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Abstract. For Γ = PSL2(Z) the hyperbolic circle problem aims to es-
timate the number of elements of the orbit Γz inside the hyperbolic disc
centered at z with radius cosh−1(X/2). We show that, by averaging
over Heegner points z of discriminant D, Selberg’s error term estimate
can be improved, if D is large enough. The proof uses bounds on spec-
tral exponential sums, and results towards the sup-norm conjecture of
eigenfunctions, and the Lindelöf conjecture for twists of the L-functions
attached to Maaß cusp forms.

1. Introduction

For Γ = PSL2(Z) we consider the standard point-pair invariant on the
upper half-plane H given by

u(z, w) =
|z − w|2

4=(z)=(w)
.

The hyperbolic circle problem aims to find good estimates, as X →∞, on

(1.1) N(z, w,X)− πX

vol(Γ\H)
,

where

N(z, w,X) = #{γ ∈ Γ; 4u(γz, w) + 2 ≤ X}.
The best known estimate in this direction is due to Selberg who proved that

(1.2) N(z, w,X)− πX

vol(Γ\H)
= O(X2/3).

The corresponding estimate for the error term of the hyperbolic circle prob-
lem modified to exclude small eigenvalues is also known for any cofinite
group and has not been improved for any group or any z, w. The conjec-
tural bound for the error term O(X1/2+ε) would be optimal except for Xε

possibly being replaced by powers of logX, see [27].
We investigate averages of (1.1) with z = w when z averages over the set

of Heegner points: consider the Γ-orbits of binary quadratic forms

ax2 + bxy + cy2
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of negative fundamental discriminant b2 − 4ac = D < 0, and with a > 0.
Given such an orbit one associates the corresponding Heegner point in H
given by

z =
−b+ i

√
|D|

2a
,

where we choose the representative of the orbit such that z lies in the usual
fundamental domain of Γ. Denote the set of Heegner points of discriminant
D by ΛD and the class number by h(D) = #ΛD. The order of growth of
h(D) is controlled by the estimates

(1.3) |D|1/2−ε �ε h(D)� |D|1/2 log |D|,
where the lower bound is a strong but ineffective result of Siegel, see e.g. [8,
Ch. 21].

Duke [9] showed that Heegner points become equidistributed on Γ\H, i.e.
for f a smooth compactly supported function on Γ\H we have, as D →∞,

(1.4)
1

h(D)

∑
z∈ΛD

f(z)→ 1

vol(Γ\H)

∫
Γ\H

fdµ(z).

In [26, Th. 1.1 ] we have improved on Selberg’s bound (1.2) when we average
the center locally in Γ\H. Therefore, we may also suspect an improvement in
(1.2) if we make a discrete average over Heegner points. Our main theorem
confirms that this is indeed the case.

Theorem 1.1. Let f be a smooth compactly supported non-negative function
on Γ\H. Then

1

h(D)

∑
z∈ΛD

f(z)

(
N(z, z,X)− πX

vol(Γ\H)

)
= Of,ε(X

7/12+ε+X4/5+εD−4/165+ε).

Remark 1.2. We notice that for D ≥ X11/2+ε this is better than what we
would get using Selberg’s bound (1.2).

Let λj = 1/4 + t2j , tj ≥ 0, j ≥ 1 be the cuspidal eigenvalues of the

automorphic Laplacian on L2(Γ\H) listed with multiplicity, and uj the cor-
responding Hecke–Maaß cusp forms normalized to have L2-norm equal to
one. We remark that the cuspidal eigenvalues satisfy Weyl’s law, see e.g.
[18, Eq. (11.5)]

(1.5)
∑
|tj |≤T

1 =
vol(Γ\H)

4π
T 2 +O(T log T ).

We also set λ0 = 0, t0 = i/2 to correspond to the constant eigenfunction

(vol(Γ\H))−1/2.
Let L(uj × χD, 1/2) be the central value of the L-function of uj twisted

by the odd primitive quadratic character χD with conductor |D|.
Let u be a Maaß cusp form with eigenvalue 1/4+t2 or an Eisenstein series

E(z, 1/2 + it). In our proof of Theorem 1.1 we are using approximations to
the following three conjectures:

(C1) The Lindelöf conjecture for L(u× χD, 1/2):

L(u× χD, 1/2) = Oε(((1 + |t|)D)ε).
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(C2) The sup-norm conjecture, i.e.

sup
z∈K
|u(z)| = OK,ε((1 + |t|)ε)

for any compact set K.
(C3) Bounds on spectral exponential sums∑

|tj |≤T

Xitj = Oε(X
ε(1 + T )1+ε),

see [26].

Assuming these three conjectures we may improve Theorem 1.1 and prove
the following conditional result:

Theorem 1.3. Let f be a smooth compactly supported non-negative function
on Γ\H. Then assuming (C1), (C2), and (C3) we have

1

h(D)

∑
z∈ΛD

f(z)

(
N(z, z,X)− πX

vol(Γ\H)

)
= Of,ε(X

1/2+ε+X4/5+εD−1/10+ε).

Remark 1.4. Theorem 1.3 implies that if D ≥ X4/3+ε then this is better
than what we would get using Selberg’s bound (1.2), and if D ≥ X3 we have

the bound O(X1/2+ε).

In order to prove the unconditional bound in Theorem 1.1 we use approx-
imations to (C1), (C2), and (C3). For an approximation to (C1) we use a
recent theorem by Young [36] on the cubic moment of the L-function over
short sums, see Theorem 2.1 below. To address (C3) we use the following
estimate due to Sarnak and Luo [23, Eq. (58)]:

(1.6)
∑
|tj |≤T

Xitj = Oε(X
1/8T 5/4+ε).

As an approximation to (C2) we prove the following average bound, which
may be of independent interest:

Theorem 1.5. We have

T−2
∑

1≤tj≤T
‖uj‖2∞ = Oε(T

2(1/2−1/8)+ε).

Remark 1.6. This shows that on average ‖uj‖∞ is of size O(|t|3/8+ε). This

is an improvement on average of the individual bound ‖uj‖∞ = O(|t|5/12+ε)
due to Iwaniec and Sarnak [20, Eq. (A.15)]. The same average bound on sup
norms over compact sets follows from recent results of Jung, in particular

[22, Cor. 1.15]. The individual bound ‖uj‖∞ = O(|t|3/8+ε) would follow if
we could prove expected lower bounds on the mean square for the Hecke
eigenvalues, see [20, Remark 1.6]. Moreover, Young [37, Th. 1.1] proved the
following bound for the sup-norm of Eisenstein series on a compact set K:

(1.7) ‖E(z, 1/2 + it)‖∞,K = OK,ε((1 + |t|)1/2−1/8+ε).

This has more recently been improved to exponent 1/2− 1/6 + ε by Blomer
[2, Th. 1.1].
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Remark 1.7. The situation is much easier when we fix w and average over
z ∈ ΛD. We get the following estimate:

(1.8)
1

h(D)

∑
z∈ΛD

(
N(z, w,X)− πX

vol(Γ\H)

)
= Oε(X

1/2+ε)

for D ≥ X3. On GRH we have (1.8) for D ≥ X1. We omit the proof. It is
simpler than the proof of Theorem 1.1, because we can separate the average
over z ∈ ΛD for uj(z) and E(z, 1/2 + it) from uj(w) and E(w, 1/2 + it) in
the pre-trace formula.

Acknowledgements. We thank Gergely Harcos and Péter Maga for useful
comments on sup-norm bounds. Also we thank the anonymous referees for
useful comments, and for informing us about the recent work of Blomer [2]
and Jung [22].

2. Equidistribution of Heegner points

Duke’s proof of the equidistribution of Heegner points (1.4) involves non-
trivial bounds on Fourier coefficients of half-integral weight Maaß forms and
uses the Kuznetsov formula. The technique is due to Iwaniec [16], who
proved non-trivial bounds for the Fourier coefficients of holomorphic forms
of half-integral weight by using the Petersson formula to relate them to
Kloosterman sums K(m,n, c) and exhibited cancellations for sums of these
as c varies. Duke proved the following bounds on the average of eigenfunc-
tions, the so-called ‘Weyl sums’, see [9, p. 89]:

1

h(D)
Wc(D, tj) =

1

h(D)

∑
z∈ΛD

uj(z)�ε |tj |AD−1/28+ε,

1

h(D)
WE(D, t) =

1

h(D)

∑
z∈ΛD

E(z, 1/2 + it)�ε |t|AD−1/28+ε.

One can then use standard approximation techniques to prove (1.4).
To improve on these bounds we use the fact that Weyl sums are connected

to L-functions. We assume that the Maaß cusp forms uj are also eigenfunc-
tions of all Hecke operators. We quote [36, Eq. (2.2)] for the following
Waldspurger–Zhang type formula:

(2.1) |Wc(D, tj)|2 =

√
|D|L(uj × χD, 1/2)L(uj , 1/2)

2L(sym2uj , 1)
.

Similarly we have

(2.2) WE(D, t) =

(√
|D|
2

)1/2+it
L(1/2 + it, χD)ζ(1/2 + it)

ζ(1 + 2it)
,

see [19, Eq. 22.45].
Young recently proved the following bound:

Theorem 2.1. [36, Thm. 1.1] For the third moment of twists of the L-
functions of Maaß forms we have∑
T≤tj≤T+1

L(uj × χD, 1/2)3 +

∫ T+1

T
|L(1/2 + it, χD)|6 �ε (|D| (1 + T ))1+ε.



HEEGNER POINTS, HYPERBOLIC CIRCLE PROBLEM 5

In our formulation we have used the positivity of central values, see [21,
Th. 1] to restrict to Maaß forms for the full modular group.

Lemma 2.2. The following estimates on short averages of the Weyl sums
hold:

1

h(D)2

∑
T≤tj≤T+1

|Wc(D, tj)|2 �ε D
− 1

6
+ε(1 + T )1+ε,

1

h(D)2

∫ T+1

T
|WE(D, t)|2dt�ε D

− 1
6

+ε(1 + T )1+ε.

Proof. It follows from the work of Ivić [15, Eq. (1.9)] that

(2.3)
∑

T≤tj≤T+1

L(uj , 1/2)3 = Oε((1 + T )1+ε)

and the bound

(2.4)

∫ T+1

T
|ζ(1/2 + it)|6 dt = Oε((1 + T )1+ε)

follows from the classical Weyl estimate on the Riemann zeta function on
the critical line, see e.g. [35, Th. 5.5].

We will also need lower bounds

(2.5) L(sym2uj , 1)�ε |tj |−ε , and ζ(1 + it)� log log |t| / log |t| .

The first bound is due to Lockhart and Hoffstein [14, Th. 0.2], and the
second is classical [35, Th. 5.17].

We use first (2.1) and (2.2) and the Hölder inequality with exponents
(1/3, 1/3, 1/3) so that we can apply Theorem 2.1. With the help of (2.3),
(2.4), (2.5), and (1.5) we get∑

T≤tj≤T+1

|Wc(D, tj)|2 �ε (D
5
6 (1 + T ))1+ε,

∫ T+1

T
|WE(D, t)|2dt�ε (D

5
6 (1 + T ))1+ε.

Using the lower bound in (1.3) for h(D), we establish the claim. �

Remark 2.3. We notice that on GRH, or more precisely (C1), we may

replace D−1/6+ε by D−1/2+ε in both bounds.

3. Sup-norm estimates

The general bound for the sup-norm is

(3.1) ‖uj‖∞ = O((1 + |tj |)1/2),

see e.g. [32] or Theorem 4.5 below. This is sometimes called the convexity
bound for sup-norms. In a ground-breaking work Iwaniec and Sarnak [20]
showed that this bound may be improved for PSL2(Z) to

(3.2) ‖uj‖∞ = Oε((1 + |tj |)1/2−1/12+ε).
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Denote by ‖u‖∞,K the supremum of a function u restricted to the set K.
They also conjectured that if we restrict to a compact set K the sup-norm
is essentially bounded:

‖uj‖∞,K = Oε((1 + |tj |)ε).

In [20] the restriction to compact sets is not explicit but is now known to
be needed, see [31]. More precisely we have

‖uj‖∞ ≥ Cε(1 + |tj |)1/6−ε.

This is a purely analytic fact that follows from the properties of K-Bessel
functions.

After the work of Iwaniec and Sarnak there has been a lot of results about
subconvexity of the sup-norm in the level aspect [3], weight aspect [7], for
holomorphic forms, hybrid bounds [34, 29], as well as other groups [5, 24].
The bound (3.2) has not been improved.

We now discuss average bounds on sup-norms. In particular we prove
Theorem 1.5, which states that on average in a window of size T we can
improve (3.2) to ‖uj‖∞ = O((1 + |tj |)1/2−1/8+ε).

The Maaß cusp forms have Fourier expansions

uj(z) =
∑
n6=0

ρj(n)
√
yKitj (2π |n| y)e2πinx.

If uj is also a Hecke eigenform with Hecke eigenvalues λj(n), then ρj(n) =
ρj(sign(n))λj(|n|). It is known [10, Prop. 19.6] that

(3.3)
∑
n≤x
|λj(n)|2 = Oε(x

1+ε |tj |ε).

Moreover, we set ρj(n) = cosh(πtj/2)vj(n), so that vj(n) = vj(1)λj(n). It
is known [17, 14] that

(3.4) |tj |−ε �ε |vj(1)| �ε |tj |ε .

Proof of Theorem 1.5. This is an adaptation of the proof for individual
bounds in [20]. We quote [4, p. 678] for the following crucial inequality:
assume that T ≤ tj ≤ T + 1. Then

|uj(z)|2
∣∣∣∣∣∣
∑
l≤L

αlλj(l)

∣∣∣∣∣∣
2

�ε (LT )ε

T∑
l≤L
|αl|2 + (L+ y)T 1/2

(∑
l≤L
|αl|

)2
for every sequence αn. This improves on [20, Eq. (A.12)] by replacing yL1/2

by y.
Now we choose a smooth non-negative function h supported in [1, 2] with

integral
∫
R h(t)dt = 1, and consider hN (t) = h(t/N). By choosing αn =

hN (n)λj(n) |vj(1)|2 and using Cauchy–Schwarz on the last sum, we arrive
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at

|uj(z)|2
∣∣∣∣∣∣
∑
n≤2N

hN (n) |vj(n)|2
∣∣∣∣∣∣
2

�ε (TN)ε
(
T + (N + y)T 1/2N

) ∑
n≤2N

hN (n)2 |vj(n)|2(3.5)

�ε (NT )ε
(
T + (N + y)T 1/2N

)
N,

where we have used (3.3) and (3.4). Luo and Sarnak [23, p. 233] proved
Iwaniec’ mean Lindelöf conjecture for the Rankin–Selberg convolution in
the spectral aspect, which allowed them to prove that

(3.6)
2N∑
n=1

hN (n) |vj(n)|2 =
12

π2
N + r(tj , N),

where the reminder is of size N1/2 on average:

(3.7)
∑
tj≤T
|r(tj , N)| = Oε(T

2+εN1/2).

When we square the right-hand side of (3.6), the term (r(tj , N))2 may be
dropped by positivity and we find
(3.8)

|uj(z)|2 �ε N
−2
(

(NT )ε
(
T + (N + y)T 1/2N

)
N + |uj(z)|2N |r(tj , N)|

)
.

We first consider the set AN = {z ∈ Γ\H; y ≤ N}. We use the subconvexity
bound (3.2) on uj on the right-hand side of (3.8) to see that
(3.9)

‖uj‖2∞,AN
�ε N

−2
(

(NT )ε
(
T +NT 1/2N

)
N + T 2(1/2−1/12)N |r(tj , N)|

)
.

Averaging over tj we find by (3.7) and Weyl’s law (1.5) that∑
1≤tj≤T

‖uj‖2∞,AN
�ε (NT )εN−2

(
T 3N +N3T 5/2 + T 2+2(1/2−1/12)N3/2

)
.

We choose N = T 1/4 so that the right-hand side is O(T 3−1/4+ε).
For the complement of the set AN , i.e. for BN = {z ∈ Γ\H; y > N} we

argue as follows: we have set N = T 1/4. We bound ‖uj‖2∞,BN
individually

as O(T 2(1/2−1/8)+ε) using the following simple upper bound

|uj(z)| �ε t
ε
j

(
(tj/y)1/2 + t

1/6
j

)
,

see [31, Lemma A.1′]. We finish the proof by noticing that

‖uj‖2∞ = max(‖uj‖2∞,AN
, ‖uj‖2∞,BN

).

�

If we consider sup-norms of averages instead of averages of sup-norms we
have much better bounds.
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Proposition 3.1. Let {uj} be the L2-normalized Maaß cusp forms for
PSL2(Z). Then ∥∥∥ ∑

T≤tj≤2T

|uj(z)|2
∥∥∥
∞

= O(T 2).

Proof. Notice first that, if we restrict z to a compact set K the inequality
in [18, Prop. 7.2] gives ∑

T≤tj≤2T

|uj(z)|2 = O(T 2),

where the implied constant depends on K and the group, but not on z. Even
if we do not restrict to a compact set the same bound holds for y ≤ 2T , say,
by the same inequality. To bound the average for y ≥ 2T we use the decay
properties of the K-Bessel function. We use the integral representation

Kit(y) =

∫ ∞
0

e−y cosh(v) cosh(itv)dv,

see [18, p. 205]. Fix y ≥ 0. For t real we have | cosh(itv)| ≤ 1. We use
cosh(v) ≥ 1 + v2/2 to get

|Kit(y)| ≤
∫ ∞

0
e−y(1+v2/2)dv ≤

√
πe−y√
2
√
y
.

The bound

ρj(n) = O(eπtj/2
√
|n|tεj)

follows trivially from (3.3) and (3.4). We can now prove good decay prop-
erties for |uj | when y is large compared to tj , e.g. when y > 2T and
T ≤ tj ≤ 2T we have

|uj(z)| = O

( ∞∑
n=1

eπtj/2
√
ntεj
√
y
e−2πny

√
ny

)
= O(e−T ).

The claim follows using Weyl’s law (1.5). �

Remark 3.2. We note that the proof of Proposition 3.1 is much simpler
than that of Theorem 1.5. The only input is the use of the local Weyl law
[18, Prop. 7.2] and bounds on the Fourier coefficients that are uniform in tj
and n.

We also need a similar result for the Eisenstein series.

Proposition 3.3. Let K be a compact set on Γ\H. Then

∥∥∥∥∫ 2T

T
|E(z, 1/2 + it)|2 dt

∥∥∥∥
∞,K

= O(T 2).

Proof. This follows directly from [18, Prop. 7.2]. �
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4. Bounds for weight k eigenfunctions.

In this section we discuss bounds on weight k eigenfunctions. We need
this later when we estimate certain inner products of eigenfunctions. This is
important in order to bound derivatives of cusp forms and Eisenstein series
in the proof of Theorem 5.1 below.

For the following discussion we adopt the notation and terminology from
Fay [11]. In this section we allow Γ to be any discrete subgroup of PSL2(R)
unless explicitly stated otherwise.

Let k be an integer and let Fk be the space of functions f : H → C
satisfying

f(γz) =

(
cz + d

cz̄ + d

)k
f(z), γ ∈ Γ.

The k-Laplacian is defined by

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− 2iky

∂

∂x
.

We write the eigenvalue equation as ∆ku+ s(1− s)u = 0 with s = 1/2 + it.
The raising and lowering operators are defined on Fk by

Kk = (z − z̄) ∂
∂z

+ k, Lk = (z̄ − z) ∂
∂z̄
− k.

It is well-known that if f ∈ Fk is differentiable, then Kkf ∈ Fk+1, while
Lkf ∈ Fk−1. Moreover, ∆k+1Kk = Kk∆k, ∆kLk+1 = Lk+1∆k+1. It is clear
that if f is an eigenfunction of ∆k with eigenvalue λ, i.e. (∆k + λ)f = 0,
then Kkf (resp. Lkf) is an eigenfunction of ∆k+1 (resp. ∆k−1) with the
same eigenvalue. For f ∈ Fk and g ∈ Fl we have the product rules: if k, l
are integers, then

(4.1) Kk+l(fg) = (Kkf)g + f(Klg), Lk+l(fg) = (Lkf)g + f(Llg).

We use polar coordinates centered at a point z0, defined through

z − z0

z − z̄0
= tanh(r/2)eiθ,

with r = r(z, z0) the hyperbolic distance and θ = θ(z, z0) ∈ [0, 2π]. Set
v = cosh r. We remark that in polar coordinates dµ(z) = sinh rdrdθ. We
need the radial expansion of f , given in Theorem 1.2 in [11]. For f an
eigenfunction of ∆k with eigenvalue s(1− s) on a disk r(z, z0) < R we have

(4.2) f(z)

(
z − z̄0

z0 − z̄

)k
=
∑
n∈Z

fn(z0)Pns,k(z, z0)einθ

with Pns,k(z, z0) = Pns,k(r) given by

Pns,k(r) =

(
v − 1

v + 1

)|n|/2( 2

1 + v

)s
F (s−kn, s+kn+|n|, 1+|n|; (v−1)/(v+1)).

Here F (a, b, c; z) is the Gauss hypergeometric function and kn = kn/|n| for
n 6= 0 and k0 = k. We can recover the coefficients fn(z0) by the formula

(4.3) n!fn(z0) = n!f̄−n(z0) = Kk+n−1Kk+n−2 · · ·Kk+1Kkf(z0), n > 0,

see [11, Eq. 23].
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In this section we will prove the following lemma, which is crucial in the
proof of Theorem 5.1.

Lemma 4.1. Let f ∈ Fk be an eigenfunction of ∆k with eigenvalue s(1− s)
and let C be a compact subset of Γ\H. Then there exists a compact subset
C ′ of Γ\H containing C such that

‖Kkf‖∞,C �k |s| ‖f‖∞,C′ , ‖Lkf‖∞,C �k |s| ‖f‖∞,C′ .

Proof. We set h(z) = f(z)(z − z̄0)k/(z0 − z̄)k. Since Pns,k(z0, z0) = 0 for

n 6= 0 and P 0
s,k(z0, z0) = 1, we have f(z0) = f0(z0). By (4.2) we get∫ 2π

0
h(z)e−inθ dθ = 2πfn(z0)Pns,k(z, z0).

Let A = A(r1, r2) = {z; r1 ≤ r(z, z0) ≤ r2} be a disc or annulus centered at

z0. We multiply by Pns,k(r), and integrate the radial variable to get∫
A
h(z)e−inθPns,k(z, z0) dµ(z) =

∫
A
fn(z0)|Pns,k(z, z0)|2 dµ(z).

This implies the crucial identity

(4.4) fn(z0) =

∫
A h(z)e−inθPns,k(z, z0) dµ(z)∫

A |P
n
s,k(z, z0)|2 dµ(z)

.

We apply (4.4) for n = 1 and choose A to be the disc of radius c|s|−1, for a
sufficiently small constant c to be chosen. We get

|f1(z0)| ≤
‖h‖∞,A

∫
A |P

1
s,k(r)|dµ(z)∫

A |P
1
s,k(r)|2dµ(z)

.

If we can prove that

(4.5)

∫
A
|P 1
s,k(r)|dµ(z)�k |s|−3,

∫
A
|P 1
s,k(r)|2dµ(z)�k |s|−4,

then, by (4.3), we have |Kkf(z0)| �k |s| ‖f‖∞,A . By compactness of C, we

can find a compact set C ′ ⊂ H containing C such that

‖Kkf‖∞,C �k |s| ‖f‖∞,C′ .

To prove (4.5) we need to study the asymptotics of Pns,k(r) jointly for r small

and t = =(s)→∞. For simplicity let n be nonnegative. We can approximate
the hypergeometric function F (a, b, c; z) by its Taylor polynomials, see [12,
Eq. (4.13), (4.14)]:

F (a, b, c; z) =

J−1∑
j=0

(a)j(b)j
(c)jj!

zj +O

(∣∣∣∣(a)J(b)Jz
J

(c)JJ !

∣∣∣∣)
uniformly in a, b, c as long as

(4.6) |z|max
j≥0

∣∣∣∣(a+ j)(b+ j)

(c+ j)(j + 1)

∣∣∣∣ ≤ 1

2
.
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It is easily verified that if |r| < c|s|−1, then the condition of (4.6) is satisfied
and we can apply the Taylor series for F (a, b, c, z) with J = 2 to get

Pns,k(r) =
(r

2

)n(
1 +

(
(s− k)(s+ k + n)

4(1 + n)
− s

4
− n

12

)
r2 +Ok(s

4r4)

)
,

cf. [11, Eq. 17]. We specialize to n = 1 in the simpler form

P 1
s,k(r) = (r/2)(1 +Ok(s

2r2)).

We have

(4.7)

∫ c/|s|

0
ra sinh rdr ∼ ca+2 1

(a+ 2)|s|a+2
, |s| → ∞.

To investigate (4.5) we integrate in the θ variables. Then we apply (4.7) for
a = 1 and a = 3 to get the first inequality in (4.5). For the second inequality
we apply it for a = 2, 4, 6. The terms with a = 4, 6 get multiplied by |s|2
and |s|4 respectively. All three terms are of the same order of decay, i.e.
|s|−4. However, when we take into account the constant in the Ok and the
powers of c, we can choose c sufficiently small to make the first term the
dominant term.

Finally we prove ‖Lkf‖∞,C �k |s| ‖f‖∞,C′ : if f ∈ Fk, then f̄ ∈ F−k. We

only need to observe that Lk = K−k, see [11, Eq. (3)]. �

Remark 4.2. Let f ∈ Fk. For j = 1, 2, . . . ,m let Aj be either a lowering
or a raising operator such that AmAm−1 · · ·A1f makes sense. Repeated use
of Lemma 4.1 shows that

‖AmAm−1 · · ·A1f‖∞,C �m,k |s|m ‖f‖∞,C′ .

We now consider L2-norms of eigenfunctions. We denote by ‖f‖2,C the L2-

norm of f restricted to C. Assume now that Γ = PSL2(Z). Moreover, for the
corresponding Eisenstein series Ek(z, s) of weight k we denote EYk (z, s) the
function Ek(z, s)− χ[Y,∞)(y)(ys + φk(s)y

1−s). It is well-known that φ0(s) =
ξ(2s− 1)/ξ(2s), where ξ(s) is the completed Riemann zeta function.

Lemma 4.3. Let C be a compactly supported set. Assume that C ⊂ {z ∈
H;=(z) ≤ Y }. Then

(i) for f ∈ Fk an L2-eigenfunction of ∆k with eigenvalue 1/4 + t2 we
have

‖Kkf‖2 ,�k |t| ‖f‖2 , ‖Lkf‖2 �k |t| ‖f‖2 ,

(ii) for a weight k Eisenstein series Ek(z, s) we have

‖KkEk(·, 1/2 + it)‖2,C �k |t|
∥∥EYk (·, 1/2 + it)

∥∥
2
,

‖LkEk(·, 1/2 + it)‖2,C �k |t|
∥∥EYk (·, 1/2 + it)

∥∥
2
,

for |t| ≥ 1.

Proof. The claim in (i) follows from [28, Satz 3.1].
For (ii) we note that

KkEk(z, s) = (s+ k)Ek+1(z, s), LkEk(z, s) = (s− k)Ek−1(z, s),
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cf. [28, Eq. (10.8), (10.9)]. It suffices to consider the L2-norms of EYk±1(z, 1/2+
it). The Maaß–Selberg relations for Eisenstein series of weight k give

∥∥EYk (·, 1/2 + it)
∥∥2

= −
φ′k(1/2 + it)

φk(1/2 + it)
+OY (1),

see [28, Lemma 11.2, p. 301]. Moreover, see [28, Eq. (10.26)], we have

(4.8) φk+1(s) =
k + 1− s
k + s

φk(s).

This gives

∥∥EYk+1(·, 1/2 + it)
∥∥2

= −
φ′k(1/2 + it)

φk(1/2 + it)
+OY (1) =

∥∥EYk (·, 1/2 + it)
∥∥2

+OY (1).

It follows recursively from (4.8) that −φ′k(1/2+it)

φk(1/2+it) = −φ′0(1/2+it)
φ0(1/2+it) + o(1), as

|t| → ∞. Since

(4.9) − φ′0(1/2 + it)

φ0(1/2 + it)
= 2<Γ′

Γ
(1/2 + it) +O

(
ζ ′(1 + it)

ζ(1 + it)

)
+O(1),

the result follows using Stirling’s formula, which gives Γ′(s)/Γ(s) ∼ log s,
and Weyl’s bound ζ ′(1 + it)/ζ(1 + it)� log t/ log log t. �

Remark 4.4. Let f be an L2-eigenfunction of ∆k or a weight k Eisenstein
series Ek(z, s). For j = 1, 2, . . . ,m let Aj be either a lowering or a raising
operator such that AmAm−1 · · ·A1f makes sense. Then repeated use of
Lemma 4.3(i) shows that

‖AmAm−1 · · ·A1f‖2 �m,k |s|m ‖f‖2 ,

if f is an L2-eigenfunction. Moreover, if f is an Eisenstein series, then
AmAm−1 · · ·A1f is another Eisenstein series of appropriate weight, times a
polynomial of degree m is s. A similar argument to Lemma 4.3(ii) gives

‖AmAm−1 · · ·A1f‖2,C �m,k |s|m
∥∥fY ∥∥

2
,

Here C is any compactly supported set.

For completeness we also state and prove the convexity bound for weight
k eigenfunctions:

Theorem 4.5. Let f ∈ Fk be an eigenfunction of ∆k with eigenvalue s(1−s)
and let C be a compact subset of Γ\H. Then there exists a compact subset
C ′ of Γ\H containing C such that

‖f(z)‖∞,C �C,k |t|1/2
(∫

C′
|f(z)|2dµ(z)

)1/2

.
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Proof. We imitate the argument in [31]. We use (4.4) for n = 0 and apply
the Cauchy–Schwarz inequality to get:

|f(z0)| =

∣∣∣∣∣
∫
A h(z)P 0

s,k(z, z0) dµ(z)∫
A |P

0
s,k(z, z0)|2 dµ(z)

∣∣∣∣∣
≤

(
∫
A |h(z)|2 dµ(z))1/2(

∫
A |P

0
s,k(z, z0)|2 dµ(z))1/2∫

A |P
0
s,k(z, z0)|2 dµ(z)

=
(
∫
A |f(z)|2 dµ(z))1/2

(
∫
A |P

0
s,k(z, z0)|2 dµ(z))1/2

� |t|1/2
(∫

A
|f(z)|2 dµ(z)

)1/2

,

if we can show for some annulus A that

(4.10)

∫
A
|P 0
s,k(z, z0)|2 dµ(z)� |t|−1.

To prove this we need the asymptotic behavior of P 0
s,k(r) as =(s)→∞, <(s)

fixed and r > r0, see [11, Eq. 27]:

(4.11) P 0
1/2+it,k(r) =

2

|t|1/2
√

2π sinh r
cos(rt− π/4) +O(|t|−1).

Since the asymptotics in (4.11) hold for r away from 0 it is convenient to
work in an annulus A = A(r1, r2) = {z; r1 < r(z, z0) < r2} centered at z0.
We have∫ r2

r1

|P 0
s,k(r)|2 sinh rdr =

∫ r2

r1

(
4

|t|2π sinh r
cos2(rt− π/4) +O(|t|−3/2)

)
sinh rdr

=
r2 − r1

π|t|
+O(|t|−3/2).

We integrate in polar coordinates to get (4.10).
We use the same r1 and r2 for all z0 ∈ C to get a compact set K ′ ⊂ H

such that

‖f(z)‖∞,C �C |t|1/2
(∫

K′
|f(z)|2dµ(z)

)1/2

.

Finally by compactness we can cover K ′ by a finite set of Γ-translates of a
compact set C ′ ⊂ Γ\H. �

5. Squares of eigenfunctions and Heegner points

Let f be a smooth compactly supported function on Γ\H. In order to
use the results on equidistribution of Heegner points from section 2 we need
bounds on the coefficients in the spectral expansion of f |uj |2 and the similar
coefficients coming from Eisenstein series.

Very strong bounds (with precise exponential decay in tk) are known on〈
|uj |2 , uk

〉
(see [30, 25, 1]) but unfortunately they do not seem uniform

enough for our purposes. In particular for a given tj the bounds only hold
for tk large enough (depending on tj). In this section we obtain much weaker
bounds for similar expressions that hold uniformly in both tj and tk.
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Theorem 5.1. Let f be a smooth compactly supported function on Γ\H with
support K. For any b > 0 we have the bound〈

f |φ1|2 , φ2

〉
�b,f

(
1 + |t1|
1 + |t2|

)b
‖φ1‖∞,K ‖φ1‖2 ‖φ2‖2 ,

where, for j = 1, 2, the functions φj , equal uj with eigenvalue 1/4 + t2j or

EY (z, 1/2 + itj), where Y is chosen such that the set {z ∈ Γ\H; y ≤ Y }
contains K in its interior.

Proof. By interpolation, using min(x, y) ≤ xty1−t for 0 ≤ t ≤ 1, it suffices
to prove the claim for b = 2n, where n is a positive integer. We have

(1/4 + t22)n
〈
f |φ1|2 , φ2

〉
=
〈
f |φ1|2 , (−∆)nφ2

〉
=
〈

(−∆)nf |φ1|2 , φ2

〉
.

In case φ2 = EY (·, 1/2 + it2) we have used the fact that on the support of f
we have EY (·, 1/2+ it2) = E(·, 1/2+ it2). We see that the statement follows
if we can prove that∥∥∥∆nf |φ1|2

∥∥∥
2
�f (1/4 + t21)n ‖φ1‖∞,K ‖φ1‖2 .

But since ∆n consists of compositions of n copies of L1K0 this follows from
the Leibniz’ rule (4.1), Remark 4.2, and Remark 4.4, and the compactness
of the support of f . �

The following theorem makes explicit the rate of equidistribution of Heeg-
ner points with the test function f |ψ|2 for ψ an eigenfunction.

Theorem 5.2. Let Γ = PSL2(Z) and let f be a function on Γ\H with
compact support K. Then

1

h(D)

∑
z∈ΛD

f(z) |ψt(z)|2 =
1

vol(Γ\H)

∫
Γ\H

f |ψt|2 dµ(z)

+Of,ε(‖ψt‖∞,K D
−1/12+ε(1 + |t|)1+ε),

where either ψt(z) = E(z, 1/2 + it) or ψtj (z) = uj(z).

Before proving Theorem 5.2 we state a bound on the L2-norm of EY (·, 1/2+
it). This is one of the several places in the proof of Theorem 5.2 where
arithmeticity of the group enters. Here it enters through the growth of the
logarithmic derivative of the scattering determinant.

Lemma 5.3. Let Γ = PSL2(Z). Then∥∥EY (·, 1/2 + it)
∥∥

2
�Y

√
log(2 + |t|).

Proof. By the Maaß–Selberg relations we have∥∥EY (z, 1/2 + it)
∥∥2

= OY

(
1 +

∣∣∣∣−φ′φ (1/2 + it)

∣∣∣∣) ,
see [33, Eq. (7.42′)]. For congruence groups the scattering matrix can be
computed, and this leads to

(5.1)
−φ′

φ

(
1

2
+ it

)
= O(log (2 + |t|)),

see e.g. [13, Eq. (2.5), p. 508] for PSL2(Z). �
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Proof of Theorem 5.2. We use the spectral expansion of fψ2
t to see that

fψ2
t −

1

vol(Γ\H)

∫
Γ\H

f(z)ψt(z)
2dµ(z)

=
∑
tk 6=i/2

〈
fψ2

t , uk
〉
uk +

1

4π

∫
R

〈
fψ2

t , E(·, 1/2 + ir)
〉
E(·, 1/2 + ir)dr.

After we average over Heegner points, it suffices to show that

(5.2)
∑
tk 6=i/2

〈
fψ2

t , uk
〉Wc(D, tk)

h(D)
+

1

4π

∫
R

〈
fψ2

t , E(·, 1/2 + ir)
〉WE(D, r)

h(D)
dr

is Of,ε(‖ψt‖∞,K D−1/12+ε |t|1+ε). We bound the discrete contribution, i.e.
the sum, and notice that the continuous contribution can be bounded the
same way. By Cauchy–Schwarz we have ∑
L≤tk≤2L

〈
fψ2

t , uk
〉Wc(D, tk)

h(D)

2

≤
∑

L≤tk≤2L

∣∣〈fψ2
t , uk

〉∣∣2 ∑
L≤tk≤2L

|Wc(D, tk)|2

h(D)2

�
∑

L≤tj≤2L

∣∣〈fψ2
t , uk

〉∣∣2D−1/6+ε(1 + L)2+ε,

where we have used Lemma 2.2. We bound the sum in two different ways:
either by using Theorem 5.1 or Bessel’s inequality. Using Theorem 5.1 we
find
(5.3)

1

h(D)

∑
L≤tk≤2L

〈
fψ2

t , uk
〉
Wc(D, tk)�

(1 + |t|)b+ε

(1 + L)b
‖ψt‖∞,K D

−1/12+ε(1+L)2+ε.

We will use this for the tail of the discrete contribution in (5.2).
We also need another estimate. It follows from Lemma 5.3 for the case of

Eisenstein series and elementary considerations that

(5.4)
∥∥fψ2

t

∥∥
2
�f ‖ψt‖∞,K (1 + |t|)ε.

Using Cauchy–Schwarz, Bessel’s inequality, and (5.4) we get the estimate
(5.5)

1

h(D)

∑
L≤tk≤2L

〈
fψ2

t , uk
〉
Wc(D, tk)� ‖ψt‖∞,K (1 + |t|)εD−1/12+ε(1 + L)1+ε.

We have similar bounds for the continuous contribution. Using (5.5) for the
bulk (|tk| ≤ V ) and (5.3) for the tail (|tk| > V ) we find that for V bounded
away from zero we have

fψ2
t −

1

vol(Γ\H)

∫
Γ\H

f(z)ψt(z)
2dµ(z)

�f,b ‖ψt‖∞,K D
−1/12+ε((1 + |t|)εV 1+ε +

(1 + |t|)b

V b
V 2+ε),

when b > 2 + ε. Choosing V = (1 + |t|)b/(b−1) and b sufficiently large we
arrive at the result. �
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6. Proof of the main theorems

We now have the necessary tools to prove Theorem 1.1 and Theorem 1.3.
We start by constructing appropriate test functions for the Selberg pre-trace
formula.

6.1. The pre-trace formula. This follows our previous investigations. We
refer to [26, Section 5] for additional details. Let δ > 0 be a small parameter,
which will eventually be chosen to depend on X and D. Let

kδ(u) =
1

4π sinh2(δ/2)
1[0,cosh δ−1)/2](u),

where 1A(u) denotes the indicator function of any set A. Let Y > 0 be
defined by cosh(Y ) = X/2. This implies that 4u(z, w) + 2 ≤ X if and only if
d(z, w) ≤ Y , where d(z, w) denotes the hyperbolic distance between z and
w. Consider now

k±(u) =
(
1[0,(cosh(Y±δ)−1)/2] ∗ kδ

)
(u),

where ∗ denotes the hyperbolic convolution

(k1 ∗ k2)(u(z, w)) =

∫
H
k1(u(z, v))k2(u(v, w))dµ(v).

With this choice of kernels it follows from the triangle inequality for the
hyperbolic distance that

k−(u) ≤ 1[0,(X−2)/4](u) ≤ k+(u),

see [26, Eq. (5.4)]. By summing over γ ∈ Γ we find that

(6.1) K−(z, w,X) ≤ N(z, w,X) ≤ K+(z, w,X),

where

K±(z, w,X) :=
∑
γ∈Γ

k±(γz, w,X).

Subtracting πX/vol(Γ\H) and averaging over Heegner points of discriminant
D, we see that bounds for the absolute values of the two expressions

1

h(D)

∑
z∈ΛD

f(z)

(
K±(z, z,X)− πX

vol(Γ\H)

)
imply the same bound for the absolute value of

1

h(D)

∑
z∈ΛD

f(z)

(
N(z, z,X)− πX

vol(Γ\H)

)
.

The advantage of approximating N(z, w,X) by the automorphic kernels
K±(z, w,X) is that, contrary to 1[0,(X−2)/4)], the kernels k± are admissible
in the Selberg pre-trace formula. Moreover, the corresponding Selberg–
Harish-Chandra transforms h± can be computed explicitly in terms of spe-
cial functions, as the Selberg–Harish-Chandra transform maps the hyper-
bolic convolution k1 ∗ k2 into the product of the transforms h1h2, see [6,
p. 323].
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Let hR denote the Selberg–Harish-Chandra transform of kR = 1[0,(coshR−1)/2],
with R > 0. The function hR can be computed:

hR(t) =
√

2π sinhR<
(
eitR

Γ(it)

Γ(3/2 + it)
F

(
−1

2
,
3

2
, 1− it, 1

(1− e2R)

))
,

where F is the Gauss hypergeometric function, see [6, p. 321]. It follows from
the series representation of F that, for large enough R, say R > log(2)/2,
we have

F

(
−1

2
,
3

2
, 1− it, 1

(1− e2R)

)
= 1 +O(e−2R min(1, |t|−1)).

For R small, say less than 1, and t real it is known that, see e.g. [6, Lemma
2.4 (c) ],

hR(t) = 2πR2J1(Rt)

Rt

√
sinhR

R
+O(R2 min(R2, |t|−2)).

Here J1 is the Bessel function of order 1. It satisfies

2
J1(x)

x
= 1[0,1](x) +O(min(|x| , |x|−3/2)),

see [18, B.28, B.35]. It is also convenient to use the uniform bound hR(t) =

O((R+ 1)eR/2), see [6, Lemma 2.4].
The group Γ = PSL2(Z) has no small eigenvalues so we only need to

estimate h±(t) at t = i/2 and for t ∈ R. We have

h±(t) = hY±δ(t)
hδ(t)

4π sinh2(δ/2)
.

A direct computation [6, Lemma 2.4 (d)] shows that

(6.2) h±(i/2) = 2π(cosh(Y ± δ)− 1)
2π(cosh δ − 1)

4π sinh2(δ/2)
= πX +O(1 + δX).

To estimate h±(t) for t real we combine the bounds above and find

h±(t) = O

(√
X

t3/2

(
min(1, (δ |t|)−3/2) + min(δ2, |t|−2)

))

= O

(√
X

t3/2

(
min(1, (δ |t|)−3/2)

))
,(6.3)

see [26, Eq. (5.5), (5.10)]. Finally

(6.4) h±(t) = O(
√
X logX),

where the last bound is uniform for t real.

6.2. Applying the pre-trace formula. By the pre-trace formula [18, The-
orem 7.4] we have

K±(z, z,X) =
∑
tj

h±(tj) |uj(z)|2 +
1

4π

∫
R
h±(t) |E(z, 1/2 + it)|2 dt.



18 YIANNIS N. PETRIDIS AND MORTEN S. RISAGER

Using (6.2) we therefore see that

1

h(D)

∑
z∈ΛD

f(z)

(
K±(z, z,X)− πX

vol(Γ\H)

)
=
∑
tj∈R

h±(tj)
1

h(D)

∑
z∈ΛD

f(z) |uj(z)|2

+
1

4π

∫
R
h±(t)

1

h(D)

∑
z∈ΛD

f(z) |E(z, 1/2 + it)|2 dt+O(1 + δX)

=
∑
tj

h±(tj)
1

vol(Γ\H)

∫
Γ\H

f |uj |2 dµ+Qc(X, δ,D)

(6.5)

+
1

4π

∫
R
h±(t)

1

vol(Γ\H)

∫
Γ\H

f |E(·, 1/2 + it)|2 dµ dt+QE(X, δ,D) +O(1 + δX),

where

Qc(X, δ,D) =
∑
tj∈R

h±(tj)

 1

h(D)

∑
z∈ΛD

f(z) |uj(z)|2 −
1

vol(Γ\H)

∫
Γ\H

f |uj |2 dµ

 ,

QE(X, δ,D) =
1

4π

∫
R
h±(t)

 1

h(D)

∑
z∈ΛD

f(z) |E(z, 1/2 + it)|2

(6.6)

− 1

vol(Γ\H)

∫
Γ\H

f |E(·, 1/2 + it)|2 dµ

)
dt.

The first and third terms in (6.5) are exactly the expressions that are treated
in [26, Sec 6.], where we found – using several deep results from [23], e.g.

(1.6) – that the first term is bounded by O(X7/12+ε) as long as we assume
that δ tends to zero at least as fast as X−c for some c > 0. Compare [26,

Lemmata 6.2 and 6.3]. The third term is O(X1/2+ε) by [26, Lemma 6.1].
The second term Qc(X, δ,D) in (6.5) is where we need bounds on the

sup-norm. We first notice that we have the trivial bound∑
T≤tj≤2T

1

h(D)

∑
z∈ΛD

f(z) |uj(z)|2 =
1

h(D)

∑
z∈ΛD

f(z)
∑

T≤tj≤2T

|uj(z)|2

�f

∥∥∥ ∑
T≤tj≤2T

|uj(z)|2
∥∥∥
∞
.

Since
∫

Γ\H f(z) |uj(z)|2 dµ(z) �f 1 we easily find from Proposition 3.1 and

Weyl’s law (1.5) that

∑
T≤tj≤2T

 1

h(D)

∑
z∈ΛD

f(z) |uj(z)|2 −
1

vol(Γ\H)

∫
Γ\H

f |uj |2 dµ

 = Of (T 2).
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Interpolating this – using min (B,C) ≤ BaC1−a for 0 ≤ a ≤ 1 – with the
bound we get from bounding each term using Theorem 5.2 and applying
Theorem 1.5 we find that for any 0 ≤ a ≤ 1

∑
T≤tj≤2T

 1

h(D)

∑
z∈ΛD

f(z) |uj(z)|2 −
1

vol(Γ\H)

∫
Γ\H

f |uj |2 dµ

)
= Of (T 2+a(3/2−1/8)+εD−a/12+ε)).

Using (6.4) for a bounded set of tj ’s, (6.3) in the ranges 1 ≤ |tj | < δ−1

and |tj | ≥ δ−1, dyadic decomposition, and the estimate above, we find that

the quantity Qc(X, δ,D) in (6.6) is O(X1/2δ−(1/2+a(3/2−1/8)+ε)D−a/12+ε),
for any 0 ≤ a ≤ 1 satisfying a(3/2− 1/8) + ε < 1.

The strategy for bounding the fourth term of (6.5) is basically the same.
We use Proposition 3.3, Lemma 5.3, Theorem 5.2 and (1.7) to see that

∫ 2T

T

 1

h(D)

∑
z∈ΛD

f(z) |E(z, 1/2 + it)|2 − 1

vol(Γ\H)

∫
Γ\H

f |E(·, 1/2 + it)|2 dµ

 dt

is Of (min(T 2, T 5/2−1/8+εD−1/12+ε) = O(T 2+(1/2−1/8)b+εD−b/12+ε) for any
0 ≤ b ≤ 1. Doing dyadic decomposition we find that the fourth quantity
QE(X, δ,D) is O(X1/2δ−(1/2+b(1/2−1/8)+ε)D−b/12+ε). Chosing a = b we see
that this term is smaller than the third.

Putting everything together we find that

1

h(D)

∑
z∈ΛD

f(z)

(
K±(z, z,X)− πX

vol(Γ\H)

)
=

O(δX +X7/12+ε +X1/2δ−(1/2+a(3/2−1/8)+ε)D−a/12+ε).

Choosing a minimal (a = 0) and balancing error terms we recover Selberg’s

bound O(X2/3+ε) with no saving due to the averaging in D. If we choose a
as large as allowed, i.e. close to 1/(3/2− 1/8) = 8/11, the error is

O(δX +X7/12+ε +X1/2δ−(3/2+ε)D−a/12+ε).

To balance the first and third term we choose δ = X−1/5D−4/165, which
gives Theorem 1.1.

Proof of Theorem 1.3. We assume (C1), (C2), and (C3). Using Remark 2.3
and [26, Remark 6.4] and the same technique as above, we find that for any
0 ≤ a < 1

1

h(D)

∑
z∈ΛD

f(z)

(
K±(z, z,X)− πX

vol(Γ\H)

)
=

O(δX +X1/2+ε +X1/2δ−(1/2+a(3/2−1/2)+ε)D−a/4+ε).

We choose a close to 1 and δ = X−1/5D−1/10 to get the result. �
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deaux, 13(2):453–468, 2001. 5

[16] Henryk Iwaniec. Fourier coefficients of modular forms of half-integral weight. Invent.
Math., 87(2):385–401, 1987. 4

[17] Henryk Iwaniec. Small eigenvalues of Laplacian for Γ0(N). Acta Arith., 56(1):65–82,
1990. 6

[18] Henryk Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Stud-
ies in Mathematics. American Mathematical Society, Providence, RI, second edition,
2002. 2, 8, 17

[19] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of
American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2004. 4

[20] Henryk Iwaniec and Peter Sarnak. L∞ norms of eigenfunctions of arithmetic surfaces.
Ann. of Math. (2), 141(2):301–320, 1995. 3, 5, 6
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