Letter ‘

Optics Letters 1

Multiple-view diffuse optical tomography system based
on time-domain compressive measurements

ANDREA FARINAL", MARTA BETCKEZ, LAURA DI SIENO®, ANDREA BAssI®, NIcOLAS DucRos?,
ANTONIO PIFFERI®, GIANLUCA VALENTINI'3, SIMON ARRIDGEZ, AND COSIMO D’ ANDREA3?

1 Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza L. da Vinci 32, 20133 Milano, ltaly

2 Centre for Medical Image Computing, University College London, Malet Place, London WC1E 6BT, United Kingdom

3 Politecnico di Milano, Dipartimento di Fisica, Piazza L. da Vinci 32, 20133 Milano, Italy

4 University of Lyon, INSA-Lyon, Université Lyon 1,CNRS, Inserm, CREATIS UMR 5220 U1206, F-69621, Villeurbanne, France
5 Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 1-20133 Milan, ltaly

* Corresponding author: andrea.farina@polimi.it

Compiled May 24, 2017

Compressive sensing is a powerful tool to efficiently
acquire and reconstruct an image even in Diffuse Op-
tical Tomography (DOT) applications. In this work a
time-resolved DOT system based on structured light il-
lumination, compressive detection and multiple views
acquisition has been proposed and experimentally val-
idated on a biological tissue-mimicking phantom. The
experimental scheme is based on two Digital Micromir-
ror Devices (DMD) for illumination and detection mod-
ulation, in combination with a time-resolved single el-
ement detector. We fully validated the method and
demonstrated both imaging and tomographic capabil-
ity of the system, providing a state of the art reconstruc-
tion quality. © 2017 Optical Society of America

OCIS codes:  (170.6960) Tomography; (110.0113) Imaging through
turbid media; (170.6920) Time-resolved imaging
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In the last decade the possibility to quantitatively reconstruct
absorbing, scattering and fluorescent inclusions within in vivo
organisms has attracted a great interest for diagnostic pur-
poses (e.g. tumor detection)[1], functional studies (e.g. brain
oximetry)[2] and molecular imaging on small animals (e.g. phar-
macological research)[3]. The general measurement scheme
consists of illuminating the sample and detecting the diffused
light exiting from it. Then, by solving the inverse problem, based
on a model of photon propagation through the biological tissue,
the optical parameters in each point of the sample can be quanti-
tatively reconstructed. It is usually referred to these modalities
as Diffuse Optical Tomography (DOT) and Fluorescence Molec-
ular Tomography (FMT) when the absorption/scattering or flu-
orescence properties are reconstructed, respectively. DOT/FMT
performance is mainly characterized by its capability to resolve
the position and shape of inhomogeneities inside the tissue, and,
consequently, improving the quantification capability of their
optical parameters. Previous studies have demonstrated the
importance of a dense source/detector [4] and multiple views

measurement scheme [5, 6] in order to increase the tomographic
spatial resolution. Moreover, further data, such as spectral and
temporal information, are crucial [7, 8]. Temporal information
provides three main advantages: i) better disentanglement of ab-
sorption/scattering properties; ii) temporal encoding of photons
depth; iii) fluorescence lifetime quantification in the case of FMT.
Spectral information (i.e. different excitation/detection wave-
length) allows one to discriminate among tissue chromophores.
Hence, DOT/FMT turns out to be a highly multidimensional
problem with the drawback to generate a huge data set. This
represents a practical limitation of these techniques because of
the extremely long acquisition and computational times, which
are not typically compatible with clinical and pre-clinical needs.
Hence, a reduction of the acquired data set by preserving the
spatial resolution, or more generally the data set information
content, is highly desirable.

Following this concept, different studies have recently ex-
ploited the fact that a highly scattering medium (such as bio-
logical tissue) behaves as a low pass filter in the spatial domain.
Hence, few illumination patterns, instead of the more typical
raster scanning approach, can be adopted without losing signifi-
cant spatial information [8-10]. This in turn leads to a reduction
of the data set dimension and, consequently, of the acquisition
and computational time. Recent studies have exploited such
approach both in imaging and tomographic schemes and detec-
tion is generally carried out by a parallel detector such as CCD,
CMOS or gated cameras [11]. Moreover, the use of a wide field
approach (such as the case of structured illumination) allows
one to illuminate the sample with high power without exceeding
safety limits. This improves the signal-to-noise ratio.

Recently a patterned detection [12], following the single-pixel
camera scheme [13], has been proposed for FMT applications,
as well as for PhotoAcoustics [14]. Basically, the image of the
diffused light exiting the sample is spatially modulated and sub-
sequently focused on a single element detector. This operation
is equivalent to projecting the image on an element of a base set,
such as Fourier, Wavelets, or Hadamard patterns. By repeated
acquisitions for different base elements it is possible to recover
the same image as would be measured in a conventional pixel
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basis. Due to the fact that a highly scattering medium acts as
a low-pass filter in the spatial frequency domain, just few fre-
quencies are needed. This approach has the great advantage of
exploiting the superior characteristics of a single detector (e.g
higher temporal resolution and larger spectral bandwidth) and
lower cost with respect to a parallel device. Moreover, compar-
ing with raster scanning, a further advantage is the acquisition
speed given by a wide field detection analogous to structured
illumination approach. Finally, it is worth mentioning that both
structured illumination and detection open the possibility to get
images and reconstructions with increasing spatial details by
increasing the number of measurements.

Whereas the patterned detection approach has been success-
fully demonstrated for fluorescence optical tomography in a
single view [12], a fully tomographic modality requires multiple
views to reduce the ill-posedness in depth resolution, which
leads to a more challenging experimental arrangement. In this
work we propose a multiple-view time-domain compressed
sensing DOT system exploiting Hadamard patterns both in the
illumination and collection plane, and applicable to non-planar
geometries. The system has been experimentally validated on
tissue phantoms with absorbing inclusions, demonstrating both
imaging and tomographic capabilities.

The experimental set-up is schematically sketched in Fig. 1.
The sample is illuminated by a pulsed structured light while
detection is carried out either by a time-resolved Single Pixel
Camera (SPC) or a Continuous Wave (CW) parallel detector.
The sample is placed on a rotational stage to allow different
view acquisition. By means of an acousto-optic tunable filter,
light pulses at 650 nm are spectrally selected from a ps pulsed
supercontinuum (rep. rate of 80 MHz) laser source (SuperK Ex-
treme, NKT). Structured illumination is carried out by a Digital
Micromirror Device (DMD Discovery kit 1100, Vialux), which
spatially modulates the light, and an objective lens (f=50 cm)
to create the image over an area of 3x3 cm? of the sample. The
diffused light, exiting the sample over an area of about 2x2 cm?,
is imaged by a lens (f=60 cm) on a second DMD (DMD Discov-
ery 4100, Vialux). A flip mirror allows us to image the DMD
plane either on a low noise 16-bit cooled CCD camera (Versarray
512, Princeton Instruments) or a single element detector. The
latter consists of a long working-distance objective (10X/0.25)
which focuses the light reflected by the second DMD on a 1 mm
diameter optical fiber. The light exiting the fiber is finally de-
tected by a photomultiplier (PMT) (HPM-100-50, Becker & Hickl)
connected to a Time-Correlated Single Photon Counting (TC-
SPC) board that samples the temporal profile of the diffuse light.
The system is fully computer controlled by a home-made Lab-
View software enabling an automated acquisition of the whole
data set (illumination/detection patterns, sample rotation and
acquisition). The sample is a homogeneous cylindrical tissue
mimicking phantom (&=20 mm, height 50 mm) made of epoxy
resin, TiO; (as scatterer) and toner (as absorber). By means of a
time-resolved spectroscopy system [15] the optical parameters
were measured: absorption coefficient (4,) about 0.01 mm ™!
and reduced scattering coefficient (1) about 1 mm~!. Two holes
(see Fig. 4), drilled into the sample (&=1.6 mm), allowed us to
insert either solid or liquid absorbing inclusions. In particular, to
better simulate a realistic perturbation, 3 solutions of calibrated
ink and Intralipid have been prepared [16], giving p} ~ 1 mm™!
(the same as that of the background) and y, of: 0.05/0.05 mm~?
(Exp 1), 0.05/0.1 mm~! (Exp 2) and 0.05/0.03 mm~! (Exp 3) for
inclusions A and B, respectively.

Initially, images have been acquired by means of the CCD
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Fig. 1. Experimental set-up.

camera on the detection side and of a low-cost camera on the
illumination side, to register the illumination/detection area
over the sample. Then 360 shadows of the object (every 1°) have
been acquired to create the mesh [6]. It is worth emphasizing that
precise calibration is critical to achieving an accurate simulation
of the forward problem, which in turn is a prerequisite to obtain
a high quality tomographic reconstruction.

Measurements have been performed on the phantom with
and without the absorbing inclusions. The acquisition proce-
dure is carried out by a complete 360° rotation of the sample
with steps of 45° (8 views). For each view 8x8 ordered Walsh-
Hadamard (WH) patterns, covering a 1.3x1.3 cm? area on the
sample, have been used for both illumination and detection.
Each WH pattern consists of two states (-1 to +1). Hence two
positive patterns (ranging from 0 to +1), complementary to one
another, have been acquired and properly subtracted to obtain
the desired WH pattern. Acquisition time for each patternis 1s
with 800KHz as maximum count-rate to fulfill the single-photon
statistics. This last parameter is, indeed, the limiting factor on
the overall acquisition time that is about 25 minutes. A full-pixel
image can be recovered by applying the fast Walsh-Hadamard
inverse transform to the detected data [17].

For the reconstruction of the absorption map in the volume,
the following objective function has been constructed:

Iy —fu(¥) } 2
¥ (x) 5 Zn: { Fon () + TR (x) 1)
where x is the absorption coefficient in every mesh element, v,
is the measurement performed with the SPC, f,, and f, are
the forward model, heterogeneous and homogeneous, respec-
tively, T is the hyper-parameter, R is a regularization functional
and 7 is the measurement index. The software TOAST, a finite-
element based solver [18], has been used to calculate f; (x). In
order to minimize the objective function in Eq. (1) a damped
Gauss-Newton method based on a one dimensional line-search
algorithm [19] has been implemented. A Total Variation (TV)
regularization functional has been used. In the calculation of
both the forward model and the Jacobian, the IRF has been taken
into account by convolution in time.

First measurements have been carried out using black solid
rods as inclusions, to demonstrate the imaging capability of the
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Fig. 2. Comparison between CCD and SPC images outcoming
from the homogeneous (first row) and heterogeneous (second
row) phantom. First column: image measured with the CCD.
Second column: image measured by SPC using 16x16 WH
patterns for a single view. Third column: RMSE as a function
of the WH order for the eight views.

system and to estimate the number of patterns to be used in the
tomographic reconstruction. In particular time-resolved data
acquired by SPC have been integrated over time to obtain CW
data and compared with the CCD images. An example of the
images acquired by the CCD and the ones based on SPC (by spa-
tially modulating the detection) is shown in Fig. 2. We observe
a good agreement between the two images which improves by
increasing the number of adopted patterns as reported in Fig. 2,
where the Root Mean Square Error (RMSE) is reported as a func-
tion of the WH pattern order. In particular, we do not observe
a significant improvement for WH pattern order higher than 8.
Moreover, it is possible to observe that the RMSE plot for the
inhomogeneous phantom presents a higher variability among
the different views with respect to the homogeneous case. It is
worth stressing that the number of required patterns strongly
depends on the optical parameters/shape of the sample and
position/dimension of the inclusions. In order to explore the
imaging capability of the proposed method, the relative contrast,
calculated as difference between heterogeneous and homoge-
neous images divided by the homogeneous one, provided by
one solid inclusion, both in the CCD and SPC images, are re-
ported, for 8 different views, in Fig. 3. In particular three cases
are reported: i) the sample is illuminated with 16x16 ordered
WH patterns while detection side has a uniform square pattern
(Fig. 3, first row); ii) the sample is illuminated with a uniform
square pattern while detection side is spatially modulated by
16x16 ordered WH patterns (Fig. 3, second row); iii) CCD images
by using uniform square illumination pattern are also reported
(Fig. 3, third row). Cases ii) and iii) show good agreement, in
particular the presence of the absorbing inclusion can be clearly
observed when it is located, during sample rotation, closer to
the detector (see the vertical blue bar in the image at 0° or 45°
for OUT). On the contrary, for the other views, the inclusion
cannot be observed because of the scattering. In case i) there is
no correspondence between the images acquired by the CCD
and SPC. In particular we observe that, by modulating the il-
lumination, we can better observe the inclusion for the views
where it is closer to the illumination source (see the vertical
blue bar in the image at 180° or 225° for IN). In fact, the SPC
approach measures the integral of the signal, then the imaging
capability is not influenced by the scattering events followed by
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Fig. 3. Relative contrast for different rotation views (columns)
in the case of modulated illumination (first row), modulated
detection (second row) and CCD images by using uniform
square illumination (third row). Images in rows 1 and 2 were
obtained by a WH inverse transform.

photons after impinging on the inclusion as occurs for the CCD
[20]. These examples demonstrate the imaging capability of the
proposed method and in particular the importance of the choice
of the illumination/detection patterns according to the view, the
sample (shape and optical parameters) and inclusions, for both
imaging and reconstruction.

As a first demonstration of the tomographic capability of the
proposed system, three tomographic reconstructions by using
an early gate of the time-resolved profile have been carried out.
For each view, a single constant illumination pattern was used
and the detection was performed with 8x8 WH patterns while
the temporal gate has been chosen corresponding to the rising
edge of the TR signal, here resulting in a time window of 500 ps
length. The homogeneous measurements have been used to
scale the inhomogeneous phantom data to match the magnitude
of the forward TPSFs. The mesh used for the forward problem
has 120000 elements and 1016 temporal point spread functions
(TPSF) have been generated (127 WH patterns for 8 views) and
sampled in 156 temporal steps of 8 ps length. The computational
time for the forward problem is about 10 s on a machine with 10
2.3 GHz Dual Intel Xeon processors, an Nvidia Tesla K-40 GPU
and 64 Gb RAM memory. Firstly, the eight TR measurements
of the homogeneous phantom with planar illumination have
been used to retrieve the background optical properties. For this
purpose, a Levenberg-Marquardt fitting procedure with TOAST
as a forward solver has been used obtaining 3,=0.01 mm~! and
1#,=0.88 mm~! showing a good agreement with the properties
measured using the spectroscopy system mentioned above. The
reconstruction has been carried out on a regular grid of 85731
points containing the whole cylindrical mesh with the voxel
size of 0.5 mmx0.5 mmx1 mm. The Jacobian has been calcu-
lated using the adjoint method [21] deploying the Fast-Fourier
Transform for fast implementation of the temporal convolution.
The Gauss-Newton algorithm has been terminated after three
iterations, after which the reconstruction ceased to improve. The
overall reconstruction time was about 3 hours.

Fig. 4(a-c-e) shows the tomographic reconstructions of i, at
different vertical slices. Due to the limited field-of-view of both
illumination and detection, only a part of the cylinder can be
reconstructed (about 16 mm centered at about 14 mm from the
top). We observe a good reconstruction quality pertaining both
the localization and relative contrast of the two inclusions. By
fitting the reconstructed inclusions with a 3D gaussian function,
we obtained a total contrast of about 0.3 times the truth for all
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Fig. 4. Reconstruction of y,; using an early gate. Slices are dis-
played from z=19 mm (top of the cylinder) to z=4 mm at step
of 1 mm. The z=0 mm plane is at the middle of the cylinder;
(a-c-e) reconstructions (values are in mm™~!) for Exp 1, Exp 2,
Exp 3, respectively. (b-d-f) Normalized profiles of the absorp-
tion perturbations along the line I' connecting the two inclu-
sion’s centers on the plane at z=13 mm.

cases. Moreover in Fig. 4 (b-d-f) normalized line profiles across
the inclusions at the plane z=13 mm are reported for all the
experiments. We observe a worsening of the localization for
the inclusion B of Exp 3 probably due to the reduced contrast
produced by the low absorbing solution poured in it. Finally, in
order to quantify the localization capability of the reconstruction,
the center of mass (COM) for each inclusion has been computed
on a region twice larger than the inclusions (See Table. 1).

In conclusion, a fully tomographic time-resolved DOT system
based on the sampling in the spatial frequency domain (both
illumination/detection space) and multiple views acquisition
has been proposed and validated on tissue-mimicking phantom,
demonstrating a state of the art reconstruction quality. More-
over, the imaging capability of the system has been validated
in CW by comparing SPC with a standard CCD acquisition,
showing the importance of the choice of illumination/detection
patterns for imaging purposes. Future work will be devoted to
the optimization of the data set (choice of illumination/detection
patterns, number of views and temporal gates) and system im-
provements (detection efficiency, calibration procedure) in order
to strongly reduce the acquisition time, while preserving or even
increasing the information content. In particular, adaptive basis
scan approaches will be investigated [22].
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