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SUMMARY

The brain has an extraordinary ability to create an
internal spatial map of the external world [1]. This
map-like representation of environmental surround-
ings is encoded through specific types of neurons,
located within the hippocampus and entorhinal
cortex, which exhibit spatially tuned firing patterns
[2, 3]. In addition to encoding space, these neurons
are believed to be related to contextual information
and memory [4–7]. One class of such cells is the
grid cells, which are locatedwithin the entorhinal cor-
tex, presubiculum, and parasubiculum [3, 8]. Grid cell
firing forms a hexagonal array of firing fields, a
pattern that is largely thought to reflect the operation
of intrinsic self-motion-related computations [9–12].
If this is the case, then fields should be relatively
uniform in size, number of spikes, and peak firing
rate. However, it has been suggested that this is
not in fact the case [3, 13]. The possibility exists
that local spatial information also influences grid
cells, which—if true—would greatly change the way
in which grid cells are thought to contribute to place
coding. Accordingly, we asked how discriminable
the individual fields of a given grid cell are by looking
at the distribution of field firing rates and reproduc-
ibility of this distribution across trials. Grid fields
were less uniform in intensity than expected, and
the pattern of strong and weak fields was spatially
stable and recurred across trials. The distribution
remained unchanged even after arena rescaling,
but not after remapping. This suggests that addi-
tional local information is being overlaid onto the
global hexagonal pattern of grid cells.

RESULTS AND DISCUSSION

Grid cells have multiple firing fields, organized in a hexagonal

pattern spanning the entire environment [3]. These fields are

equidistanced and similar in size and are generally considered

to be uniform in amplitude [14]. Here we set out to test to what

extent the fields are indeed uniform. We looked at several

previous studies. First, a set of grid cells compiled fromBonnevie

et al. [15], Derdikman et al. [16], and Sargolini et al. [17] were
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analyzed. These datasets contained entorhinal grid cell record-

ings of rats foraging in open field arenas, with the position of

the animal and the firing activity recorded simultaneously (see

STAR Methods). Since large variability in firing rates may arise

from conjunctive grid3 HD cells, which, in addition to exhibiting

typical grid firing patterns, are also tuned to a given head direc-

tion [17], we eliminated such cells from the study. Since a portion

of the cells in the dataset were recorded with only one LED posi-

tioned on the head of the animal, and thus head direction could

not be determined, we used moving direction as an indicator of

head direction. The moving-direction Rayleigh scores were

strongly correlated with the head-direction Rayleigh scores for

those cells in which we had the head-direction measure

(r = 0.96; Figure S1A), providing us with a means to determine

the head-direction conjunctivity of the cell with only one posi-

tioning LED present. Only cells with a low moving-direction

Rayleigh score (<0.15) and a high enough gridness score (>0.3)

recorded in noncircular arenas were included. In total, out of

the 1,015 cells from the original datasets, 359 remained for

analysis.

We found a larger than expected variability between field firing

rates derived from smoothed grid cell rate maps (Figure 1A; note

that unless otherwise stated, we always used the value of the

peak firing rate in the field). The majority of our grid cells

possessed a coefficient of variation (CV; SD divided by mean)

larger than 0.5 (58.2% of cells, N = 209/359; mean value of

0.579 ± 0.013; Figure 1B; we stress here that the CV is used

here to measure variability of individual firing field rates).

In order to determine the probability of this occurring by

chance, we repeated the analysis using simulated spike trains

on the same rat trajectories. These spike trains were produced

by means of contrived rate maps, which were used as probabil-

ities of the cell discharging at a given location (see STAR

Methods). The grid nodes used to produce these contrived

rate maps were all equal in rate. The field locations remained in

the same place as in the original cells, and the firing rate of

individual fields was the same as that of the mean firing rate of

the original cells (Figures 1C and 1D). The mean CV derived

from the original data was larger than that derived from the simu-

lated data for all 1,000 simulated runs (real mean = 0.579;median

of simulated means = 0.319; p < 0.001, estimated from Monte

Carlo simulated data distribution; Figure 1E).

We checked whether the running speed of the animal, which

had previously been found to affect grid cell firing rates

[17, 18], was the cause of the variability (if there were stereo-

typies in the way the rats explored the arena). We found no rela-

tion between the CV of the fields and the correlation of their rates
gust 7, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 2337
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Figure 1. Grid Cells Exhibit Large Inter-field

Firing Variability

(A) Examples of (left to right) spike plot, rate map,

zone map, autocorrelation map, and sorted field

peak firing rate plot. Rate maps were generated by

taking the number of spikes per second for each bin

divided by dwell time in the bin. Zone maps were

generated as a simplified version of the rate map,

with only the fields’ peak rate plotted, andwere used

for many of the analyses in the study. Sorted field

peak firing rate plot displays the firing rates of all of

the fields, plotted in increasing order. It was used to

visualize the distribution of the firing variability. The

coefficient of variation (CV) is indicated above.

(B) Population results of all of theCVs, ameasure of

variability, used here to measure variability of field

rates.

(C and D) Examples of the rate maps of simulated

spike trains. The left column is original rate map

that was used to generate the rate map of equal

rates (middle column). The right column is the rate

map of a simulated spike train generated from the

equal-rate rate map. The top example (C) was

recorded in a 150 cm square arena, and the bottom

example (D) in a 100 cm square arena. Values

above rate maps denote maximum firing rates.

(E) The distribution of mean CV from the simulated

dataset. The real mean value is represented with a

gray line (p < 0.002 from Monte Carlo, in compar-

ison to simulated distribution). This large variability

reveals that the firing rates among individual grid

cells are not as homogeneous as generally

assumed.

See also Figures S1–S4.
to the mean speed of passage through them, suggesting that

speed could not explain the variability (Figure S1B). We note

that we found a negative relationship between the CV and the

gridness of the cells, which is to be expected because a large

difference between the fields can disrupt gridness to some

extent (Figures S1C and S1H; r = �0.217; p < 0.0001).

We further checked whether overdispersion between individ-

ual passes through a given field (i.e., larger variability than

expected by a simple Poisson spiking model) might account

for the variability seen between the different fields [19]. To check

this, we shuffled around the firing rate of each individual pass of

the rat within the fields. If unreliability of firing was the cause

of the variability as opposed to a change in the mean firing

rate, the variability would remain high after shuffling. We found

that this was not the case, with the CV being much higher in

the real data compared to the shuffled data (p < 0.001 using

the shuffling measure; Figure S4A). Therefore, overdispersion

by itself was not able to account for the large variability between

fields. In addition, temporal non-stationarity could not explain

the spatial variability or stability in between sessions (Figures

S4B and S4C). On the contrary—surprisingly, the stability of

the field patterns seemed to be retained despite temporal

non-stationarity.

We further wanted to assess how reproducible this firing

variation was among the grid fields. We examined whether indi-

vidual fields, specified by their spatial location, retained stable

relative firing rates throughout single sessions and across arena

changes. To observe this, we divided the single sessions in two
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and compared the firing rates of individual fields from the first

half of the session with those of the corresponding fields in the

second half. Corresponding fields were determined by over-

laying the entire session field centers over the half sessions’ firing

fields (see STAR Methods). We found examples of large correla-

tion coefficients among the cells in the dataset (mean r value of

0.49 ± 0.02; Figure 2A shows typical examples; population

results are discussed later in Figure 3).

To examine whether this result held true across sessions, we

used data from Barry et al. [20] and Marozzi et al. [21]. In the

Barry et al. dataset, grid cells were recorded in rescaled envi-

ronments after the animal had been familiarized in a specific

arena. The different arena configurations comprised a vertical

south-north rectangular box, a horizontal west-east rectangular

box, a larger square box, and a smaller square box, with most

sessions usually starting with the larger square or vertical rect-

angle box. Each session consisted of four arena transforma-

tions, with the last arena matching the first [20]. The Marozzi

dataset consisted of recordings of grid cells in five arenas of

different contexts, alternating between different combinations

of sensory cues, with either white or black colored walls and

either a vanilla or lemon scent. Two of the five alternating arenas

were recorded in the same context in order to confirm cell sta-

bility. For our analysis, we took the first and last sessions of the

Barry et al. dataset and the same-context sessions of the Mar-

ozzi et al. dataset to estimate to what extent the inter-field firing

rate stability persisted across different sessions in the same

arena. Additionally, cells were only used if at least one of the
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Figure 2. Examples of Firing Profile Remain-

ing Stable Within and Across Sessions

(A) Examples showing rate maps of sessions

divided in half. A scatterplot of the peak firing rate

between the fields is shown at the rightmost col-

umn, with the r value displayed in the plots.

(B) Rate map and peak field firing rate scatter-

plots of first arena compared to same-context

arena.

(C) Rate map and peak field firing rate scatterplots

of first arena compared to rescaled arena.

This exposes that the differences in firing rates

between grid fields remain stable across time.
arena pairs passed the criterion of a high gridness score (>0.3)

and a low moving-direction Rayleigh score (<0.15), in order to

ensure that it was a pure grid cell and was not tuned to head

direction. In addition, we only took session pairs that had high

2D correlations between the locations of their firing fields
Current B
(above 0.3, although we tried 0.2 and

0.4 without noticeable effects on stabil-

ity), irrespective of firing rate of the fields:

these were generated by simplifying

the rate maps to include just the nodes

of the grid pattern, which were then all

equalized to 1, denoted from here on as

zero-one zone maps (see STAR Methods

and Figure S2). This was done to ensure

that the cell’s grid pattern did not realign

across same context sessions. Out of

the total 144 cells (N = 69 from Barry

et al. and N = 75 from Marozzi et al.), 47

cells passed these criteria and remained

in the analysis (N = 17 and N = 30,

respectively). Looking at the correlation

coefficients of the firing rates of the first

arena of the pair with the corresponding

rates in the second same context arena,

we also found examples of large r values

(mean of 0.66 ± 0.05; Figure 2B; pop-

ulation results will be discussed later in

Figure 3).

Additionally, we wanted to observe

what happened to the inter-field firing sta-

bility when there was a change in the envi-

ronment. Although the single sessions and

the same-context sessions retained firing

patterns in static environments, we were

first interested in investigating how the

stability would be affected when the arena

rescaled in size. We used the Barry et al.

dataset to check this. The original study

found that in most cases, the grid tended

to stretch or shrink with the resizing of

the arena on average to about 80% of

the size change. In addition to the high

gridness score and low moving-direction

Rayleigh score criterion, we additionally

only accepted arena pairs in which the
number of fields did not exceed a 30% difference between the

two arenas. This was necessary to enable a clear matching

of a corresponding field between the two environments, given

the repeating grid pattern. Sixty-one arena pairs passed

these criteria. We paired the fields by stretching the smaller
iology 27, 2337–2343, August 7, 2017 2339
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D Figure 3. Population Results of Inter-field

Firing Stability

(A–C) Distributions of shuffled correlation co-

efficients between peak field firing rates of (A) split

sessions compared to real value, (B) peak field firing

rates of same-context sessions compared to real

value, and (C) peak field firing rates of rescaling

sessions compared to real value (p < 0.0001 for all,

as derived from shuffling measures).

(D–F) Distributions of simulated correlation co-

efficients between firing rates of (D) split sessions

compared to real value, (E) peak field firing rates

of same-context sessions compared to real value,

and (F) peak field firing rates of rescaling sessions

compared to real value (p < 0.001 for all, as derived

from simulation measures).

See also Figure S4.
dimensions to the size of the larger dimensions, in both the x and

the y directions; the fields of the second arena pair that overlap-

ped with the center nodes of the fields of the first arena pair were

paired together. The correlation coefficients between rescaling

arena pairs, as with the static environments, yielded examples

of high values (mean r = 0.42 ± 0.07; Figure 2C). Overall, our

analysis suggests there is a pattern that is retained between

different environmental variations (Figures 2A–2C).

To determine the statistical significance of this finding, we

compared the results to the distribution of a shuffling procedure

in which the firing rates were shuffled between the different fields

10,000 times.Lookingat thefirst half of thesessionversus thesec-

ondhalf, the real datashoweda largermeancorrelationcoefficient

between the two halves than all 10,000 means generated from

shuffled data (real mean = 0.49; median of shuffled data means =

0.00; p < 0.0001, estimated from shuffled population distribution;

Figure3A; also,meanslope=0.513,which is higher than500 shuf-

fles, and mean intercept = 4.63, which is lower than 500 shuffles).

The same-context arena pairs also yielded a larger mean correla-

tion value compared to all 10,000 means generated from shuffled

data (real mean = 0.66; median of shuffled data means = 0.00; p <

0.0001, estimated from shuffled population distribution; Fig-

ure 3B), as did the rescaling arena pairs (real mean = 0.42; median

of shuffled data means = 0.00; p < 0.0001, estimated from the

shuffled population distribution; Figure 3C).

We also compared the real results to the distribution of Monte

Carlo simulation results, in which spike trains were simulated
2340 Current Biology 27, 2337–2343, August 7, 2017
using the same rat trajectories, but

assuming equal rates for all fields (see

STAR Methods). Simulations of split ses-

sion arenas yielded all lower means than

the real value (real mean = 0.49; median

of simulation-derived mean = 0.23, p <

0.001, estimated from Monte Carlo simu-

lated distribution). The same was true

for the same-context arena pairs (real

mean = 0.66; median of simulation-

derived mean = 0.03, p < 0.001 estimated

from Monte Carlo simulated distribution),

and rescaling arena pairs (real mean =

0.42; median of simulation-derived
mean = 0.09, p < 0.001, estimated from Monte Carlo simulated

distribution). This reveals that the inter-field variability is stable

across sessions and that fields tend to retain a similar relative

peak firing rate profile across time.

Previous studies found that the Fourier transformation of grid

cells exhibits variability within the components that make up

the grid firing pattern, which were concluded to lead to band-

type firing within the firing pattern [22]. Using the grid compo-

nents of the Fourier transformation, we reconstructed the rate

maps, which were then used to calculate the CV. The CVs of

the original data were much larger than those of the recon-

structed data (Figure S3). Thus, the large CVs could not be

explained by a non-uniformity of the Fourier componentsmaking

up the grid [22] (Figure S3; see STAR Methods).

To look at whether this firing stability persists in different-

context-induced grid remapping, we examined 234 arena pairs

from the Marozzi et al. dataset, in which, as mentioned above,

grid cells were recorded in different sensory context arenas by

changing the color of the compartments (white or black), the

scent of the arena (vanilla or lemon), or both. These changes

are known to cause place cells to remap and thus might reflect

a different encoding of local space. The changes resulted in

grid translation, but not rotation. We separated the data into

two categories, remapping (grid translated) versus non-remap-

ping (grid not translated) patterns, and compared firing profiles.

Remapping was determined by only looking at the location of the

firing fields without taking peak firing rate into account by using
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Figure 4. Firing Stability Is Lost with Grid

Pattern Realignment

(A) Rate map comparisons between split sessions,

for cases with low and high grid overlap scores

versus high and low firing stability.

(B) Mean correlation coefficient between firing

rates of corresponding fields in sessions ex-

hibiting remapping compared to sessions exhibiting

no remapping (non-remapping mean r = 0.63 ±

0.04, remapping mean r = 0.27 ± 0.04).

(C) Plot of binned data showing mean correlation

coefficient compared to the cross correlation

gridness score of the zero-one zone maps

(a measurement of grid realignment, irrespective of

firing rates). The trend shows a positive correlation

(r = 0.43, p < 0.001), indicating a larger correlation

coefficient between firing rates with larger grid

realignment. In short, the more stable the grid

pattern, the more stable the firing rates among the

fields across arena changes. Error bars indicate

the SEM.

(D) Histogram of correlation coefficients between

firing rates across non-remapping arenas. Correla-

tion coefficients are seen to be skewed toward 1.

(E) Histogram of correlation coefficients between

firing rates across remapping arenas. Correlation

coefficients appear to be more uniform.
the grid overlap score (Figure 4A). (Remapping pairs had an over-

lap score >0.3. We tried also 0.2 and 0.4 without noticeable

differences.) Since grid translation would result in less overlap

among the fields, we determined which fields corresponded to

the previous arena fields by finding the minimum distances

between their positions in both arenas, as opposed to overlap-

ping the indices on top of each other, as done previously. We

then looked at the correlation coefficients of the peak firing

rates, finding that with no remapping, the rates remained static,

but that the stability collapsed under grid remapping condi-

tions (non-remapping mean r = 0.63 ± 0.04, remapping mean

r = 0.27 ± 0.04; Figure 4B). Thus, conditions known to reorganize

place cell encoding also altered the grid field firing rate spatial

profile.

Additionally, the higher the grid overlap score, determined by

the cross correlation gridness score of the zero-one zone-map

pairs (see STAR Methods and Figure S2), the higher the mean
Current B
correlation coefficient between the rates

of corresponding fields tended to be (Fig-

ure 4C). Non-remapping arena pairs ex-

hibited many more correlation coefficients

around 1, revealing a higher propensity

to retain firing stability when compared

to the remapping condition (Wilcoxon

rank-sum test, p value < 0.0001; Figures

4D and 4E). As a note of caution, we

point out that it could have been that a

different alignment of fields between the

two remapped environments may have

resulted in a better correspondence be-

tween field rates than we have found.

Our findings are thus threefold: (1) grid
cells possess larger inter-field firing variability than expected

by chance; (2) the grid shows a reproducible heterogeneity in

rate that suggests local, as well as distributed, spatial modula-

tion; and (3) grid cells react to context change by remapping

their peak field firing rate distribution. These findings raise two

questions: what causes the firing field heterogeneity, and what,

if anything, might it be for?

As we have shown, heterogeneity between fields cannot be a

result of overdispersion of the firing of individual fields or a result

of speed modulation of the cells. Heterogeneity could stem from

attractor dynamics within the grid population or from spatially

modulated input to the entorhinal cortex. In the case of attractor

dynamics, an activity manifold that has several peaks of different

amplitude can lead to the observed effects, although it is not

clear how such a difference in amplitudes between activity

bumps could emerge in an attractor network without disrupting

hexagonality. A corollary of this option is that the number of
iology 27, 2337–2343, August 7, 2017 2341



peaks in the manifold has to be large, as opposed to a single

peak that translates periodically. Such a prediction can be tested

by perturbing the grid network [23].

Inputs to grid cells can be of three major classes: feedforward

from parahippocampal cortical regions, feedback from the

hippocampal place cell system [24], or recurrent connections

from other modules within the medial entorhinal cortex (MEC).

Place information in the feedforward inputs has not been well

described—some place specificity has been seen in retrosple-

nial cortex [25], but in general, input regions to the MEC are typi-

cally not known to carry place information [5, 26]. On the other

hand, there are abundant feedback projections from place cells

in the hippocampus to the deep layers of the MEC [24]. Inactiva-

tion of hippocampus causes grids to degrade [15], hippocampal

replay during sleep leads grid cell replay [27], and place cells

develop before grid cells [28, 29]. Previous models from our

group and others have suggested that grids could be formed

as a weighted combination of place cell inputs [30–32]. Given

this, we suggest that it is plausible that the local non-uniformity

in grid cell firing fields could be formed by increasing the projec-

tion strength to these grid cells from place cells in given regions

of the environment, suggesting a possible interaction between

projections from place cells and path integration in the formation

of grid cells. Alternatively, projections frommodules of larger scales

could create a non-uniformity in the grid cells of a smaller-scale

module. A third alternative is present in a recent study, finding

similar results to ours, which suggests that the source of the vari-

ability is in sparse spatially selective input to the excitatory MEC

cells, presumed to arise from external stimuli [33].

Another argument in support of the notion that grid field rate

patterns derive from place cells is that after environmental

manipulations, we saw grid cell responses that resemble those

seen in place cells. Specifically, (1) similarly to place cells [34],

deformation of the environment caused a shift of firing fields

but no rearrangement of the place-specific component of the

firing (i.e., the field locations, as reported by Barry et al. [20],

and peak field firing rate profiles as seen in the present

analysis); and (2) a change in the olfactory and/or visual context

of the environments, known to cause global remapping in

place cells [35, 36] and translation of grids [14, 21] caused, in

our study, a reorganization of firing field rate profiles. These

parallels are consistent with the notion that grid cells receive

place-specific information from place cells (although they do

not preclude the opposite—that place cells receive information

from grid cells).

Does grid field peak firing rate heterogeneity serve a purpose?

As mentioned above, it might simply be a byproduct of patchy

excitatory feedback drive fromplace cells. Alternatively, perhaps

it arises from these inputs but has a function, such as to

contribute to the spatial separation of linked information like

episodic memories [37]. However, an alternative possibility,

given the abundance of MEC projections to the hippocampus

[24], is that its function is to help drive place field spatial speci-

ficity. For example, a given place cell might respond to the drive

from a given grid cell only when the rat is in the region of that

cell’s strongest field, another when it is in either of the two stron-

gest fields, and so on. With appropriate threshold setting,

perhaps mediated by interneurons, the spatial firing rate pattern

of a grid cell could thus help to uniquely specify a place.
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A final possibility combines both the feedforward and feed-

back hypotheses. By this view, grid field firing rate heteroge-

neity derives from place field specificity, and the latter in turn

derives from the former. Since grid field heterogeneity would

necessarily arise from multiple place cell inputs, the projection

back to place cells could provide a mechanism by which a

given place cell could be informed about others simulta-

neously active in the network. In other words, grid cells could

be a way for the system to accumulate the collected outputs of

all the place cells active in that place and feed them back to

individual place cells, thus allowing the system to combine

focal place information and self-motion-related path integra-

tion signals, in order to derive an unambiguous estimation of

current location.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Sargolini dataset [17] http://www.ntnu.edu/kavli/research/grid-cell-data

Experimental Models: Organisms/Strains

Long-Evans rats [15–17] Original data collected in these papers

Lister Hooded rats [20, 21] Original data collected in these papers

Software and Algorithms

Custom MATLAB Code This paper https://github.com/derdikman/Ismakov-et-al.-Matlab-code

MATLAB 2014b The MathWorks, Natick, MA, USA https://uk.mathworks.com/products/new_products/

release2014b.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dori Derdikman

(derdik@technion.ac.il).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data used for this study were from previous published works, as follows:

The Bonnevie et al. dataset [15] were recordings from 8 Long-Evans rats, implanted chronically with twomicrodrives connected to

four twisted platinum-iridium wire tetrodes. One of the microdrives was implanted into the MEC. For four of the rats, the second

microdrive was implanted into the contralateral MEC, and for the other four, it was implanted into the hippocampus. The rats

were trained to forage freely in a black square arena, 100 cm for six of the rats, and either 100 cm or 150 cm for the other two

rats. See Methods section of [15] for more information.

The Derdikman et al. dataset [16] were recordings from 16male Long-Evans rats, with implanted microdrives above the dorsocau-

dal MEC. Most rats also had an additional second microdrive in the dorsocaudal MEC above the other hemisphere. The rats were

recorded in a free foraging task in 150 cm square arenas. See Methods section of [16] for more information.

The Sargolini et al. dataset [17] were recordings from 17male Long-Evans rats, implanted with amicrodrive connected to four plat-

inum-iridium wire tetrodes above the dorsocaudal MEC. Additionally, five rats had a second microdrive implanted above the same

location in the contralateral hemisphere. Rats were recorded freely foraging in familiar enclosures. For our analysis, we took the data

recorded within the square arenas, which had walls of either 100 cm or 150 cm. See Methods section of [17] for more information.

The Barry et al. data [20] were recordings from six male Lister Hooded rats with electrodes implanted in the right dorsolateral MEC.

Entorhinal activity was recorded as rats foraged for honey-sweetened rice in a four-sided enclosure placed in the center of the exper-

imental room. After training in a given sized enclosure, the rats were recorded with the enclosure varying in size. Each recording

session consisted of five rescaling arena sizes. See Methods section of [20] for more information.

TheMarozzi et al. data [21] were recordings from eighteenmale Lister Hooded rats with tetrodes implanted either in theMEC alone,

or in both the MEC and hippocampal CA1. Fourteen of the rats were recorded in small context enclosures and seven in large (three

were recorded in both). The enclosure was wiped repeatedly throughout the experiment with either lemon or vanilla food flavoring,

with either white walls or black walls, allowing for four different context changes (white-lemon, black-lemon, white-vanilla,

black-vanilla). Each recording session consisted of varying context changes. See Methods section of [21] for more information.

METHOD DETAILS

We only took the cells from the datasets that passed our gridness score and movement-directionality Rayleigh score thresholds (see

below for more details, and Figure S1).

We used a diverse set of grid cells frommultiple recordings and sessions compiled frommultiple data sources [15–17, 20, 21]. Each

grid cell received a gridness score that measures the strength of spatial periodicity, and a movement-directionality (MD) Rayleigh

score that measures how tuned the cell is to head direction, as described below.

A firing ratemapwas produced by partitioning the arena into bins and taking the number of spikes that were fired per bin divided by

time spent within the bin to calculate the dwell-time-normalized firing rate at each point within the environment. A bin size of 3-by-3cm
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was used. The rate map was then smoothed by a two-dimensional convolution of a Gaussian function of a standard deviation of

sigma size 1.5 cm.

A gridness score was calculated by taking the correlations of rotational symmetry [17]. This was done by using the spatial auto-

correlation maps of each rate map (as described in [17]), and then comparing it to centered rotated versions of itself at 30� intervals.
The gridness score was then defined as the minimum of the higher correlation of the 60� and 120� rotation (Acorr60�, Acorr120�) from

which was subtracted the maximum of the lower correlation of the 30�, 90�, and 150� rotations (Acorr30�, Acorr90�, Acorr150�):

Gridness score=minðAcorr60� ; Acorr120� Þ �maxðAcorr30� ; Acorr90� ; Acorr150� Þ:
A HD Rayleigh score describes the strength of neuron’s head-directionality modulation. It is calculated by plotting the polar plot of

the firing responses in relation to head direction. The length of the mean vector (Rayleigh vector) is then taken for the total circular

distribution of firing rates. Since some of the cells only had one LED present that tracked head-direction, and thus the head-direc-

tionality could not be determined, we used movement-directionality instead, which is shown to be highly correlated with the head-

direction based score (r = 0.96; Figure S1A).

QUANTIFICATION AND STATISTICAL ANALYSIS

All correlation values, where given, are Pearson correlations. All ± values are standard-errors on the mean. All statistics are done us-

ing bootstrapping shuffling measures, or using simulations for the null hypothesis, as described in more detail below.

Inter-field variability analysis
Using the rate map and autocorrelation maps of the cells, the firing fields were located by finding the centers of firing from the rate

map. The firing field radius was calculated as being 65 percent of half the distance between the center point of the rate map spatial

autocorrelationmap and the next closest field center peak. In addition, we calculated the number of firing fields, the peak firing rate of

each field, and the grid orientation. The peak firing rate, as opposed to the mean, was chosen for the analysis in order to reduce

potential artifacts arising from fields located near the borders, whose centers might be located beyond the boundaries of the arena.

Also, the mean firing rate is dependent on how the place field size is defined, an issue that is resolved by using the peak rate.

In our analysis, we started by extracting these different parameters for each grid cell in our set.We created a ‘‘zonemap,’’ by simpli-

fying the rate map into place fields visualized by peak firing rate, with red representing high firing rate, and blue representing low rates

(Figure 1A). We also plotted the firing rate of each field in increasing order, and used it to find the variability, and the CV between the

firing fields of each cell.

‘‘Zero-one zone maps’’ were created from the ‘‘zone map,’’ with all the field firing rates normalized to one, and the background

equal to zero (Figure S2, part 1). This was to check grid realignment without taking the rate of firing into consideration. The point-

to-point cross correlation score of the zero-one zone maps was used as a measure of grid realignment and termed the ‘‘Grid overlap

score.’’

Spike train simulation
Simulated spike trains were produced for each grid cell by using a computer-generated rate map with 2-D round Gaussian fields

of equal size and equal firing rate. The maps were created by matrices of the same size as the rate-maps, with points at each of

the centers (the amplitude of the point was multiplied by a constant such that the mean rate of the cell remained similar to the

original after smoothing), and then smoothing these matrices using Gaussian smoothing with s = 2 cm. Using different values

for s did not change the result substantially, as long as s was in the order of magnitude of a typical grid field. We generated

rate-modulated Poisson spike trains with the field centers at the same locations. The mean peak firing rate of the original rate

map of the cell was used as the peak rates for the computer-generated rate map (Figures 1C and 1D). Spike trains were then

simulated using the same trajectory of the rat laid over the generated rate map of similar magnitude fields. The full trajectory

of the entire original session was used for the simulation. The analysis was then run again with the simulated spike trains, and

simulated results compared to the actual data results.

Firing stability analysis
To check the stability of the firing profile across the full set of fields, we investigated three different conditions: first half of the session

versus second half from the original open field data; first arena versus same context arena from the Barry et al. andMarozzi et al. data

[20, 21]; and first arena and rescaled arena from the Barry et al. data [20].

Looking at the first half versus second half of the sessions, we found the centers of the firing fields from the entire session ratemap,

which we then used to pinpoint the fields in the first and second half and compare the correlations between the peak firing rates

between the two cases.

Looking at the first arena versus the same context arena, we found the field centers in the first arena, and used those coordinates to

pinpoint the corresponding field in the last arena. The correlation coefficient was calculated using the peak rates.

Looking at the first arena versus the rescaled arena, we stretched the arenas to the size of the maximum dimensions of the two

arenas. Cases were only taken if the difference in the number of fields was not more than 70% to ensure that each field had a

corresponding field in the rescaled arena. We then found the corresponding pairs by using the coordinates of the first arena overlaid
Current Biology 27, 2337–2343.e1–e3, August 7, 2017 e2



on the second arena, after stretching to the same size. We again looked at the correlations between the peak firing rates among

the fields.

Local maxima were used to detect field centers. To filter out false centers, fields that were too close to each other (defined as less

than 70 percent of the distance of the center of the autocorrelation map to the closest local maximum) had the lower firing field center

removed (Figure S2, part 2). Different distance thresholds were used, all producing similar results.

When investigating remapping versus non-remapping cases, instead of overlapping first session coordinates on top of the second

arena, we instead found corresponding fields through minimum distances. Fields with minimum distance between them were paired

together, until all the fields had a paired field (extra fields in the case of unequal number of fields between the two arenas were

discarded). We used this method in this case, as remapping arenas would generally have less overlap between them as compared

to the non-remapping conditions.

Shuffling procedure
In cases in which two sessions of a single grid cell were compared, the peak firing rates were randomly shuffled among the different

fields for the two sessions. The different analyses were all then repeated with the shuffled data 10,000 times, and the distributions of

the mean of the entire dataset compared to the real value to check for statistical significance.

Overdispersion analysis and shuffling
We found the firing rate of each individual pass through a field. To determine whether the large variability in field firing rates was due to

larger overdispersion in fields at the individual pass level, we shuffled the momentary firing rates among all the different passes

through the different fields. For each pass, the momentary firing rate was calculated as the number of spikes during the single

traversal of the field, divided by the length of time of traversal. After shuffling, the momentary firing rates were assigned randomly

to other passages, and the new number of spikes was calculated as the time of traversal of the current field times the shuffled

momentary firing rate.We then calculated the coefficient of variance (CV) of themean firing rate between all the fields after the shuffle.

We then compared the mean CV of the original dataset to the shuffled dataset (Figure S4A).

We note that the shuffling did not eliminate potential influences from overdispersion, but rather other differences between fields,

assuming a similar overdispersion distribution for all fields. Therefore using this procedure we kept the overdispersion, while negating

the differences in a priori rates between fields.We did this by calculating the rate distribution for all fields combined together, and then

we distributed these rates randomly between the fields, thus not negating the overdispersion after shuffling.

We also checked a version of this analysis while taking into account the non-stationarity of the data in time (Figures S4B and S4C).

For this, we grouped individual field passes into consecutive blocks of 10 passes, and shuffled each block only in-between itself.

Correlation of CV and speed-rate correlation
Since firing rate has previously been shown to bemodulated by speed [3, 18], we wanted to examine whether the high CV was due to

this speed-rate correlation. This could occur if typically some fields were traversed at a higher speed than others. To do this we first

found the speed score of each cell. The speed score was taken as a measure of the cell’s modulation to speed. Then we calculated

the speed-rate correlation as the correlation between the cells speed score and its mean firing rate. We investigated whether there

was a correlation between the CV of the cells’ firing fields and its speed-rate correlation (Figure S1B).

Fourier transform analysis
To check that the variability was not the result of variability in the grid components of the Fourier transformation, we reconstructed the

rate map using just the grid nodes of the Fourier transform and checked how the variability differed from the actual values. We

padded the rate maps with zeros to size [256x256] [22]. We then took the Fourier transformation of the padded rate map and extrap-

olated the six points of the grid component, taking the Fourier information only around those peaks (see Figure S3 for more informa-

tion). We then reconstructed the rate map using these Fourier grid components. We compared the CV between the original rate map

and the reconstructed rate map to examine whether the grid components solely were able to explain the variability.

DATA AND SOFTWARE AVAILABILITY

The MATLAB code used in the analysis of this paper can be found at https://github.com/derdikman/Ismakov-et-al.-Matlab-code.

The Marozzi et al. data are available on request to K.J.
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