
 

 

Automated Mental Stress Recognition through Mobile Thermal Imaging

Youngjun Cho 
UCL Interaction Centre, Faculty of Brain Sciences 

University College London 
London, United Kingdom 

 
 
Abstract—Mental stress is a critical problem in our modern 
society. This form of stress strongly affects our well being, and 
technology is needed to help us to manage health problems. The 
ability to automatically recognize a person’s mental stress can be 
fundamental in supporting stress and health management. This 
research focuses on the use of mobile thermal imaging, a new and 
less explored sensor, to merge the measurement of multiple 
physiological signatures into one sensor and to build a reliable 
mental stress automatic recognition model. Mobile thermal 
imaging has greater potentials for real-world applications given 
that it is small and light weight, and requires low computation cost. 
To make mobile thermal imaging a robust multimodal stress 
sensor, we have so far contributed: i) a new robust respiration 
tracking method; and ii) a novel respiration-based automatic stress 
recognition model that works in ubiquitous settings. We are 
currently investigating new thermal signatures from 
underexplored body regions (i.e. trapezius muscle) and 
formulating a research framework to fuse multiple thermal 
signatures for more reliable stress recognition outcomes. 

1.   Introduction 
With technology becoming pervasive in our everyday life, 

the ability to recognize human psychophysiological states has 
become fundamental in human computer interaction. Studies 
show that mental stress, a common problem affecting our life 
in this modern society, could be automatically tracked by using 
those sensing technologies, in turn opening the way to new 
stress management support strategies (e.g., [1], [2]). As mental 
stress is a complex phenomenon which influences a person’s 
neural and physiological processes, various approaches have 
been proposed to extract signatures of stress responses. Sensing 
channels for cardiac activity (e.g. heart rate, heart rate 
variability, blood pressure), respiratory activity (e.g. breathing 
rate, tidal volume), temperature, skin conductance (e.g. level 
and response) and neural activity (EEG) have been employed 
for physiological measures of stress (e.g. [1]–[5]). Most of 
these channels require sensor contact. 

 Interestingly, similarly to behavioural signatures which 
can be collected without sensor contact (e.g. body motion in [6], 
voice in [7]), researchers have shown that affect-related 
physiological signatures (e.g. temperature, cardiac and 
respiratory activations) can also be captured via non-contact 
measurements through thermal imaging (e.g. respiration 
monitoring in [8]) and RGB cameras (i.e. remote 

photoplethysmography (PPG) in [9]). Whilst RGB camera-
based methods raise illumination and privacy issues, 
thermography is much less affected by those constraints [10]. 
In addition, studies have shown that different types of 
autonomic nervous system activities can be simultaneously 
read through the use of thermal imaging (e.g. temperature 
direction in [4], respiration in [8], heart rate in [11]). 

Although earlier approaches provided initial evidences of 
the relation between affect and temperature, a variety of body 
regions and their thermal signatures have been much less 
investigated than thermal directionality of facial and palm 
regions [4], [12]–[17]. Little is indeed known about how such 
areas respond to stress level. Furthermore, all of the earlier 
works have employed very heavy and expensive thermographic 
systems, which cannot be easily set up in certain positions and 
are less likely to be used in HCI applications (its cost range: 
over £1,000 ~ approximately £10,000 in 2017). 

More recently, advanced thermography technology has 
emerged, producing a new category of thermographic systems: 
mobile, low-cost thermal imaging. Despite its relatively low 
quality thermal imaging outputs, this technology could help 
bridge the gap between the theoretical findings from the lab 
environment and real world applications in the wild. Indeed, its 
portability (e.g. small size and low computational resource 
requirement) allows it to be easily attached not just to mobile 
phones but also be integrated into our clothes and accessories. 
Extending the body of earlier work on thermal imaging and 
affect recognition, this research aims to explore how to bring 
Mobile Thermography into real world human computer 
interaction as a multimodal mental stress sensor.  

2.   Literature Review: A Short Summary 
Thermal imaging is a key non-invasive method to study 

heat distributions in materials and organisms based on the 
interpretation of electromagnetic radiation [10]. Since the 
human cutaneous and subcutaneous skin releases infrared 
radiations, they can be remotely interpreted and transformed 
into thermograms [18]. Indeed, thermal imaging has been 
widely used in medical applications as a diagnostic tool, such 
as for the identification of tumours and inflammatory diseases 
[19]. With advancements in commercial thermal imaging 
technologies, thermography has begun to extend its application 
context to the analysis of  people’s physiological processes and 
affective states. Indeed, it has been shown that physiological 



signatures, such as thermal directional changes (e.g., [4], [12]–
[14]), cardiac (e.g., [11]), perspiratory (e.g., [15]) and 
respiratory (e.g., [8]) indices, and muscular activations related 
to facial expressions (e.g. FACS decoding [20]), can be 
captured through thermal imaging. Researchers have 
investigated thermal signatures of one’s face in relation to 
mental stress, (e.g., [4], [13], [21]–[23]). For example, it was 
found that a person’s nose tip could show temperature drops 
under cognitive load inducing mental stress [4]. However, the 
results on what such thermal change should be, including its 
direction, are not clear. All these works have been focussing 
primarily on facial regions and have used high performance, 
high-end, heavy thermal imaging systems. Hence, whilst it is 
evident that thermal imaging has greater potentials for 
automatic stress recognition, its applicability to real-life 
ubiquitous everyday settings and needs remains to be 
investigated.  

3.   Methodology: An Overview 
Methodology proposed for this research is organised in 

three stages: biomedical thermal image processing for 
automatically tracking ROIs; physiology measurements in 
ubiquitous settings; and automated mental stress recognition 
based on both uni- and multi-modal models as illustrated in 
Figure 1. The thermal image processing stage aims to develop 
new methods to overcome the challenges posed by low cost 
mobile thermal imaging including going beyond controlled 
static laboratory settings. The physiology measurements stage 
aims at proposing new physiological signatures that facilitate 
the capturing of the relationship between stress and respiratory, 
cardiac, eye blinks and skeletal muscle activations. In particular, 
we aim to identify thermal signatures that can be reliably 
extracted during everyday tasks with dynamic temperature 
environments. In addition, we aim to explore muscle activation 
over the upper trapezius muscle, an underexplored body area in 
relation to physical and mental stress. Lastly, the final stage 
focuses on building models for automated stress recognition 
based on either (respiration, blood volume pulse, skeletal 
muscle activation-based) unimodal signals, and a multimodal 
fusion of those signals. For this stage, this research will explore 
and compare modelling approaches to stress recognition. When 
necessary, data augmentation techniques will be explored and 
proposed to use machine learning techniques that require a 
large dataset. Finally, the work will contribute a dataset of 
thermal data in both constrained (for comparison with state of 
the art approaches) and everyday settings to evaluate 
performance in the wild.   

Physical Interface Concepts for Mobile Thermal 
Imaging 

Among low-cost, mobile thermal imaging systems 
commercially available, FLIR One, which was the cheapest one 
in Jan. 2017, is chosen as the mobile thermal imaging sensor in 
this research. To support unconstrained situations, the camera 
will be integrated with devices already used: rigid (e.g., PC, 
desk) or non-rigid (e.g., headset with microphone and 
Augmented Reality interface like HoloLens) structures to 

unobtrusively monitor a person’s mental stress. For the purpose 
of this research, we have built some of these physical structures 
as shown in Figure 2. To monitor a person’s thermal signatures 
while walking and moving, a hardware frame (e.g. a headset-
shaped interface) (see Figure 2a) can be used to place the 
thermal device near a person’s upper body, similar to set-ups 
used in other studies [24], [25]. The portable mount-setup can 
help the thermographic camera to effectively focus on facial 
and upper trapezius regions, while at the same time they may 
not interfere too much a person’s view. As an alternative setup, 
Figure 2b describes a handheld concept. In comparison with the 
hardware-aided concept, this handheld design provides more 
flexibility and scalability for recovering physiological 
signatures and recognising the mental stress. Users can then use 
the system ad-hoc in situations when they need to monitor their 
condition. This flexible, handheld setup enables many other use 
cases, such as attaching the system on a desktop, desk or handle 
of the bicycle, at a dashboard in the car. 

 
Figure. 1.  Proposed methodology: biomedical thermal image 
processing for the automated ROI tracking - physiology 
measurements - automated stress recognition. 

 
Figure. 2. Physical interface concepts for mobile thermal 
imaging: Monitoring thermal dynamics over a person’s upper 
body with the aid of (a) a hardware steel frame (e.g. a head-
set interface attached to a cap for the camera viewing a 
person’s face) for mobile setting, and (b) without the aid of 
hardware, i.e. a handheld concept. 

 



4.   Contributions made so far  
This section introduces some of key works done or on-

going for the automated mental stress recognition using mobile 
thermal imaging. 

4.1.   Stage 1: Optimal Quantisation for Automated 
ROI Tracking in Mobile Settings 

Visual motion-tracking algorithms in computer vision can 
be used for automatically tracking a ROI on thermal videos (e.g. 
[26] used in [8]). However, there is a problematic challenge 
when those vision algorithms are applied to thermal imaging 
sequences collected from real-world environment and mobile 
settings, i.e., beyond lab studies. Thermal dynamics (i.e. 
different ambient temperature and its dynamic variations) lead 
to tracking imperfections since they are likely to change the 
morphological properties of the body appearance in the 
thermogram. For that reason, we proposed a novel Optimal 
Quantisation method reported in [27]. Earlier works generally 
used a fixed temperature range of interest to convert a 
temperature matrix to an image (i.e., quantisation [28]), 
vulnerable to the environmental thermal dynamics. On the 
other hand, our proposed method handles those factors by 
searching the optimal thermal range of interest on every single 
frame reflecting time-varying thermal dynamics, contributing 
to produce highly reliable performance in automated ROI 
tracking. For more technical details, we refer to [27]. 

4.2.   Stage 2: Physiology Measurements Through 
Mobile Thermal Imaging 

1)    Robust Respiration Tracking in ubiquitous settings 
Researchers have shown that respiratory patterns can be 

computed from the thermal changes around the nostril (e.g., [8]). 
Respiratory thermal signature is interesting because it could be 
more informative over time in comparison with other types of 
known signatures (e.g. thermal directionality is simply a discrete 
value) and mental stress affects its irregularity, but has not been 
employed for detecting stress in thermography-based earlier 
works. Accordingly, we proposed a new respiration tracking 
method in [27] so as to reliably recover respiratory patterns 
using mobile thermal imaging. While controlled static contexts 
have been mainly targeted in the body of work (e.g., [8]), our 
proposed method supports real-world situations beyond 
constrained indoor-laboratory settings. In [27], key challenges 
were identified for the use of mobile thermal imaging to track 
one’s respiratory signals in unconstrained settings: a) ROI 
tracking errors due to motion artefacts and b) low respiratory 
signal quality due to the low spatial resolution of the imaging 
and to mobile situations. To overcome such issues, we proposed 
the Thermal Gradient Flow and Thermal Voxel Integration 
algorithms in [27]. The former technique is mainly based on 
building thermal-gradient magnitude maps for enhancing the 
boundary around the nostril regions, which in turn contribute to 
making the system robust to motion artefacts. The latter one 
projects a 2D thermal matrix onto a 3D space by taking a unit 
thermal element as a thermal voxel. This method results in 
producing higher quality of breathing patterns. The proposed 
methods were thoroughly evaluated in three studies which were 

conducted with different levels of challenges producing  strong 
correlation (r=0.9983) with the ground truth signals (i.e., 
breathing-belt).  

2)    Heart Rate Monitoring 
Cardiac activation indices could be recovered from subtle 

thermal fluctuations around superficial blood vessels since the 
temperature is affected by the blood flow [11]. Vessels on neck 
or forehead areas, which can be clearly seen on thermograms, 
were mainly explored in previous studies (e.g. [11]). However, 
since these areas are often occluded by clothes or hairs in real 
life situations, a different processing strategy is necessary. In 
one of our ongoing studies, we are investigating how to remove 
processes for the registration and localization of artery vessels 
and how to recover blood dispersions of facial capillary 
networks as shown in Figure 3. Again, the proposed Optimal 
Quantisation and Thermal Gradient Flow techniques [27] could 
help reliably extract local thermal sequences in relation to  
capillary systems (see Figure 3b). 

 
Figure 3. (a) Thermal observation of capillary networks, (b) 
extraction of thermal dispersions from a tracked ROI and (c) 
cardiac pulse signals recovered by our very preliminary approach. 
 

 
Figure 4. Extraction of Eye blinks: (a) the eye-ROI on thermal 
image sequences during the eye-blink moment, (b) skewness along 
with time. 

3)    Extraction of Eye Blinks 
Despite thermal signatures of eye blinks being 

underexplored, it is also one of important physiological cues to 
a person’s psychological states [29]. But, it is difficult to extract 
one’s eye-blink pattern through low-resolution mobile thermal 
imaging since thermal representation of one’s eye is likely to get 
blurred. For the recognition of minute thermal changes on the 
eye-ROI by eye blinks, we are exploring the use of Skewness in 
one of our ongoing works. It can assist to sense a moment when 
an eye is blinking as can be seen in Figure 4. Figure 4a shows 
the eye-ROI on thermal image sequences during the eye blink 
moments (collected at 186.545s, 186.713s and 186.869s) and 



local peaks of Skewness is matched with the blinks as shown in 
Figure 4b.  

4)    Skeletal Muscle Activation: A New Thermal Signature 
from Underexplored ROIs 

This research aims to explore new underexplored regions 
which could provide a strong thermal signature in relation to a 
person’s psychological stress. Mobile thermal imaging can be a 
crucial tool for monitoring body areas given the advantage of 
its light weight. A mobile light thermal camera can be set up 
near a person’s body in a way that it was not possible before 
with high-end expensive and heavy thermal cameras. Using this 
setup, this research attempts to identify informative thermal 
signatures from skeletal muscles (e.g., trapezius) in relation to 
the muscle activation under cognitive load. In one of our 
ongoing studies, a variety of statistical features have been 
extracted from one’s upper trapezius as illustrated in Figure 5. 

 
Figure 5. A thermal image over a person’s upper body (top view): 
to identify thermal signatures from the upper trapezius muscle. 

4.3.   Stage 3: Unimodal Stress Recognition by going 
deeper into breathing dynamics  

The main goal of this research is to build a reliable 
automatic stress recognition system which can support 
unconstrained real-world settings. Toward this goal, we 
proposed DeepBreath, a new respiration-based unimodal stress 
detection model, in one of our previous works [30]. The robust 
respiration tracking method discussed in Section 4.2.1 is 
fundamentally used to extract the breathing pattern. In earlier 
studies on mental stress recognition, gross statistical features 
(e.g, mean) of respiration patterns have been generally used 
together with those from other physiological ones (e.g. [1]). 
However, in these works, the contribution of gross respiratory 
features to automated stress recognition was not clear (e.g. 
different results in [2] and [31]). In [30], a novel 2D 
representation (signature) of breathing pattern dynamics (i.e., 
two dimensional respiration variability spectrogram, RVS) was 
proposed, inspired by the fact that psychological stress affects 
the regularity of a person’s breathing pattern [32]. This new 
form of input signature condenses dynamic respiratory 
information. Features regarding respiratory irregularity can be 
learnt by a deep learning framework. In [30], the convolutional 
neural network (CNN) architecture was employed for feature 
learning. Finally, a data augmentation technique was designed 
to activate the deep network with a small-scale dataset. Two 
types of standard stress induction tasks (i.e., Stroop Colour 
Word Test and Arithmetic Test) were used to collect the RVS 
datasets and to evaluate the proposed stress recognition system. 

The study results showed that DeepBreath produced above 
chance level accuracies in discriminating multiple stress levels. 

5.   Future Works: Multimodal Fusion and 
Intervention 

This research plans to fuse different thermal signatures for 
achieving highly robust performances of the psychological 
stress recognition. The 2D input signature of respiration 
variability in [30] and thermal signatures from newly explored 
ROIs (i.e. skeletal muscles) will be merged together with 
known thermal signatures such as thermal directional changes 
on facial areas. Different learning models including deep 
learning model proposed in [30] and dynamic Bayesian 
network (e.g., hidden Markov) based ones (to handle time-
varying thermal signatures) will be investigated and possibly 
merged into one decision model. We are also exploring the use 
of co-learning methods for this purpose [33]. Finally, the 
proposed multimodal fusion methods will be evaluated with an 
ad-hoc built basic proof-of-concept coaching system. For this 
final phase, multimodal feedback (e.g. tactile and auditory 
feedback [34], [35]) along with stress predictions can be used 
to raise a person’s stress awareness.  

The datasets of labelled thermal images and extracted 
physiological patterns will be incrementally made as results are 
published (available at http://youngjuncho.com/datasets/).  

6.   Conclusion 
Toward building a robust stress recognition system, this 

research proposes thermal image processing methods for 
automatic ROI tracking through thermal imaging (can be 
applicable to any types of thermal cameras), methods for 
physiology measurements, and machine learning models for 
automatically discriminating a person’s mental stress levels. To 
overcome key challenges identified from the literature (e.g. the 
automated ROI tracking issues, impracticality of the expensive 
high-precision thermal camera, limitations of basic thermal 
signatures in automatically recognising a person’s stress), this 
research focuses on the use of mobile thermal imaging in real-
life like situations. In detail, a new quantisation method was 
investigated. A robust respiration tracking method, which 
works in ubiquitous settings, was proposed. In addition, we 
proposed a novel respiration-based unimodal stress recognition 
system which produces high accuracy results. In order to build 
a multi-modal fusion model to achieve more reliable 
recognition performances, we have started to explore how to 
extract other types of physiological signatures through mobile 
thermal imaging. we believe this research could open a new era 
of thermal imaging-based research on a person’s affective states. 
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