.
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