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Abstract Islet amyloidosis by IAPP contributes to pancreatic b-cell death in diabetes, but the

nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and

biological measurements, we define the toxic species produced during IAPP amyloid formation and

link their properties to induction of rat INS-1 b-cell and murine islet toxicity. These globally flexible,

low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species.

They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive b-sheet structure.

Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic;

toxicity depends on their partially structured conformational states. Some anti-amyloid agents

paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data

highlight the distinguishing properties of toxic IAPP oligomers and the common features that they

share with toxic species reported for other amyloidogenic polypeptides, providing information for

rational drug design to treat IAPP induced b-cell death.

DOI: 10.7554/eLife.12977.001

Introduction
The pathophysiological aggregation of polypeptides and proteins plays a key role in a wide range of

protein misfolding diseases, including type 2 diabetes (T2D), Alzheimer’s disease (AD) and systemic

amyloidosis. Pancreatic islet amyloidosis by the neuropancreatic hormone, human islet amyloid poly-

peptide (h-IAPP, also known as amylin) contributes to b-cell death, progression of T2D, islet trans-

plant failure, as well as cardiovascular complications (Figure 1) (Potter et al., 2010; Ashcroft and

Rorsman, 2012; Westermark et al., 2008; Despa et al., 2012; Abedini and Schmidt, 2013;

Cao et al., 2013a). Relatively little is known about the molecular properties that define the toxic spe-

cies produced during amyloid formation (Abedini and Schmidt, 2013; Cao et al., 2013a;

Westermark et al., 1987; Cooper et al., 1987; Campioni et al., 2010; Chiti and Dobson, 2006;

Johnson et al., 2012; Eisenberg and Jucker, 2012; Blancas-Mejı́a and Ramirez-Alvarado, 2013),

particularly in islet amyloidosis.

The physio-chemical properties of the toxic species produced during islet amyloidosis are not

defined and there are no therapies for this pathology, in large part because of our limited

Abedini et al. eLife 2016;5:e12977. DOI: 10.7554/eLife.12977 1 of 28

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.12977.001
http://dx.doi.org/10.7554/eLife.12977
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


understanding of the molecular nature of the toxic species (Abedini and Schmidt, 2013; Cao et al.,

2013a; Gurlo et al., 2010; Hull et al., 2009; Janson et al., 1999; Masters et al., 2010; Park et al.,

2012; Zhang et al., 2003; Zraika et al., 2009; Cooper et al., 2010). It has been widely proposed

that toxic oligomers produced by disparate proteins share many similar features (Bolognesi et al.,

2010; Chen et al., 2013; Chimon et al., 2007; Glabe, 2008; Kim et al., 2009; Laganowsky et al.,

2012; Mannini et al., 2014; Bucciantini et al., 2002). However, it is not known if IAPP oligomers are

similar to toxic oligomers formed by other proteins; nor is it clear how oligomers formed by different

proteins vary or how structured they are (Chimon et al., 2007; Glabe, 2008; Lendel et al., 2014;

Sandberg et al., 2010). Here we use a multi-disciplinary approach to simultaneously monitor the

real-time kinetics of IAPP toxicity and amyloid formation in solution, and measure the biochemical

and physio-chemical properties of toxic and non-toxic IAPP species transiently produced over the

course of aggregation, thereby linking specific molecular properties of amyloidogenic IAPP species

to induction of b-cell death. The results provide important information about the nature of toxic

IAPP oligomers, their unique properties and the common features they share with toxic entities pro-

duced in other amyloidosis diseases.

Mature, post-translationally modified h-IAPP (Figure 1A) is co-stored with insulin in the b-cell

insulin secretory granules (~500 mM to low mM concentration range) and is co-secreted with insulin

into the extracellular space within the pancreatic islets, where it then diffuses into blood vessels and

enters the circulation (pM concentrations). The polypeptide plays an adaptive role in metabolism

and glucose homeostasis, but in metabolic disease, h-IAPP forms pancreatic islet amyloid fibrils by

an unknown mechanism (Abedini and Schmidt, 2013; Cao et al., 2013a; Westermark et al., 2011).

The initiation site of islet amyloid formation is not known. Existing data indicate that both extracellu-

lar and intracellular h-IAPP oligomers contribute to islet b-cell toxicity. Histological studies show that

amyloid deposits associated with T2D are extracellular (Westermark et al., 2011). Rodent IAPP is

not toxic and does not form amyloid (Westermark et al., 2011), however, studies in transgenic

rodent models that over-express h-IAPP and modulate the normal h-IAPP to insulin ratio suggest

that islet amyloidosis may also have an intracellular origin. Intracellular aggregation of h-IAPP in

these animal models suggests that defects in autophagy and/or endoplasmic reticulum (ER) stress

play a role in toxicity; however, other reports argue that ER stress is not a significant contributor

(Hull et al., 2009; Huang et al., 2007). There is strong evidence that extracellular oligomers induce

cytotoxicity in vivo (Westermark et al., 2011; Park et al., 2012; Zhang et al., 2003; Aston-

Mourney et al., 2011). Studies using a transgenic islet model that expresses human-relevant levels

of h-IAPP demonstrate that h-IAPP secretion is required for amyloid formation and b-cell toxicity

(Aston-Mourney et al., 2011). Receptor-mediated mechanisms of h-IAPP toxicity support a role for

extracellular oligomers, as do studies showing that h-IAPP oligomers activate the inflammasome

(Johnson et al., 2012; Masters et al., 2010; Park et al., 2012), and recent findings that extracellular

h-IAPP oligomers can be transported into b-cells (Trikha and Jeremic, 2013; Sheedy et al., 2013).

Thus, toxic h-IAPP oligomers can induce b-cell toxicity by both extra- and intracellular mechanisms.

Here we focus on extracellular islet amyloidosis by h-IAPP.

Results

Toxic h-IAPP species are transient, pre-amyloid lag phase intermediates
that upregulate oxidative stress, inflammation and apoptosis
Amyloid formation by h-IAPP, like that of other amyloidogenic proteins, comprises three distinct

phenomenological phases: a lag, growth and saturation phase (Figure 1B). Little or no amyloid is

formed in the lag phase and little is known about the nature of the species that populate this phase.

Secondary nucleation leads to production of new fibrils, either by breakage of the small number of

fibrils present or by templating new aggregates off the surface of existing fibrils. We developed

time-resolved assays that allow concurrent biophysical, biochemical and biological characterization

of the ensemble of species produced during IAPP amyloid formation (Figure 2A). Physiologically rel-

evant solution conditions were found such that assembly of IAPP occurs on long time scales. The

time scale is sufficiently long enough that the presence of toxic species can be detected indirectly

by removing aliquots and applying them to cultured rat INS-1 b-cells or murine pancreatic islets.

Stock solutions of h-IAPP, h-IAPP mutants and non-toxic, non-amyloidogenic rat IAPP (r-IAPP) were
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prepared by dissolving the peptides in buffer (time-zero) and incubating them at 25˚C (pH 7.4). Ali-

quots were removed at various time points over the course of aggregation and characterized by the

amyloid sensitive dye thioflavin-T and by transmission electron microscopy (TEM); aliquots were also

applied to cultured b-cells at the same time points. Addition of aliquots to the cells involves only a

30% dilution of the peptide stock solutions. Control experiments using photochemical induced

cross-linking and thioflavin-T kinetic assays of amyloid formation in buffer at 25˚C reveal that this

modest dilution does not significantly alter the distribution of oligomers, nor does it significantly

alter the time course of amyloid formation. The same dilution into cell culture medium at 37˚C has

no significant effect on the time course (Figure 2—figure supplements 1 and 2). Toxicity was

assessed by measuring loss in cellular metabolic function, detected by Alamar Blue reduction assays;

production of reactive oxygen species (ROS); upregulation of inflammatory markers; production of

cleaved caspase-3; and by observed changes in cellular morphology by light microscopy. These real-

time experiments probe kinetic species produced during the course of h-IAPP amyloid formation,

Figure 1. A schematic diagram of the process of amyloid formation by h-IAPP. (A) Amino acid sequence of wild-type h-IAPP. The mature, bioactive

form of the polypeptide has an amidated C-terminus and a disulfide bridge indicated by the bracket between Cys-2 and Cys-7. (B) Schematic diagram

illustrating the kinetics of amyloid formation by h-IAPP. The ribbon diagram shown is derived from the IAPP model developed by Eisenberg and co-

workers (Wiltzius et al., 2009).

DOI: 10.7554/eLife.12977.002
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Figure 2. Toxic h-IAPP species are transiently populated lag phase intermediates. (A) A schematic diagram of the experimental design for the kinetic

assays. Protein aggregation was initiated by dissolving amyloidogenic IAPP, non-amyloidogenic IAPP variants or r-IAPP in 20 mM Tris HCl buffer at pH

Figure 2 continued on next page
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and are fundamentally different from the common approach in which peptide is added to cells upon

dissolution in cell culture medium and toxicity monitored after subsequent incubation times on cells.

This experimental design also differs from studies that attempt to trap non-amyloidogenic oligomers

using surfaces such as gold particles, detergents or micelles. It is not known how surface-trapping

techniques affect the conformational properties of oligomers (Bram et al., 2014; Kayed, 2003). The

experiments reported here provide critical information about toxic, amyloidogenic IAPP oligomers in

solution.

h-IAPP toxicity to b-cells is observed to be time-dependent; amyloid fibrils are not toxic, but spe-

cies populated in the lag phase are. Toxicity decreases in the growth phase and disappears in the

saturation phase, directly indicating that the toxic species are transient lag phase intermediates

(Figure 2B and C). Thioflavin-T binding assays and TEM studies confirm that the toxic intermediates

are pre-fibrillar in nature. Aliquots of h-IAPP lag phase species appear to be amorphous and deposit

on TEM grids as small spherical aggregates of various size, while species in the saturation phase

exhibit long, unbranched amyloid fibril morphology (Figure 2C). We conducted additional biological

experiments to determine whether h-IAPP lag phase intermediates produced in vitro are also toxic

to pancreatic islets. We isolated and hand purified pancreatic islets from wild-type mice, confirmed

the health and integrity of these organelles via immunofluorescence and light microscopy, and car-

ried out ex vivo islet viability assays after incubation of the islets with either toxic h-IAPP lag phase

intermediates or buffer control. The data provide direct evidence that the lag phase intermediates

are toxic to cells in tissue. These results are consistent with our cellular studies and support our con-

clusion that h-IAPP lag phase intermediates are toxic to insulin producing pancreatic b-cells and pri-

mary islets (Figure 2D,E and F).

Cellular stress and inflammation have been implicated in h-IAPP induced b-cell toxicity in vitro, in

mouse models of metabolic disease and in human T2D (Westermark et al., 2011; Masters et al.,

2010; Zraika et al., 2009; Janciauskiene and Ahrén, 2000; Konarkowska et al., 2005;

Sakuraba et al., 2002). If the lag phase intermediates identified here are toxic species then they

should upregulate pro-inflammatory mediators and the production of ROS. This is exactly what was

observed. Along with a decrease in b-cell viability, h-IAPP lag phase intermediates also induce an

increase in Ccl2 and Il1b mRNA expression, an increase in ROS production, upregulation of NADPH

oxidase 1 (NOX1) protein expression, and an increase in cleaved caspase-3 production, consistent

with h-IAPP induced b-cell stress, inflammation and apoptosis (Figure 3A–D and Figure 3—figure

supplements 1 and 2). No significant upregulation of cytokines, ROS or cleaved caspase-3 produc-

tion is induced by time-zero species or by h-IAPP amyloid fibrils, indicating that pro-inflammatory

Figure 2 continued

7.4 (time-zero) followed by incubation. Aliquots were removed at designated time points over the course of amyloid formation (denoted by arrows) for

concurrent biophysical characterization and biological assessment of transient kinetic species in rat INS-1 b-cells at the same time points, as described

in the methods. (B) Time-resolved Alamar Blue reduction assays of INS-1 b-cells treated with h-IAPP (.) and r-IAPP (~) at different time points during

the course of aggregation. Light microscopy: (†) Viable b-cells after incubation with h-IAPP at time-zero; (‡) apoptotic b-cells shrink and detach from the

cell culture substratum after incubation with lag phase intermediates; (d) viable b-cells after incubation with amyloid fibrils. (C) Thioflavin-T monitored

kinetics of amyloid formation: h-IAPP (.) and r-IAPP (~). TEM images: (#) non-toxic h-IAPP at time-zero; (§) toxic pre-fibrillar lag phase intermediates; (j)

amyloid fibrils (Scale bars: 200 nm). (D) Immunofluorescence of a section of murine pancreas shows non-inflamed, insulin-positive islet: Sections of

paraffin embedded pancreatic tissue were stained for insulin (red) indicative of b-cells, F4/80 (green) marker for macrophages indicative of inflammation

and Dapi (blue) nuclear stain. (E) Light microscopy of hand purified pancreatic islets with intact mantels after isolation from wild-type mice. (F) Alamar

Blue reduction assays show that h-IAPP lag phase intermediates are toxic to mouse pancreatic islets. Alamar Blue reduction in b-cell assays, thioflavin-T

binding assays, light microscopy and TEM were conducted concurrently using aliquots from the same 20 mM peptide solutions. The peptide

concentration after dilution into b-cell and islet assays was 14 mM. b-cell and islet viability is normalized to buffer treated cells or islets. Data represent

mean ± SD of three to six replicate wells per condition and a minimum of three to ten replicate experiments per group (****p<0.0001). Some of the

error bars in panels B and C are the same size or smaller than the symbols in the graphs. Figure 2—figure supplements 1 and 2 provide control

experiments for the biophysical and cellular assay conditions used in the studies.

DOI: 10.7554/eLife.12977.003

The following figure supplements are available for figure 2:

Figure supplement 1. Dilution of h-IAPP by 30% does not change the distribution of the toxic oligomers.

DOI: 10.7554/eLife.12977.004

Figure supplement 2. Dilution of h-IAPP by 30% into cell culture medium does not change the kinetics of amyloid formation.

DOI: 10.7554/eLife.12977.005
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Figure 3. h-IAPP lag phase intermediates upregulate pro-inflammatory cytokines and oxidative stress. (A and B) qPCR studies of INS-1 b-cells treated

with h-IAPP: Lag phase intermediates (blue) upregulate (A) Ccl2 and (B) Il1b, but time-zero species (black), amyloid fibrils (red) and r-IAPP at the same

time points do not. The peptide concentration after dilution into b-cell assays was 14 mM. (C) DHE-fluorescence assays of b-cells treated with h-IAPP lag

phase intermediates show significant h-IAPP induced ROS production compared to control cells. (D) Western blot studies show upregulation of NOX1

in b-cells treated with h-IAPP lag phase intermediates compared to buffer treated cells. Data represent mean ± SD (DHE studies) and mean ± SEM

(qPCR) of three to six replicate wells per condition and a minimum of three to ten replicate experiments per group (*p<0.05; **p<0.01). Figure 3—

figure supplements 1 and 2 provide additional concurrent experiments showing that h-IAPP induced loss in b-cell viability is accompanied by ROS and

cleaved caspase-3 production.

DOI: 10.7554/eLife.12977.006

The following figure supplements are available for figure 3:

Figure supplement 1. h-IAPP lag phase intermediates induce ROS production in INS-1 b-cells.

DOI: 10.7554/eLife.12977.007

Figure supplement 2. Toxic h-IAPP lag phase intermediates induce b-cell apoptosis, but freshly dissolved h-IAPP (time-zero) and amyloid fibrils do not.

DOI: 10.7554/eLife.12977.008
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cellular responses are triggered specifically by pre-fibrillar lag phase intermediates. No toxicity or

cytokine production is observed when non-amyloidogenic r-IAPP is added to cultured b-cells at any

time point, consistent with previous reports (Westermark et al., 2011).

Toxic h-IAPP lag phase intermediates are soluble, low order oligomers
Our ability to monitor toxicity in a time-resolved fashion allows us to characterize the physio-chemi-

cal properties of the toxic intermediates under well-defined conditions. Ultracentrifugation studies

demonstrate that h-IAPP toxic species are soluble. Samples of toxic h-IAPP intermediates and amy-

loid fibrils were pelleted at 20,000 g for 20 min and the soluble peptide remaining in the superna-

tant was measured. Control experiments confirm that r-IAPP is soluble under these conditions. At

least 88% of h-IAPP is pelleted in the sample of fibrils, even at these low g-forces, while 94% of the

peptide in the sample of toxic lag phase intermediates remains in the supernatant. TEM and

thioflavin-T binding assays confirm the absence of amyloid in the supernatant of ultracentrifuged

samples of toxic intermediates, and the presence of amyloid in the pellet obtained from samples of

h-IAPP fibrils (Figure 4A–D). The supernatant of intermediates is toxic to b-cells, while the resus-

pended pellet from samples of amyloid fibrils is not, verifying that cytotoxic entities reside in the sol-

uble phase and are not high molecular weight species (Figure 4E). Characterization of the ensemble

of h-IAPP lag phase intermediates by circular dichroism (CD) reveals partial apparent helical struc-

ture. Positive signal is observed below 190 nm and a minima at 208 nm (Figure 4F). A second broad

minima centered at 220 nm is also detected with a mean residue ellipticity on the order of �6000

(deg-cm2/dmol), consistent with transiently populated partial a-helical structure (Manning and

Woody, 1991). However, helical and b-sheet CD signatures overlap in this region of the spectrum.

Thus, the broad signal in this region may also include contributions from the presence of some b-

sheet structure. Two dimensional infrared (2D IR) studies, described below, indicate that the overall

level of b-structure is modest. With further incubation, the CD spectrum of h-IAPP changes and

eventually converts into a spectrum indicative of b-structure (Figure 4—figure supplement 1). Ali-

quots of the supernatant from samples of toxic intermediates were characterized by CD, both before

and after ultracentrifugation (Figure 4F). The spectra are superimposable, confirming that the

observed CD signal reflects the peptide in the soluble fraction and demonstrates that the overall

conformation of the ensemble of oligomeric intermediates in solution remains the same after

ultracentrifugation.

We next sought to determine the approximate distribution of oligomeric species present in toxic

h-IAPP solutions. Aliquots of toxic lag phase intermediates were trapped by in situ photochemical

induced cross-linking and examined by SDS-PAGE, allowing differentiation between monomers and

different size oligomers in solution. The in situ approach avoids concerns of structural perturbations

induced by attaching photoactive groups and has been successfully used to study Ab (Bitan and

Teplow, 2004; Bitan et al., 2001). The data reveal a distribution of oligomers ranging from mono-

mers to hexamers at time points of toxicity, confirming that the ensemble of toxic h-IAPP lag phase

intermediates are soluble, low order oligomers (Figure 4G and H). Control studies show that the

observed distribution is not an artifact of the irradiation time used for photochemical cross-linking

(Figure 4—figure supplement 2). The dead time of the measurement (the time before the first mea-

surement) is on the order of 10 min; a distribution of oligomers ranging from monomers to hexamers

is populated within that time frame and the relative populations are similar to those detected later

in the lag phase (Figure 4G and H, Figure 4—figure supplement 3). The data are consistent with

independent ion mobility mass spectroscopy studies that report that a distribution of h-IAPP mono-

mers to hexamers form within 2 min of initiating amyloid formation, and that the distribution is pres-

ent later in the lag phase (Young et al., 2014). The rapid formation of oligomers and their

persistence through the lag phase is consistent with recently proposed models of h-IAPP amyloid

formation that posit that the lag phase could be controlled by a significant structural rearrangement

within an oligomeric nucleus that involves crossing a high free energy barrier (Buchanan et al.,

2013). Analysis of apparent relative populations of h-IAPP toxic species, deduced from the gel, indi-

cate that dimers, trimers and tetramers are the most populated species. Monomeric proteins can be

cross-linked by diffusion and collision of the photochemically modified monomers and it is important

to show that the observed distribution differs from that expected for a monomeric protein

(Bitan and Teplow, 2004). Thus, we employed a variant of the villin headpiece helical subdomain

(HP35*), which is a soluble non-amyloidogenic protein of similar size to IAPP, as a control. The wild-

Abedini et al. eLife 2016;5:e12977. DOI: 10.7554/eLife.12977 7 of 28

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.12977


Figure 4. Toxic h-IAPP lag phase intermediates are soluble, low order oligomers with partial apparent a-helical structure. (A–C) TEM images: (A) r-IAPP,

(B) supernatant of ultracentrifuged solution of h-IAPP lag phase intermediates produced after 10 h of incubation, and (C) resuspended pellet of

ultracentrifuged solution of h-IAPP amyloid fibrils produced after 70 h of incubation (Scale bars: 200 nm). (D) Thioflavin-T binding assays confirm

absence of amyloid fibrils in solutions of h-IAPP lag phase intermediates before ultracentrifugation and in the ultracentrifuged solutions of h-IAPP lag

phase intermediates shown in panel B; they also confirm the presence of amyloid in the resuspended pellets of ultracentrifuged saturation phase

solutions shown in panel C. The buffer control sample contains free thioflavin-T and the resulting fluorescence from this control solution is similar to

that of free thioflavin-T solution by itself, and is thus the baseline. (E) Alamar Blue reduction assays show that the supernatant of samples of lag phase

intermediates are toxic before and after ultracentrifugation, while the resuspended pellet of ultracentrifuged saturation phase samples are not toxic. (F)

CD spectra of toxic lag phase intermediates before (red) and after (blue) ultracentrifugation. Data are plotted as mean residue ellipticity. (G)

Representative SDS-PAGE of photochemically cross-linked toxic h-IAPP lag phase intermediates: lane-1, markers (molecular weight: KDaltons); lane-2,

h-IAPP. (H) Quantitative analysis of the gels shown in panel G show a distribution of low order oligomers at time points of toxicity ranging from

monomers to hexamers. Samples assessed in panels B–H were ultracentrifuged at 20,000 g for 20 min. Samples assessed in panels B–F used aliquots

Figure 4 continued on next page
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type subdomain contains a single Trp and a Met, but no Tyr. We replaced Trp with Tyr, and Met

with nor-leucine to ensure that the control peptide contains the same photochemically active resi-

dues as h-IAPP. Quantitative analysis of the silver stained gels reveal that the distribution of cross-

linked h-IAPP species is significantly different from that expected for a monomeric protein

(Figure 4H and Figure 4—figure supplement 4). We also compared the observed oligomer distri-

butions to those predicted by Teplow and coworkers for diffusing monomers of molecular weight 4

KDaltons (Bitan et al., 2001). That analysis considered the case of spherical monomers which do not

interact except by diffusion with random elastic collisions. For low efficiency cross-linking, the model

predicts that the most populated species is the monomer, and an approximately exponential

decrease in intensity of high order species is predicted. Medium efficiency cross-linking still leads to

the monomer being the dominate species, but to a shallower exponential decay in the relative popu-

lations. Both cases clearly differ from that observed for h-IAPP. High efficiency cross-linking is pre-

dicted to lead to further consumption of monomers and a shift in the maximum to dimers with the

predicted monomer and dimer populations being noticeably higher than the predicted trimer, tetra-

mer and pentamer populations. Again, this distribution is fundamentally different from that observed

for h-IAPP lag phase species, where trimers are the most highly populated species and the popula-

tion of pentamers is comparable to the population of monomers. The pattern of cross-linking

observed for h-IAPP lag phase species is also very different than observed if pre-formed amyloid

fibrils are cross-linked. h-IAPP was allowed to form fibrils and then the samples were centrifuged.

No cross-linked h-IAPP oligomers were detected in the supernatant. Re-solubilization of the cross-

linked fibrils revealed that the dominant species were monomers with some dimer present (Fig-

ure 4—figure supplement 5). The various control experiments together with comparison to inde-

pendent mass spectrometry studies confirm that the observation of lag phase h-IAPP oligomers is

robust.

Not all IAPP oligomers are toxic
IAPP is expressed by all mammals examined to date; the amino acid sequences are ~80% conserved

between species, however not all IAPP sequences are toxic or form amyloid in vivo (Figure 5—fig-

ure supplement 1) (Betsholtz et al., 1989; Cao et al., 2013b; Westermark et al., 1990). We won-

dered if non-amyloidogenic, non-toxic variants of IAPP oligomerize, and if so, whether the size

distribution and/or the structure of the oligomers produced were significantly different. r-IAPP is

non-toxic and non-amyloidogenic in vivo and is widely used as a negative control in biological and

biophysical/biochemical studies of h-IAPP (Westermark et al., 2011). However, it aggregates and

forms oligomers. To further validate the use of r-IAPP as a negative control, we carried out dose-

response experiments to test the effect of incubating INS-1 b-cells with up to 6-fold higher

Figure 4 continued

from the same peptide solutions. h-IAPP solutions contained 20 mM peptide. The peptide concentration after dilution into b-cell assays was 14 mM.

Data represent mean ± SD of three to six replicate wells per condition and a minimum of three to nine replicate experiments per group (***p<0.001).

Figure 4—figure supplements 1–5 provide additional biophysical characterization data for h-IAPP and a control peptide.

DOI: 10.7554/eLife.12977.009

The following figure supplements are available for figure 4:

Figure supplement 1. Time-dependent Far UV CD data of h-IAPP.

DOI: 10.7554/eLife.12977.010

Figure supplement 2. The detection of monomers through hexamers is not a consequence of the choice of irradiation time.

DOI: 10.7554/eLife.12977.011

Figure supplement 3. The distribution of photochemically cross-linked oligomers detected for h-IAPP at ’time-zero’ is similar to those detected for

toxic h-IAPP lag phase intermediates.

DOI: 10.7554/eLife.12977.012

Figure supplement 4. The distribution of photochemically cross-linked oligomers detected for h-IAPP is different from that observed for a monomeric

protein of similar size.

DOI: 10.7554/eLife.12977.013

Figure supplement 5. The distribution of photochemically cross-linked oligomers detected for solutions of non-toxic h-IAPP fibrils is significantly

different than for toxic h-IAPP lag phase intermediates.

DOI: 10.7554/eLife.12977.014
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Figure 5. r-IAPP and I26P-IAPP form oligomers that are similar in size to those formed by h-IAPP, but do not form amyloid under the conditions of

these studies, and are not toxic. (A) Primary sequence of h-IAPP, r-IAPP and I26P-IAPP. Mature polypeptides contain a disulfide between Cys2 and

Cys7, indicated by brackets, and an amidated C-terminus. Amino acid positions that differ from h-IAPP are indicated in red. (B) Representative SDS-

PAGE of photochemically cross-linked non-toxic r-IAPP and I26P-IAPP show the presence of low order oligomers. Peptide solutions were incubated at

25˚C until time points corresponding to h-IAPP toxicity and ultracentrifuged for 20,000 g for 20 min. Aliquots of the supernatants were removed and

Figure 5 continued on next page
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concentrations (84 mM) of r-IAPP for up to 19-fold longer incubation times on cells (96 h) than used

in the assays employed herein to assess h-IAPP toxicity. No detectable toxicity was observed for

r-IAPP, even at these significantly higher concentrations (Figure 5—figure supplement 2). The

r-IAPP sequence differs from the h-IAPP sequence at six positions and contains three Pro residues

and a His-18 to Arg replacement (Figure 5A). Pro is a well-known breaker of secondary structure

and substitution of His with Arg will increase the net charge of the peptide. Cross-linking studies

(Figure 5B) reveal a broadly similar distribution of oligomers produced in solution by r-IAPP and

h-IAPP, with detected species ranging from monomers to hexamers. There are some differences in

the relative intensities of the different oligomeric states, but these are relatively modest and it is dif-

ficult to unambiguously deduce their significance. The important feature is that the rat polypeptide

clearly oligomerizes and forms dimers to hexamers similar to that of the human peptide; yet, it is not

toxic (Figure 5C). Characterization by thioflavin-T binding assays and TEM confirm that r-IAPP does

not form amyloid fibrils during these experiments (Figure 5D and E). Independent ion mobility mass

spectroscopy (IM-MS) studies have also shown that h-IAPP and r-IAPP form similar distributions of

oligomers (Young et al., 2014). Cell viability assays carried out simultaneously with biophysical

measurements using aliquots from the same stock solutions show that r-IAPP is not toxic at any time

point under these conditions, even though it oligomerizes (Figure 5F and G). Additional studies

show that r-IAPP is not toxic over a 28 day time course (data not shown). CD studies reveal that

r-IAPP oligomers appear less structured than their h-IAPP counterparts, as indicated by a positive

signal below 190 nm and less intense signal between 218 to 222 nm (Figure 5H) in the spectrum of

lag phase oligomers. While the differences in the CD spectra of r-IAPP and h-IAPP are moderate,

they are significant and reproducible using different preparations of both peptides and in indepen-

dent experiments conducted by different investigators. In contrast to h-IAPP, the CD spectrum of

non-amyloidogenic r-IAPP does not change with time and is independent of concentration over the

range tested (Figure 5—figure supplement 3). To further test if toxicity is decoupled from general

aggregation, we examined an I26P point mutant of h-IAPP (I26P-IAPP) (Figure 5A). We have previ-

ously shown that I26P-IAPP inhibits amyloid formation by h-IAPP and does not form amyloid by itself

Figure 5 continued

irradiated for 10 s for cross-linking, and analyzed using silver staining. Lane-1, markers (molecular weight: KDaltons); lane-2, h-IAPP; lane 3, r-IAPP; and

lane 4, I26P-IAPP. (C) Quantitative analysis of the gels shown in panel B reveal a distribution of low order oligomers ranging up to hexamers: h-IAPP

(red); r-IAPP (green); and I26P-IAPP (blue). (D) Thioflavin-T binding assays of aliquots of buffer (gold), r-IAPP (green) or I26P-IAPP (blue) at different time

points over the course of aggregation. (E) TEM image of r-IAPP oligomers after 14 h incubation (Scale bars: 200 nm). (F) Alamar Blue reduction assays

of b-cells treated with buffer (gold), r-IAPP (green) or I26P-IAPP (blue) at different time points over the course of aggregation. (G) Light microscopy

image of viable b-cells after treatment with r-IAPP aggregates shown in panel E. (H) CD spectra of I26P-IAPP (blue), r-IAPP (green) and h-IAPP

(red). Data is plotted as mean residue ellipticity. (I) TEM image of I26P-IAPP oligomers after 14 h incubation. (J) Light microscopy image of viable b-cells

treated with oligomers shown in panel I. IAPP solutions contained 20 mM peptide. The final peptide concentration after dilution into b-cell assays was

14 mM. Data represent mean ± SD of three to six replicate wells per condition and three replicate experiments per group (NSD: no significant

difference; Scale bars: 200 nm). Figure 5—figure supplements 1–7 provide additional biochemical information, biophysical characterization and

toxicity experiments for the non-toxic, non-amyloidogenic r-IAPP and h-IAPP mutants.

DOI: 10.7554/eLife.12977.015

The following figure supplements are available for figure 5:

Figure supplement 1. Primary sequences of IAPP from different species.

DOI: 10.7554/eLife.12977.016

Figure supplement 2. Dose-response studies show r-IAPP is not toxic.

DOI: 10.7554/eLife.12977.017

Figure supplement 3. The CD spectrum of r-IAPP reveals random coil conformation and is independent of concentration and time.

DOI: 10.7554/eLife.12977.018

Figure supplement 4. Time-dependent far UV CD data of I26P-IAPP.

DOI: 10.7554/eLife.12977.019

Figure supplement 5. A designed, non-toxic H18R, G24P, I26P triple mutant of h-IAPP (TM-IAPP) oligomerizes.

DOI: 10.7554/eLife.12977.020

Figure supplement 6. Hydropathy plots for IAPP peptides.

DOI: 10.7554/eLife.12977.021

Figure supplement 7. Average per residue hydrophobicity for different IAPP peptides.

DOI: 10.7554/eLife.12977.022
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under the conditions of our studies (Abedini et al., 2007; Meng et al., 2010). I26P-IAPP is similar to

h-IAPP in hydrophobicity and has an identical net charge. Like r-IAPP, this mutant forms low order

oligomers with an apparent size distribution that is similar to h-IAPP oligomers, as judged by photo-

chemical induced cross-linking studies, but is non-amyloidogenic under these conditions over the 35

+ h duration of these studies, as judged by thioflavin-T binding assays and TEM (Figure 5D and I).

The CD spectrum of I26P-IAPP is similar to that of r-IAPP (Figure 5H and Figure 5—figure supple-

ment 4). Cell viability assays carried out in parallel with biophysical studies show that I26P-IAPP is

not toxic at any time point in our studies (Figure 5F and J). As an additional control, we analyzed a

recently described non-toxic variant of h-IAPP (Wang et al., 2014a) (Figure 5—figure supplement

5A). The H18R, G24P, I26P triple mutant of h-IAPP (TM-IAPP) has been shown to be non-amyloido-

genic and non-toxic (Wang et al., 2014b). Photochemical induced cross-linking and CD studies

show that this variant also oligomerizes, even though it remains as random coil as judged by CD

(Figure 5—figure supplement 5B–D). Thus, all three of the different non-toxic variants, which have

similar hydrophobicity to h-IAPP, oligomerize (Figure 5—figure supplements 6 and 7). It is not pos-

sible to resolve the structural differences between the transiently populated ensemble of h-IAPP

oligomers and the ensembles populated by r-IAPP, I26P-IAPP and TM-IAPP. However, the key point

is that properties of the polypeptides beyond their ability to oligomerize are clearly important deter-

minants of cellular toxicity. It is interesting to note that there are differences in the distribution of

h-IAPP oligomers and the non-toxic r-IAPP and I26P-IAPP variants. Relatively more dimer is detected

for h-IAPP compared to these two non-toxic variants and a reduction in the relative population of

pentamers and hexamers is also detected. This may reflect actual differences in the distribution of

oligomers in solution or it may include contributions from changes in cross-linking efficiency. The

data cannot differentiate between the two potential explanations. The key feature is that these

results decouple general aggregation and oligomer formation from toxic species formation, and sug-

gest that the conformational properties of oligomers, and not their size, are important determinants

of cellular toxicity.

The ensemble of toxic h-IAPP oligomers contain modest overall b-sheet
structure, in contrast to reports on toxic species derived from Ab and
other amyloidogenic proteins
We probed the conformational properties of toxic h-IAPP oligomers in more detail to determine

how they compared with those reported for toxic species formed by other amyloidogenic proteins.

Of particular interest is a comparison with the Ab peptide of AD, given the similarity between the

two polypeptides and recent studies that suggest a link between AD and T2D (Yang and Song,

2013). h-IAPP and Ab40 have 25% amino acid identity and 50% similarity with segments believed to

be important for the self-assembly of each peptide, h-IAPP (Park et al., 2012; Zhang et al., 2003;

Zraika et al., 2009; Cooper et al., 2010; Bolognesi et al., 2010; Chen et al., 2013; Chimon et al.,

2007; Glabe, 2008; Kim et al., 2009; Laganowsky et al., 2012) and Ab40 (Chimon et al., 2007;

Glabe, 2008; Kim et al., 2009; Laganowsky et al., 2012; Mannini et al., 2014; Bucciantini et al.,

2002; Lendel et al., 2014) having high similarity (Figure 6—figure supplement 1). Ab fibrils can

seed amyloid formation by h-IAPP in vitro and in an animal model, and the two polypeptides interact

in vitro (Andreetto et al., 2010; O’Nuallain et al., 2004; Oskarsson et al., 2015). Recent work has

revealed significant levels of b-sheet structure in toxic oligomers from several proteins, including Ab

(Chimon et al., 2007; Laganowsky et al., 2012; Lendel et al., 2014; Sandberg et al., 2010;

Do et al., 2016). We detected apparent partial helical structure in the ensemble of toxic h-IAPP lag

phase oligomers by CD (Figure 4E, 5H and Figure 4—figure supplement 1). Observation of partial

helical structure is consistent with studies of truncated h-IAPP analogs fused to maltose binding pro-

tein; as well as studies of h-IAPP aromatic residue mutants, and NMR studies of soluble IAPP variants

(Wiltzius et al., 2009; Williamson et al., 2009; Tu and Raleigh, 2013). It is also known that helical

structure can be stabilized in h-IAPP by binding to negatively charged surfaces such as sulfated gly-

cosaminoglycans or to vesicles containing significant amounts of anionic lipids (Wiltzius et al., 2009;

Williamson et al., 2009; Tu and Raleigh, 2013; Brender et al., 2012; Knight et al., 2006;

Meng et al., 2007). CD is well suited to probe helical structure, but is less sensitive to the details of

b-sheet structure; individual b-sheets can exhibit significant differences in their CD signal. Thus, we

applied newly developed 2D IR methods. 2D IR is a sensitive probe of b-sheet structure in aggregat-

ing systems (Buchanan et al., 2013; Wang et al., 2011; Strasfeld et al., 2009). The spectrum of
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h-IAPP amyloid fibrils has significant intensity along the diagonal in the b-sheet region between 1615

and 1625 cm-1 (Figure 6A) and is in good agreement with published spectra of h-IAPP amyloid

fibrils. A flexible, partially structured intermediate will yield a significantly less intense 2D IR spec-

trum than a well-ordered b-structure, since the parallel b-sheet structure in amyloid fibrils leads to a

large transition dipole. The spectrum of the intermediates is much less intense than the spectrum of

the amyloid fibrils, indicating only modest levels of b-sheet structure (Figure 6B). Based on the rela-

tive areas in Figure 6C, the upper limit for the b-sheet content in the ensemble of lag phase inter-

mediates populated under these conditions is estimated to be on the order of 15%. This does not

preclude a high level of b-structure in a short segment of the protein. Recent isotope edited 2D IR

studies using 10- to 20-fold higher h-IAPP concentrations than used herein (the isotope edited stud-

ies cannot currently be conducted at 40 mM peptide for technical reasons) suggest that h-IAPP forms

an intermediate with well developed, parallel, in–register b-structure in the FGAIL region during

amyloid formation under those conditions (Buchanan et al., 2013). A b-sheet of this size is fully con-

sistent with the 2D IR data presented here.

The ensemble of h-IAPP toxic oligomers are globally flexible, have
solvated aromatic side chains and do not bind 1-anilnonaphthalene-8-
sulphonic acid (ANS), bis-ANS or Nile Red
ANS, a dye that is widely employed in protein folding studies to detect exposed hydrophobic

patches and molten globule states (Figure 7A), binds to toxic pre-amyloid oligomers formed by a

range of other amyloidogenic proteins, including various oligomers formed by the Ab peptide, lyso-

zyme, the a-synuclein protein of Parkinson’s disease, SH3 domains, HypF-N, bovine serum albumin,

concanavalin and others (Bolognesi et al., 2010; Mannini et al., 2014; Frare et al., 2009;

Lorenzen et al., 2014; Bhattacharya et al., 2011; Fu et al., 2015; Ghosh et al., 2015;

Paslawski et al., 2014; Vetri et al., 2013). We tested if toxic h-IAPP lag phase intermediates bind

ANS. No ANS binding is observed in the lag phase, but is observed during the growth phase of

amyloid formation and in the saturation phase containing fibrils (Figure 7B and C). Thus, the proper-

ties of h-IAPP toxic oligomers are distinct from those recently described for certain other amyloido-

genic proteins (Bolognesi et al., 2010; Kim et al., 2009; Laganowsky et al., 2012; Mannini et al.,

2014; Lendel et al., 2014; Sandberg et al., 2010; Frare et al., 2009; Lorenzen et al., 2014;

Stroud et al., 2012). 4,40-Dianilino-1,10-binaphthyl-5,50-disulfonic acid (bis-ANS) has also been used

to probe molten globule states, the formation of exposed hydrophobic patches, and, in limited

Figure 6. The ensemble of toxic h-IAPP oligomers contain only modest amounts of overall b-sheet structure. 2D IR spectra of h-IAPP: (A) Amyloid fibrils

are rich in b-sheet structure, but (B) lag phase intermediates show no significant (<15%) b-sheet structure. The spectra in panels A and B are plotted on

different intensity scales. (C) Comparison of the intensity of the diagonal slice in panels A and B: Intermediates (blue), fibrils (red) and zero baseline

(grey). Figure 6—figure supplement 1 provides sequence alignment analysis of h-IAPP and Ab40.

DOI: 10.7554/eLife.12977.023

The following figure supplement is available for figure 6:

Figure supplement 1. Sequence alignment of h-IAPP with Ab40.

DOI: 10.7554/eLife.12977.024
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applications, amyloid formation (Younan and Viles, 2015; Hawe et al., 2008). Binding of bis-ANS

to partially folded states often leads to a larger fluorescence change than ANS binding. We also

tested the ability of h-IAPP toxic intermediates to bind bis-ANS. No binding to lag phase species is

Figure 7. The ensemble of toxic h-IAPP oligomers do not bind ANS. (A) Structural model of an ANS molecule. (B) ANS fluorescence emission spectra

of h-IAPP at time-zero (black, ����), lag phase intermediates (blue, —) and amyloid fibrils (red, - - - -). (C) Kinetic assays monitored by ANS binding (.) and

thioflavin-T binding (~) confirm that h-IAPP lag phase intermediates do not bind ANS. Figure 7—figure supplements 1–14 provide additional dye-

binding studies using bis-ANS and Nile Red, and biophysical characterization of the toxic h-IAPP lag phase intermediates.

DOI: 10.7554/eLife.12977.025

The following figure supplements are available for figure 7:

Figure supplement 1. Bis-ANS and Nile Red do not bind to h-IAPP lag phase intermediates.

DOI: 10.7554/eLife.12977.026

Figure supplement 2. Fluorescence detected thioflavin-T binding assay (black) showing the kinetics of amyloid formation by a solution of h-IAPP used

in the proteolytic digestion studies presented in Figure 7—figure supplements 3–14.

DOI: 10.7554/eLife.12977.027

Figure supplement 3. Characterization of h-IAPP time-zero species by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.028

Figure supplement 4. Characterization of h-IAPP early lag phase species by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.029

Figure supplement 5. Characterization of h-IAPP mid-lag phase species by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.030

Figure supplement 6. Characterization of h-IAPP amyloid fibrils by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.031

Figure supplement 7. Characterization of h-IAPP time-zero species by five minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.032

Figure supplement 8. Characterization of h-IAPP early lag phase species by five minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.033

Figure supplement 9. Characterization of h-IAPP mid-lag phase species by five minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.034

Figure supplement 10. Characterization of h-IAPP amyloid fibrils by five minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.035

Figure supplement 11. Characterization of h-IAPP time-zero species by forty minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.036

Figure supplement 12. Characterization of h-IAPP early lag phase species by forty minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.037

Figure supplement 13. Characterization of h-IAPP mid-lag phase species by forty minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.038

Figure supplement 14. Characterization of h-IAPP amyloid fibrils by forty minute Proteinase K digestion as monitored by MALDI-TOF MS.

DOI: 10.7554/eLife.12977.039
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observed, but the dye, like ANS, binds to h-IAPP amyloid fibrils (Figure 7—figure supplement 1).

Nile Red, like ANS, is used as a fluorescent probe of hydrophobic protein surfaces and has been

shown to bind to pre-amyloid oligomers formed by some amyloidogenic proteins, but recent stud-

ies, conducted under different conditions than employed in our work, show that it does not bind to

h-IAPP lag phase intermediates (Hawe et al., 2008; Jha et al., 2014; Krishnan et al., 2012;

Sackett and Wolff, 1987). We independently confirmed that it does not bind to the lag phase spe-

cies populated in our experiments (Figure 7—figure supplement 1).

We examined the susceptibility of the oligomeric lag phase intermediates to proteolytic digestion

by Proteinase K in order to further probe their structure and flexibility. h-IAPP monomers and lag

phase intermediates are rapidly digested by the protease, while h-IAPP amyloid fibrils are not, even

after 40 min of incubation (Figure 7—figure supplement 2–14). The results indicate that the inter-

mediates are much less structured than the amyloid fibrils, and show that h-IAPP amyloid fibrils have

similar anti-protease properties as amyloid fibrils derived from other proteins.

We next probed the solvent exposure of the three aromatic residues of h-IAPP using the non-

genetically coded fluorescent amino acid, p-cyano-phenylalanine (p-cyanoPhe) (Figure 8). p-Cyano-

Phe can be incorporated into proteins and used to follow amyloid formation (Marek et al., 2010a).

Its fluorescence is high when the cyano-group is solvent exposed and hydrogen bonded, and low

when it is not; the fluorescence is also quenched via FRET to Tyr with a Ro of 15Å. h-IAPP contains

two Phe and one Tyr; thus, three analogs were prepared in which one aromatic residue was replaced

by p-cyanoPhe at each position (Figure 8A-D). Fluorescence is high for unaggregated h-IAPP (time-

zero) and is quenched in the amyloid fibrils. The fluorescence intensity of the lag phase intermedi-

ates is also high and shows only moderate differences from the value observed for each peptide at

time-zero, but is much higher than the intensity observed from the amyloid fibrils (Figure 8E). The

data indicate that Phe-15, Phe-23 and Tyr-37 are largely solvent exposed in the lag phase, and rule

out a significant population of conformations in the ensemble in which the aromatic residues are bur-

ied, or in which the C-terminal Tyr forms persistent interactions with either Phe-15 or Phe-23. Again,

these results are compatible with 2D IR studies undertaken at higher peptide concentrations, which

postulate formation of b-sheet structure in the FGAIL region.

Collectively, the data show that the ensemble of toxic lag phase oligomers of h-IAPP are defined

by the following characteristics: they are soluble, globally flexible, lack extensive b-sheet structure,

and do not have persistent hydrophobic surface patches that allow ANS, bis-ANS or Nile Red bind-

ing. The data does not preclude short regions of well-ordered polypeptide and intermolecular

hydrogen bonding provided such interactions do not lead to significant sequestering of the aromatic

residues from solvent, development of ANS binding surfaces or significant protection of Proteinase

K cleavage sites. This combination of properties indicates that toxic h-IAPP lag phase oligomers

share similar features with those reported for a range of other amyloidogenic proteins, but are not

identical to them (Bolognesi et al., 2010; Kim et al., 2009; Laganowsky et al., 2012;

Mannini et al., 2014; Lendel et al., 2014; Sandberg et al., 2010; Frare et al., 2009;

Lorenzen et al., 2014; Stroud et al., 2012; Chen et al., 2015). The distinct molecular features of

toxic IAPP oligomers have important implications for rational design of drugs with improved

specificity.

Aromatic-aromatic and aromatic-hydrophobic interactions are not
required for toxicity, but do contribute to toxicity
Aromatic contacts (p-p interactions) have been proposed to play an important role in amyloid forma-

tion. Although they are not required for h-IAPP amyloid formation, mutation of the three aromatic

residues in h-IAPP to Leu (3xL-IAPP) slows the rate of amyloid formation (Tu and Raleigh, 2013;

Marek et al., 2007; Gazit, 2007). Our p-cyanoPhe experiments show that there are no persistent

interactions between F15 and Y37 or F23 and Y37 of h-IAPP, but the studies are less sensitive to for-

mation of low levels (<5 to 10%) of conformers with F15/Y37 or F23/Y37 contacts, and do not probe

potential interactions between F15 and F23. Consequently, we examined a triple mutant of h-IAPP:

F15L, F23L, Y37L-IAPP (3xL-IAPP) that lacks aromatic residues to test whether or not aromatic p-p

interactions or aromatic-hydrophobic interactions are required for toxicity (Figure 9A). Thioflavin-T

assays and TEM measurements confirm that the triple mutant does form amyloid more slowly than

the human peptide (Figure 9B–D). Cell viability studies show, that like h-IAPP, 3XL-IAPP exhibits

time dependent toxicity; the amyloid fibrils produced by 3xL-IAPP are not toxic to b-cells, but
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species populated in the lag phase are, further confirming that toxicity resides with pre-amyloid

intermediates (Figure 9B–E). Dose-response studies show that 3xL-IAPP evokes significantly lower

levels of toxicity than h-IAPP. At their respective time points of maximum toxicity, 40 mM 3xL-IAPP

reduced b-cell viability to 67%, while 20 mM h-IAPP reduced b-cell viability to 35% (Figure 9F). How-

ever, 3xL-IAPP is clearly still toxic, indicating that aromatic residues, and hence p-p interactions, are

not an absolute requirement for h-IAPP toxicity, but do contribute to it.

Figure 8. Aromatic residues in the ensemble of toxic h-IAPP oligomers are solvent exposed. (A) Primary sequences of h-IAPP and p-cyano-

phenylalanine variants; red X=cyanophenylalanine. (B) A structural model of the h-IAPP amyloid fibril. (C) Location of aromatic residues in h-IAPP which

are replaced with p-cyano-phenylalanine in the h-IAPP variants. (D) Structure of the unnatural amino acid p-cyano-phenylalanine. (E) p-Cyano-

phenylalanine fluorescence emission spectra reveal that aromatic side chains are solvent exposed in time-zero species (black, ����) and lag phase

intermediates (blue, —), but are buried in amyloid fibrils (red, - - - -).

DOI: 10.7554/eLife.12977.040
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Figure 9. Aromatic-aromatic and aromatic-hydrophobic interactions are not required for toxicity. (A) Primary sequences of h-IAPP and 3xL-IAPP. Amino

acid positions differing from h-IAPP are indicated in red. (B) Thioflavin-T monitored kinetics of amyloid formation by 3xL-IAPP (.) and buffer control (*).

(C) TEM image of spherical, toxic, mid-lag phase intermediates produced during amyloid formation by 3xL-IAPP. (D) TEM image of non-toxic amyloid

fibrils produced by 3xL-IAPP. (E) Time-resolved Alamar Blue reduction assays of b-cells treated with 3xL-IAPP (.) or buffer (*) at different time points

during the course of amyloid formation. (F) Alamar Blue reduction assays measuring b-cell viability in response to increasing doses of h-IAPP or 3xL-

IAPP with respect to buffer treated cells: h-IAPP (red), 3xL-IAPP (dark grey) and buffer (gold). Concurrent Alamar Blue reduction assays, thioflavin-T

binding assays and TEM studies were carried out using aliquots from the same 40 mM peptide solutions. The peptide concentration in samples

assessed in panels B–D was 40 mM. The final peptide concentration in samples assessed in panel E after dilution of the 40 mM peptide solutions into b-

cell assays was 28 mM. The final peptide concentrations in dose-response experiments in panel F, after dilution of peptide solutions into b-cell assays

was 10.5, 14 and 28 mM. Data represent mean ± SD of three to six replicate wells per condition and three replicate experiments per group. Some of the

error bars in panels B and E are the same size or smaller than the symbols in the graphs (Scale bars: 200 nm; *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001).

DOI: 10.7554/eLife.12977.041
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Inhibitors of amyloid formation may paradoxically stabilize toxic
conformations and prolong cytotoxicity
The observation that h-IAPP toxicity is directly induced by pre-fibrillar lag phase species highlights

these species as a key drug target for inhibitor design, and predicts that an inhibitor that slows the

onset of amyloid formation, but does not prevent it could actually prolong cytotoxicity by prolong-

ing the lifetime of the toxic intermediates. This is particularly important since many in vitro screens

of amyloid inhibitors rely on kinetic assays of amyloid formation. We tested this hypothesis using the

I26P-IAPP inhibitor (Abedini et al., 2007). Time-resolved kinetic studies of cytotoxicity and amyloid

formation show that a 1:1 addition of I26P-IAPP lengthens both the lag phase and the growth phase,

and increases the duration of toxicity proportionally (Figure 10). The value of T50 (the time required

to reach 50% of the total signal change in a thioflavin-T experiment) is increased by a factor of two,

as is the length of the lag phase, defined here as the time required to reach 10% of the total change

in thioflavin-T signal. We conclude that an effective inhibitor of amyloid formation can be deleterious

to cells if it does not prevent the formation or the accumulation of toxic lag phase intermediates,

but traps them instead in their toxic conformation.

Discussion
In the present work, we use a combination of biophysical, biochemical and cell biological techniques

to define the basis of h-IAPP induced islet amyloidosis toxicity. Toxic h-IAPP species are found to be

partially structured, globally flexible, soluble, low order oligomers with solvated aromatic side chains

Figure 10. I26P-IAPP inhibits h-IAPP amyloid formation, but prolongs cytotoxicity. (A) Time-resolved Alamar Blue reduction assays of b-cells treated

with: I26P-IAPP (¤), h-IAPP (.) and 1:1 I26P-IAPP/h-IAPP (&). Light microscopy: (†) Viable b-cells treated with h-IAPP amyloid fibrils formed after 14 h- of

incubation; (‡) shrunken apoptotic b-cells after treatment with lag phase intermediates of 1:1 I26P-IAPP/h-IAPP produced after 14 h of incubation. (B)

Thioflavin-T monitored kinetics of amyloid formation by I26P-IAPP (¤), h-IAPP (.) and 1:1 I26P-IAPP/h-IAPP (&). The same color coding is used in panels

A and B. TEM images of aliquots of: (§) h-IAPP and (j) 1:1 I26P-IAPP/h-IAPP obtained from the same samples monitored in panel B and applied to b-

cells in panel A (Scale bars: 200 nm). Concurrent Alamar Blue reduction assays, thioflavin-T binding assays, light microscopy and TEM studies used

aliquots from the same peptide solutions containing 40 mM (single peptide samples) or 80 mM peptide (1:1 mixture). The final peptide concentrations

after dilution into b-cell assays were 28 mM and 56 mM, respectively. Data represent mean ± SD of three to six replicate wells per condition and three

replicate experiments per group. Some of the error bars in panels A and B are the same size or smaller than the symbols in the graphs.

DOI: 10.7554/eLife.12977.042
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that populate the lag phase of amyloid formation. The data do not preclude the ordering of short

segments of the chain, nor do they rule out regions with intermolecular hydrogen bonds or short

segments of intermolecular b-sheets. The ensemble of toxic h-IAPP intermediates are susceptible to

proteolysis and do not require p-p interactions or aromatic-hydrophobic contacts to form, however

removal of the aromatic residues does reduce toxicity. These toxic species of h-IAPP induce oxida-

tive stress and pro-inflammatory cellular processes leading to b-cell apoptosis. Studies with I26P-

IAPP, TM-IAPP and r-IAPP demonstrate that not all IAPP oligomers are toxic, decoupling general

oligomerization from toxicity; and suggest that the conformational properties of oligomers and/or

their stability, rather than their size, are important determinants of toxicity. Along these lines, IM-MS

studies indicated that low order r-IAPP and h-IAPP oligomers have different gas phase conforma-

tions and exhibit different gas phase stabilities, and suggest that certain inhibitors of toxicity target

subspecies of oligomers (Young et al., 2014; Dupuis et al., 2009). Toxicity has been linked to the

surface hydrophobicity of oligomers formed by other amyloidogenic proteins (Mannini et al.,

2014), but that does not appear to rationalize the relative toxicity of the oligomers examined here.

The mutations do reduce the hydrophobicity of the chain, but the effects are modest, particularly for

the I26P-IAPP point mutant, and h-IAPP oligomers do not bind the dyes ANS, bis-ANS or Nile Red

(Figure 5—figure supplements 6 and 7, Figure 7, Figure 7—figure supplement 1). It is not cur-

rently possible to pinpoint the structural features that distinguish toxic oligomers from those that are

non-toxic, but all of the non-toxic variants examined here contain proline substitutions within a

region of h-IAPP that has been postulated to form transient, parallel, in register b-sheet structure

during amyloid formation in solution. The ability of proline to disrupt secondary structure in this

region may well be an important feature in reducing toxicity.

Toxic h-IAPP oligomers share some features with toxic oligomers reported to be produced by

other amyloidogenic proteins, but also have distinct molecular properties. Like other toxic oligom-

ers, particularly those that are formed by intrinsically disordered proteins, they are soluble, pre-fibril-

lar in character, contain partial secondary structure, and bind to molecules such as EGCG. However,

they do not bind ANS, bis-ANS or Nile Red; and the overall b-sheet and a-helical content measured

for the ensemble of toxic h-IAPP oligomers in solution is much less than that described for a range

of other amyloidogenic proteins. Isoforms of the Ab peptide of AD and a fragment derived from aB

crystallin have been shown to contain extensive regions of b-sheet structure, while oligomers formed

from several other proteins are reported to be rich in a-helical structure (Chiti and Dobson, 2006;

Bolognesi et al., 2010; Chimon et al., 2007; Glabe, 2008; Kim et al., 2009; Laganowsky et al.,

2012; Mannini et al., 2014; Lendel et al., 2014; Sandberg et al., 2010; Stroud et al., 2012;

Chen et al., 2015; Sarkar et al., 2014). Thus, these data reveal, for the first time, that the toxic

h-IAPP intermediates differ from toxic oligomers described in other amyloidoses (Campioni et al.,

2010; Bolognesi et al., 2010; Chimon et al., 2007; Glabe, 2008; Kim et al., 2009;

Laganowsky et al., 2012; Mannini et al., 2014; Lendel et al., 2014; Lorenzen et al., 2014;

Sarkar et al., 2014).

The differences between the conformational properties of toxic h-IAPP oligomers defined in the

present work and those recently identified for Ab are particularly interesting, given that the two pol-

ypeptides share important features and given the growing evidence that links T2D and AD

(Yang and Song, 2013; Oskarsson et al., 2015; Ninomiya, 2014). Pre-fibrillar forms of h-IAPP and

Ab interact in vitro and a positive association has recently been demonstrated in plasma

(Miklossy et al., 2010; Qiu et al., 2014). Furthermore, Ab can seed amyloid formation by h-IAPP in

vitro and Ab has been reported to form pancreatic deposits in T2D, while h-IAPP has been reported

in brain plaques in AD (O’Nuallain et al., 2004; Oskarsson et al., 2015; Miklossy et al., 2010). The

data presented here demonstrate that toxic species formed by different proteins can be distinct in

their biophysical/biochemical properties, even when the two sequences share common features,

helping to rationalize why some inhibitors of h-IAPP amyloid formation do not inhibit Ab amyloid for-

mation and vice versa (Rochet, 2007; Wang and Raleigh, 2014). This is important since it indicates

that therapeutic strategies for amyloidosis diseases need to be tailored to the specific molecular

properties of pathological amyloidogenic species unique to each disease.

We demonstrate that some inhibitors of amyloid formation can adversely prolong toxicity

depending on their targets and their modes of action. Inhibitors that stabilize the ensemble of toxic

lag phase intermediates can trap them and exacerbate pathological cellular cascades. This observa-

tion provides additional evidence that toxicity appears to be conformation dependent, and has
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implications for rational drug design for the treatment of amyloidosis diseases. The findings also

emphasize that caution must be taken when in vitro biophysical assays are used, such as thioflavin-T

binding, to develop leads for anti-amyloid agents, since drugs that slow the onset of amyloid forma-

tion and cause the buildup of toxic pre-fibrillar intermediates can give the same spectroscopic signa-

tures as compounds that slow amyloid formation, but decrease the steady state population of toxic

species. Conversely, compounds that accelerate amyloid formation could reduce toxicity by reducing

the transient population of toxic oligomers (Bieschke et al., 2012).

This work illustrates the power of combining time-resolved kinetic studies with physio-chemical,

biochemical and biological measurements, and highlights that while amyloid formation by different

proteins may share many common features, toxic species produced by different proteins can have

different properties. In the case of pancreatic islet amyloidosis, we conclude that flexible, low order,

toxic h-IAPP oligomers with modest overall b-sheet and a-helical content, which form before amyloid

fibrils, are primary targets for therapeutic interventions. Hence, molecules that decrease the popula-

tion of toxic amyloidogenic species by preventing their formation, reducing their lifetime, or seques-

tering them to prevent their interactions with cells may serve as therapeutic agents in disorders

characterized by pancreatic b-cell dysfunction, and more broadly to a wide range of other protein

misfolding diseases (Westermark et al., 2011; Campioni et al., 2010; Johnson et al., 2012; Blan-

cas-Mejı́a and Ramirez-Alvarado, 2013).

Materials and methods

Protein preparation
h-IAPP, r-IAPP and IAPP analogs were prepared using Fmoc chemistry and pseudoproline deriva-

tives as previously described (Abedini and Raleigh, 2005; Abedini et al., 2006; Marek et al.,

2010b) or purchased from the KECK Foundation at Yale University. Peptides were cleaved from the

resin using standard TFA methods. The peptide disulfide bond was formed via DMSO-based oxida-

tion and peptide purification was achieved by reverse phase HPLC using a C18 preparatory column

(Abedini et al., 2006; Marek et al., 2010b). HCl, rather than TFA, was used as the ion pairing agent

since residual TFA can affect IAPP amyloid formation kinetics and can also interfere with 2D IR stud-

ies. Samples were analyzed by MALDI-TOF Mass Spectrometry (Brucker) or by Electrospray Mass

Spectrometry using a Micromass Platform LCZ single quadrupole instrument to confirm their

identity.

Cell culture
Rat INS-1 b-cells (832/13) were generously provided by Professor Newgard (Duke University). b-cells

were grown in RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 11 mM glucose, 10 mM

Hepes, 2 mM L-glutamine, 1 mM sodium pyruvate, 50 mM b-mercaptoethanol, 100 U/ml penicillin,

and 100 U/ml streptomycin.

Islet isolation and culture
Pancreatic islets were isolated from anesthetized 12–18 week-old male C57BL/6 mice (Jackson Labo-

ratories) according to institutional guidelines by ductal collagenase injection, oscillating digestion,

and filtration through a 70 mm filter. Hand-picked murine islets were assessed by light microscopy

and immunofluorescence to insure intact mantels, insulin-positivity and absence of inflammation

prior to experiments. Islets were seeded at 25–30 islets per well in RPMI 1640 supplemented with

10% fetal bovine serum (FBS), 11 mM glucose, 10 mM Hepes, 2 mM L-glutamine, 1 mM sodium

pyruvate, 100 U/ml penicillin and 100 U/ml streptomycin.

Immunofluorescence (IHC-IF)
Formalin-fixed, paraffin-embedded pancreas specimens were cut into sections 4 mm thick, and six

sections, 30 mm apart, were labeled for each marker. All sections were co-stained with anti-insulin

antibody (1:300, Dako) to visualize b-cells and anti-F4/80 antibody (1:75, Cedarlane) to detect mac-

rophages and thus assess inflammation. Staining of tissue was carried out by blocking pancreatic

sections in PBS containing 2.0% normal goat serum (Vector Laboratories) and incubating with pri-

mary antibody diluted in PBS/1% BSA, followed by incubation with secondary antibody diluted in
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PBS for 1 h. Secondary antibodies for immunolabeling of insulin (1:100, Alexa Fluor 594-conjugated

goat anti-guinea pig immunoglobulins) and F4/80 (1:100, Alexa Fluor 488-conjugated goat anti-rat

immunoglobulins) were all purchased from Invitrogen. Sections were counterstained with Dapi anti-

fade mounting media (2 mg/mL; Invitrogen) to identify nuclei. Images were taken using a Leica fluo-

rescent microscope.

Amyloid formation and aggregation assays
Synthetic amyloidogenic and non-amyloidogenic IAPP peptides were dissolved in 1,1,1,3,3,3-Hexa-

fluoro-2-propanol (HFIP) for 5–12 h, aliquoted and lyophilized to a dry powder. Amyloid formation

was initiated by dissolving dry HFIP-treated peptides in 20 mM Tris HCl buffer (time-zero) at pH 7.4.

Samples were incubated at 25˚C, unless indicated otherwise. Aliquots were removed from the pep-

tide solutions at designated time points over the course of amyloid formation or aggregation as

schematically depicted in Figure 2A. The kinetic species populated within each of the three phases

of amyloid formation were concurrently characterized by biophysical methods and biological assays

assessing changes in metabolism, oxidative stress, inflammation and apoptosis using INS-1 b-cells

and murine pancreatic islets.

Toxicity assays
Rat INS-1 b-cells were seeded at a density of 30,000 cells per well in 96-well plates 12–16 h prior to

start of experiments. Hand purified islets were seeded at a density of 25–30 islets per well in 96-well

plates. Amyloid formation and aggregation assays were initiated by dissolving IAPP peptides (15 mM

to 80 mM stock solutions for dose-response experiments) in 20 mM Tris HCl (pH 7.4), unless stated

otherwise. Peptide solutions were incubated at 25˚C, or as indicated. Aliquots were removed from

amyloid formation and aggregation assays at different time points and applied exogenously to rat

INS-1 b-cells (5 h incubation) or murine pancreatic islets (10 h incubation). b-cells and islets were

photographed by light microscopy immediately before and after toxicity experiments to assess

changes in morphology. The final range of peptide concentrations examined in b-cell and islet toxic-

ity assays after diluting IAPP peptide solutions into cell or islet culture was 10.5 mM to 56 mM in

dose-response studies, unless indicated otherwise. Cell viability was measured by Alamar Blue

reduction assays, which detect changes in metabolic function, and by morphological changes

detected by light microscopy. Alamar Blue was diluted ten-fold in culture medium and incubated on

b-cells or islets for 5 h at 37˚C. Fluorescence (530 nm excitation and 590 nm emission) was measured

with a Beckman Coulter DTX880 plate reader. Values were calculated relative to control b-cells or

islets treated with buffer alone. Toxicity was defined as <80% viability. Light microscopy images

were captured using an Olympus BX-61 light microscope.

Oxidative stress assays
INS-1 b-cells were treated with h-IAPP lag phase intermediates (14 mM or 28 mM final concentration

on cells) or Tris HCl buffer control solutions for 1 h. A shorter solution incubation time on cells was

employed in oxidative stress experiments (1 h) than employed in standard toxicity experiments (5 h),

since the production and detection of transient reactive oxygen species (ROS) occurs prior to detec-

tion of loss in cell viability. Superoxide production was measured with dihydroethidium (DHE), a cell-

permeable dye that fluoresces upon binding of intracellular superoxide anions. DHE was added to

cells (40 mM final concentration) and incubated on cells during the last 30 min of incubation with

h-IAPP or control solutions. Fluorescence was subsequently measured (518 nm excitation and 605

nm emission). Data were normalized to cell number detected by the Calcein AM live cell assay.

NOX1 protein expression was also assessed in cell lysates produced from b-cells treated with either

h-IAPP or buffer, via western blot using anti-NOX1 antibody (1:500, abcam). Western blot data was

normalized to GAPDH levels detected by anti-GAPDH antibody (1:1000, abcam).

Calcein AM live cell assay
Calcein AM is cleaved to a fluorescent byproduct after interaction with viable intracellular esterases

and thus fluorescence approximates the proportion of viable cells per well. Following incubation

with h-IAPP or control solutions, media was removed and cells were incubated with 5 mM Calcein
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AM in phosphate buffered saline (PBS) for 15 min prior to reading fluorescence (485 nm excitation

and 535 nm emission).

Apoptosis assays
Rat INS-1 b-cells were seeded at a density of 500,000 cells per well in 6-well plates 24 h prior to start

of experiments. Aliquots were removed from amyloid formation assays or aggregation assays (20

mM peptide) at different time points and transferred to cultured b-cells. Final peptide concentration

after dilution into cellular assays was 14 mM. b-cells were lysed and protein extracts were assessed

by caspase-3 colorimetric assay (R&D Systems). Recombinant caspase-3 enzyme (R&D Systems) was

used as a positive control.

RNA isolation and quantitative real time PCR (qPCR)
Total cellular RNA was isolated from h-IAPP treated b-cells using the RNeasy Plus Mini Kit (Qiagen).

The quality of RNA was determined by measurement of 260:280 ratio. One mg of RNA was reverse-

transcribed to cDNA using MultiScribe reverse transcriptase (Applied Biosystems). Real-time quanti-

tative PCR was performed using the TaqMan method (50˚C for 2 min, 95˚C for 10 min, and 40 cycles

of 95˚C for 15 s and 60˚C for 1 min) with premade Ccl2 and Il1b primers (Life Technologies). The rel-

ative mRNA contents were normalized according to the expression of 18S rRNA using the DDCt

method. qPCR was carried out using an Applied Biosystems 7500 Real Time PCR machine.

Thioflavin-T binding assays
Aliquots (100 mL) were removed from amyloid formation and aggregation assays at different time

points, and added to 96-well plates containing 8 mL of a 1 mM thioflavin-T solution. Fluorescence

was measured using a Beckman Coulter DTX880 plate reader (445 nm excitation and 485 nm emis-

sion). Final solution conditions contained 16 mM Tris HCl and 74 mM thioflavin-T (pH 7.4).

Transmission electron microscopy (TEM)
Aliquots (4 mL) were removed from amyloid formation or aggregation assays at different time points

and placed on a carbon-coated 200-mesh copper grid and negatively stained with saturated uranyl

acetate. The samples were imaged with a Philips CM12 or a FEI BioTwinG2 transmission electron

microscope.

Far UV CD
Far UV CD was performed using an Applied Photophysics circular dichroism spectrophotometer. Ali-

quots (300 mL) were removed from amyloid formation or aggregation assays at different time points

and transferred to a 0.1 cm quartz cuvette a few minutes prior to data collection. Spectra were

recorded over a range of 190 to 260 nm, at 1 nm intervals with an averaging time of 3 s. CD spectra

represent the average of five repeats. Background spectra were subtracted from collected data.

Samples contained 20 mM Tris HCl (pH 7.4).

2D IR
2D IR spectra of 40 mM h-IAPP solutions were recorded using 60 femtosecond (full width at half max-

imum) mid-IR pulses generated by a Ti:sapphire femtosecond laser system and a mid-IR pulse

shaper, as previously described (Middleton et al., 2010; Shim et al., 2006a; 2006b).

ANS and p-CyanoPhe fluorescence measurements
p-CyanoPhe (240 nm excitation, 296 nm emission) and ANS fluorescence (370 nm excitation and 460

nm emission) were measured using a Photon Technology International instrument. ANS binding

studies were conducted by adding aliquots from amyloid formation assays (20 mM peptide solutions)

at different time points to a cuvette containing ANS. Final sample conditions contained 16 mM Tris

HCl and 10 mM ANS (pH 7.4).

Photochemical-Induced Cross-Linking
Samples were cross-linked using Tris(bipyridyl)Ru(II), in the presence of ammonium persulfate. IAPP

peptides were incubated for indicated times in 20 mM Tris HCl (pH 7.4) at 25˚C. Aliquots were
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removed at indicated time points, centrifuged at 20,000 g for 20 min and added to the cross-linking

solution. Samples contained a final concentration of 20 mM peptide, 70 mM Tris(bipyridyl)Ru(II) and

1.4 mM ammonium persulfate. Samples were illuminated with a 150 W incandescent bulb for 5 s,

unless otherwise noted. The reaction was quenched by the addition of b-mercaptoethanol. The

products were separated by SDS polyacrylamide gel electrophoresis using a 10–20% Tris-tricine gra-

dient gel. Oligomer bands were visualized by silver staining (SilverXpress, Invitrogen). Quantitative

analysis was carried out using GelAnalyzer software version 2010a. The relative intensity of each

band was calculated by first correcting the baseline, then integrating the area under each peak.

Solubility assays
Samples of toxic lag phase intermediates or amyloid fibrils were ultracentrifuged for 20 min

(20,000 g) and the protein in the soluble fraction (the supernatant) was measured by UV absorbance

(215 nm) before and after ultracentrifugation using a DU 730 Life Science UV/Vis spectrophotometer

(Beckman Coulter). The soluble phase species were further characterized, before and after centrifu-

gation by CD, TEM, thioflavin-T binding assays and toxicity assays. r-IAPP, which does not form amy-

loid, was used as a control.

Proteolytic digestion assays
h-IAPP was incubated in 20 mM Tris HCl buffer (pH 7.4) at 25˚C. Aliquots were removed at various

times and incubated with Proteinase K for 5 or 40 min at 37˚C. The solutions were desalted, mixed

with an equal volume of a-cyano-4-hydroxycinnamic acid matrix and spotted on a MALDI-TOF MS

plate for analysis.

Statistical analysis
Data represent mean ± SD or mean ± SEM of three to six technical replicates per condition and a mini-

mum of three to ten biological replicate experiments per group. Differences between two groups

were evaluated using the Student t-test of two samples assuming unequal variances. A p-value of

�0.05 was considered significant.
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Wanker EE. 2012. Small-molecule conversion of toxic oligomers to nontoxic b-sheet–rich amyloid fibrils. Nature
Chemical Biology 8:93–101. doi: 10.1038/nchembio.719

Bitan G, Lomakin A, Teplow DB. 2001. Amyloid beta-protein oligomerization: prenucleation interactions revealed
by photo-induced cross-linking of unmodified proteins. The Journal of Biological Chemistry 276:35176–35184.
doi: 10.1074/jbc.M102223200

Bitan G, Teplow DB. 2004. Rapid photochemical cross-linking–a new tool for studies of metastable,
amyloidogenic protein assemblies. Accounts of Chemical Research 37:357–364. doi: 10.1021/ar000214l

Blancas-Mejı́a LM, Ramirez-Alvarado M. 2013. Systemic amyloidoses. Annual Review of Biochemistry 82:745–
774. doi: 10.1146/annurev-biochem-072611-130030

Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G,
Yerbury JJ. 2010. ANS binding reveals common features of cytotoxic amyloid species. ACS Chemical Biology 5:
735–740. doi: 10.1021/cb1001203

Abedini et al. eLife 2016;5:e12977. DOI: 10.7554/eLife.12977 24 of 28

Research article Biochemistry Biophysics and structural biology

http://orcid.org/0000-0001-8902-070X
http://dx.doi.org/10.1021/ja072157y
http://dx.doi.org/10.1021/ol047480+
http://dx.doi.org/10.1021/ol047480+
http://dx.doi.org/10.1016/j.febslet.2013.01.017
http://dx.doi.org/10.1016/j.ab.2005.11.029
http://dx.doi.org/10.1016/j.ab.2005.11.029
http://dx.doi.org/10.1002/anie.200904902
http://dx.doi.org/10.1016/j.cell.2012.02.010
http://dx.doi.org/10.1016/j.cell.2012.02.010
http://dx.doi.org/10.1007/s00125-011-2143-3
http://dx.doi.org/10.1016/0014-5793(89)81467-X
http://dx.doi.org/10.1021/jp111528c
http://dx.doi.org/10.1038/nchembio.719
http://dx.doi.org/10.1074/jbc.M102223200
http://dx.doi.org/10.1021/ar000214l
http://dx.doi.org/10.1146/annurev-biochem-072611-130030
http://dx.doi.org/10.1021/cb1001203
http://dx.doi.org/10.7554/eLife.12977


Bram Y, Frydman-Marom A, Yanai I, Gilead S, Shaltiel-Karyo R, Amdursky N, Gazit E. 2014. Apoptosis induced
by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies.
Scientific Reports 4:4267. doi: 10.1038/srep04267

Brender JR, Salamekh S, Ramamoorthy A. 2012. Membrane disruption and early events in the aggregation of the
diabetes related peptide IAPP from a molecular perspective. Accounts of Chemical Research 45:454–462. doi:
10.1021/ar200189b

Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M.
2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature
416:507–511. doi: 10.1038/416507a

Buchanan LE, Dunkelberger EB, Tran HQ, Cheng PN, Chiu CC, Cao P, Raleigh DP, de Pablo JJ, Nowick JS, Zanni
MT. 2013. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient b-sheet.
Proceedings of the National Academy of Sciences of the United States of America 110:19285–19290. doi: 10.
1073/pnas.1314481110

Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson CM,
Cecchi C, Chiti F. 2010. A causative link between the structure of aberrant protein oligomers and their toxicity.
Nature Chemical Biology 6:140–147. doi: 10.1038/nchembio.283

Cao P, Abedini A, Raleigh DP. 2013a. Aggregation of islet amyloid polypeptide: from physical chemistry to cell
biology. Current Opinion in Structural Biology 23:82–89. doi: 10.1016/j.sbi.2012.11.003

Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. 2013b. Islet amyloid: from
fundamental biophysics to mechanisms of cytotoxicity. FEBS Letters 587:1106–1118. doi: 10.1016/j.febslet.
2013.01.046

Chen MS, Zhao DS, Yu YP, Li WW, Chen YX, Zhao YF, Li YM. 2013. Characterizing the assembly behaviors of
human amylin: a perspective derived from C-terminal variants. Chemical Communications 49:1799–1801. doi:
10.1039/C2CC33432A

Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA, Arranz R, Ness S, Roodveldt C, Guilliams T, De-Genst EJ,
Klenerman D, Wood NW, Knowles TP, Alfonso C, Rivas G, Abramov AY, Valpuesta JM, Dobson CM, Cremades
N. 2015. Structural characterization of toxic oligomers that are kinetically trapped during a-synuclein fibril
formation. Proceedings of the National Academy of Sciences of the United States of America 112:E1994–2003.
doi: 10.1073/pnas.1421204112

Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y. 2007. Evidence of fibril-like b-sheet structures in a
neurotoxic amyloid intermediate of Alzheimer’s b-amyloid. Nature Structural & Molecular Biology 14:1157–
1164. doi: 10.1038/nsmb1345

Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annual Review of
Biochemistry 75:333–366. doi: 10.1146/annurev.biochem.75.101304.123901

Cooper GJ, Aitken JF, Zhang S. 2010. Is type 2 diabetes an amyloidosis and does it really matter (to patients)?
Diabetologia 53:1011–1016. doi: 10.1007/s00125-010-1715-y

Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. 1987. Purification and characterization of a peptide
from amyloid-rich pancreases of type 2 diabetic patients. Proceedings of the National Academy of Sciences of
the United States of America 84:8628–8632. doi: 10.1073/pnas.84.23.8628

Despa S, Margulies KB, Chen L, Knowlton AA, Havel PJ, Taegtmeyer H, Bers DM, Despa F. 2012.
Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats.
Circulation Research 110:598–608. doi: 10.1161/CIRCRESAHA.111.258285

Despa S, Sharma S, Harris TR, Dong H, Li N, Chiamvimonvat N, Taegtmeyer H, Margulies KB, Hammock BD,
Despa F. 2014. Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model. Journal
of the American Heart Association 3:e001015. doi: 10.1161/JAHA.114.001015

Do TD, LaPointe NE, Nelson R, Krotee P, Hayden EY, Ulrich B, Quan S, Feinstein SC, Teplow DB, Eisenberg D,
Shea JE, Bowers MT. 2016. Amyloid b-Protein C-Terminal Fragments: Formation of Cylindrins and b-Barrels.
Journal of the American Chemical Society 138:549–557. doi: 10.1021/jacs.5b09536

Dupuis NF, Wu C, Shea JE, Bowers MT. 2009. Human islet amyloid polypeptide monomers form ordered beta-
hairpins: a possible direct amyloidogenic precursor. Journal of the American Chemical Society 131:18283–
18292. doi: 10.1021/ja903814q

Eisenberg D, Jucker M. 2012. The amyloid state of proteins in human diseases. Cell 148:1188–1203. doi: 10.
1016/j.cell.2012.02.022

Frare E, Mossuto MF, de Laureto PP, Tolin S, Menzer L, Dumoulin M, Dobson CM, Fontana A. 2009.
Characterization of oligomeric species on the aggregation pathway of human lysozyme. Journal of Molecular
Biology 387:17–27. doi: 10.1016/j.jmb.2009.01.049

Fu Z, Aucoin D, Davis J, Van Nostrand WE, Smith SO. 2015. Mechanism of nucleated conformational conversion
of Ab42. Biochemistry 54:4197–4207. doi: 10.1021/acs.biochem.5b00467

Gazit E. 2002. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB Journal 16:77–83. doi:
10.1096/fj.01-0442hyp

Ghosh D, Singh PK, Sahay S, Jha NN, Jacob RS, Sen S, Kumar A, Riek R, Maji SK. 2015. Structure based
aggregation studies reveal the presence of helix-rich intermediate during a-Synuclein aggregation. Scientific
Reports 5:9228. doi: 10.1038/srep09228

Glabe CG. 2008. Structural classification of toxic amyloid oligomers. The Journal of Biological Chemistry 283:
29639–29643. doi: 10.1074/jbc.R800016200

Gurlo T, Ryazantsev S, Huang CJ, Yeh MW, Reber HA, Hines OJ, O’Brien TD, Glabe CG, Butler PC. 2010.
Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form

Abedini et al. eLife 2016;5:e12977. DOI: 10.7554/eLife.12977 25 of 28

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.1038/srep04267
http://dx.doi.org/10.1021/ar200189b
http://dx.doi.org/10.1021/ar200189b
http://dx.doi.org/10.1038/416507a
http://dx.doi.org/10.1073/pnas.1314481110
http://dx.doi.org/10.1073/pnas.1314481110
http://dx.doi.org/10.1038/nchembio.283
http://dx.doi.org/10.1016/j.sbi.2012.11.003
http://dx.doi.org/10.1016/j.febslet.2013.01.046
http://dx.doi.org/10.1016/j.febslet.2013.01.046
http://dx.doi.org/10.1039/C2CC33432A
http://dx.doi.org/10.1039/C2CC33432A
http://dx.doi.org/10.1073/pnas.1421204112
http://dx.doi.org/10.1038/nsmb1345
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1007/s00125-010-1715-y
http://dx.doi.org/10.1073/pnas.84.23.8628
http://dx.doi.org/10.1161/CIRCRESAHA.111.258285
http://dx.doi.org/10.1161/JAHA.114.001015
http://dx.doi.org/10.1021/jacs.5b09536
http://dx.doi.org/10.1021/ja903814q
http://dx.doi.org/10.1016/j.cell.2012.02.022
http://dx.doi.org/10.1016/j.cell.2012.02.022
http://dx.doi.org/10.1016/j.jmb.2009.01.049
http://dx.doi.org/10.1021/acs.biochem.5b00467
http://dx.doi.org/10.1096/fj.01-0442hyp
http://dx.doi.org/10.1096/fj.01-0442hyp
http://dx.doi.org/10.1038/srep09228
http://dx.doi.org/10.1074/jbc.R800016200
http://dx.doi.org/10.7554/eLife.12977


intracellularly in the secretory pathway. The American Journal of Pathology 176:861–869. doi: 10.2353/ajpath.
2010.090532

Hawe A, Sutter M, Jiskoot W. 2008. Extrinsic fluorescent dyes as tools for protein characterization.
Pharmaceutical Research 25:1487–1499. doi: 10.1007/s11095-007-9516-9

Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC. 2007. High expression rates of human islet
amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of
humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027. doi: 10.2337/db07-0197

Hull RL, Zraika S, Udayasankar J, Aston-Mourney K, Subramanian SL, Kahn SE. 2009. Amyloid formation in human
IAPP transgenic mouse islets and pancreas, and human pancreas, is not associated with endoplasmic reticulum
stress. Diabetologia 52:1102–1111. doi: 10.1007/s00125-009-1329-4

Janciauskiene S, Ahrén B. 2000. Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms
and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochemical and
Biophysical Research Communications 267:619–625. doi: 10.1006/bbrc.1999.1989

Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC. 1999. The mechanism of islet amyloid polypeptide
toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498. doi: 10.
2337/diabetes.48.3.491

Jha S, Snell JM, Sheftic SR, Patil SM, Daniels SB, Kolling FW, Alexandrescu AT. 2014. pH dependence of amylin
fibrillization. Biochemistry 53:300–310. doi: 10.1021/bi401164k

Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW. 2012. The transthyretin amyloidoses: from delineating
the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. Journal of
Molecular Biology 421:185–203. doi: 10.1016/j.jmb.2011.12.060

Kayed R. 2003. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis.
Science 300:486–489. doi: 10.1126/science.1079469

Kim HY, Cho MK, Kumar A, Maier E, Siebenhaar C, Becker S, Fernandez CO, Lashuel HA, Benz R, Lange A,
Zweckstetter M. 2009. Structural properties of pore-forming oligomers of alpha-synuclein. Journal of the
American Chemical Society 131:17482–17489. doi: 10.1021/ja9077599

Knight JD, Hebda JA, Miranker AD. 2006. Conserved and cooperative assembly of membrane-bound alpha-
helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508. doi: 10.1021/bi060579z

Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ. 2005. Thiol reducing compounds prevent human
amylin-evoked cytotoxicity. The FEBS Journal 272:4949–4959. doi: 10.1111/j.1742-4658.2005.04903.x

Krishnan R, Goodman JL, Mukhopadhyay S, Pacheco CD, Lemke EA, Deniz AA, Lindquist S. 2012. Conserved
features of intermediates in amyloid assembly determine their benign or toxic states. Proceedings of the
National Academy of Sciences of the United States of America 109:11172–11177. doi: 10.1073/pnas.
1209527109

Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, Pensalfini A, Soriaga AB, Landau M, Teng PK,
Cascio D, Glabe C, Eisenberg D. 2012. Atomic View of a Toxic Amyloid Small Oligomer. Science 335:1228–
1231. doi: 10.1126/science.1213151

Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filippov A, Antzutkin ON, Nielsen NC, Härd T. 2014. A hexameric
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