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Abstract (148/150) 
Insistence on sameness and intolerance of change are part of the diagnostic criteria for Autism 
Spectrum Disorder (ASD) but there is little research addressing how people with ASD represent and 
respond to environmental change. Here, we find that behavioural and pupillometric measurements show 
adults with ASD are less surprised than neurotypical adults when expectations are violated, with reduced 
surprise predicting greater symptom severity. A hierarchical Bayesian model of learning suggests that in 
ASD a tendency to over-learn about volatility in the face of environmental change drives a corresponding 
reduction in learning about probabilistically aberrant events – putatively rendering them less surprising. 
Participant-specific modelled estimates of surprise about environmental conditions are linked to pupil 
size in the ASD group, suggesting heightened phasic noradrenergic responsivity in line with neural gain 
impairments. This study offers novel insight into the behavioural, algorithmic and physiological 
mechanisms that underlie responses to environmental volatility in ASD. 
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Introduction 
When negotiating changeable real-world environments, humans face a set of learning problems 
involving different forms of uncertainty in which the weighting of new evidence and prior expectations 
need to be dynamically adjusted. Imagine opening your sock drawer and finding a pineapple inside. How 
surprised should you be? Under normal circumstances, you would expect to see socks - but if your four-
year-old niece is visiting, you might adjust your expectations to suit a more volatile environment, 
lessening any surprise. However, over-estimating how volatile your bedroom is may result in 
compromised learning of the association between the cue (sock drawer) and outcome (socks) in the first 
place. In other words, aberrant representation of volatility may impair the dynamic formation of 
appropriate prior expectations, rendering both the pineapple and the socks mildly surprising. Bayesian 
theories of perception in ASD1 propose that reduced weighting of prior expectations, relative to sensory 
inputs, leads to the perceptual atypicalities associated with the condition2–7, but no studies to date have 
actually quantified the learning dynamics by which sensory expectations are formed in ASD. Here we 
sought to empirically address whether volatility learning is compromised in ASD6,7. 

Computationally, the amount of weight given to a surprising event is determined by its precision (inverse 
variance, proportional to learning rate:ߙ) with ߙ determining the rate of integration over past events to 
predict future outcomes. While computational studies of decision-making about rewards and 
punishments show that participants adapt their rate of learning about action-outcome contingencies in 
response to changes in environmental volatility 8–10, these models did not fit individual differences in 
volatility learning. However, knowing whether to disregard an unexpected outcome or take it seriously 
(i.e. whether to adopt a high or low learning rate about cue-outcome probabilities) depends on the 
precision of your beliefs about environmental change (i.e. whether you adopt a high or low learning rate 
about volatility). The recent application of hierarchical learning models has allowed the quantification of 
individual learning about both probabilistic relationships and how these relationships change over time 
(volatility)11–14, but no studies have applied these models to understand learning about uncertainty in 
ASD. 

In a state where uncertainty about one’s beliefs is high (e.g. in volatile conditions), top-down prior 
expectations should be suppressed, relative to new bottom-up sensory evidence, in order to promote 
new learning about the current environmental context15. With their broad distribution and extensive 
connectivity, neuromodulatory systems are ideally placed to facilitate the widespread changes in neural 
gain necessary to support such a function16.  Noradrenaline (NA), in particular, is thought to signal 
contextual change, leading to enhanced bottom-up, thalamocortical transmission of sensory 
information17–19. Recent neurocomputational accounts of autism have proposed that aberrant signalling 
of volatility could result in pathological neural gain, consistent with the cognitive and perceptual profile of 
autism such as enhanced perceptual functioning, sensory overload and context insensitivity4–6,20. 

Here, we tested these computational and neurobiological hypotheses by examining how adults with ASD 
respond to experimentally manipulated changes in their sensory expectations that independently 
assessed changes in the category of a stimulus, the informativeness of a cue predicting its appearance 
and changes in these associations over time. To do so we employed a hierarchical Bayesian model that 
allows us to characterise each individual participants learning “fingerprint”; specifically simultaneous 
learning about multiple different sources of environmental uncertainty 11. We hypothesised that adults 
with ASD will show reduced behavioural and neurophysiological responses in contrasts of ‘unexpected’ 

                                                           
1 Although we abide by the terminology of the diagnostic and statistical manual (DSM-5) we wish to acknowledge that the term 
autistic person is preferred by many people on the spectrum 1. 
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(UE) and ‘expected’ (E) trials based on the experimental ‘ground truth’ (e.g. reduced surprise when they 
ought to have been surprised). This is in line with previous studies showing reduced distinction between 
repeated and novel stimuli in ASD 21–23. However, we hypothesise that computational modelling of the 
actual learning process for each individual will demonstrate an increased tendency to represent and 
respond to environmental volatility in ASD, compromising learning about probabilistic relationships in the 
environment. Accordingly, we hypothesise that computational metrics of prediction error, which estimate 
when each individual was actually surprised, will be reflected in pupil responses, indicating aberrant 
neuromodulatory function in ASD. 

Results 
We used a modified version of a common probabilistic associative learning task 24 to test the impact of 
learned expectations and sensory noise on behaviour (reaction times (RT), error rates) and indices of 
phasic NA function (pupillometry) 25 in adults with ASD (n=24) and age and IQ matched neurotypical 
adults (NT’s; n=25) (Online Methods).  

Participants performed binary classification of images as either faces or houses, and images had either 
high (H), medium (M) or no (N) noise added. A tone preceding each image was either highly, weakly or 
not predictive of a given outcome, and these image-tone associations changed across time (Figure 1) 
such that trials can be categorised as expected (E), unexpected (UE) or neutral (N). This created a 
ground truth structure to the environment that participants had to implicitly learn. In contrast to 
reinforcement learning26,27, implicit motor learning 28 and serial reaction time 29 tasks that have examined 
sensitivity to probability manipulations in ASD, this task addresses perceptual associative learning and 
explicitly manipulates three different forms of uncertainty (categorical sensory uncertainty, probabilistic 
uncertainty and environmental uncertainty). When a participant receives an unexpected outcome, this 
may reflect a probabilistically aberrant event or it may signal that the environmental context has 
changed. To quantify individual learning about these different forms of uncertainty, RTs were modelled 
using a Bayesian belief update scheme 11 (Online Methods). The model inferred on participant’s beliefs 
about these quantities as reflected in the sequence of cue-outcome associations each participant 
received and their trial-by-trial responses and response times. 

Behaviour 

First, we examined behavioural responses where expected (E) and unexpected (UE) trials were 
categorised according to the ground truth.  

Reaction times 

Reaction Times (RTs) were submitted to a 3x3 mixed ANOVA with within-subjects factors of 
expectedness (expected, neutral, unexpected), noise (high, medium, no) and a between participants 
factor of group (ASD, NT). There was a significant main effect of expectedness (F(2,94)=25.48, 
P<0.001) and noise (F(2,94)=13.60, P<0.001) indicating that RTs were slower for unexpected and high 
noise stimuli relative to expected and low noise stimuli. A significant main effect of group (F(1,47)=4.83, 
P=0.03) indicates that in general the ASD participants were slower to respond than the NT participants. 
Crucially, only the expectedness*group interaction was significant in this analysis (F(2,94)=4.47, 
P=0.014; Figure 2a). The noise*group (F(2,94)=0.06, P=0.94), noise*expectedness (F(4,188)=0.47, 
P=0.76) and expectedness*noise*group interactions were not significant (F(4,188)=1.31, P=0.28). This 
suggests that for both groups increasing sensory noise results in slower RT (Figure S1) but adults with 
ASD only show reduced modulation of RT as a function of learned expectations. This is consistent with 
reduced influence of prior information on perception and action in ASD2, although future studies should 
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explore how learned expectations affect perceiving structure in true noise or 50/50 composite images 
where reliance on prior beliefs should be greater.  

Results were unchanged when the identical analysis was carried out on log reaction times (Table S1). 

Subtracting RTs to UE from those to E outcomes provides a low-level index of “surprise” which is 
significantly greater than zero in both groups (ASD, t(23)=4.66, P<0.001; NT, t(24)=7.25, P<0.001) but 
attenuated in the ASD group relative to the NT group (t(47)=3.51, P=0.001; Figure 2b). This suggests 
less distinction between UE and E outcomes in ASD, though this is conditioned upon adequate learning 
of the ground truth. 

To ensure that the group difference in UE-E RT persists over and above participants mean ‘baseline’ RT 
and error rates we conducted a linear regression to predict UE-E RT with group (ASD, NT), mean RT 
and mean errors as predictors. This model was significant overall (F(3,48)=5.58, P=0.002) and the only 
significant predictor of UE-E RT difference was group (t=-2.87, P=0.008). Mean RT (t=-1.08. P=0.28) 
and mean errors (t=1.06, P=0.29) were not significant predictors. Importantly, this analysis demonstrates 
that the diminished effects of behavioural ‘surprise’ in ASD participants, persist even when the variance 
associated with general response speeds and accuracy are included in the model. 

Additional analyses confirmed that this key finding of group differences in UE-E RTs remains present 
when control analyses account for the effects of speed-accuracy trade-off (Figure S2) and general group 
differences in caution of responding (Figure S3). We do, however, recognise that slower overall 
responses (and higher accuracy) in the ASD group may indicate a tendency to manage uncertainty with 
increased response thresholds, which could be tested using drift diffusion models30,31 in future studies 
where error rates are higher by design.  

Error rates 

The same analysis as above was conducted for error rates. There was a significant main effect of 
expectedness (F(1.5,70.5)=11.71, P<0.001) and a significant group*expectedness interaction 
(F(2,94)=6.34, P=0.003) indicating that NT group made more errors on unexpected, relative to expected 
trials, whereas the ASD group did not (Figure 2c). The main effect of noise was not significant in this 
analysis (F(1.7,78.8)=0.08, P=0.92) and neither was the noise*group (F(2,94)=0.29, P=0.75), 
noise*expectedness (F(4,188)=0.76, P=0.55) and expectedness*noise*group interactions 
(F(4,188)=1.28, P=0.28). 

Results were very similar when the identical analysis was carried out on log error rates (Table S1).  

Subtracting % errors to UE from those to E outcomes provides a low-level index of surprise which is only 
significantly greater than zero in the NT group (ASD, t(23)=1.11, P=0.28; NT, t(24)=3.65, P=0.001) and 
attenuated in the ASD group relative to the NT group (t(33.4)=2.83, P=0.007; Figure 2d). 

Relation to symptoms 

To explore the relationship between behavioural surprise and ASD symptom severity we conducted a 
multiple linear regression predicting the UE-E RT measure with Autism Diagnostic Observation Scale 
(ADOS-2) communication, social reciprocal interaction scores, and also IQ as predictors. This model 
was significant (F(3,23)=3.28, P=0.04) and communication score was the only significant predictor (t=-
2.57, P=0.018; Figure 3). IQ (t=1.45, P=0.16) and social reciprocal interaction scores (t=0.95, P=0.35) 
were not significant predictors.  

A second regression model that also contained baseline RT as a predictor narrowly missed overall 
significance (F(6,23)=2.41, P=0.07), and communication scores were once again the only significant 
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predictor (t=-2.81, P=0.012). A third regression model, in a reduced sample size (see Online Methods), 
additionally included sensory sensitivity scores (ASQ) as a predictor of UE-E RT. This model was not 
significant (F(4,21)=1.28, P=0.32) and the only predictor approaching significance was, again, 
communication scores (t=-1.89, P=0.076).  

Communication, as measured by the ADOS-2, weights predominantly on stereotyped and repetitive 
speech and conversational reciprocity which arguably necessitate reflexive behavioural responses to 
change. Future studies should examine the specificity of this link between general behavioural 
adaptations to learned expectations and communication abilities; especially as measured by different 
instruments. 

Non-clinical replication 

Finally, beyond the range of clinical phenotypes seen in people diagnosed with ASD, a wider continuum 
of social-communicative ability is expressed as autistic traits in the general population 32. Encouragingly, 
the relationship between our behavioural measure of surprise (UE-E RT) and autistic tendency replicates 
in an independent non-clinical sample (N=57) of participants characterised according to expression of 
autistic traits (Figure S4). Not only does this bolster confidence in our clinical finding but additionally 
supports generalisation of this result to the broader autism spectrum in the wider population. 

Responses to different stimulus types 

Control analyses indicated that there were no group differences in response time or accuracy across the 
face and house stimuli (Figure S5). 

Computational Modelling 

To investigate learning about distinct kinds of uncertainty in ASD we adopted a participant-specific 
Bayesian model to track the role of uncertainty on behaviour (log RTs). In the Hierarchical Gaussian 
Filter (HGF) 11 beliefs are updated via prediction errors, with dynamic learning rates (ߙ) at each level (i)  
influenced by uncertainty about the accuracy of current beliefs and environmental volatility (Figure 4a). In 
the version of the HGF used here (introduced in 33) learning occurs simultaneously on three coupled 
levels of an uncertainty hierarchy (ݔଵ, ݔଶ, and ݔଷ). Level 1 (ݔଵ) addresses uncertainty about outcomes 
(face or house), level 2 (ݔଶ) addresses uncertainty about probabilities (cue-outcome contingencies) and 
level 3 (ݔଷ) addresses uncertainty about environmental change (volatility). See Online Methods and 
Table S2 for more model details. 

Model validation 

First, to ensure that the HGF performs well as a model to describe the behaviour of our participants, we 
fit three alternative learning models to the data and compared them to the HGF with random-effects 
Bayesian model selection (BMS). Relative to simple Reinforcement Learning (RL) models with fixed 
(RW) and dynamic (SK1) learning rates and a 2-level HGF in which volatility updates are eliminated, the 
three-level HGF was the best model for explaining the data by a considerable margin (see Online 
Methods, Figure S6). Importantly, BMS evaluates the relative plausibility of competing models in terms of 
their log-evidences which quantifies the trade-off between accuracy (fit) and complexity of a model and 
accounts for the fact that the observed variability in log-model evidences could be due to chance. 
Additionally, the 3-level HGF model simulations captured the principal group differences in the 
behavioural effect of expectation on RT (see Online Methods and Figure S7). 
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Predicting diagnostic status 

A summary of group differences in each of the estimated model parameters is presented in Figure S8. 

A binary logistic regression model predicting group status (ASD=1, NT=0), with all eight model 
parameters as predictors was significant (X2= 26.83, P=.001) and prediction success overall was 81.6% 
(76% ASD, 88% NT), with cross-validated prediction success of 68%. The Wald statistic demonstrated 
that outcome uncertainty (ߚଶ, P=0.043), phasic volatility (ߚସ, P=0.006) tonic volatility at the 3rd level (߱ଷ, 
P=0.024) and baseline log RT (ߚ଴, P=0.007) made a significant contribution to prediction (Figure 4b).  

Interestingly these significant predictors predominantly pertain to the third level of the HGF, i.e. learning 
about environmental volatility. ߱ଷ can be understood as capturing ‘metavolatility’ (i.e., the tonic volatility 
of the phasic volatility, with higher values in the ASD group implying a belief in a world where instability 
itself is instable (Figure S8). ߚସ captures the modulation of log RT in response to phasic volatility, here 
smaller (negative) values in the NT group (Figure S8) implies that when beliefs about volatility increase, 
participants become more attentive and respond faster. In contrast, the larger (positive) values in the 
ASD group (Figure S8) indicate that increased beliefs about volatility leads to slower reaction time. In 
general, these findings point towards problems representing and responding to environmental change in 
ASD, specifically, an increased tendency to expect the unexpected. 

Learning rate update in response to volatility 

From the HGF we can infer the trial-wise rate of learning about two different sources of information: 
probabilistic outcomes (ߙଶ) and also the rate of learning about environmental change (ߙଷ). When the 
environment is volatile people should give more weight to recent sensory outcomes in building 
expectations about what they will see next (e.g. adopt a high  ߙ), in contrast they should give information 
from the distant past more weight when the environment is stable (e.g. adopt a low ߙ) 8,9. To test the 
hypothesis that individuals with ASD have problems flexibly updating their rate of learning (c.f. precision 
weighting) in response to environmental change we examined the change (Δ) in ߙଶ (probability) and ߙଷ 

(environment) when switching from stable (highlighted in violet on Figure 1) to volatile (highlighted in 
green on Figure 1) periods of the task. We compared the change in ߙଶ and ߙଷ between these two 
periods, across the groups. This analysis revealed a trend towards a main effect of group (F(1,47)=0.26, 
P=0.061), a significant main effect of ߙ type (F(1,47)=6.07, P=0.017) and crucially an ߙ type* group 
interaction (F(1,47)=9.80), P=0.003). Follow up independent-samples t-tests revealed that the ASD 
group did not update ߙଶ as much as NT adults (t(47)=-2.37, P=0.02) whereas they updated ߙଷ more than 
NT adults(t(47)=3.16, P=0.03; Figure 4c).  

Average learning rates 

To examine learning overall, we calculated average values for ߙଶ  and ߙଷ for each participant. This 
analysis revealed no main effect of ߙ type (F(1,47)=2.61, P=0.11), no main effect of group 
(F(1,47)=2.01, P=0.16, and no group* ߙ type interaction (F(1,47)=2.54, P=0.12), suggesting that, in 
general, both groups were able to learn the this task equally well. 

Predicting learning rate update from tonic volatility 

Finally, since the HGF estimation does not fit  ߙଶ and  ߙଷ directly, we ran two linear regression models 
predicting Δߙଶ and Δߙଷ respectively to determine which of the two ߱ parameters drive these learning 
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rate differences. In each case the model was significant (Δߙଶ : F(2,48)=68.94, P<0.001, R2 =0.75;  Δߙଷ : 
F(2,48)=102.53, P<0.001, R2 =0.82). The results indicate that Δߙଶ is positively predicted by ߱ଶ (t=2.72, 
P=0.009), suggesting that a tendency to believe cue-outcome associations are unstable is associated 
with a larger update in ߙଶ when switching from stable to volatile phases of the task. Interestingly, ߱ଷ 
negatively predicts Δߙଶ (t=-8.89, P>0.001), indicating that a tendency to believe instability is unstable 
drives a smaller update in ߙଶ in response to volatility.  This fits with our finding that the ASD participants, 
who tend towards a smaller Δߙଶ (Figure 4c), show reduced behavioural ‘surprise’ (Figure 2b) and also 
larger ‘metavolitility’ estimates (Figure 4b). For the model predicting Δߙଷ both of the ߱ parameters were 
significant positive predictors (߱ଶ, t=7.88, P<0.001; ߱ଷ, t=14.24, P<0.001).  For the ASD participants, 
who show larger Δߙଷ, this is consistent with a tendency towards beliefs in the instability of both cue-
outcome associations and instability itself. 

 

Pupillometry  

Predictive coding descriptions of ASD depart from normative Bayesian theories in that they make explicit 
predictions about the neurobiological basis of precision; namely, the action of neuromodulators such as 
noradrenaline (NA) which control the gain on cortical responses (prediction errors) 3,4,6.  Raised NA 
signalling in ASD is suggested by elevated blood plasma levels 34 and increased arousal; i.e. heart rate 
variability 35, but no studies have examined phasic NA function in the context of learning about 
uncertainty in ASD. To do so we acquired concurrent pupillometry in a reduced subset of the sample 
(Online Methods). Phasic pupil response to surprising outcomes (ground truth contrast of UE-E trials) 
revealed a significant increase in pupil size in NT’s (Figure 5a), consistent with many previous studies 25. 
Convergent with the behavioural data (Figure 2b & d), the ASD group did not show this distinction 
between UE and E trials (Figure 5a). This pattern mirrors previous findings in the domains of 
electrophysiology (reduced mismatch negativity in ASD/smaller P300 36,37 and BOLD imaging (reduced 
fMRI repetition suppression in ASD 21,23) but now in the novel domain of pupillometry. However, this 
notion of surprise is conditioned upon adequate learning of the ground truth, and our computational 
analysis indicates that ASD and NT participants show a dissociation in how they estimate volatility and 
adapt their learning rates in response to the changeability of the environment (Figure 4b & c). 

Computational pupillometry analysis 

The HGF provides a nuanced and individualised trial-by-trial “learning fingerprint” and better 
characterises when participants were actually surprised as a function their personal learning process, 
namely ‘high-level’ precision-weighted prediction errors (PE’s) about changes in cue-outcome 
contingency (3ߝ). Here the learning rate ߙଷ depends on the precision weight on the PE; that is 
proportional to the update of environmental volatility (See Online Methods). As such ߝଷ is a model-based 
measure of high-level surprise that is formally related to the dynamic learning about environmental 
change where we see group differences (Figure 4c). Applying multiple regression across every trial and 
every time point in the pupil time trace, we found a sustained positive relationship between pupil size and 
precision-weighted PE’s (3ߝ) in the ASD participants (Figure 5b), which significantly differed from the NT 
group and zero. Furthermore, these strong effects persisted when controlling for the UE-E ground truth 
contrast, trial-wise differences in fixation compliance, mean RT and outcome image type (face/house) all 
of which were included in the model as covariates (Online Methods). Additional analyses revealed that 
the volatility learning rate (ߙଷ), and the probability learning rate (ߙଶ) are not encoded in the pupil 
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response in either group (Figure S9). See Figure S10 for analysis examining the relationship between 
precision-weighted PEs in specific (volatile/stable) phases of the experiment. 

 

Pupillometry control analyses 

Given the possibility that people with ASD might look at face stimuli differently to people without ASD 38, 
stimulus duration was purposefully short (150ms) to prevent saccades. Nonetheless, to ensure that there 
was no difference between the groups in fixation compliance across the stimulus types (faces, houses) 
we conducted a repeated measures ANOVA on the mean absolute deviation (MAD) from fixation (in 
degrees of visual angle) across outcome image type (face, house) with a between subjects factor of 
group. All main effects and interactions in this analysis were non-significant (Table S1). 

To examine group differences in tonic pupil size (thought to be a measure of general noradrenergic tone 
39) we compared the average of the z-scored pupil measurement across all trials with an independent 
samples t-test. This demonstrated no group differences in tonic pupil size in this sample (t(23)=.36, 
P=0.72). 

Finally, control analyses revealed that there were no group differences in fixation compliance across 
conditions (Figure S11) or the relationship between pupil size and simple behaviour such as trial-wise 
RT (Figure S12). Raw pupil traces for each group can be seen in the Supplementary Results (Figure 
S13). 

Discussion 
In this study, behavioural (RT/error rates) and pupillometric results based on the experimental ground 
truth converge on the finding of reduced distinction between unexpected and expected outcomes in ASD 
(Figure 2, Figure 5a) which is consistent with many previous studies across a range of methods reporting 
reduced ‘surprise’ in ASD 21,23,36,37. Crucially, however, this low-level notion of ‘expected’ and 
‘unexpected’ trials assumes optimal or at least adequate learning of the ground truth. However, the 
statistical regularities that underlie our sensory world and shape our expectations are changeable and 
humans have to learn about different kinds of uncertainty in order to adaptively adjust the weighting of 
prior expectations and sensory inputs. Knowing whether to disregard an unexpected outcome or take it 
seriously (i.e. whether to adopt a high or low learning rate about cue-outcome probabilities (ߙଶ)) 
depends on the precision of your beliefs about environmental change (i.e. whether you adopt a high or 
low learning rate about volatility (ߙଷ)). The present data go beyond previous work by specifically 
demonstrating that over-estimating volatility in the face of environmental change – at the expense of 
learning about probabilistically aberrant events - characterises the behaviour of adults with ASD during 
perceptual inference (Figure 4c). 

Furthermore, computational-pupillometry analyses indicate heightened encoding of trial-wise surprise in 
phasic noradrenergic responses in ASD (Figure 5b). Thus, under the assumption that pupil size is an 
index of NA release from the locus coruleus (LC) 40 these results are suggestive of raised phasic 
neuromodulatory signalling in ASD. NA is believed to change cortical gain in response to surprise, 
specifically; salient events indicating that global context has changed cf. “unexpected uncertainty”  15,25. 
Here our computational-pupillometric analysis indicates a strong relationship between noradrenergic 
responsivity and precision-weighted prediction errors in ASD participants. Consistent with our other 
model-based results (Figure 4b & c), these findings again support over-reactivity to environmental 
change in ASD, but now in the context of physiological measures that index phasic neuromodulatory 
function. If the NA system is signalling more high-level surprise in ASD then this may imply atypical 
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cortical gain during sensory processing, resulting in a state where one is disproportionately receptive to 
sensory inputs. Aberrant phasic NA (c.f precision on prediction errors4,6) may alter the signal-to-noise 
ratio of cortical responses 41,42, broaden the tuning functions of sensory responses and, subsequently 
improve discrimination behaviour43. Thus aberrant NA function may offer a neurobiological perspective 
on the profile of sensory processing strengths and weakness experienced by people on the spectrum.   

Importantly, these findings provide preliminary empirical evidence for neurobiologically informed 
Bayesian accounts of autism that emphasise aberrant representation of volatility and, consequently, 
inappropriate setting of gain (precision) on cortical responses (prediction errors) 4,6 under conditions of 
uncertainty. A recent pharmacological study employing the HGF, indicates that noradrenaline 
antagonism selectively impairs volatility learning13, which accords with the raised pupillometric response 
to surprise about volatility reported in the adults with ASD here (Figure 5b). We hypothesise that the 
noradrenergic LC and its coupling with the anterior cingulate cortex (ACC)8,10 ratifies estimated volatility, 
and that the downstream gain modulations act on the precision of cortical responses that are 
behaviourally relevant to the task at hand. Atypical social prediction error processing in the gyral surface 
of the ACC(g) has recently been shown in autism44, but whether differences in processing in the ACC 
region extend to non-social tasks with explicit computational models and manipulations of volatility 
remains to be seen.  Carefully designed neuroimaging and neuropharmacology studies will be necessary 
to link these (presumed) noradrenergic effects, and the mathematical anatomy of uncertainty11, to 
hierarchical processing in the brain 12. Additionally, although we emphasise the role of noradrenaline 
here, we also acknowledge the likely importance of its direct precursor, dopamine, and the 
complementary relationship with acetylcholine and the signalling of expected uncertainty 15. All three of 
these neuromodulators are likely candidates in the neurobiological mechanisms underlying responses to 
environmental change in ASD. 

From a Bayesian perspective, the simplest way in which persistent overweighting of all sensory inputs 
(relative to prior expectations) might occur would be a generally larger outcome ߙ – reflecting chronic 
and inflexible overweighting of recent, relative to past, sensory history. Such an explanation is implied by 
conservative interpretations of non-hierarchical Bayesian accounts of ASD 2 and predictive processing 
accounts that emphasise “uniform” inflexibly high precision in sensory processing 3. However, by logical 
extension, beyond a single ambiguous sensory event, all Bayesian accounts imply that dynamic learning 
about structural regularities (i.e. the formation of priors) is likely impaired in ASD 2–7. Under the aberrant 
precision account of ASD it is problems with high-level learning about volatility, and the ratified 
neuromodulatory changes, that is hypothesised to underlie the difficulties faced by people on the 
spectrum 4–6. It is for this reason that we designed a task to capture behaviour under orthogonal 
manipulations of expectations and sensory noise and built a model equipped with the ability to infer on 
learning about volatility.   

The recent proposal that non-hierarchical, reinforcement learning (RL) models can speak directly to 
predictive coding theories of ASD3 is perhaps too simplistic, not least because predictive coding is 
largely regarded as a neural process theory and therefore behavioural or modelling results in the 
absence of a proxy for brain function can only speak to such an account but are not truly able to test it. 
Motivated by these claims, a relatively recent study found no differences in learning rate malleability in 
autistic children during a reward learning task modelled with a delta learning rule 45. Notably, however, 
there were no group differences in simple behaviour reported on this task. Here we made a specific 
behavioural prediction based on previous research (reduced ‘surprise’ in ASD) and a specific 
computational prediction to explain this behaviour (aberrant learning about volatility). We therefore 
designed a model complex enough to address simultaneous hierarchical learning. Using Bayesian model 
comparison we have shown (Figure S6) that the simplest learning model (similar to the one employed 
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previously45) performs poorest in explaining participant behaviour. Nonetheless, if it is the case that 
learning in the face of volatility is compromised in adults with autism (as reported here), but not children 
(as indicated previously45), this would be a significant discovery. It will be important for future studies to 
employ the same computational models and behavioural paradigms in adults and children to inform our 
understanding of how autism affects cognition across the lifespan, especially as some features of the 
disorder can become more severe with age 46  

Conclusion 

The surprise experienced on finding a pineapple in your sock drawer depends on the strength of your 
prior expectation to see socks. The results of this study imply that adults with autism show a tendency to 
over-estimate the volatility of the sensory environment, at the expense of learning to build stable 
expectations that lead to adaptive surprise. In other words, adults with autism may be mildly surprised by 
the pineapple and the socks. Heightened encoding of prediction errors in pupil size measures is 
consistent with neurobiologically focused Bayesian accounts of autism, that emphasise neural gain 
impairments due to aberrant neuromodulatory funcion4–6 . The distinct but complementary results 
provided by the ground truth and computational levels of analysis in our study underwrite the utility of 
computational approaches in better understanding neuro-developmental and psychiatric conditions with 
the aim of influencing clinical practice 47–49. This study offers novel insight into the behavioural, 
algorithmic and physiological mechanisms that underlie learning about, and responses to, environmental 
change in ASD. Novel patterns of learning may emerge when the environment is more or less 
changeable, when expectations are formed explicitly or, or when outcomes are not incidental but instead 
tied to reward and/or social evaluation 10,50. It will be important for future research to address these 
domains and test volatility learning in larger cohorts and people of different intellectual abilities across 
the autistic spectrum. 
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 Online Methods 
Participants 

29 adults with autism spectrum disorder (ASD) and 26 neurotypical volunteers (NTs) came to the UCL 
Institute of Cognitive Neuroscience as part of a testing day involving different researchers. Two adults 
with ASD did not complete this test owing to time constraints or an inability to tolerate the sounds and/or 
focus adequately on the test. Following data examination, participants with more than 20% overall errors 
or mean reaction times (RT’s) > 2 standard deviations from their respective group mean RT were 
excluded from subsequent analysis to ensure the validity of the Bayesian modelling. This left 24 
participants in the ASD group (18 males; mean age: 35.5, age range: 20-61) and 25 in the NT group (16 
males; mean age: 36, age range: 19-62). The ASD and NT groups were matched on age (t(47)=0.54, 
P=0.87).  

ASD participants had previously been diagnosed by an independent clinician, according to the DSM-IV51 
or ICD-10 criteria52 [19 Asperger Syndrome, 3 Autistic Disorder, 1 High Functioning Autism, 1 Atypical 
Autism]. The Wechsler Adult Intelligence Scale (WAIS 3rd edition UK) had previously been administered 
to assess IQ 53 and participants were matched on full-scale scores (ASD mean: 117; range: 80-142; NT 
mean: 120, range: 99-145; t(47)=-0.93, P=0.36) The Autism Diagnostic Observation Schedule (2nd 
edition) 54 assessment was completed by a qualified administrator to assess symptom severity in the 
ASD participants. Mean ADOS total score was 9.9 (range 4-19). The mean scores for the 
communication and reciprocal social interaction sub scores were 3.3 (range: 0-7) and 6.6 (range 4-12), 
respectively.  

An additional 57 NTs were studied as part of a replication of our key behavioural result (25 male, 32 
female; mean age: 27.1, age range: 19–50) and additionally completed the Autism Spectrum Quotient 
(AQ) questionnaire; a 50-item self-report measure of autistic traits 32,55. Mean AQ score was 18.43 
(median: 17, range: 5-45). All participants had normal or corrected to normal vision and gave written 
informed consent. We performed a median split on the data such that participants were divided into high 
AQ (n=26) and low AQ (n=31) groups. AQ score was significantly higher in the in the high AQ group 
(mean=27, SD=6.4, range=18-45), relative to the low AQ group (mean=11.5, SD=3.4, range=5-17; t (55) 
= 11.28, P<0.001). The distribution of scores the low AQ group falls almost exclusively below the mean 
range of neurotypical scores reported in a recent meta-analysis of 73 studies administering the AQ 56. 
Importantly there is considerable overlap between the scores in the high AQ group and the range 
reported, on average, in those with a diagnosis of ASD 56 – even though these participants do not 
present with any clinical need.  

No randomisation was used to assign subjects or conditions. All participants provided written informed 
consent and were compensated financially for their time and travel expenses. The study was approved 
by the UCL Graduate School Ethics Committee (4357/001) 

 

Stimuli 

Auditory cues were either 330 Hz or 660 Hz pure tones generated in MATLAB R2012b (Mathworks, Ltd) 
and presented using the Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent_graphics.php), via 
Sennheiser HD 201 headphones. Outcome images were either faces or houses. These stimuli were 
grayscale and comprised 6 different face identities (3 male, 3 female) or 6 different images of houses, 
masked by an ellipse and luminance matched using the SHINE toolbox 57. Outcome images either had 
medium or high Gaussian noise added, with a mean of zero and a variance of 0.05 and 0.1 respectively, 
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using the image processing toolbox (MATLAB R2012b). Examples of no, medium and high noise face 
stimuli can be seen in Figure 1.  

Procedure 

Participants sat on a chair with their head in a chin rest at a viewing distance of 80 cm. An example trial 
can be seen in Figure 1. Each trial began with the 300 ms presentation of a pure tone that was either 
high or low in pitch. After 200 ms either a face or a house image was presented, that lasted for 150ms to 
prevent saccades. The participant’s task was simply to respond to the image, indicating whether it was a 
face or a house (via left/right button press) and to be ‘as fast and accurate as possible, trying to respond 
on every trial’. A variable response time of 1500-1800 ms followed the image; such that trials lasted 
1950ms – 2250 ms. Participants were instructed that the tone preceding each image was 
probabilistically associated with the likelihood of seeing a face or house and that these probabilities 
would change across time. The probabilistic associations between the tones and the outcomes were 
either highly (p=0.84), weakly (p=0.16) or non-predictive (p=0.5) and changed pseudo randomly across 
trials in blocks of either 12, 36 or 72 trials (Figure 1). All participants completed 456 trials over 8 mini-
blocks with optional periods of rest between.  

To ensure that participants’ responses were not biased by learned expectations about the relative 
frequencies of the visual stimuli, the task was designed such that the marginal probabilities of faces and 
houses were identical at any point in time (Figure 1) and each block contained equal numbers of 
randomly intermixed high and low tone trials. As employed in previous studies 12,24, this design ensured 
that the a priori probability of a face (or house) occurring was always 50% on any given trial, before the 
tone is presented. Thus, any expectations about the visual stimulus could depend only on the preceding 
tone. Additionally, and unique to this study, equal numbers of high, medium and no noise stimuli 
appeared in each of 12, 36 or 72 blocks of trials and across each cue type. 

Data collection and analysis were not performed blind to the conditions of the experiment. 

Pupillometry 

To ensure fixation and measure neuromodulatory responses, gaze direction and pupil size were 
measured with an infrared eye tracker (Cambridge Research Systems) tracking the left eye at 200 Hz. 
Calibration of the eye tracker was unsuccessful in all participants wearing glasses and the eye tracker 
suffered a fatal technical failure before testing was completed, therefore eye tracking data are only 
available for 14 NT’s and 11 ASD’s. 

Hierarchical Gaussian Filter 

In the version of the HGF used here (introduced in 33) learning occurs simultaneously on three coupled 
levels of an uncertainty hierarchy. The first level of the HGF (ݔଵ) constitutes the outcome on any given 
trial (e.g. face or house), the second level (ݔଶ) represents the probabilistic associations between the 
tones and the outcomes (e.g. the probability of seeing a house given that you’ve just heard a high tone), 
and the third level (ݔଷ) quantifies the volatility of the probabilities (e.g. the changeability of the 
environment). On each trial, the model provides an estimate for each level, before the outcome is seen 
and the estimate updated accordingly. Predictions at each level are represented by a Gaussian 
distribution, described by its mean,̂ߤ௜ and variance, ߪො௜. The variance ߪො௜ represents the uncertainty of the 
estimate at each level. Updates of beliefs at each level occur via prediction errors that propagate 
upwards and are precision-weighted by the ratio of the uncertainty of the level that generated them to the 
uncertainty of the level being updated. The manipulation of perceptual noise (e.g. no, med, high) is 
captured trial-by-trial as a fixed parameter representing the variance of the noise on the inputs.  



 
 

17

For each participant the perceptual model parameters, ߱ଶ  and ߱ଷ,  learning rates, ߙଶ and ߙଷ, and 
response model parameters (ߚ଴,…,ସ) were estimated from the trial wise log RT measures using 
variational Bayes as implemented in the HGF toolbox 
(http://www.translationalneuromodeling.org/tapas/). The ߱’s are the tonic log-volatilities at their 
respective levels, according to the generative model 

ଵݔ
(௧) ~ Bernoulli ൬ݏቀݔଶ

(௧)ቁ൰ , 

 

ଶݔ
(௧) ~ ࣨ ቀݔଶ

(௧ିଵ), expቀݔଷ
(௧) + ߱ଶቁቁ , 

 

ଷݔ
(௧) ~ ࣨቀݔଷ

(௧ିଵ), exp(߱ଷ)ቁ, 

with ݏቀݔଶ
(௧)ቁ ≔ 1 ቀ1 + expቀ−ݔଶ

(௧)ቁቁൗ . This means that they determine the basic step size of the random 

walks in ݔଶ and ݔଷ, without taking into account phasic modulation by higher levels of the hierarchy. The 
learning rate ߙଶ represents, trial-by-trial, the size of the update in ߤଶ (i.e., the mean of the belief on ݔଶ) 
relative to the size of the prediction error ߜଵ, as expressed in terms of the update in predicted outcome 
probabilities ̂ߤଵ: 

ଶߙ
(௧) ≔  

ଵߤ̂
(௧) − ଵߤ̂

(௧ିଵ)

ଵߜ
(௧) , 

where ̂ߤଵ
(௧) ≔ ଶߤቀݏ

(௧ିଵ)ቁ. The learning rate ߙଷ is the equivalent quantity with respect to the size of the 

update in ߤଷ: 

ଷߙ
(௧) ≔  

ଷߤ
(௧) − ଷߤ

(௧ିଵ)

ଶߜ
(௧) . 

Furthermore, ߙଷ is proportional to the precision-weight on the prediction error ߝଷ
(௧): 

ଷߙ
(௧) ∝  

ොଶߨ
(௧)

ଷߨ
(௧). 

Where ߨଷ
(௧) is the posterior precision (inverse variance) at the third level and ߨොଶ

(௧) is the precision (inverse 
variance) of the prediction at the second level. Accordingly  ߝଷ

(௧) , is the precision weighted-prediction 
error at the second level, which serves to update the estimate of log-volatility: 

ଷߝ
(௧): =

ොଶߨ
(௧)

ଷߨ
(௧) ଶߜ 

(௧) 
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More details can be found in the supplementary material to [6]. 

The ߚs are the coefficients of the response model, which describes how beliefs (i.e., the probability 
distributions on ݔ௜ as represented by their sufficient statistics ߤ௜ and ߪ௜) are translated into log-reaction 
times. This is a straightforward linear model: 

log ܴܶ(௧)  ~ ࣨ൫ߚ଴ + ଵߚ ∙ surprise(௧)  + ଶߚ  ∙ unc1(௧)  + ଷߚ  ∙ unc2(௧)  + ସߚ  ∙ volatility(௧),  ,൯ߞ

with the independent variables defined as follows: 

surprise(௧) ≔ ቐ
− logଶቀ̂ߤଵ

(௧)ቁ            if   ݑ(௧) = 1

− logଶቀ1 − ଵߤ̂
(௧)ቁ    if   ݑ(௧) = 0

  

 
unc1(௧) ≔ ොଵߪ

(௧) 
 

unc2(௧) ≔ ଶߤቀݏ
(௧)ቁ ൬1 − ଶߤቀݏ

(௧)ቁ൰ ଶߪ
(௧) 

 

volatility(௧) ≔ ଶߤቀݏ
(௧)ቁ ൬1 − ଶߤቀݏ

(௧)ቁ൰ expቀߤଷ
(௧)ቁ 

 

Here, ݑ(௧) is the outcome; ݑ(௧) = 1 when the high tone cue is followed by a face or the low tone cue is 
followed by a house while ݑ(௧) = 0 in the converse cases. Since ̂ߤଵ

(௧) is the predicted probability of 

(௧)ݑ = 1 (and 1 − ଵߤ̂
(௧) of ݑ(௧) = 0) this means that the first independent variable is the Shannon surprise 

associated with the outcome. Uncertainty at the outcome level (i.e, the first) is the variance ߪොଵ
(௧) =

ଵߤ̂
(௧)ቀ1 − ଵߤ̂

(௧)ቁ of the Bernoulli distribution over predicted outcomes. This is the irreducible uncertainty 

associated with any kind of probabilistic prediction, referred to as risk in the economics literature. 
Uncertainty at the second level is the posterior variance ߪଶ of the belief on ݔଶ, expressed at the outcome 
level (hence the multiplication with the derivative of ݏ taken at the current mean ߤଶ of the belief on ݔଶ; for 
details on this transformation to the first level, see the Supplementary Material to 12. This is informational 
uncertainty, so called because it quantifies the lack of information about the quantity (here ݔଶ) governing 
outcome probabilities. Volatility is the exponential of the phasic log-volatility ߤଷ, also expressed at the 
outcome level.  

The choice of these models was hypothesis-driven. The reason for choosing the HGF as the learning 
model was twofold. First, because it reflects the hierarchical nature of changing environments in that it 
allows for volatility that is itself volatile, it allowed us to test the hypothesis that ASD participants differ 
from NT in the way they deal with a hierarchy of uncertainties and specifically address learning about 
volatility. The response model was chosen on the basis that log-RT’s were approximately Gaussian 
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distributed and that a linear model allowed for the straightforward identification of the effects of all 
hypothesized modulating factors. 

There were several reasons that we chose to fit reaction time over trial-wise errors. First, reaction times 
are a sensitive behavioural response measure which can take a range of values across trials, from fast 
to slow, and empirically have been shown to vary with the uncertainty of participant responses in both 
detection and discrimination experiments 58. Second, reaction times were used previously where 
Bayesian learning models were applied to behavioural tasks very similar to ours, so modelling RT here 
increases comparability across studies24,59. Third, error rates are very low in this study (~3% overall), and 
any logistic model attempting to explain such a small incidence of states coded as 1 (relative to 0) would 
require more trials than we have in this study (increasing as a function of the explanatory variables in the 
model 60).  Fourth, (and most pragmatically) some participants didn’t make any errors at all so modelling 
RT maximises the number of participants included in the analysis. Finally, the group*probability 
interaction for percent errors is not significant in our high and low AQ replication (supplemental results), 
and so in modelling RT we are modelling the most the effect most comparable across both experiments 
in this manuscript. 

Sample Size 

In our NT participants we sought a conceptual replication of Den Ouden et al. 24, albeit with a modified 
design. We calculated a minimum sample size a priori on the basis of the low probability minus high 
probability RT difference that they report (32 ms) and an assumed variance (actual SD not reported) of 
the same. This analysis indicated that we would need a minimum of 14 participants to achieve 95% 
power to detect a similar (α = 0.05; 2-tailed) effect in the NT group. Given that initial effect sizes are often 
inflated 61 and that we sought power to detect a difference between two groups, we doubled this estimate 
and aimed to test ~28 participants in each group with some attrition expected. 

As there is no prior precedent for detecting between-groups differences using this specific task, we 
additionally assessed the required sample size to detect a medium effect size for a between-subjects 
ANOVA with three levels and a between-subjects factor of group. This indicated that a total sample size 
of 48 participants would be necessary to have at least 90% power to detect an F-test effect size of 0.25.  

For the pupil size regression, where it was not possible to calculate power a priori, the sample sizes and 
effect sizes (β’s) reported for this particular analysis are in line with previous studies employing the same 
methods9. Post-hoc power calculations indicate that with 11 ASD participants included in the actual 
analysis, we had 86% power to detect the mean positive β (slope=0.72) that we observed in these 
participants (α = 0.05; 2-tailed). 

Statistics 

Behavioural data 

All statistical analysis of behavioral data were performed in MATLAB (Mathworks, Ltd.) and PASW 
Statistics 22 (SPSS inc./IBM). For the analysis of RT’s, too fast and too slow (<100 or >1000ms) 
responses were excluded and, including missing responses, there was no significant difference between 
the groups in the overall percentage of missing data (1.9% ASD, 2.3% NT, t(47)=0.45, p=0.65). To 
maximize trial numbers per condition we collapsed across face/house trials and, for correct trials only, 
submitted RTs to a mixed ANOVA with within subject factors of expectedness (unexpected(UE), 
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neutral(N) and expected(E)) and stimulus noise (high(H), medium(M) and no (N)), and a between-
subjects factor of group. We also quantified a behavioral measure of surprise, defined as the difference 
in RT between UE and E outcomes based on the ground truth, and compared this measure between the 
groups using independent-samples t-tests. An equivalent analysis was conducted for error rates and log 
transforms of both these measures. % errors were calculated for each condition separately. Data 
distributions were assumed to be normal but this was not formally tested.    Where assumptions of 
heterogeneity of covariance were violated, degrees of freedom were corrected using the Greenhouse–
Geisser approach. 

 

Eye tracking data 

All statistical analyses of eye tracking data were performed in MATLAB (Mathworks, Ltd.) Only trials in 
which 80% or more samples were successfully tracked were included in the analysis. There was no 
significant difference in the mean number of included trials between the groups (mean good trials 
ASD=298; NT=261; t(23)=0.803, P=0.43).  For pupil data blinks were treated with linear interpolation and 
the resulting pupil traces were low-pass filtered and smoothed following the conventions outlined in 62. 
To explore phasic pupil responses for correct trials traces were baseline corrected to the average 
response during the 500 ms preceding the outcome image. Tonic pupil responses were determined as 
the average of the z-scored pupil measurement across all trials. Z-scoring accounts for individual 
differences in baseline pupil size and has been employed previously in the literature 63,64. Mean absolute 
deviation (MAD) from fixation (in degrees of visual angle) across groups and conditions was used to 
assess fixation compliance on each trial 65. 

Regression analyses were conducted to examine the effects of surprise based on the ground truth and 
volatility surprise (ߝଷ:  trial-wise precision-weighted prediction errors) on pupil dilation following outcome 
presentation. A similar approach has previously been employed in recent studies examining the 
relationship between pupil dilation and computational model parameters that vary across trials 9. The 
post-outcome period for each trial was sampled using 370 5ms bins. Regression analyses were 
conducted for each individual time bin, with HGF estimates of precision-weighted prediction errors (ε3) 
and the ‘ground truth’ contrast of unexpected (1) minus expected (-1) included as regressors of interest; 
trial type (0=face, 1=house), fixation compliance (MAD), and RT for each trial were entered as control 
regressors. The resultant timeseries of beta-weights (e.g. multiple regression conducted at every time 
point) provide estimates of the effects of ‘ground truth’ surprise and volatility surprise on pupil dilation 
across all trials. 

At the group level we then conducted t-tests for the positive or negative effect of the regressors of 
interest, and the independent-samples difference between groups, corrected for multiple comparisons 
using a cluster-based permutation approach at 2000 permutations (FWE alpha=0.05, 2-tailed) 66. This 
allowed us to assess when our surprise metrics were significantly encoded in the pupil timeseries. This 
approach protects against false positives across correlated measurements (i.e. maximizes temporal 
sensitivity). 

Learning rate data 

To test the hypothesis that individuals with ASD have problems with flexibly updating their rate of 
learning (precision weighting) in response to environmental change we examined the change (Δ) in ߙଶ 
(probability) and ߙଷ (environment) when switching from stable to volatile periods of the task. For this we 
used the dynamic α trajectories estimated on the basis of all trials, but specifically interrogated a period 
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of 72 trials (highlighted in green on Figure 1) in which the probabilistic association between tones and 
outcomes remained fixed, followed by a period of 72 trials (highlighted in violet on Figure 1) in which the 
outcome probabilities switched three times. We compared the change in average ߙଶ and ߙଷ between 
these two periods, across the groups. Previous studies have examined how learning about how reward 
probability changes in response to volatility in typical volunteers 8,10 and also in aversive environments 9. 
In these studies the participant’s responses are fit with a simple delta learning rule, (cf. Rescorla-Wagner 
67) separately in volatile and stable task phases which annuls the elegance of the generative model 
approach by imposing knowledge of the task structure. In contrast, we fit subject RTs across all 456 
trials using the HGF and the two learning rates (ߙଶ & ߙଷ) dynamically vary as a function of each 
participant’s inferred beliefs about cue-outcome informativeness and changes in these associations over 
time. While simpler models approximate participant’s outcome probability estimates, assuming they are 
an ‘ideal’ Bayesian observer, the HGF addresses what kind of Bayesian observer each participant 
actually is, making is a more sensitive means of capturing individual differences in learning about 
uncertainty (see ‘HGF model validation’ section below and Figure 3C (inset) for comparisons between 
the HGF and simpler reinforcement learning models). 

Bayesian Model Selection 

To disambiguate alternative explanations (models) for the participants’ behaviour, we used Bayesian 
model selection (BMS). BMS evaluates the relative plausibility of competing models in terms of their log-
evidences which quantifies the trade-off between accuracy (fit) and complexity of a model. Here, we 
used a recently updated random effects BMS method to account for potential interindividual variability in 
our sample quantifying the protected posterior probabilities of four competing models 68. Protected 
exceedance probabilities quantify the probability that any one model is more frequent than the others 
and also accounts for the fact that the observed variability in (log-) model evidences could be due to 
chance 68. 

Regression analyses 

To examine the relationship between the primary behavioural measure of surprise (UE-E RT) and autism 
symptom severity we conducted a multiple linear regression with ADOS-2 scores for communication and 
reciprocal social interaction, and IQ as predictors. A secondary regression model was also conducted in 
which an sensory sensitivity scores (as measured by the adult sensory questionnaire 69) was also 
included as a predictor. Sensory scores were only available for 21/24 ASD participants, therefore this 
analysis was conducted on a reduced sample size. In response to a reviewer request we also conducted 
a third regression to predict UE-E RT that included baseline RT as an additional predictor. As both 
communication scores (r=-.421, P=0.04) and mean RT (r=-.341, P=0.017) correlate with UE-E RT 
difference in the ASD participants, we created centered versions of these variables and their interaction 
effect in the regression model.  

To assess the validity of the HGF model parameters in predicting group status (ASD=1, NT=0) we 
conducted binary logistic regression (method=enter) using SPSS. The predictor variables in this analysis 
were the eight free parameters estimated by the HGF, namely the five response model betas (ߚ଴…ସ) plus 
decision noise (ߞ) and the two omega parameters from the perceptual model(߱ଶ, ߱ଷ). Additionally, we 
recreated this analysis in R and used the cv.glm function in the boot package to perform leave-one out 
cross validation. 

Please see the Life Sciences Reporting Summary for more details about the methods in this manuscript.  
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Figure Legends 

Figure 1: Task structure - Schematic of the task showing the volatile environmental structure (top) e.g. 
the probability of seeing a house (given the preceding high or low tone) across trials. Green area shows a 
“stable” period of 72 trials when the probabilities remained fixed and the violet area shows a “volatile” 
period of 72 trials where the outcome probabilities switched three times. A single trial is also seen (bottom) 
showing example stimuli. 

Figure 2: Behavioural results based on the ground truth – (a, b) reduced modulation of reaction time 
and (c, d) error rates as a function of expectation in ASD adults (n=24) relative to NT (n=25). Dotted lines 
show linear fits. ASD, autism spectrum disorder. NT, neurotypical. RT, reaction time. UE, unexpected. N, 
non-predictive. E, expected. Data points represent individual participants, red line shows the mean, 
shaded regions and error bars show 95% confidence intervals and 1 standard deviation of the mean for 
each condition and group. au, arbitrary units. Star indicates significance at P<0.05 

Figure 3:  Relationship between behavioural surprise and symptoms - The magnitude of the reaction 
unexpected (UE) minus expected (E) reaction time (RT) effect is predicted by communication symptoms in 
the ASD group (Pearson correlation: r=-0.421, P=0.04) Data points show individual participants, n=24. 
ADOS, autism diagnostic observation schedule. 

Figure 4: Computational model details and results - (a) Schematic depiction of the 3-level HGF. The 
perceptual model comprises three hierarchical states (ݔଵ, ݔଶ, and ݔଷ). Participant specific free parameters 
(ovals) are estimated from individual log RT data - red parameters relate to the perceptual model whereas 
black parameters relate to the response model.  Diamonds represent quantities that change over time 
(trials); hexagons, like diamonds, represent quantities that change in time but that additionally depend on 
their previous state in time in a Markovian fashion. See main text for more details. (b) Binary logistic 
regression – beta weights for each of the HGF free parameters showing the contribution of each to 
predicting group status (ASD, NT) across all participants (n=49). Significant predictors (P<0.05) are 
denoted with star. Error bars show SEM for the beta estimates. All parameters were included in the same 
model but ߱′ݏ are plotted on a separate scale (in red). Group differences in the model parameters at the 
level of individual subjects can be seen in Figure S8. (c) Group differences in learning rate update (i.e. 
change from stable to volatile periods of the task). ASD participants (n=24) update ߙଶ less than NT 
participants (n=25), whereas they update ߙଷ  more than NT participants. Data points represent individual 
participants, red line shows the mean, shaded regions and error bars show 95% confidence intervals and 
1 standard deviation of the mean.  ASD, autism spectrum disorder. NT, neurotypical  

Figure 5:  Pupillometry results – (a) solid yellow line shows cluster of time points where the UE-E group 
contrast was significantly positive in the NT participants; black solid line shows where NT’s were 
significantly greater than ASD (2000 permutations; FWE alpha=0.05, 2-tailed). (b) Blue solid line indicates 
where ASD participants showed a significant pupil response to precision weighted prediction errors (ߝଷ), 
that is greater than zero and black solid line shows where this pupil response was significantly different 
from NT’s (2000 permutations; FWE alpha=0.05, 2-tailed).  NT, n=14, ASD, n=11. X-axis represents time 
since outcome. ASD, autism spectrum disorder. NT, neurotypical. UE, unexpected. N. E, expected. au, 
arbitrary units 

 

 

 













 
Supplementary Figure 1 

Reaction time as a function of stimulus noise 

Collapsing across the three levels of expectedness, the non-significant stimulus noise*group interaction indicates that the 
linear relationship between noise and RT was equivalent in both groups (ASD, n=24; NT, n=25). See main text for 
supporting statistics. ASD, autism spectrum disorder. NT, neurotypical. RT, reaction time. Data points represent individual 
participants, red lines indicate the mean, shaded regions and error bars show 95% confidence intervals and 1 standard 
deviation of the mean for each condition and group. H=high noise, M=medium noise and N=no noise 



 
Supplementary Figure 2 

Inverse Efficiency Scores   

To ensure that the attenuated UE-E RT difference in the ASD participants was robust to correction accuracy, we 
calculated inverse efficiency scores (IES) as RT/(1-accuracy) for each condition.  As for the analysis of RT and error rates 
alone, see main manuscript, there was a significant main effect of expectedness (F(1.8,83.11)=34.24, P<0.001) and noise 
(F(2,94)=6.87, P=0.002) and again only the expectedness*group interaction was significant in this analysis (F(2,94)=9.98, 
P<0.001). The noise*group (F(2,94)=0.24, P=0.79) and expectedness*noise*group interactions were not significant 
(F(4,188)=2.2, P=0.07). Thus, our primary reaction time finding is robust to correction condition-specific accuracy (ASD, 
n=24; NT, n=25). ASD, autism spectrum disorder. NT, neurotypical. RT, reaction time. Data points represent individual 
participants, shaded regions and error bars show 95% confidence intervals and 1 standard deviation of the mean for each 
condition and group. E=expected, N=neutral and UE=unexpected.  
 



 
Supplementary Figure 3 

Caution of responding control analysis 

To exclude the possibility that our group difference in UE-E RT (i.e. reduced behavioural surprise in ASD) is explainable 
by increased response caution in the ASD participants we compared the 12 fastest responders from the ASD group 
(mean RT 418 ms) against the 12 slowest responders in the NT group (mean RT 540 ms) on the primary UE-E RT 
difference measure. Here the 12 fastest overall responding ASD participants are those who are most impulsive/least 
cautious in general responding (i.e. have the lowest response thresholds) whereas the 12 slowest overall NTs are the 
least impulsive/most cautious (i.e. have the highest response thresholds). Indeed, mean reaction time is significantly 
faster in this subgroup of ASD participants than in the subgroup of NTs (t(22)=3.38, P=0.03).  Nonetheless, independent-
samples t-tests revealed that the ASD participants (in this subset of fast general responders) still show significantly 
diminished behavioural surprise (t(22)=2.39, P=0.026) relative to NTs (in this subset of slow responders). ASD, autism 
spectrum disorder. NT, neurotypical. RT, reaction time. Data points represent individual participants, red lines indicate the 
mean, shaded regions and error bars show 95% confidence intervals and 1 standard deviation of the mean. Star indicates 
significance at P<0.05.  

 



 
Supplementary Figure 4 

Replication of behavioural result in a non-clinical sample 



(a) The same task conducted in a sample of non-clinical volunteers characterised according to high or low autistic traits 
(AQ) replicates the interaction between expectedness (E=expected, N=neutral, UE=unexpected) and autistic tendency 
(high AQ, n=26; low AQ, n=31). There was a significant main effect of expectedness (F(2,110)=69.46, P<0.001) and, 
crucially, a significant expectedness*AQ group interaction (F(2,110)=13.29, P<0.001); suggesting that participants with 
high AQ scores show a reduced modulation of RT as a function of expectedness (e.g. reduced slope), relative to 
participants with low AQ scores. There was a main effect of noise (F(2,110)=16.96, P<0.001), and noise*group interaction 
(F(2,110)=5.07, P=0.008). No other linear interactions or main effects were significant (P’s>0.2).  (b) An independent 
samples t-test demonstrated that behavioural surprise was significantly attenuated in the high AQ group (t(55)=4.32, 
P<0.001). (c, d) Error rates were subject to the same analysis as above. There was a significant main effect of 
expectedness (F(2,110)=19.89, P<0.001) but the expectedness*AQ group interaction did not reach significance 
(F(2,110)=.85, P=0.42); suggesting that the main effect of expectedness on accuracy did not vary as a function of autistic 
traits. The main effect of noise narrowly missed significance (F(2,110)=2.36, p=0.09), but there was no noise*group 
interaction (F(2,110)=1.67, P=0.1). One low AQ participant showed relatively high % errors in the UE condition, but their 
overall errors were within reasonable limits and results are not changed if they are excluded. Compare with Figure 2a-d in 
the main text. Data points represent individual participants, shaded regions and error bars show 95% confidence intervals 
and 1 standard deviation of the mean. Star indicates significance at P<0.05 



 

Supplementary Figure 5 

Responses to face and house stimuli 

To confirm that there were no group differences in RTs or error rates in responding to the different outcome image types 
(faces, houses) we examined these responses in two separate repeated-measures ANOVAs with group (ASD, n=24; NT, 
n=25) as a between participants factor in each case. For reaction times there was a significant main effect of stimulus 
type, reflecting the fact that participants were in general slower to respond to house images over face images 
(F(1,47)=16.52, P<0.001). Additionally there was a main effect of group indicating that the ASD participants were 
generally slower to respond than the NT participants (F(1,47)=5.54, P=0.023) but crucially there was no interaction 
between stimulus type and group (F(1,47)=1.23, P=0.2). For error rates, participants generally made more errors on 
house trials (main effect of stimulus type: F(1,47)=13.37, P=0.001), but there was no group difference in errors overall 
(non-significant main effect of group: F(1,47)=0.8, P=0.37) and there was no stimulus type x group interaction 
(F(1,47)=0.02, P=0.9). ASD, autism spectrum disorder. NT, neurotypical. Data points represent individual participants, red 
lines indicate the mean, shaded regions and error bars show 95% confidence intervals and 1 standard deviation of the 
mean.  



 

Supplementary Figure 6 

Results of Bayesian model selection 

The protected exceedance probability from the Bayesian Model Selection (BMS) of log model evidences
shows that the 3-level HGF (HGF-3) describes subject’s behaviour better than alternative learning models 
(RW; Rescorla Wagner, SK1; Sutton K1, HGF-2; 2-level Hierarchical Gaussian Filter). See main text for 
details.  



 

Supplementary Figure 7 

Model simulated reaction times  

As an additional validation of the HGF model performance we simulated trial-wise RTs using the fitted perceptual and 
response model parameters from each of our 24 ASD and 25 NT participants. These simulations can recover the group 
differences in the main behavioural effect of expectation (compare to Figure 2a&b in the main manuscript). Statistical 
analysis of these model simulated RTs indicates a significant expectedness * group interaction (F(1,94)=4.44, P=0.014), 
and the simulated UE-E RT difference was significantly lower when simulated from the ASD parameters, relative to the 
NT parameters(t(47)=2.57, P=0.013). ASD, autism spectrum disorder. NT, neurotypical. UE, unexpected. N, non-
predictive. E, expected. Data points represent the mean of 32 simulations for each individual participant, shaded regions 
and error bars show 95% confidence intervals and 1 standard deviation of the group mean, red lines indicate the group 
mean. Star indicates significance at P<0.05 



 
Supplementary Figure 8 

Average HGF parameter estimates across groups 

Individual participant parameter estimates for each of the free parameters estimated from the HGF, for both the ASD 
(n=24) and NT (n=25) groups. A statistically significant MANOVA effect indicated that the groups would differ on one or 
more of the estimated model parameters, Pillai’s’ Trace = .43, F(8, 40) = 3.81, P=0.002). Independent samples t-tests 
indicate a significant group difference in baseline log RT (β0; t(47) = 2.33, P=0.024), phasic volatility (β4; t(47) = 2.15, 
P=0.037) and tonic volatility at the third level (ω3; t(47)=2.10, P=0.045). Outcome surprise (β1; t(47) = -1.73, P=0.09) and 
outcome uncertainty (β2; t(47) = -1.87, P=0.06) narrowly missed significance. There were no group differences in 
probability uncertainty (β3; t(47) = -.51, P=0.61), decision noise (ζ; t(47) = -.55, P=0.59) or tonic volatility at the second 
level (ω2; -.21, P=0.84). See the main text and Figure 4b for a multiple linear regression analysis predicting group status 
from these same parameters. ASD, autism spectrum disorder. NT, neurotypical. Data points represent individual 
participants, shaded regions and error bars show 95% confidence intervals and 1 standard deviation of the mean, red 
lines indicate the group mean. Star indicates significance at P<0.05 



 

Supplementary Figure 9 

Pupil size and dynamic learning rates 

The analysis reported in the main text indicates a sustained positive relationship between pupil size and precision-
weighted prediction errors (ε3) in the ASD participants (Figure 5b). The precision weight (on the prediction error) is 
proportional to the update of environmental volatility and is formally related to dynamic trial-wise learning rate (α3) This 
additional analysis indicates that the learning rates themselves (α2 and α3) do not have a significant influence on pupil 
dilation in either group. As for the results reported in the main text (see Online Methods) this regression analysis included, 
trial type (face, house), fixation compliance, mean RT and UE-E ground truth contrasts, as control regressors. Shaded 
regions represent standard error of the mean. 

 



 

Supplementary Figure 10 

Pupil size and precision-weighted PE’s in stable and volatile task periods 

The pupil regression reported in the main text (Figure 5b) examined the relationship between precision-weighted 
prediction errors ( PE’s) and pupil size across all trials in the experiment. A strength of this analysis is that it represents 
the pupil response when each participant was actually surprised, and does not impose knowledge of the task structure. 
Nonetheless, to examine the relationship between precision-weighted PE and pupil size in the volatile and stable periods 
of the task we conducted the same regression analysis (see main text and online methods) but separately for the 72 
‘stable’ trials and ‘72’ volatile trials (see Figure 1) towards the end of the experiment. (left) In the stable period there is no 
relationship between precision-weighted prediction errors and pupil size in either group or no differences between the 
groups. (right) The relationship between precision-weighted PE’s and pupil size in the ASD participants (blue) is apparent 
1000ms after the outcome appears in the volatile period of the task. Blue solid line shows where the ASD participants 
differ from zero and black dotted line shows where the ASD participants differed from the NT participants. Shaded region 
represents standard error of the mean.  Consistent with the analysis of learning rates in the volatile and stable task 
periods (Figure 3c), this suggests that the ASD participants tend to show aberrant noradrenergic surprise about volatility, 
in response to volatility (e.g. over-updating learning about volatility and over-engaging noradrenergic responses to 
surprise about volatility, in the face of environmental volatility). However, we caution against the low trial numbers 
included in this analysis (72, vs a maximum of 456 in the analysis reported in the main text) and the fact that one control 
participant did not have enough good trials in the volatile period to be included in this analysis, so participant numbers are 
also reduced (ASD=11, NT=13). 
 



 
 
 

 
Supplementary Figure 11 

Fixation compliance across trial types 

Mean absolute deviation (MAD) from fixation (in degrees of visual angle) across groups and conditions. Generally fixation 
compliance was very good, <1° of visual angle in both the vertical and horizontal axes. Stimulus duration was purposefully 
short to eliminate saccades. Crucially there is no systematic difference in fixation compliance that would impact on the 
pupillometry results, either across groups or conditions. One participant showed systematically larger deviation from 
fixation in the horizontal plane, though fixation was still good (below 2° visual angle) and not beyond the physical limits of 
the stimulus being presented. Importantly, trial-wise absolute deviation from fixation was included as a regressor of no 
interest in all pupillometry analyses reported in the main text and supplemental results, and thus our pupillometry 
analyses are corrected for eye movements. ASD, autism spectrum disorder. NT, neurotypical. UE, unexpected. N, non-
predictive. E, expected. Data points represent individual participants, shaded regions and error bars show 95% 
confidence intervals and 1 standard deviation of the mean, red lines indicate the group mean. 



 
Supplementary Figure 12 

Pupil size and reaction time 

The relationship between precision-weighted prediction errors and pupil size reported in the main text (Figure 5b), links 
pupil size to behaviour indirectly via the HGF model, since the precision-weighted prediction errors are estimated for each 
participant on the basis of their trial-wise RT. However, we conducted an additional regression analysis to investigate the 
relationship between basic behaviour (trial-wise RT) and pupil size directly. As RT increases, post-outcome pupil size 
shows an initial decrease from baseline followed by an increase towards the end of the trial. Crucially, there are no time 
points in which the relationship between RT and pupil size is significantly different between the ASD and NT groups. 
Notably, trial-wise RT is included as a control regressor in the results reported in the main text (Figure 5), and in the 
analyses reported above (Figure S9 & S10), so where there is a significant relationship between pupil size and the trial-
wise model parameters this exists over and above any effect of RT on pupil size. Blue and yellow bars indicates where 
the relationship between RT and pupil size significantly differed from zero in the ASD and NT participants, respectively. 
As for the results reported in the main text (see online methods) this regression analysis included, trial type (face, house), 
fixation compliance and UE-E ground truth contrasts, as control regressors. Shaded region represents standard error of 
the mean. 
 



 
Supplementary Figure 13 

Raw pupil traces 

(a) Raw mean pupil dilation in ASD participants (blue) and NT participants (yellow) separated into trials in which the 
outcome was unexpected (UE: dotted line) and trials where the outcome was expected (E: solid line) (a) The UE-E 
difference (i.e. ground truth ‘surprise’) in the ASD participants (blue) and NT participants (yellow). Equivalent to the UE-E 
contrast from the regression model presented in Figure 5a. Shaded region shows standard error of the mean. 
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