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Rare and low-frequency coding variants alter human adult height
A full list of authors and affiliations appears at the end of the article.

Summary

Height is a highly heritable, classic polygenic trait with ~700 common associated variants
identified so far through genome-wide association studies. Here, we report 83 height-associated
coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/
allele (e.g. in IHH, STCZ, ARand CRISPLD?2), >10 times the average effect of common variants.
In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele)
compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 jn vitro,
resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated
variants overlap genes mutated in monogenic growth disorders and highlight new biological
candidates (e.9. ADAMTSS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/
glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large
sample sizes can uncover rare and low-frequency variants of moderate to large effect associated
with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
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Introduction

Results

Human height is a highly heritable, polygenic trait!:2. The contribution of common DNA
sequence variation to inter-individual differences in adult height has been systematically
evaluated through genome-wide association studies (GWAS). This approach has thus far
identified 697 independent variants located within 423 loci that together explain ~20% of
the heritability of height3. As is typical of complex traits and diseases, most of the height
alleles discovered so far are common (minor allele frequency (MAF) >5%) and are mainly
located outside coding regions, complicating the identification of the relevant genes or
functional variants. Identifying coding variants associated with a complex trait in new or
known loci has the potential to pinpoint causal genes. Furthermore, the extent to which rare
(MAF <1%) and low-frequency (1%< MAF < 5%) coding variants also influence complex
traits and diseases remains an open question. Many recent DNA sequencing studies have
identified only few such variants*-8, but this limited success could be due to their modest
sample size®. Some studies have suggested that common sequence variants may explain the
majority of the heritable variation in adult height'%, making it timely to assess whether and
to what extent rare and low-frequency coding variation contributes to the genetic landscape
of this model polygenic trait.

In this study, we used an ExomeChip!! to test the association between 241,453 variants
(83% coding with MAF <5%) and adult height variation in 711,428 individuals (discovery
and validation sample sizes were 458,927 and 252,501, respectively). The ExomeChip is a
genotyping array designed to query in very large sample sizes coding variants identified by
whole-exome DNA sequencing of ~12,000 participants. The main goals of our project were
to determine whether rare and low-frequency coding variants influence the architecture of a
model complex human trait, such as adult height, and to discover and characterize new genes
and biological pathways implicated in human growth.

32 rare and 51 low-frequency coding variants associated with adult height

We conducted single-variant meta-analyses in a discovery sample of 458,927 individuals, of
whom 381,625 were of European ancestry. We validated our association results in an
independent set of 252,501 participants. We first performed standard single-variant
association analyses; technical details of the discovery and validation steps are in Methods
(Extended Data Figs 1-3, Supplementary Tables 1-11). In total, we found 606 independent
ExomeChip variants at array-wide significance (P<2x1077), including 252 non-synonymous
or splice site variants (Methods and Supplementary Table 11). Focusing on non-synonymous
or splice site variants with MAF <5%, our single-variant analyses identified 32 rare and 51
low-frequency height-associated variants (Extended Data Tables 1-2). To date, these 83
height variants (MAF range 0.1-4.8%) represent the largest set of validated rare and low-
frequency coding variants associated with any complex human trait or disease. Among these
83 variants, there are 81 missense, one nonsense (in CCNDJ3), and one essential acceptor
splice site (in ARMCD) variants.
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We observed a strong inverse relationship between MAF and effect size (Fig. 1). Although
power limits our capacity to find rare variants of small effects, we know that common
variants with effect sizes comparable to the largest seen in our study would have been easily
discovered by prior GWAS, but were not detected. Our results agree with a model based on
accumulating theoretical and empirical evidences that suggest that variants with strong
phenotypic effects are more likely to be deleterious, and therefore rarer12:13, The largest
effect sizes were observed for four rare missense variants, located in the androgen receptor
gene AR (rs137852591, MAF=0.21%, Peombined=2.7x1014), in CRISPLDZ2 (rs148934412,
MAF=0.08%, Prombined=2.4%10"20), in /HH (rs142036701, MAF=0.08%,
Peombined=1.9%x10723), and in STC2 (rs148833559, MAF=0.1%, Peombined=1.2%x10-30).
Carriers of the rare STC2missense variant are ~2.1 cm taller than non-carriers, whereas
carriers of the remaining three variants (or hemizygous men that carry the X-linked AR-
rs137852591 rare allele) are ~2 cm shorter than non-carriers. In comparison, the mean effect
size of common height alleles is ten times smaller in the same dataset. Across all 83 rare and
low-frequency non-synonymous variants, the minor alleles were evenly distributed between
height-increasing and -decreasing effects (48% vs. 52%, respectively) (Fig. 1 and Extended
Data Tables 1-2).

Coding variants in new and known height loci, and heritability explained

Many of the height-associated variants in this ExomeChip effort are located near common
variants previously associated with height. Of the 83 rare and low-frequency non-
synonymous variants, two low-frequency missense variants were previously identified (in
CYTL1and /L11)31% and 47 fell within 1 Mb of a known height signal; the remaining 34
define new loci. We used conditional analysis in the UK Biobank dataset and confirmed that
38 of these 47 variants were independent from the previously described height SNPs
(Supplementary Table 12). We validated the UK Biobank conditional results using an
orthogonal imputation-based methodology implemented in the full discovery set (Extended
Data Fig. 4 and Supplementary Table 12). In addition, we found a further 85 common
variants and one low-frequency synonymous variant (in ACHE) that define novel loci
(Supplementary Table 12). Thus, our study identified a total of 120 new height loci
(Supplementary Table 11).

We used the UK Biobank dataset to estimate the contribution of the new height variants to
heritability, which is /2~80% for adult height2. In combination, the 83 rare and low-
frequency variants explained 1.7% of the heritability of height. The newly identified novel
common variants accounted for another 2.4%, and all independent variants, known and
novel together explained 27.4% of heritability. By comparison, the 697 known height SNPs
explain 23.3% of height heritability in the same dataset (vs. 4.1% by the new height variants
identified in this ExomeChip study). We observed a modest positive association between
MAF and heritability explained per variant (P=0.012, Extended Data Fig. 5), with each
common variant explaining slightly more heritability than rare or low-frequency variants
(0.036% vs. 0.026%, Extended Data Fig. 5).
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Gene-based association results

To increase power to find rare or low-frequency coding variants associated with height, we
performed gene-based analyses (Methods and Supplementary Tables 13-15). After
accounting for gene-based signals explained by a single variant driving the association
statistics, we identified ten genes with A<5x10- that harbor more than one coding variant
independently associated with height variation (Supplementary Tables 16-17). These gene-
based results remained significant after conditioning on genotypes at nearby common
height-associated variants present on the ExomeChip (Table 1). Using the same gene-based
tests in an independent dataset of 59,804 individuals genotyped on the same exome array, we
replicated three genes at A<0.05 (Table 1). Further evidence for replication in these genes
was seen at the level of single variants (Supplementary Table 18). From the gene-based
results, three genes — CSAD, NOX4, and UGG T2 - fell outside of the loci found by single-
variant analyses and are implicated in human height for the first time.

Coding variants implicate biological pathways in human skeletal growth

Prior pathway analyses of height loci identified by GWAS have highlighted gene sets related
to both general biological processes (such as chromatin modification and regulation of
embryonic size) and more skeletal growth-specific pathways (chondrocyte biology,
extracellular matrix (ECM), and skeletal development)3. We used two different methods,
DEPICT?® and PASCAL16 (Methods), to perform pathway analyses using the ExomeChip
results to test whether coding variants could either independently confirm the relevance of
these previously highlighted pathways (and further implicate specific genes in these
pathways), or identify new pathways. To compare the pathways emerging from coding and
non-coding variation, we applied DEPICT separately on (1) exome array-wide associated
coding variants independent of known GWAS signals and (2) non-coding GWAS loci,
excluding all novel height-associated genes implicated by coding variants. We identified a
total of 496 and 1,623 enriched gene sets, respectively, at a false discovery rate (FDR) <1%
(Supplementary Tables 19-20); similar analyses with PASCAL yielded 362 and 278 enriched
gene sets (Supplementary Tables 21-22). Comparison of the results revealed a high degree of
shared biology for coding and non-coding variants (for DEPICT, gene set P-values
compared between coding and non-coding results had Pearson's r = 0.583, A<2.2x1016; for
PASCAL, Pearson's r=0.605, A<2.2x10°16). However, some pathways showed stronger
enrichment with either coding or non-coding genetic variation. In general, coding variants
more strongly implicated pathways specific to skeletal growth (such as ECM and bone
growth), while GWAS signals highlighted more global biological processes (such as
transcription factor binding and embryonic size/lethality) (Extended Data Fig. 6). The two
significant gene sets identified by DEPICT and PASCAL that uniquely implicated coding
variants were “BCAN protein protein interaction subnetwork™ and “proteoglycan binding.”
Both of these pathways relate to the biology of proteoglycans, which are proteins (such as
aggrecan) that contain glycosaminoglycans (such as chrondroitin sulfate) and that have well-
established connections to skeletal growth’.

We also examined which height-associated genes identified by ExomeChip analyses were
driving enrichment of pathways such as proteoglycan binding. Using unsupervised
clustering analysis, we observed that a cluster of 15 height-associated genes is strongly
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implicated in a group of correlated pathways that include biology related to proteoglycans/
glycosaminoglycans (Fig. 2 and Extended Data Fig. 7). Seven of these 15 genes overlap a
previously curated list of 277 genes annotated in OMIM as causing skeletal growth
disorders3; genes in this small cluster are enriched for OMIM annotations relative to genes
outside the cluster (odds ratio=27.6, Fisher's exact A=1.1x107). As such, the remaining
genes in this cluster may be strong candidates for harboring variants that cause Mendelian
growth disorders. Within this group are genes that are largely uncharacterized (SUSD5),
have relevant biochemical functions (GL78D2, a glycosyl transferase studied mostly in the
context of the liverl8; L OXL4, a lysyl oxidase expressed in cartilagel®), modulate pathways
known to affect skeletal growth (F/BIN, SFRP4)20:21 or lead to increased body length when
knocked out in mice (SFRP4)?22.

Functional characterization of rare STC2 variants

To begin exploring whether the identified rare coding variants affect protein function, we
performed /n vitro functional analyses of two rare coding variants in a particularly
compelling and novel candidate gene, S7CZ2. Over-expression of S7C2diminishes growth in
mice by covalent binding and inhibition of the proteinase PAPP-A, which specifically
cleaves IGF binding protein-4 (IGFBP-4), leading to reduced levels of bioactive insulin-like
growth factors (Fig. 3A)23. Although there was no prior genetic evidence implicating STC2
variation in human growth, the PAPPA and /GFBP4 genes were both implicated in height
GWASS3, and rare mutations in PAPPA2 cause severe short stature24, emphasizing the likely
relevance of this pathway in humans. The two S7CZ height-associated variants are
rs148833559 (p.Arg44Leu, MAF=0.096%, Pdiscovery:5.7><10'15) and rs146441603
(p-Met861le, MAF=0.14%, Pdiscovew:2.1><10'5). These rare alleles increase height by 1.9
and 0.9 cm, respectively, suggesting that they both partially impair STC2 activity. In
functional studies, STC2 with these amino acid substitutions were expressed at similar levels
to wild-type, but showed clear, partial defects in binding to PAPP-A and in inhibition of
PAPP-A-mediated cleavage of IGFBP-4 (Fig. 3B-D). Thus, the genetic analysis successfully
identified rare coding alleles that have demonstrable and predicted functional consequences,
strongly confirming the role of these variants and the S7C2gene in human growth.

Pleiotropic effects

Previous GWAS studies have reported pleiotropic or secondary effects on other phenotypes
for many common variants associated with adult height3:25, Using association results from
17 human complex phenotypes for which well-powered meta-analysis results were available,
we explored if rare and low-frequency height variants are also pleiotropic. We found one
rare and five low-frequency missense variants associated with at least one of the other
investigated traits at array-wide significance (P<2x10"")(Extended Data Fig. 8 and
Supplementary Table 23). The minor alleles at rs77542162 (ABCA6, MAF=1.7%) and
rs28929474 (SERPINA1L, MAF=1.8%) were associated with increased height and increased
levels of LDL-cholesterol (LDL-C) and total cholesterol (TC), whereas the minor allele at
rs3208856 in CBLC (MAF=3.4%) was associated with increased height, HDL-cholesterol
(HDL-C) and triglyceride (TG), but lower LDL-C and TC levels. The minor allele at
rs141845046 (ZBTB7B, MAF=2.8%) was associated with both increased height and body
mass index (BMI). The minor alleles at the other two missense variants associated with
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shorter stature, rs201226914 in PIEZO1 (MAF=0.2%) and rs35658696 in PAM
(MAF=4.8%), were associated with decreased glycated haemoglobin (HbA1c) and increased
type 2 diabetes (T2D) risk, respectively.

Discussion

We undertook an association study of nearly 200,000 coding variants in 711,428 individuals,
and identified 32 rare and 51 low-frequency coding variants associated with adult height.
Furthermore, gene-based testing discovered 10 genes that harbor several additional rare/low-
frequency variants associated with height, including three genes (CSAD, NOX4, UGGT2) in
loci not previously implicated in height. Given the design of the ExomeChip, which did not
consider variants with MAF <0.004% (or one allele in ~12,000 participants), our gene-based
association results do not rule out the possibility that additional genes with such rarer coding
variants also contribute to height variation; deep DNA sequencing in very large sample sizes
will be required to address this question. In total, our results highlight 89 genes (10 from
gene-based testing and 79 from single-variant analyses (four genes have 2 independent
coding variants)) that are likely to modulate human growth, and 24 alleles segregating in the
general population that affect height by more than 1 cm (Extended Data Tables 1-2 and
Table 1). The rare and low-frequency coding variants explain 1.7% of the heritable variation
in adult height. When considering all rare, low-frequency, and common height-associated
variants validated in this study, we can now explain 27.4% of the heritability.

Our analyses revealed many coding variants in genes mutated in monogenic skeletal growth
disorders, confirming the presence of allelic series (from familial penetrant mutations to
mild effect common variants) in the same genes for related growth phenotypes in humans.
We used gene set enrichment-type analyses to demonstrate the functional connectivity
between the genes that harbor coding height variants, highlighting known as well as novel
biological pathways that regulate height in humans (Fig. 2, Extended Data Fig. 7 and
Supplementary Tables 19-22), and newly implicating genes such as SUSD5, GLT8D2,
LOXL4, FIBIN, and SFRP4that have not been previously connected with skeletal growth.
Additional interesting height candidate genes include NOX4, ADAMTS3and ADAMTSE,
PTHIR, and /L11RA (Extended Data Tables 1-2, Supplementary Tables 17 and 24). NOX4,
identified through gene-based testing, encodes NADPH oxidase 4, an enzyme that produces
reactive oxygen species, a biological pathway not previously implicated in human growth.
Nox4'- mice display higher bone density and reduced numbers of osteoclasts, a cell type
essential for bone repair, maintenance, and remodelling12. We also found rare coding
variants in ADAMTS3and ADAMTS6, genes that encode metalloproteinases that belong to
the same family than several other human growth syndromic genes (e.g. ADAMTSZ,
ADAMTS10, ADAMTSL2). Moreover, we discovered a rare missense variant in PTHIR
that encodes a receptor of the parathyroid hormone (PTH): PTH-PTHLR signaling is
important for bone resorption and mutations in PTHIR cause chondrodysplasia in humans26.
Finally, we replicated the association between a low-frequency missense variant in the
cytokine gene /L 11, but also found a new low-frequency missense variant in its receptor
gene /L11RA. The IL11-IL11RA axis has been shown to play an important role in bone
formation in the mouse2”+28. Thus, our data confirm the relevance of this signaling cascade
in human growth as well.
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Overall, our findings provide strong evidence that rare and low-frequency coding variants
contribute to the genetic architecture of height, a model complex human trait. This
conclusion has strong implications for the prediction of complex human phenotypes in the
context of precision medicine initiatives. Indeed, although rare, large effect size variants
might not explain most of the heritable disease risk at the population level, they are
important to predict the risk to develop disease for individuals that carry them. Our findings
also seem to contrast sharply with results from the recent large-scale T2D association study,
which found only six variants with MAF <5% (ref. 29). This apparent difference could
simply be explained by the large difference in sample sizes between the two studies
(711,428 for height vs. 127,145 for T2D). When we consider the fraction of associated
variants with MAF<5% among all confirmed variants for height and T2D, we find that it is
similar (9.7% for height vs. 7.1% for T2D). This supports the strong probability that rarer
T2D alleles and more generally, rarer alleles for other polygenic diseases and traits, will be
uncovered as sample sizes continue to increase.

Study design & participants

Phenotype

The discovery cohort consisted of 147 studies comprising 458,927 adult individuals of the
following ancestries: 1) European descent (N=381,625), 2) African (N=27,494), 3) South
Asian (N=29,591), 4) East Asian (N=8,767); 5) Hispanic (N=10,776) and 6) Saudi (N=695).
All participating institutions and coordinating centers approved this project, and informed
consent was obtained from all subjects. Discovery meta-analysis was carried out in each
ancestry group (except the Saudi) separately as well as in the All group. Validation was
undertaken in individuals of European ancestry only (Supplementary Tables 1-3).
Conditional analyses were undertaken only in the European descent group (106 studies,
N=381,625).

Height (in centimeters) was corrected for age and the genomic principal components
(derived from GWAS data, the variants with MAF >1% on ExomeChip, or ancestry
informative markers available on the ExomeChip), as well as any additional study-specific
covariates (e.g. recruiting center), in a linear regression separately by sex, whereas for
family-based studies sex was included as a covariate in model. For studies with non-related
individuals, residuals were calculated the model. Additionally, residuals for case/control
studies were calculated separately. Finally, residuals were subject to inverse normal
transformation.

Genotype calling

The majority of studies followed a standardized protocol and performed genotype calling
using the designated manufacturer software, which was then followed by zCall3L. For 10
studies participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Consortium, the raw intensity data for the samples from seven genotyping
centers were assembled into a single project for joint calling!. Study-specific quality
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control (QC) measures of the genotyped variants was implemented before association
analysis (Supplementary Tables 1-2).

Study-level statistical analyses

Individual cohorts were analyzed separately for each ancestry population, with either
RAREMETALWORKER (http://genome.sph.umich.edu/wiki/RAREMETALWORKER) or
RVTEST (http://zhanxw.github.io/rvtests/), to associate inverse normal transformed height
data with genotype data taking potential cryptic relatedness (kinship matrix) into account in
a linear mixed model. These software are designed to perform score-statistics based rare-
variant association analysis, can accommodate both unrelated and related individuals, and
provide single-variant results and variance-covariance matrix. The covariance matrix
captures linkage disequilibrium (LD) relationships between markers within 1 Mb, which is
used for gene-level meta-analyses and conditional analyses32. Single-variant analyses were
performed for both additive and recessive models (for the alternate allele).

Centralized quality-control

The individual study data were investigated for potential existence of ancestry population
outliers based on 1000 Genome Project phase 1 ancestry reference populations. A
centralized QC procedure implemented in EasyQC33 was applied to individual study
association summary statistics to identify outlying studies: (1) assessment of possible
problems in height transformation,(2) comparison of allele frequency alignment against
1000 Genomes Project phase 1 reference data to pinpoint any potential strand issues, and (3)
examination of quantile-quantile (QQ) plots per study to identify any problems arising from
population stratification, cryptic relatedness and genotype biases. We excluded variants if
they had call rate <95%, Hardy-Weinberg equilibrium A<1x107/, or large allele frequency
deviations from reference populations (>0.6 for all ancestry analyses and >0.3 for ancestry-
specific population analyses). We also excluded from downstream analyses markers not
present on the Illumina ExomeChip array 1.0, variants on the Y-chromosome or the
mitochondrial genome, indels, multiallelic variants, and problematic variants based on the
Blat-based sequence alignment analyses. Meta-analyses were carried out in parallel by two
different analysts at two sites.

Single-variant meta-analyses

Discovery analyses—We conducted single-variant meta-analyses in a discovery sample
of 458,927 individuals of different ancestries using both additive and recessive genetic
models (Extended Data Fig. 1 and Supplementary Tables 1-4). Significance for single-
variant analyses was defined at array-wide level (P<2x10-7, Bonferroni correction for
250,000 variants). The combined additive analyses identified 1,455 unique variants that
reached array-wide significance (A<2x10-7), including 578 non-synonymous and splice site
variants (Supplementary Tables 5-7). Under the additive model, we observed a high genomic
inflation of the test statistics (e.g. Agc of 2.7 in European-ancestry studies for common
markers, Extended Data Fig. 2 and Supplementary Table 8), although validation results (see
below) and additional sensitivity analyses (see below) suggested that it is consistent with
polygenic inheritance as opposed to population stratification, cryptic relatedness, or
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technical artifacts (Extended Data Fig. 2). The majority of these 1,455 association signals
(1,241; 85.3%) were found in the European-ancestry meta-analysis (85.5% of the discovery
sample size) (Extended Data Fig. 2). Nevertheless, we discovered eight associations within
five loci in our all-ancestry analyses that are driven by African studies (including one
missense variant in the growth hormone gene GHI (rs151263636), Extended Data Fig. 3),
three height variants found only in African studies, and one rare missense marker associated
with height in South Asians only (Supplementary Table 7).

Genomic inflation and confounding—We observed a marked genomic inflation of the
test statistics even after adequate control for population stratification (linear mixed model)
arising mainly from common markers; Agc in European-ancestry was 1.2 and 2.7 for all and
common markers, respectively (Extended Data Fig. 2 and Supplementary Table 8). Such
inflation is expected for a highly polygenic trait like height, and is consistent with our very
large sample size3-34. To confirm this, we applied the recently developed linkage
disequilibrium (LD) score regression method to our height ExomeChip results30, with the
caveats that the method was developed (and tested) with >200,000 common markers
available. We restricted our analyses to 15,848 common variants (MAF =5%) from the
European-ancestry meta-analysis, and matched them to pre-computed LD scores for the
European reference dataset3C. The intercept of the regression of the XZ statistics from the
height meta-analysis on the LD score estimate the inflation in the mean XZ due to
confounding bias, such as cryptic relatedness or population stratification. The intercept was
1.4 (standard error=0.07), which is small when compared to the Agc of 2.7. Furthermore,
we also confirmed that the LD score regression intercept is estimated upward because of the
small number of variants on the ExomeChip and the selection criteria for these variants (/.e.
known GWAS hits). The ratio statistic of (intercept -1) / (mean XZ -1) is 0.067 (standard
error=0.012), well within the normal range3°, suggesting that most of the inflation (~93%)
observed in the height association statistics is due to polygenic effects (Extended Data Fig.
2).

Furthermore, to exclude the possibility that some of the observed associations between
height and rare/low-frequency variants could be due to allele calling problems in the smaller
studies, we performed a sensitivity meta-analysis with primarily Europe-ancestry studies
totaling >5,000 participants. We found very concordant effect sizes, suggesting that smaller
studies do not bias our results (Extended Data Fig. 2).

Conditional analyses—The RAREMETAL R-package3® and the GCTA v1.2436 software
were used to identify independent height association signals across the European descent
meta-analysis results. RAREMETAL performs conditional analyses by using covariance
matrices in order to distinguish true signals from those driven by LD at adjacent known
variants. First, we identified the lead variants (P<2x1077) based on a 1 Mb window centered
on the most significantly associated variant and performed LD pruning (/2<0.3) to avoid
downstream problems in the conditional analyses due to co-linearity. We then conditioned
on the LD-pruned set of lead variants in RAREMETAL and kept new lead signals at
P<2x1077. The process was repeated until no additional signal emerged below the pre-
specified P-value threshold. The use of a 1 Mb window in RAREMETAL can obscure
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dependence between conditional signals in adjacent intervals in regions of extended LD. To
detect such instances, we performed joint analyses using GCTA with the ARIC and UK
ExomeChip reference panels, both of which comprise >10,000 individuals of European
descent. With the exception of a handful of variants in a few genomic regions with extended
LD (e.g. the HLA region on chromosome 6), the two software identified the same
independent signals (at A<2x107).

To discover new height variants, we conditioned the height variants found in our ExomeChip
study on the previously published GWAS height variants3 using the first release of the UK
Biobank imputed dataset and regression methodology implemented in BOLT-LMM?3.
Because of the difference between the sample size of our discovery set (N=458,927) and the
UK Biobank (first release, N=120,084), we applied a threshold of Pronditional<0-05 to declare
a height variant as independent in this analysis. We also explored an alternative approach
based on approximate conditional analysis3®. This latter method (SSimp) relies on summary
statistics available from the same cohort, thus we first imputed summary statistics3® for
exome variants, using summary statistics from the Wood et a/. 2014 study3. Conversely, we
imputed the top variants from the Wood et a/. 2014 study using the summary statistics from
the ExomeChip. Subsequently, we calculated effect sizes for each exome variant conditioned
on the Wood et al. 2014 top variants in two ways. First, we conditioned the imputed
summary statistics of the exome variant on the summary statistics of the Wood et al. 2014
top variants that fell within 5 Mb of the target ExomeChip variant. Second, we conditioned
the summary statistics of the ExomeChip variant on the imputed summary statistics of the
Wood et a/. 2014 hits. We then selected the option that yielded a higher imputation quality.
For poorly tagged variants (7 < 0.8), we simply used up-sampled HapMap summary
statistics for the approximate conditional analysis. Pairwise SNP-by-SNP correlations were
estimated from the UK10K data (TwinsUK3? and ALSPAC#? studies, N=3,781).

Validation of the single-variant discovery results—Several studies, totaling 252,501
independent individuals of European ancestry, became available after the completion of the
discovery analyses, and were thus used for validation of our experiment. We validated the
single-variant association results in eight studies, totaling 59,804 participants, genotyped on
the Exomechip using RAREMETAL32, We sought additional evidence for association for
the top signals in two independent studies in the UK (UK Biobank) and Iceland (deCODE),
comprising 120,084 and 72,613 individuals, respectively. We used the same QC and
analytical methodology as described above. Genotyping and study descriptives are provided
in Supplementary Tables 1-3. For the combined analysis, we used the inverse-variance
weighted fixed effects meta-analysis method using METAL*L. Significant associations were
defined as those with a combined meta-analysis (discovery and validation)
Peombined<2x107.

We considered 81 variants with suggestive association in the discovery analyses
(2><1O‘7<Pdisco\,erys2x10'6). Of those 81 variants, 55 reached significance after combining
discovery and replication results based on Peompined<2x1077 (Supplementary Table 9).
Furthermore, recessive modeling confirmed seven new independent markers with
Prombined<2%1077 (Supplementary Table 10). One of these recessive signals is due to a rare
X-linked variant in the AR gene (rs137852591, MAF=0.21%). Because of its frequency, we
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only tested hemizygous men (we did not identify homozygous women for the minor allele)
so we cannot distinguish between a true recessive mode of inheritance or a sex-specific
effect for this variant. To test the independence and integrate all height markers from the
discovery and validation phase, we used conditional analyses and GCTA “joint” modeling36
in the combined discovery and validation set. This resulted in the identification of 606
independent height variants, including 252 non-synonymous or splice site variants
(Supplementary Table 11). If we only consider the initial set of lead SNPs with A<2x1077,
we identified 561 independent variants. Of these 561 variants (selected without the
validation studies), 560 have concordant direction of effect between the discovery and
validation studies, and 548 variants have a Aidation<0.05 (466 variants with
Patidation<8.9%x107°, Bonferroni correction for 561 tests), suggesting a very low false
discovery rate (Supplementary Table 11).

Gene-based association meta-analyses

For the gene-based analyses, we applied two different sets of criteria to select variants, based
on coding variant annotation from five prediction algorithms (PolyPhen2 HumDiv and
HumVar, LRT, Mutation Taster and SIFT)*2. The mask labeled “broad”included variants
with a MAF <0.05 that are nonsense, stop-loss, splice site, as well as missense variants that
are annotated as damaging by at least one program mentioned above. The mask labeled
“strict” included only variants with MAF <0.05 that are nonsense, stop-loss, splice site, as
well as missense variants annotated as damaging by all five algorithms. We used two tests
for gene-based testing, namely the SKAT#3 and VT4 tests. Statistical significance for gene-
based tests was set at a Bonferroni-corrected threshold of A<5x107 (threshold for 25,000
genes and four tests). The gene-based discovery results were validated (same test and
variants, when possible) in the same eight studies genotyped on the ExomeChip (N=59,804
participants) that were used for the validation of the single-variant results (see above, and
Supplementary Tables 1-3). Gene-based conditional analyses were performed in
RAREMETAL.

Pleiotropy analyses

We accessed ExomeChip data from GIANT (BMI, waist-hip ratio), GLGC (total cholesterol
(TC), triglycerides (TG), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C)), IBPC
(systolic and diastolic blood pressure), MAGIC (glycaemic traits), REPROGEN (age at
menarche and menopause), and DIAGRAM (type 2 diabetes). For coronary artery disease,
we accessed 1000 Genomes Project-imputed GWAS data released by
CARDIOGRAMplusC4D*.

Pathway analyses

DEPICT is a computational framework that uses probabilistically-defined reconstituted gene
sets to perform gene set enrichment and gene prioritization!®. For a description about gene
set reconstitution please refer to references 1521 46 |n prief, reconstitution was performed
by extending pre-defined gene sets (such as Gene Ontology terms, canonical pathways,
protein-protein interaction subnetworks and rodent phenotypes) with genes co-regulated
with genes in these pre-defined gene set using large-scale microarray-based transcriptomics
data. In order to adapt the gene set enrichment part of DEPICT for ExomeChip data, we
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made two principal changes. First and foremost, because DEPICT for GWAS incorporates
all genes within a given LD block around each index SNP, we modified DEPICT to take as
input only the gene directly impacted by the coding SNP. Second, we adapted the way
DEPICT adjust for confounders (such as gene length) by generating null ExomeChip
association results using Swedish ExomeChip data (Malmd Diet and Cancer (MDC), All
New Diabetics in Scania (ANDIS), and Scania Diabetes Registry (SDR) cohorts, N=11,899)
and randomly assigning phenotypes from a normal distribution before conducting
association analysis (see Supplementary Information). For the gene set enrichment analysis
of the ExomeChip data, we used significant non-synonymous variants statistically
independent of known GWAS hits (and that were present in the null ExomeChip data; see
Supplementary Information for details). For gene set enrichment analysis of the GWAS data,
we used all loci (1) with a non-coding index SNP and (2) that did not contain any of the
novel ExomeChip genes. In visualizing the analysis, we used affinity propagation
clustering®’ to group the most similar reconstituted gene sets based on their gene
memberships (see Supplementary Information). Within a “meta-gene set”, the best P-value
of any member gene set was used as representative for comparison. DEPICT for ExomeChip
was written using the Python programming language and the code can be found at https://
github.com/RebeccaFine/height-ec-depict.

We also applied the PASCAL pathway analysis tool16 to association summary statistics for
all coding variants. In brief, the method derives gene-based scores (both SUM and MAX
statistics) and subsequently tests for the over-representation of high gene scores in
predefined biological pathways. We used standard pathway libraries from KEGG,
REACTOME and BIOCARTA, and also added dichotomized (Z-score>3) reconstituted gene
sets from DEPICT?®. To accurately estimate SNP-by-SNP correlations even for rare
variants, we used the UK10K data (TwinsUK39 and ALSPAC#? studies, N=3781). In order
to separate the contribution of regulatory variants from the coding variants, we also applied
PASCAL to association summary statistics of only regulatory variants (20 kb upstream, gene
body excluded) from the Wood et a/. study3. In this way, we could classify pathways driven
principally by coding, regulatory or mixed signals.

STC2 functional experiments

Mutagenesis, cell culture and transfection—For the generation of STC2 mutants
(R44L and M86I), wild-type STC2 cDNA contained in pcDNA3.1/Myc-His(-)
(Invitrogen)?3 was used as a template. Mutagenesis was carried out using Quickchange
(Stratagene), and all constructs were verified by sequence analysis. Recombinant wild-type
STC2 and variants were expressed in human embryonic kidney (HEK) 293T cells
(293tsA1609neo, ATCC CRL-3216) maintained in high-glucose DMEM supplemented 10%
fetal bovine serum, 2 mM glutamine, nonessential amino acids, and gentamicin. The cells
are routinely tested for mycoplasma contamination. Cells (6x106) were plated onto 10 cm-
dishes and transfected 18 h later by calcium phosphate coprecipitation using 10 pg plasmid
DNA. Media were harvested 48 h post transfection, cleared by centrifugation, and stored at
-20°C until use. Protein concentrations (58-66 nM) were determined by TRIFMA using
antibodies described previously23. PAPP-A was expressed stably in HEK293T cells as
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previously reported?®. Expressed levels of PAPP-A (27.5 nM) were determined by a
commercial ELISA (AL-101, Ansh Labs, TX).

STC2 and PAPP-A complex formation—Culture supernatants containing wild-type
STC2 or variants were adjusted to 58 nM, added an equal volume of culture supernatant
containing PAPP-A corresponding to a 2.1-fold molar excess, and incubated at 37°C.
Samples were taken at 1, 2, 4, 6, 8, 16, and 24 h and stored at -20°C.

Analysis of proteolytic activity—Specific proteolytic cleavage of 12|-labeled IGFBP-4
is described in detail elsewhere?, Briefly, the PAPP-A:STC2 complex mixtures were diluted
(1:190) to a concentration of 145 pM PAPP-A and mixed with preincubated 1251-IGFBP4
(10 nM) and IGF-1 (100 nM) in 50 mM Tris-HCI, 1200 mM NaCl, 1 mM CaCl,. Following 1
h incubation at 37°C, reactions were terminated by the addition of SDS-PAGE sample buffer
supplemented with 25 mM EDTA. Substrate and co-migrating cleavage products were
separated by 12% nonreducing SDS-PAGE and visualized by autoradiography using a
storage phosphor screen (GE Healthcare) and a Typhoon imaging system (GE Healthcare).
Band intensities were quantified using ImageQuant TL 8.1 software (GE Healthcare).

Western blotting—STC2 and covalent complexes between STC2 and PAPP-A were
blotted onto PVDF membranes (Millipore) following separation by 3-8% SDS-PAGE. The
membranes were blocked with 2% Tween-20, and equilibrated in 50 mM Tris-HCI, 500 mM
NaCl, 0.1% Tween-20, pH 9 (TST). For STC2, the membranes were incubated with goat
polyclonal anti-STC2 (R&D systems, AF2830) at 0.5 pg/ml in TST supplemented with 2%
skim milk for 1 h at 20°C. For PAPP-A:STC2 complexes, the membranes were incubated
with rabbit polyclonal anti-PAPP-A%0 at 0.63 pg/ml in TST supplemented with 2% skim
milk for 16 h at 20°C. Membranes were washed with TST and subsequently incubated with
polyclonal swine anti-rabbit IgG-HRP (DAKO, P0217) or polyclonal rabbit anti-goat 19gG-
HRP (DAKO, P0449), respectively, diluted 1:2000 in TST supplemented with 2% skim milk
for 1 h at 20°C. Following washing with TST, membranes were developed using enhanced
chemiluminescence (ECL Prime, GE Healthcare). Images were captured using an
ImageQuant LAS 4000 instrument (GE Healthcare).

Data Availability Statement

URLs

Summary genetic association results are available on the GIANT website: http://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT _consortium.

ClinVar, http://www.ncbi.nlm.nih.gov/clinvar/
DEPICT, http://www.broadinstitute.org/mpg/depict/
ExomeChip, http://genome.sph.umich.edu/wiki/Exome_Chip_Design

ExomeDEPICT, https://github.com/RebeccaFine/height-ec-depict
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PASCAL, http://www2.unil.ch/chbg/index.php?title=Pascal

RAREMETALWORKER, http://genome.sph.umich.edu/wiki/RAREMETALWORKER

RVTEST, http://zhanxw.github.io/rvtests/

Extended Data
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RVTest, RareMetal Worker
Summary results 147 studies
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Gene based (GB) ALL/ per ethnicity
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8 studies ExomeChip + deCODE + UKBIOBANK
N= 252,501 EA adults

Combined analysis RAREMETAL

Extended Data Figure 1.

SV suggestive signals SV Conditional analysis CEU GB signals not explained by SV association
Additive, (P22x107<P<2x10%) Additive, P<2x10-7 no Psv<2x107 in the gene; Pee 100X smaller Psv
81 Markers 561 Markers Significant after conditional analysis nearby SNPs
Replication Replication

8 studies ExomeChip
N= 59,804 EA adults

Combined analysis RAREMETAL

Flowchart of the GIANT ExomeChip height study design.
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20-07

European ancestry. We stratified results based on allele frequency. (B) Manhattan plot of all
ExomeChip variants and their association to adult height under an additive genetic model in
individuals of European ancestry with a focus on the 553 independent SNPs, of which 469
have MAF>5% (grey), 55 have MAF between 1 and 5% (green), and 29 have MAF<1%
(blue). (C) Linkage disequilibrium (LD) score regression analysis for the height association
results in European-ancestry studies. In the plot, each point represents an LD Score quantile,
where the x-axis of the point is the mean LD Score of variants in that quantile and the y-axis
is the mean XZ statistic of variants in that quantile. The LD Score regression slope of the
black line is calculated based on Equation 1 in Bulik-Sullivan et a/39 which is estimated
upwards due to the small number of common variants (N=15,848) and the design of the
ExomeChip. The LD score regression intercept is 1.4, the Agc is 2.7, the mean XZ is 7.0,
and the ratio statistic of (intercept -1) / (mean XZ -1) is 0.067 (standard error=0.012). (D)
Scatter plot comparison of the effect sizes for all variants that reached significance in the
European-ancestry discovery results (N=381,625) and results including only studies with
sample sizes >5000 individuals (N=241,453).
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Extended Data Figure 3.
Height ExomeChip association results in African-ancestry populations. Among the all-

ancestry results, we found eight variants for which the genetic association with height is
mostly driven by individuals of African ancestry. The minor allele frequency of these
variants is <1% (or monomorphic) in all ancestries except African-ancestry individuals. In
individuals of African ancestry, the variants had allele frequencies between 9 and 40%.
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Extended Data Figure 4.
Concordance between direct conditional effect sizes using UK Biobank (x-axis) and

conditional analysis performed using a combination of imputation-based methodology and
approximate conditional analysis (SSimp, y-axis). The Pearson's correlation coefficient is
r=0.85. The dashed line indicates the identity line. The 95% confidence interval is indicated
in both directions. Red, SNPs with P.ong>0.05 in the UK Biobank; Green, SNPs with
Prond<0.05 in the UK Biobank.
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Extended Data Figure 5.
Heritability estimated for all known height variants in the first release of the UK Biobank

dataset. (A) We observed a weak but significant positive trend between minor allele
frequency (MAF) and heritability explained (P=0.012). (B) Average heritability explained
per variant when stratifying the analyses by allele frequency or genomic annotation. For
heritability estimations in UKBB, variants were pruned to /2< 0.2 in the 1000 Genomes
Project data set, and the heritability figures are based on /2=80% for height.
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Meta—gene set significance, ExomeChip versus GWAS
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Extended Data Figure 6.
Comparison of DEPICT gene set enrichment results based on coding variation from

ExomeChip (EC) or non-coding variation from genome-wide association study data
(GWAS). The x-axis indicates the P-value for enrichment of a given gene set using DEPICT
adapted for EC data, where the input to DEPICT is the genes implicated by coding EC
variants that are independent of known GWAS signals. The y-axis indicates the P-value for
gene set enrichment using DEPICT, using as input the GWAS loci that do not overlap the
coding signals. Each point represents a meta-gene set, and the best P-value for any gene set
within the meta-gene set is shown. Only significant (false discovery rate < 0.01) gene set
enrichment results are plotted. Colors correspond to whether the meta-gene set was
significant for EC only (blue), GWAS only (green), both but more significant for EC
(purple), or both but more significant for GWAS (orange), and the most significant gene sets
within each category are labeled. A line is drawn at x =y for ease of comparison.
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Extended Data Figure 7.
Heat map showing entire DEPICT gene set enrichment results (analogous to Fig. 2 in the

main text). For any given square, the color indicates how strongly the corresponding gene
(shown on the x-axis) is predicted to belong to the reconstituted gene set (y-axis). This value
is based on the gene's Z-score for gene set inclusion in DEPICT's reconstituted gene sets,
where red indicates a higher Z-score and blue indicates a lower one. The proteoglycan
binding pathway was uniquely implicated by coding variants (as opposed to common
variants) by both DEPICT and the Pascal method. To visually reduce redundancy and
increase clarity, we chose one representative “meta-gene set” for each group of highly
correlated gene sets based on affinity propagation clustering (see Methods and
Supplementary Information). Heat map intensity and DEPICT p-values correspond to the
most significantly enriched gene set within the meta-gene set; meta-gene sets are listed with
their database source. Annotations for the genes indicate whether the gene has OMIM
annotation as underlying a disorder of skeletal growth (black and grey) and the minor allele
frequency of the significant EC variant (shades of blue; if multiple variants, the lowest-
frequency variant was kept). Annotations for the gene sets indicate if the gene set was also
found significant for EC by the Pascal method (yellow and grey) and if the gene set was
found significant by DEPICT for EC only or for both EC and GWAS (purple and green).
Abbreviations: GO: Gene Ontology; KEGG: Kyoto encyclopedia of genes and genomes;
MP: mouse phenotype in the Mouse Genetics Initiative; PPI: protein-protein interaction in
the InWeb database.
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Extended Data Figure 8.
Heatmaps showing associations of the height variants to other complex traits; —log10(P-

values) are oriented with beta effect direction for the alternate allele, white are missing
values, yellow are non-significant (P>0.05), green to blue shading for hits with positive beta
in the other trait and P-values between 0.05 and <2x1077 and, orange to red shading for hits
with negative beta in the other trait and P-values between 0.05 to <2x107. Short and tall
labels are given for the minor alleles. Clustering is done by the complete linkage method
with Euclidean distance measure for the loci. Clusters highlight SNPs that are more
significantly associated with the same set of traits. (A) Variants for which the minor allele is
the height-decreasing allele. (B) Variants for which the minor allele is the height-increasing
allele.
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Figure 1.
Variants with a larger effect size on height variation tend to be rarer. We observed an inverse

relationship between the effect size (from the combined “discovery+validation” analysis, in
cm on the y~axis) and the minor allele frequency (MAF) for the height variants (x-axis, from
0 to 50%). We included in this figure the 606 height variants with A<2x107.
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Figure 2.
Heat map showing subset of DEPICT gene set enrichment results. The full heat map is

available as Extended Data Fig. 7. For any given square, the color indicates how strongly the
corresponding gene (shown on the x-axis) is predicted to belong to the reconstituted gene set
()~axis). This value is based on the gene's Z-score for gene set inclusion in DEPICT's
reconstituted gene sets, where red indicates a higher Z-score and blue indicates a lower one.
The proteogly can binding pathway (bold) was uniquely implicated by coding variants by
DEPICT and PASCAL. To visually reduce redundancy and increase clarity, we chose one
representative “meta-gene set” for each group of highly correlated gene sets based on
affinity propagation clustering (Supplementary Information). Heat map intensity and
DEPICT P-values correspond to the most significantly enriched gene set within the meta-
gene set; meta-gene sets are listed with their database source. Annotations for the genes
indicate whether the gene has OMIM annotation as underlying a disorder of skeletal growth
(black and grey) and the minor allele frequency of the significant ExomeChip (EC) variant
(shades of blue; if multiple variants, the lowest-frequency variant was kept). Annotations for
the gene sets indicate if the gene set was also found significant for EC by PASCAL (yellow
and grey) and if the gene set was found significant by DEPICT for EC only or for both EC
and GWAS (purple and green). Abbreviations: GO: Gene Ontology; MP: mouse phenotype
in the Mouse Genetics Initiative; PPI: protein-protein interaction in the In Web database.
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Figure 3.
STC2 mutants p.Arg44Leu (R44L) and p.Met861le (M861) show compromised proteolytic

inhibition of PAPP-A. (A) Schematic representation of the role of STC2 in IGF-1 signaling.
Partial inactivation of STC2 by height-associated DNA sequence variation could increase
bioactive IGF-1 through reduced inhibition of PAPP-A. (B) Western blot analysis of
recombinant STC2 wild-type and variants R44L and M861. (C) Covalent complex formation
between PAPP-A and STC2 wild-type or variants R44L and M861. Separately synthesized
proteins were analyzed by PAPP-A Western blotting following incubation for 8 h. In the
absence of STC2 (Mock lane), PAPP-A appears as a single 400 kDa band (*). Following
incubation with wild-type STC2, the majority of PAPP-A is present as the approximately
500 kDa covalent PAPP-A:STC2 complex (#), in which PAPP-A is devoid of proteolytic
activity towards IGFBP-4. Under similar conditions, incubation with variants R44L or M86I
appeared to cause less covalent complex formation with PAPP-A. The gels are representative
of at least three independent experiments. (D) PAPP-A proteolytic cleavage of IGFBP-4
following incubation with wild-type STC2 or variants for 1-24 h. Wild-type STC2 causes
reduction in PAPP-A activity, with complete inhibition of activity following 24 h incubation.
Both STC2 variants show increased IGFBP-4 cleavage (/.e. less inhibition) for all time
points analyzed. Mean and standard deviations of three independent experiments are shown.
One-way repeated measures analysis of variance followed by Dunnett's post-test showed
significant differences between STC2 wild-type and variants R44L (#£<0.001) and M86l
(P<0.01).
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