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Abstract

The dynamic behavior of the term structure of interest rates is difficult to replicate with mod-
els, and even models with a proven track record of empirical performance have underperformed
since the early 2000s. On the other hand, survey expectations can accurately predict yields,
but they are typically not available for all maturities and/or forecast horizons. We show how
survey expectations can be exploited to improve the accuracy of yield curve forecasts given by
a base model. We do so by employing a flexible exponential tilting method that anchors the
model forecasts to the survey expectations, and we develop a test to guide the choice of the
anchoring points. The method implicitly incorporates into yield curve forecasts any information
that survey participants have access to - such as information about the current state of the
economy or forward-looking information contained in monetary policy announcements - without
the need to explicitly model it. We document that anchoring delivers large and significant gains
in forecast accuracy relative to the class of models that are widely adopted by financial and
policy institutions for forecasting the term structure of interest rates.

JEL Classification Codes: G1; E4; C5
Keywords: Term Structure Models; Exponential Tilting; Blue Chip Analysts Survey; Fore-

cast Performance; Monetary Policy Forward Guidance; Macroeconomic Factors
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1 Introduction

The term structure of interest rates contains crucial information for both policymakers’ and

investors’ decisions. Yet, in spite of a vast and growing literature on yield curve modeling,

no single approach has emerged that can accurately describe the dynamic behavior of yields.

Two popular classes of yield curve models considered in the literature are no-arbitrage dynamic

latent factor models (Duffie and Kan, 1996; Litterman et al., 1991; Dai and Singleton, 2000) and

the Dynamic Nelson and Siegel (DNS) model of Diebold and Li (2006). These models share a

similar state-space structure in which the yields depend on three dynamic latent factors (level,

slope, and curvature) extracted from the cross-section of yields, but differ in the restrictions they

impose on the model’s parameters. Although the latter have become the leading method for

yield curve forecasting at many policy institutions (BIS, 2005) due to their successful empirical

performance (Diebold and Li, 2006), one of the findings of this paper is that their performance

has deteriorated in recent years. The fact that the three-factor structure is not sufficient to

capture the dynamics of yields has been documented before (e.g., Diebold and Rudebusch, 2012;

Mönch (2008)), and a general consensus has emerged in the literature that one must look beyond

the cross-section of yields to pin down the dynamic behavior of interest rates, for example, by

enlarging the model’s information set with either observable macroeconomic factors (Diebold

et al., 2006; Ang and Piazzesi, 2003; Hördahl et al., 2006; Rudebusch and Wu, 2008; Mönch,

2008; Coroneo et al., 2016) or latent “hidden” factors (Joslin et al., 2010; Duffee, 2011). A

thorough review of the literature on the connections between analysis of the term structure and

the macroeconomics is Gürkaynak and Wright (2012).

This paper’s premise is that latent factor models neglect a key determinant of yield dynamics:

expectations about future economic developments. It is a well-documented fact that expectations

contained in survey data can accurately forecast key macroeconomic variables, such as GDP,

inflation, and yields, especially at short forecast horizons (Stark, 2010; Chun, 2012), and several

recent papers have utilized survey data in the analysis of the term structure of interest rates. For

example, Chun (2011) uses Blue Chip Financial Analysts (henceforth BC) forecasts as observable

factors in a no-arbitrage dynamic latent factor model; Chernov and Mueller (2012) develop a

model that incorporates survey expectations and links them to the “hidden factor” of Joslin et al.

(2010) and Duffee (2011); Dijk et al. (2014) use (longer-horizon) survey expectations to improve
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estimates of some parameters in the DNS model, and Kim and Orphanides (2012) use survey

data to overcome some small-sample estimation problems in no-arbitrage dynamic latent factor

models.

Rather than incorporating survey data into the model, we employ a formal method that

anchors segments of the yield curve forecasts to the corresponding survey expectations and

transmits the superior forecasting ability to the rest of the yield curve. In essence, the anchoring

constrains the dynamics of some yields to replicate those of the survey expectations and thus

implicitly incorporates into the forecasts of the whole yield curve any information that survey

participants have access to, without the need to explicitly model it. This can include information

about the current state of the economy that survey participants deem relevant for predicting

future interest rates and that they potentially extract from large dimensional data sets. In this

respect, survey expectations offer the possibility to capture both observable and “hidden” factors

that can explain yield curve dynamics (as also argued by Duffee, 2011). Survey expectations

can also reflect additional useful information, such as nonlinearities (for example, the zero-lower

bound constraint), structural change, and information about the future course of monetary

policy that may be difficult to capture with existing backward-looking models. In this paper,

we stress in particular the role played by the ability of survey participants to capture the kind

of forward-looking information about interest rates that is increasingly contained in monetary

policy announcements.

An important question we address is which segments of the yield curve one should anchor, as

one typically has access to survey expectations about a subset of points along the yield curve.

Our main result is to derive a testable condition such that anchoring delivers an improvement

in density forecast accuracy for the whole yield curve. In our data, we found that the largest

improvement is offered by anchoring using the 3-month survey forecast. As a quick visualization

of the effects of anchoring, consider Figure 5, which shows that the method shifts the yield

curve forecast toward the actual realization, resulting in sizable accuracy improvements that are

particularly visible in regions of the yield curve near the anchoring point.

The theoretical justification of the method is based on exponential tilting (see Robertson et al.,

2005 and Giacomini and Ragusa, 2013). The testable condition to guide the choice of anchoring

points is a new result.
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We apply the method to incorporate Blue Chip financial analysts’ monthly expectations about

yields into yield curve forecasts based on the DNS model. It is worth emphasizing that, although

we take the DNS model as a benchmark due to its popularity in the forecasting literature, the

anchoring method is more generally valid and could be applied to any alternative model of the

yield curve.

We find that the anchoring procedure results in forecasts that significantly outperform those

from the base model. The accuracy gains are sizable, averaging about 30% and up to 52%.

The anchored forecast is also the only one that was able to beat the random walk over the

period 2000-2011. These results are robust to considering a subsample that ends in 2008, which

suggests that the good performance of our method is not solely driven by the fact that survey

participants correctly incorporate zero lower bound constraints. This is also the reason why we

don’t consider in our comparison models that explicitly take the zero lower bound constraint

into account (for an interesting recent example, see Christensen and Rudebusch, 2015).

Although these improvements are important on their own, we provide further insight into the

economic forces driving the superior performance of the anchored forecasts. We find that the

anchored forecasts implicitly incorporate measures of real activity and forward-looking infor-

mation contained in monetary policy announcements. The ability of the anchoring method to

incorporate the information contained in monetary policy announcements, in particular, has two

important implications. The first is that the anchoring method is likely to become even more

useful as a practical tool for forecasters and central bankers in the future, now that forward

guidance has been formally adopted by several central banks around the world, including the

Federal Reserve, the Bank of England and the ECB. The second is that any successful attempt

to explicitly model the dynamics of yields should acknowledge the value of forward-looking

information.

The paper is organized as follows. Section 2 reviews the DNS model. Section 3 describes the

anchoring method and derives the test for choosing the anchoring points. Section 4 contains

the empirical results and Section 5 concludes. An online appendix contains a description of the

data, in-sample estimation results of the DNS model, and the a comparison of our method and

the conditional forecast.
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2 The DNS model and its variants

The DNS model introduced by Diebold and Li (2006) for an m-dimensional vector of yields yt

with typical element yt(τ), where τ is the maturity, is given by:

yt(τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
+ ut(τ), (1)

where the dynamic factors β1t, β2t, and β3t are interpreted as the level, slope, and the curvature

of the yield curve and λ is a fixed parameter governing the exponential decay rate of the first

and second component in (1). Following Diebold and Li (2006), we let λ = 0.069, the value that

maximizes the loading on the curvature factor for the yields with maturity 30 months.

When we observe a series of yields yt(τi), for a set of n maturities, τ1 < τ2 < . . . < τn, the yield

curve can be estimated by cross sectional regressions. From these regressions we obtain a series

of estimated factors
{
β̂1t, β̂2t, β̂3t

}
t6T

which can themselves be modeled dynamically to provide

out-of-sample forecasts of the factors and thus of the entire yield curve. The main drawbacks

of this two-step approach are, first, that the uncertainty associated with the estimation of the

factors is not acknowledged in the second step when the yields are calculated, and, second, the

loss of efficiency arising from not exploiting the correlation structure.

To mitigate these problems, we follow Diebold et al. (2006) and exploit the state-space repre-

sentation of the DNS model. To describe this representation, rewrite equation (1) by stacking

the yields for the n maturities

yt = Γyβt + uyt , (2)

where yt = (yt(τ1), . . . , yt(τn))′, βt = (β1t, β2t, β3t)
′, and Γ is a n × 3 matrix of loadings whose

i − th row is equal to
(
1,
(
1− e−λτi

)
/λτi,

(
1− e−λτi

)
/λτi − e−λτ

)
. The disturbance vector is

given by uyt = (ut(τ1), . . . , ut(τn))′, uyt ∼ N (0, Q). The time series process for βt is a vector

autoregression:

βt+1 = β̄ + Φyβt + ξt, ξt ∼ N (0, R), (3)

where β̄ is a (3 × 1) vector and Φy is a (3 × 3) matrix. Equations (2) and (3) constitute the

basic version of the model for the yield curve we consider here. We will refer to this model

as the “yield only” model to distinguish it from its extension in which the dynamics of yields
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and macroeconomic variables are modeled in terms of common factors, as recently proposed by

Coroneo et al. (2016). We call this model the “macro augmented” DNS model.

Let xt be a (p × 1) vector of macroeconomic variables. The macro augmented DNS model

consists of a state-space model with measurement equation

yt
xt

 =

0

x̄

+

 Γy 0

Γxy Γx


βt
θt

+

uyt
uxt

 , (4)

and transition equation

βt+1

θt+1

 =

β̄
θ̄

+

 Φy Φyx

Φxy Φx


βt
θt

+

ξyt
ξxt

 . (5)

The dimension of Γx depends on the number of common factors that determine the dynamics

of the macro variables. Several studies have shown that two factors, one real and one nominal,

are sufficient to capture the dynamics of a large variety of macroeconomic indicators for the US

Sargent et al. (1977); Giannone et al. (2005). We accordingly choose two factors so that the

dimension of Γx is (p× 2).1

The idiosyncratic disturbances, ut ≡ (uy
′

t , u
x′
t )′, and the transition equation disturbances,

ξt ≡ (ξy
′

t , ξ
x′
t )′, are assumed to be Gaussian

uyt
uxt

 ∼ N

0,

Qy 0

0 Qx


 ,

ξyt
ξxt

 ∼ N

0,

Ry Ryx

Rxy Rx


 . (6)

Both Qy and Qx are diagonal, while the covariance of ξt is left unrestricted. The assumption

that the variance of the idiosyncratic disturbances is diagonal, which implies that the deviations

of yields of various maturities from the yield curve are uncorrelated, is quite standard Diebold

et al. (2006). This assumption also gives computational tractability given the large number of

yields and macro factors we use.2 The processes ut and ξt are also assumed to be independent,

and thus βt and θt are not allowed to react to shocks to yt and xt.
1Coroneo et al., 2016 consider a similar model to ours using different data and a different sample period and

also find that two factors capture well the dynamics of macro economic variables for the US.
2Coroneo et al. (2016) relax this restriction by allowing the idiosyncratic errors to follow a first order autore-

gressive process. However, they restrict the variance of this process to be fixed in an arbitrary way.

6



We perform estimation by maximum likelihood using the Expectation Maximization (EM)

algorithm, which requires at each iteration only one run of the Kalman smoother. As reported

in Doz et al. (2012), this estimation technique is feasible when the number of variables is large,

and is robust to non Gaussianity and to cross-sectional correlation in ut.

Density forecasts of yields at different maturities can be obtained as

yt+h|yt, . . . , y1, x1, . . . , xt ∼ N (µ̂t+h, Σ̂t+h), h = 1, . . . ,H, (7)

with µ̂t+h = Γ̂yE[βt+h|yt, . . . , y1, x1, . . . , xt], Σ̂t+h = Γ̂yVar[βt+h|yt, . . . , y1, x1, . . . , xt]Γ̂′y + Q̂y,

where the conditional mean and the conditional variance of βt+h are those from the Kalman

recursions with missing observations from t + 1 to t + h. We will refer to the pdf of yt+h

conditional on the information available at time t as ft(yt+h).

3 The anchoring method

In this section, we illustrate the anchoring method for incorporating the information contained

in survey expectations into an existing model-based forecast. We then discuss how to choose

the anchoring points.

The method is presented without reference to a specific forecasting model, as it can be applied

to any model that provides a density forecast. We make the simplifying assumption that the

sequence of h-step-ahead density forecasts for the vector of yields is normal with (conditional)

mean µ̂t+h and variance Σ̂t+h,3

yt+h|yt, . . . , y1, xt, . . . , x1 ∼ N (µ̂t+h, Σ̂t+h), h = 1, . . . ,H, t = 1, . . . , T. (8)

At time t, we observe the h-step ahead survey forecast for yields for the first r < m maturities

(τ1, . . . , τr), that we denote as µ̃t+h,1:r.4 Let yt,1:r denote the r × 1 sub-vector of yt containing

yields for maturities (τ1, τ2, . . . , τr).

We approach the problem of incorporating µ̃t+h,1:r into the forecast from an information

theoretic point of view, by projecting the density forecast ft onto the space of densities that
3See Giacomini and Ragusa (2013) for the general case of a nonnormal density forecast.
4In the interest of clarity, we consider only the case in which the survey forecasts considered are for maturities

τ1, τ2, . . . , τr. It is immediate to extend the results to the case of non-contiguous maturities.
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have conditional mean equal to the survey forecasts for maturities τ1, . . . , τr. More formally, this

set of densities can be characterized as

H̃t+h =

{
ht :

∫
yt+h,1:rht(yt+h)dyt+h = µ̃t+h,1:r

}
. (9)

It is important to note that no constraints are imposed on the forecasts of yields at longer

maturities, τr+1, . . . , τm. The idea is to select the density in H̃t+h that is "closest" to the

model-based density forecast ft, where closeness is measured by the Kullback-Leibler information

criterion:

h∗t (yt+h) = arg min
h∈H̃t+h

∫
log

(
ht(u)

ft(u)

)
ht(u)du. (10)

Minimization problems such as (10) play an important role in statistics and econometrics

(Csiszár, 1975; White, 1982; Kitamura and Stutzer, 1997; Newey and Smith, 2004; Ragusa,

2011), and they have been considered in the forecasting literature by Robertson et al. (2005)

and Giacomini and Ragusa (2013).5 Any of the previous references show that the solution is a

new multivariate density:

h∗t (yt+h) = exp
{
ζt + ξ′t [yt+h,1:r − µ̃t+h,1:r]

}
ft(yt+h), (11)

where ζt and ξt are parameters chosen in such a way that h∗t (yt+h) ∈ H̃t+h. For the special case

of a base density that is multivariate normal, Giacomini and Ragusa (2013) show that we have

the following analytical expression for h∗t (yt+h):

h∗t (yt+h) = (2π)−
m
2

∣∣∣Σ̂t+h

∣∣∣− 1
2

exp

{
−1

2
(yt+h − µ∗t+h)′Σ̂−1t+h(yt+h − µ∗t+h)

}
, (12)

with

µ∗t+h =

 µ̃t+h,1:r

µ̂t+h,r+1:m − Σ̂t+h,21

(
Σ̂t+h,11

)−1
(µ̂t+h,1:r − µ̃t+h,1:r)

 (13)

5A more technical and general discussion of the existence of a solution to these class of problems is given in
Komunjer and Ragusa (2016).
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and Σ̂t+h,11 and Σ̂t+h,21 are blocks of the partitioned matrix Σ̂t+h:

Σ̂t+h =


Σ̂t+h,11
r×r

Σ̂t+h,12
r×(m−r)

Σ̂t+h,21
(m−r)×r

Σ̂t+h,22
(m−r)×(m−r)

 . (14)

Thus, the solution to (10) is a normal density with the same variance as the initial forecast

density, Σ̂t+h, but a mean that is equal to the survey forecast for those yields that are directly

restricted, and for the remaining yields it is equal to a combination between the model forecast

and the discrepancy between the survey and the restricted model forecasts. The effect of an-

choring the first r yields to the survey forecasts on the other yields depends on this discrepancy

and on Σ̂t+h. Since forecasts of yields at different maturities are generally positively correlated,

this implies that when the model forecast is larger (smaller) than the survey forecast µt+h,r+1:N

is adjusted downwards (upwards).

3.1 Where to anchor?

A natural question is which survey forecasts one should use to anchor the yield curve, given that

survey expectations could be available for a number of yields. Proposition 1 derives testable

conditions that provide guidance on where to anchor the yield curve. The sufficient condition in

Proposition 1 has the intuitive interpretation that anchoring delivers accuracy improvements for

the whole density forecast if the survey forecast contains additional information relative to the

model-based forecast (for a single yield, the condition is equivalent to a normalized version of

the null hypothesis of a forecast encompassing test for the survey relative to the model forecast,

see e.g., Clark and McCracken, 2001, pg. 90).

Let êt+h,1:r = yt+h,1:r−µ̂t+h,1:r and ẽt+h,1:r = yt+h,1:r−µ̃t+h,1:r denote the r×1 vectors contain-

ing the model- and survey-based h−step-ahead forecasts for yields with maturities (τ1, τ2, . . . , τr),

respectively.

Proposition 1. A sufficient condition for the anchored density forecast h∗t (yt+h) to be more

accurate than the base forecast ft(yt+h) according to the logarithmic scoring rule, i.e.,

E

[
log

(
h∗t (yt+h)

ft(yt+h)

)]
> 0, (15)
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is that

E [St] > 0, (16)

where St := (êt+h,1:r− ẽt+h,1:r)′
(

Σ̂t+h,11

)−1
ẽt+h,1:r. A sufficient and necessary condition is that

E [St +Nt] > 0, (17)

where Nt := 1
2(êt+h,1:r − ẽt+h,1:r)′

(
Σ̂t+h,11

)−1
(êt+h,1:r − ẽt+h,1:r).

Proof. Since

E

[
log

(
h∗t (yt+h)

ft(yt+h)

)]
= E [ζt + ξtẽt+h(τ)] , (18)

it is sufficient to establish that the expectations of both terms on the right-hand side of the

equation are positive to establish that condition (17) is necessary and sufficient. To this end, we

show that ζt = Nt and E [ξ′tẽt+h,1:r] = E[St]. Since Nt is a.s. positive its expected value is also

positive. Thus, positiveness of E[St] is sufficient for E [ζt + ξtẽt+h(τ)] > 0.

Let J be the (r×m) matrix selecting the element of yt+h and µ∗t+h corresponding to maturity

(τ1, τ2, . . . , τr), i.e., Jyt+h = yt+h,1:r. The density h∗t (yt+h) = exp
{
ζt + ξ′t

[
Jyt+h − Jµ∗t+h

]}
ft(yt+h)

is given by

h∗t (yt+h) = (2π)−
m
2

∣∣∣Σ̂t+h

∣∣∣− 1
2

× exp

{
−1

2
(yt+h − µ̂t+h)′Σ̂−1t+h(yt+h − µ̂t+h) + ζt + ξ′t

[
Jyt+h − Jµ∗t+h

]}
.

The term inside the exponential can be written as

−1

2
(yt+h − µ̂t+h)′Σ̂−1t+h(yt+h − µ̂t+h) + ζt + ξ′t

[
Jyt+h − Jµ∗t+h

]
= −1

2

(
y′t+hΣ̂−1t+hyt+h − y

′
t+hb− b′yt+h

)
+ c,

where b = J ′ξ + Σ̂−1t+hµ̂t+h and c = ζt − ξ′tJµ∗t+h −
1
2 µ̂
′Σ̂−1t+hµ̂t+h. Completing the squares by

adding and subtracting b′Σ̂t+hb yields−1
2

(
y′t+hΣ̂−1t+hyt+h − y

′
t+hb− b′yt+h + b′Σ̂b

)
+c+ 1

2b
′Σ̂t+hb.
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Substituting this expression in the expression for h∗t (yt+h) gives

h∗t (yt+h) = (2π)−
m
2

∣∣∣Σ̂t+h

∣∣∣− 1
2

exp
(
c+ 1

2b
′Σ̂t+hb

)
exp

{
−1

2

(
yt+h − Σ̂t+hb

)′
Σ̂−1t+h

(
y′t+h − Σ̂t+hb

)}
.

(19)

Imposing the constraint
∫
Jyt+hh

∗(yt+h)dyt+h = Jµ∗t+h implies that JΣ̂t+hb=Jµ∗t+h. Solving

this last equation for ξt gives ξt =
(
JΣ̂t+h,11J

′
)−1

(Jµ∗t+h − Jµ̂t+h). To obtain the expression

for ζt, note that we must have that c + 1
2b
′Σ̂t+hb = 0. Solving this restriction for ζt yields,

after tedious yet straightforward manipulations, ζt = 1
2(Jµ∗t+h− Jµ̂t+h)′

(
JΣ̂t+hJ

′
)−1

(Jµ∗t+h−

Jµ̂t+h). Noting that (Jµ∗t+h− Jµ̂t+h) = (Jµ∗t+h− Jyt+h− Jµ̂t+h + Jyt+h) = (êt+h,1:r − ẽt+h,1:r)

and that
(
JΣ̂t+hJ

′
)−1

=
(

Σ̂t+h,11

)−1
gives the desired result.

The necessary and sufficient condition (17) can be empirically tested using a modification

of Giacomini and Rossi (2010)’s fluctuation test, which accounts for the possibility that the

expectation might be changing over time. For ease of exposition, in the following we omit

the reference to the forecast horizon h, with the understanding that the size of the out-of-

sample period T will be different for different forecast horizons. The test takes as primitives

two sequences of out-of-sample forecast errors for the survey forecast and for the model-based

forecast, ẽt and êt for t = 1, ..., T. A test of the null hypothesis that anchoring gives a more

accurate forecasts according to the logarithmic score can be obtained by letting ∆Lt = St +Nt

in the fluctuation test. The test is implemented by choosing a fraction δ of the total out-of-sample

size T and computing a sequence of standardized rolling means of ∆Lt:

Ft,δ = σ̂−1(δT )−1/2
t∑

j=t−δT+1

∆Lt, t = δT, ..., T, (20)

where σ̂ is an HAC estimator of the standard deviation of ∆Lt computed over the rolling

window, typically with truncation lag h−1, where h is the forecast horizon. The null hypothesis

H0 : E[∆Lt] > 0 is rejected when mint≤T Ft,δ < −kδ,α, where the critical value kδ,α is given in

Table 1.

The statistic is the empirical version of the logarithmic scoring rule evaluated on a rolling

window of observations. As such, its magnitude sheds light on the relative performance of the

anchored forecast versus the baseline forecast: positive values of Ft,δ occur in windows where

anchoring improves the accuracy of the density forecast.
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[Table 1 about here.]

4 Empirical results

4.1 The deteriorating performance of the DNS model and its variants

In this section, we document how the forecasting performance of the DNS model has deterio-

rated in the years after those considered by Diebold and Li (2006), who found that the model

performed well in the sample from 1985-2000. This has been noted before, for example, by

Diebold and Rudebusch (2012) and Mönch (2008). We complement their results by showing

that the same occurs when augmenting the DNS model to incorporate information extracted

from macroeconomic data.

For the yield-only model, we estimate the DNS models using the series of U.S. zero-coupon

yields constructed in Gürkaynak et al. (2007).6 We consider average-of-the-month data from

January 1985 to December 2011 on yields with the following maturities expressed in months: 6,

9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120. We augment the yield data with the

monthly time series of the 3-month Treasury constant maturity rate from the FRED data set

(code GS3M), which corresponds to the rate forecasted by the BC analysts.7 In total we have

a panel of 324 monthly observations on 17 yields.

We estimate the DNS models using an out-of-sample recursive scheme and consider forecast

horizons of 3-, 6-, 9- and 12-months ahead. The first estimation period uses data from 1985:1

to 1999:12, and we evaluate the forecasts over the out-of-sample period 2000:1 to 2011:12. We

compare the mean squared forecast error (MSFE) of each variant of the DNS model to that of

a random walk benchmark, which forecasts the yields as µ̂t+h = yt. The MSFE for the forecast

of a yield of maturity τ at horizon h is given by:

MSFEh(τ) =
1

T

∑
t

(µ̂t+h(τ)− yt+h(τ))2 , (21)

where T is the size of the out-of-sample portion of the sample, which in our case is T = 144−h.
6A detailed description of the data is given in the online appendi. We also performed a similar exercise using

the Fama-Bliss data (from CRSP), which are only available for one- to five-year maturities, and obtained similar
conclusions, which we do not report in the paper.

7We also conducted the analysis using end-of-the-month data and the 3-month yield from the Gürkaynak
et al., 2007 data set and obtained qualitatively similar results, which we do not report in the paper.

12



[Figure 1 about here.]

Figure 1 shows that the random walk outperforms both versions of the DNS model. This is

generally true for all maturities and all forecast horizons, with a particularly poor performance

for maturities around five years. The only exception appears to be the 10-year yield, for which

the model performs as well as the random walk except for the the three-month horizon. An

implication is that in our sample incorporating macroeconomic information into the DNS model

does not improve its performance. Actually, if anything, the performance of the richer model is

poorer especially at shorter maturities.

We should point out that the poor out-of-sample performance of the DNS model in recent

years stands in contrast to its good in-sample performance, which we document in the online

appendix.

4.2 Testing the condition in Proposition 1

We test the condition in Proposition 1 in order to understand which survey forecasts would

deliver the best improvements when used as anchoring points. The BC survey forecasts of yields

are available for maturities of 3, 6, 12, 24, 60, and 120 months and for forecast horizons of 3, 6,

9, and 12 months.

Figure 2 reports the results for the test of the condition in Proposition 1, separately considering

each maturity and each horizon. The null hypothesis is rejected when the sequence of test

statistics crosses the horizontal (red) solid line, which represents the critical value. Although

the null hypothesis is not rejected for several survey forecasts, the 3-month yield survey forecast

is the one offering the largest improvements, and it is also the yield for which the value of the

test statistics is always positive at all horizons. This suggests that, if one were to anchor to a

single survey forecast, the 3-month yield forecast would be the best in terms of density forecast

performance. The 6-month yield survey forecast also delivers improvements in density forecast

performance, but they are smaller than when using the 3-month. A natural question to ask

is whether anchoring using both 3-month and 6-month survey forecasts would give additional

improvements. In Figure 3, we thus report the test statistics for the test of the condition in

Proposition 1 when anchoring using both survey forecasts. While the null hypothesis is again not

rejected, the statistic is much smaller than the one using only the 3-month, suggesting that part
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of the information contained in the 6-month survey forecast overlaps with that of the 3-month,

so that when they are used in combination there is practically no advantage.

[Figure 2 about here.]

[Figure 3 about here.]

One of the possible explanations for why the survey forecast of the 3-month yield offers in-

formational advantages over the model-based forecast is that this rate closely reacts to macroe-

conomic news, such as monetary policy decisions. This information gap between surveys and

models is likely to be particularly large when the economic environment is changing quickly,

making it more difficult for an econometric model to incorporate the new information. This

conjecture is corroborated by considering how model-based and survey-based forecasts respond

to monetary policy announcements that contain explicit reference to the likely future path of the

short-term rate. There have been several instances of monetary policy statements containing

forward-looking information of this kind in recent years, especially since the Federal Reserve

began adopting forward guidance as a policy measure. Figure 4 below shows how the survey-

and model-based forecasts reacted to one particular episode of forward guidance. The figure

reports the 1- to 4-quarter-ahead forecasts of the 3-month yield given by the model and the

surveys before and after the FOMC Statement of August 9, 2011, which stated that the “Com-

mittee currently anticipates that economic conditions [....] are likely to warrant exceptionally

low levels for the federal funds rate at least through mid-2013”. The figure clearly shows that

before the announcement both the model and the survey participants predicted a rate increase

for the following year. However, after the announcement the surveys immediately incorporated

the information about the policy decision to keep the rate fixed, whereas the model continued

to predict a rate hike for several months afterwards, an increase that didn’t materialize. The

ability to quickly incorporate this information gave the survey forecast a clear advantage, and

this is likely to have occurred on several other occasions during the period that we considered,

which was characterized by several episodes of forward guidance.

[Figure 4 about here.]

It is worth emphasizing that the informational advantage of the survey expectations is not

due to a misalignment of the information sets on which the survey and the model forecasts are
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based. As we explain in the online appendix, we were careful in matching the timing of the two

forecasts. In the online appendix we also explain how we transformed the quarterly BC forecasts

into monthly forecasts.

4.3 Anchoring improves accuracy

In this section, we apply the anchoring method described in Section 3 to the DNS model using

as anchor the 3-month yield BC forecast, which was the survey forecast offering the largest

improvements in density forecast accuracy, according to the test of the condition in Proposition

1. Here we assess the out-of-sample point-forecast performance of the individual yield forecasts

relative to the DNS forecasts and to the random walk benchmark.

Table 2 reports relative MSFE for the anchored forecasts against either the forecasts from the

base DNS model or the random walk benchmark, for each maturity and forecast horizon. Table

3 reports the same results for a restricted sample that ends in 2008 and thus excludes the zero

lower bound period. The asterisks indicate that the Diebold and Mariano (1995) test rejects the

null of equal forecast accuracy at 10% against the alternative that the anchored forecast is more

accurate. The table shows that the anchored forecasts significantly and strongly outperform

the DNS forecasts for almost all maturities and forecast horizons, with typical forecast accuracy

gains of about 30% and up to 52%. The only exception is for a few long maturities and short

forecast horizons, for which the anchored forecasts and the DNS forecasts perform equally well.

The table also shows that the anchored forecasts outperform the random walk, and significantly

for maturities up to 15 months and forecast horizons up to 6 months ahead, in a sample in which

the DNS model and its variants consistently failed (as shown in Figure 1). These conclusions

are robust to excluding the zero lower bound period, suggesting that the superior performance

of our method is not solely driven by the ability of the survey expectations to incorporate the

zero lower bound constraint.

[Table 2 about here.]

[Table 3 about here.]

Figure 5 reports the yield curve implied by the DNS and anchored forecast before and after the

policy announcement of August 9, 2011, that was discussed in Figure 4. The figure shows that
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before the announcement the DNS and anchored yield curve forecasts similarly over-predicts the

actual yield curve, whereas after the announcement the anchored forecast quickly incorporates

the information contained in the FOMC statement, resulting in a sizable downward shift of the

yield curve towards the actual realization. The DNS forecasts, instead, continue to largely over-

predict the actual yield curve. This showcases the ability of the anchoring method to swiftly

incorporate the informational advantage that surveys have about short yields and transmit it to

the rest of the curve.

[Figure 5 about here.]

To understand whether the relative (point-forecast) performance of the anchored forecast and

the base model changes over time, in Figure 6 we report rolling MSFEs for the two forecasts

computed over rolling windows of four years, for a selection of maturities (rows) and of forecast

horizons (columns). The figure shows that the anchored forecast is almost always more accurate,

except for the very early years of the sample and for the 10-year maturity. Finally, note that

the superior performance of the anchored forecast relative to the baseline model is not confined

to the performance of the point forecast, as one implication of Proposition 1 is that, when the

testable condition holds, the entire density forecast of the anchored model is more accurate than

the density forecast implied by the baseline model. The results of the fluctuation test reported

in Figure 2, therefore, implicitly show that anchoring using the 3-month yield provides more

accurate density forecasts over time than using the base model.

[Figure 6 about here.]

5 Conclusions

We proposed a formal and computationally simple anchoring method for incorporating survey

expectations into a model-based forecast of the yield curve. The method constrains the dynamics

of some yields to replicate those of the survey expectations and implicitly incorporates into the

forecasts of the whole yield curve any information that survey participants use without the need

to explicitly model it. The method is generally applicable to a situation where one has model-

based forecasts for a set of variables and extra-model forecasts for a subset of these variables.

The choice of the anchors is also general, for example they could come from another model
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(e.g., a random walk). All it matters for whether they will deliver (density-forecast) accuracy

improvements is that they satisfy the condition of Proposition 1.

We applied the method to the Dynamic Nelson and Siegel model of Diebold and Li (2006)

anchored to the 3-month yield forecast from the Blue Chip Financial Analysts survey and found

large and significant improvements not only in density forecast accuracy relative to the base

model, but also in out-of-sample point-forecast accuracy, with typical gains of about 30% and

up to 52%. Remarkably, the anchored forecast also outperformed out-of-sample a random walk

benchmark, at least for short maturities and forecast horizons.

We provide an interpretation for the accuracy gains of the anchored forecasts and relate them

to their ability to capture information about real economic activity as well as forward-looking

information contained in monetary policy announcements. This is likely to make the method

even more relevant in the future, given that several central banks such as the Federal Reserve, the

European Central Bank, and the Bank of England are increasingly adopting forward guidance

as a nonstandard monetary policy measure.

Finally, our method offers a way to formally incorporate into yield curve forecasts “hidden”

or “unspanned” factors that go beyond the information contained in the cross-section of yields,

and suggests that any successful attempt to explicitly model the dynamics of yields should

acknowledge the value of forward-looking information.

There are alternative ways to incorporate survey information into yield curve models that

have been considered in the literature. Advantages of the method considered in this paper are

that (i) it shows that using survey forecasts as anchors improves the overall density forecasting

performance of model-based forecasts, and (ii) the selection of what survey information to use

is based on a formal criterion. Advantages of alternative methods are that (i) the forecasting

power of surveys does not have to be directly for a yield but may also be at the level of latent

factors, and (ii) it is not necessary to use a 2-step approach of first selecting a survey forecast

to anchor to, and then using this anchor in the forecast.
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Figure 1. Relative MSFE for the yield only and macro augmented DNS against the random walk

(a) Yields only DNS
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(b) Macro augmented DNS
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Notes: The figure reports the ratios of the MSFE for the yield only and macro augmented DNS
against the random walk for different maturities and forecast horizons. Values larger than 1
indicate that the random walk outperforms the model.
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Figure 2. Testing the condition in Proposition 1
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Notes: The figure reports the sequence of test statistics for testing the condition in Proposition
1, for a selection of maturities and horizons for which survey forecasts are available. The null
hypothesis is rejected when the sequence of test statistics crosses the horizontal solid line, which
represents the critical value (which equals -2.62 for test statistics computed over an estimation
window that uses 40% of the out-of-sample observations and for a 5% significance level).
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Figure 3. Testing the condition in Proposition 1
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Notes: The figure reports the sequence of test statistics for testing the condition in Proposition
1, when anchoring using both the 3-month and the 6-month survey forecast. The null hypothesis
is rejected when the sequence of test statistics crosses the horizontal solid line, which represents
the critical value (which equals -2.62 for test statistics computed over an estimation window
that uses 40% of the out-of-sample observations and for a 5% significance level).
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Figure 4. The informational advantage of surveys over models
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Note: The figure reports the 1- to 4-quarter-ahead forecasts of the 3-month yield given by the
DNS model and the BC survey before and after the FOMC Statement of August 9, 2011.
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Figure 5. DNS and Anchored forecasts before and after a monetary policy announcement

August 2011

Maturity (months)

Y
ie
ld

3 6 12 24 36 60

0.
0

0.
5

1.
0

1.
5

September 2011

Maturity (months)

Y
ie
ld

3 6 12 24 36 60

0.
0

0.
5

1.
0

1.
5

Data DNS Anchored DNS

Notes: The figure shows the 12-month-ahead yield curve forecast implied by the DNS model
and the corresponding anchored forecast made before and after the FOMC Statement of August
9, 2011, together with the actual yield curve realization.
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Figure 6. Time-varying performance of anchored and DNS forecasts
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Table 1. Critical values for testing the condition in Proposition 1 (kδ,α)

α δ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05 3.176 2.938 2.770 2.624 2.475 2.352 2.248 2.080 1.975
0.10 2.928 2.676 2.482 2.334 2.168 2.030 1.904 1.740 1.600
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Table 2. Relative MSFEs of anchored forecasts

Maturity Anchored vs DNS Anchored vs RW
h=3 h=6 h=9 h=12 h=3 h=6 h=9 h=12

3 0.42∗∗∗ 0.58∗ 0.70 0.83 0.79∗∗∗ 0.84∗ 0.90 1.00

6 0.58∗∗∗ 0.66∗∗∗ 0.74∗ 0.84 0.71∗∗∗ 0.77∗∗∗ 0.83∗ 0.91

9 0.66∗∗ 0.70∗∗ 0.77 0.87 0.78∗∗ 0.81∗∗ 0.86 0.93

12 0.72∗ 0.74∗ 0.79 0.89 0.84∗ 0.85∗ 0.89 0.96

15 0.77 0.77 0.81 0.91 0.88 0.88 0.92 0.99

18 0.80 0.80 0.83 0.93 0.90 0.91 0.95 1.02

21 0.81 0.82 0.85 0.94 0.93 0.94 0.99 1.06

24 0.82 0.84 0.87 0.96 0.95 0.97 1.02 1.09

30 0.84 0.86 0.90 0.98 0.98 1.02 1.09 1.17

36 0.84 0.89 0.92 1.01 1.02 1.07 1.16 1.24

48 0.86 0.92 0.96 1.04 1.07 1.13 1.26 1.35

60 0.88 0.95 0.99 1.07 1.07 1.14 1.28 1.40

72 0.92 0.98 1.02 1.10 1.03 1.11 1.25 1.37

84 0.97 1.02 1.06 1.12 1.00 1.07 1.18 1.30

96 1.04 1.06 1.10 1.15 1.01 1.04 1.11 1.21

108 1.10 1.11 1.14 1.17 1.08 1.03 1.05 1.12

120 1.15 1.15 1.17 1.19 1.20 1.06 1.02 1.05

Notes: The table reports the ratios of MSFE for the models considered. The asterisk indicates
significance according to the Diebold and Mariano (1995) test of equal accuracy against the
alternative that the anchored forecast is more accurate (’***’ at the 1%, ’**’ at the 5%, and
’*’ at the 1%). The test was implemented using an HAC estimator with h − 1 as truncation
parameter.
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Table 3. Relative MSFEs of anchored forecasts. Restricted sample: 1980:01-2008:12.

Maturity Anchored vs DNS Anchored vs RW
h=3 h=6 h=9 h=12 h=3 h=6 h=9 h=12

3 0.47∗∗∗ 0.62∗∗ 0.72 0.83 0.77∗∗∗ 0.82∗∗ 0.88 0.96

6 0.61∗∗∗ 0.68∗∗∗ 0.75∗ 0.84 0.70∗∗∗ 0.76∗∗∗ 0.81∗ 0.88

9 0.67∗∗∗ 0.72∗∗ 0.78 0.86 0.76∗∗∗ 0.80∗∗ 0.84 0.90

12 0.71∗∗ 0.75∗ 0.80 0.88 0.81∗∗ 0.83∗ 0.87 0.92

15 0.75∗ 0.78 0.82 0.90 0.84∗ 0.86 0.89 0.94

18 0.78 0.80 0.84 0.92 0.87 0.89 0.92 0.96

21 0.80 0.82 0.86 0.93 0.89 0.91 0.94 0.99

24 0.82 0.84 0.88 0.95 0.91 0.93 0.97 1.01

30 0.84 0.87 0.91 0.98 0.95 0.98 1.03 1.06

36 0.85 0.90 0.94 1.01 0.99 1.02 1.08 1.11

48 0.87 0.93 0.99 1.05 1.04 1.08 1.16 1.20

60 0.89 0.96 1.03 1.09 1.04 1.10 1.20 1.25

72 0.92 0.99 1.08 1.13 1.01 1.09 1.20 1.26

84 0.95 1.02 1.12 1.17 0.98 1.05 1.18 1.24

96 1.00 1.06 1.17 1.21 0.96 1.02 1.14 1.20

108 1.05 1.10 1.21 1.24 1.00 1.01 1.11 1.16

120 1.09 1.13 1.25 1.26 1.09 1.03 1.10 1.13

Notes: The table reports the ratios of MSFE for the models considered. The asterisk indicates
significance according to the Diebold and Mariano (1995) test of equal accuracy against the
alternative that the anchored forecast is more accurate (’***’ at the 1%, ’**’ at the 5%, and
’*’ at the 1%). The test was implemented using an HAC estimator with h − 1 as truncation
parameter.
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