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Abstract  

Gaucher disease (GD) is a lysosomal storage disorder with wide clinical 

heterogeneity, caused by mutations in the GBA gene leading to low or deficient 

levels of the lysosomal enzyme Glucocerebrosidase (GBA1). Mutations in GBA1 are 

also the single most common genetic risk factor for developing Parkinson’s disease 

(PD).  However, the majority of GD patients and carriers do not develop PD, 

suggesting the possibility of other disease modifying factors. GBA2 is a non-

lysosomal enzyme capable of hydrolysing the same substrates as GBA1 and hence 

may be a potential disease modifying factor.  

Initially, assays for GBA1 and GBA2 were developed to record the relative activities 

in a range of tissue types. Marked tissue differences in GBA1 and GBA2 activities 

were recorded with GBA2 the predominant enzyme in brain.  Assessment of GBA1 

and GBA2 in GD, PD and dystonia patient leucocytes revealed, as expected, 

decreased GBA1 activity in GD samples.  However, 13% of idiopathic PD and 

dystonia patients also displayed decreased activity. Leucocyte GBA2 activity was 

found to be elevated in half of GD patients and in brain from a GD mouse model. 

One patient with mild GD but profound PD had undetectable GBA2 activity. 

Cellular models of GBA1 and/or GBA2 inhibition, oxidative stress, and mitochondrial 

dysfunction were used to further study the interplay between GBA1 and GBA2 using 

SH-SY5Y cells. Inhibition of GBA1 was not found to be associated with an increase in 

GBA2 activity or protein expression.  Similarly, inhibition of GBA2 was not found to 

be associated with changes in GBA1 activity. Loss of mitochondrial function or 

oxidative stress was not found to cause loss of GBA1 activity while GBA1 inhibition 

did not increase cellular susceptibility to oxidative stress. Measurement of 

ceramides using mass spectrometry did not reveal any downstream effects of GBA1 

or GBA2 inhibition on ceramide levels.   
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ERT Enzyme replacement therapy 

FBS Fetal bovine serum 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GBA1 Lysosomal glucocerebrosidase (beta-glucosidase) 

GBA2 Non-lysosomal glucocerebrosidase (beta-glucosidase) 

GCS Glucosylceramide synthase 

GD Gaucher disease 

GlcCer Glucosylceramide (Glucocerebroside) 

GlcCerT Ceramide glucosyl-transferase  

GlcSph Glucosylsphingosine 
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GSH Glutathione 

GSL Glycosphingolipid(s) 

GWAS Genome-wide association study 

H2O2 Hydrogen peroxide 

HBSS Hanks' Balanced Salt Solution  

HCl Hydrochloric acid 

HPLC High-performance liquid chromatography  

HRP Horseradish peroxidase 

HSA Human Serum Albumin 

HSCT Haematopoietic stem cells transplantation  

HSP Hereditary spastic paraplegia  

HVA Homovanillic acid  

iPD Idiopathic Parkinson's disease 

l-DOPA l-3,4-dihydroxyphenylalanine 

LDS Lithium dodecyl sulphate 

LIMP2 Lysosomal integral membrane protein type 2 

LRRK Leucine-Rich Repeat Kinase 2  

LSD Lysosomal storage disease 

M6PR  Mannose-6-phosphate receptor  

MOPS  3-(N-morpholino)propanesulfonic acid 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
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MRM  Multiple reaction monitoring  

MS Mass spectrometry 

MSA Multiple system atrophy  

MTT 3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide 

MV McIlvaine (buffer) 

NaT Sodium taurocholate  

NBDNJ N-butyldeoxynojrimicin 

NBIA Neurodegeneration with brain iron accumulation 

nGD Neuronopathic Gaucher disease 

PBS Phosphate buffered saline 

PD Parkinson’s disease 

PDD Parkinson’s disease with dementia  

PD-GBA1  Parkinson's disease patients with GBA1 mutation(s) 

PSP Progressive supranuclear palsy  

PVDF Polyvinyl difluoride 

QSBB Queen Square Brain Bank  

ROS Reactive oxygen species 

RT Room temperature 

SCARB2  Scavenger receptor class B member 2 gene 

SN Substantia Nigra 

SNP Single nucleotide polymorphism  
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SNpc Substantia Nigra pars compacta 

SRT Substrate reduction therapy 

TBST Tris-buffered saline tween-20 

T-HEX  Total beta-hexosaminidase 

TRAP Tartrate-resistant acid phosphatase  

UPDRS Unified Parkinson's Disease Rating Scale  

UPLC-MS/MS Ultra Performance Liquid Chromatography tandem mass        

spectrometry 

UPR Unfolded protein response 

UPS Ubiquitin–proteasome system 

  



23 
 

Chapter 1 Introduction 

1.1 Lysosomes  

Lysosomes were first described by the Belgian biochemist Christian de Duve in the 

1950s [1] . The name lysosome derives from the Greek words lysis, to separate, and 

soma, body [2]. Lysosomes are small, membrane-bound organelles found in all 

eukaryotic cells. They have a number of functions including digesting ingested 

material, molecular turnover, autophagy, receptor recycling, cell death as well as 

extracellular roles.  They contain a range of water soluble hydrolases which are 

maximally active in the acidic environment (pH4-5) of the lysosome. The acidic 

environment is maintained by ATP dependent proton pumps. There are more than 

60 lysosomal enzymes which together can break down proteins, polysaccharides, 

nucleic acids, lipids, organelles, bacteria and particles. Non-enzymatic proteins and 

cofactors such as the saposins enable the water soluble enzymes to act on lipids [3].  

1.2 Lysosomal storage disorders  

The concept of lysosomal storage disease (LSD) was established by H.G Hers in 1963 

who identified the deficiency of lysosomal alpha-glucosidase in glycogen storage 

disease II (Pompe disease) [4]. LSDs can arise due to lysosomal enzyme deficiencies, 

defective trafficking defect of lysosomal enzymes, defects in soluble non-enzymatic 

lysosomal proteins and defects in lysosomal membrane proteins [5]. Enzyme 

deficiency will usually cause the accumulation of the incompletely catabolised 

substrate within the lysosome leading to progressive impairment of the affected 

cell and subsequently the organ or cell system.  More than 45 disorders have been 

described so far affecting the degradation of a number of substrates including 

glycoproteins, glycolipids, mucopolysaccharides and oligosaccharides. Individually 

they are rare but collectively they have an incidence of 1 in 5000 live births and the 

incidence may even be higher with many cases being un- or misdiagnosed [6]. The 

LSDs apart from the x-linked Hunter disease, Fabry disease and LAMP2 deficiency 

are autosomal recessive disorders [7]. They are usually classified according to the 
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type of substrate that accumulates e.g. mucopolysaccharidoses, lipidoses, 

sphingolipidoses, oligosaccharidoses (glycoproteinoses), mucolipidosis etc. [8].  

1.3 Sphingolipidoses 

Gaucher disease, the subject of this thesis belongs to a group of lysosomal storage 

disorders known as the sphingolipidoses i.e. disorders of lysosomal sphingolipid 

metabolism. All eukaryotic cells are surrounded by a cell membrane composed of a 

lipid bilayer. The three main classes of lipids in these membranes are sphingolipids, 

glycerolipids and sterols [9]. Sphingolipids are amphipathic molecules that play an 

important role the structure and fluidity of the membrane and in signal 

transduction [10]. The backbone of all sphingolipids is a sphingoid long chain base, 

usually sphingosine or sphinganine,  to which a fatty acid is attached by an amide 

bond [11]. Sphingosine differs from sphinganine in having a trans 4-5 double bond 

[9].  The simplest sphingolipid is ceramide which consists of a fatty acid residue 

attached to a sphingosine backbone at C-2 by an amide link [12].  Ceramide can 

receive a phosphocholine headgroup to form sphingomyelin, be phosphorylated to 

ceramide 1-phosphate, or be glycosylated by glucosylceramide synthase or 

galactosylceramide synthase to generate the cerebrosides glucosylceramide 

(GlcCer) or galactosylceramide [13]. The synthesis of glucosylceramide by 

glucosylceramide synthase occurs  on the cytosolic leaflet of the Golgi apparatus 

[14]. Cerebrosides are the building block for glycosphingolipids (GSLs). 

Glycosphingolipid biosynthesis occurs in a stepwise fashion, with an individual sugar 

added first to ceramide and then subsequent sugars transferred by 

glycosyltransferases from nucleotide sugar donors [15]. Ninety percent of 

mammalian GSLs are based on GlcCer with the remainder based on 

galactosylceramide [16]. Sulphated cerebrosides are sulphatides. The addition of 

more than one sugar residue forms globosides while three or more sugar residues 

including a sialic acid forms gangliosides [15]. While more than 500 different 

carbohydrate structures have been described in GSLs, the main sugars are glucose, 

galactose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc) 

and sialic acid (N-acetylneuraminic acid) [9]. GSLs have many functions including 
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senescence, apoptosis, cell proliferation, inflammation, endocytosis, intracellular 

transport, and cell migration [17]. 

Sphingolipidoses are a group of lysosomal storage diseases characterised by the 

accumulation of sphingolipids [18]. They are primarily caused by inherited defects in 

genes encoding the lysosomal enzymes (or their non-enzymatic cofactors) required 

for sphingolipid catabolism in late endosomes/lysosomes but some are due to 

defects  in  lysosomal membrane proteins [19]. Examples of enzyme defects include 

GM1 and GM2 gangliosidoses, metachromatic and Krabbe leucodystrophys and 

Gaucher and  Fabry diseases (Figure 1.1) [20]. 
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Figure 1.1 - Pathway of lysosomal sphingolipid degradation. 
The known metabolic diseases in brackets, the responsible enzymes in 
green and those of SAPs necessary for in vivo degradation in red are 
indicated. Source: Metabolic and cellular bases of Sphingolipidoses. Konrad 
Sandhoff. Biochemical Society Transactions Dec 2013 [21]. 
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1.4 Gaucher disease 

1.4.1 Introduction 

Gaucher disease (GD) was first described in 1882 by Phillipe Gaucher, a French 

medical student in his doctoral thesis [22]. It is a lysosomal storage disorder (LSD) 

caused by a mutation in GBA1 leading to low or deficient levels of the lysosomal -

glucocerebrosidase (-glucosidase/glucosylceramidase) (EC 3.2.1.45). Lysosomal 

-glucocerebrosidase (herein referred to as GBA1) is responsible for the 

penultimate step of the lysosomal degradation of glycosphingolipids i.e. the 

degradation of glucosylceramide (also known as glucocerebroside) to ceramide and 

glucose. The ceramide is further degraded by ceramidase to sphingosine and fatty 

acid. An alternative substrate, glucosylsphingosine, is also degraded by GBA1 into 

glucose and sphingosine (Figure 1.2) [23].  

 

Figure 1.2 - GBA1 (glucocerebrosidase) metabolism of glucosylceramide and 
glucosylsphingosine (from Sidransky et al.[23] ) 

1.4.2 GBA1 

GBA1 is composed of 497 amino acids and is present in the lysosomes of all tissues, 

which explains the multi-organ nature of the disease [24]. The main source of 



28 
 

glucosylceramide (GlcCer) is from the membranes of blood cells, the turnover of 

which takes place in the lysosomes of macrophages [25].  

In patients with Gaucher disease, the breakdown of GlcCer is insufficient, leading to 

the accumulation of large quantities of the substrate within the lysosomes of 

macrophages, especially in tissues of the reticuloendothelial system. Such cells are 

referred to as Gaucher cells [22]. It is not clear how GlcCer itself or the consequent 

imbalances of ceramide, sphingosine, and sphingosine 1-phosphate affects Gaucher 

disease. it is also unclear how GlcCer accumulation in lysosomes leads to cellular 

pathology, and whether GlcCer can escape the lysosomes and interact with 

different cellular and biochemical pathways in other organelles [26]. GBA1 is 

important for the production of ceramide from GlcCer, in what is known as the 

salvage pathway. This is the most energy efficient method of synthesising ceramide 

in post-mitotic cells [27].  

Unlike other lysosomal hydrolases, which are targeted to lysosomes through 

binding to the mannose-6-phosphate receptor (M6PR), GBA1 is targeted to 

lysosomes through an M6PR-independent mechanism; i.e. binding to the lysosomal 

integral transmembrane protein type 2 (LIMP-2). The binding between GBA1 and 

LIMP-2 enables these two proteins to be reciprocally associated in the endoplasmic 

reticulum and trafficked continuously to the lysosomes [28]. 

1.4.3 Clinical presentation  

GD is the most common of the LSDs with an overall incidence of 1:40,000 to 

1:100,000 individuals, but it is much more common amongst individuals of 

Ashkenazi Jewish origin [29, 30]. GD is usually delineated into three types. Type 1 is 

by far the most common and has historically been distinguished from types 2 and 3 

by the lack of primary central nervous system involvement. Type 1 GD has variable 

presentation and course of disease with wide clinical heterogeneity. It typically 

manifests with visceral, haematological and skeletal symptoms such as 

splenomegaly, anaemia and acute bones crises [22]. However, although usually 

classified as non-neuronopathic, neurological disease has been diagnosed in GD 

type I patients but the neurological signs and symptoms are of a totally different 
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kind from and, in the majority of cases, of much less severity than those associated 

with types II and III GD disease [31]. Type 2 is the acute neuronopathic form of 

Gaucher disease (nGD) which presents in infancy and is rapidly progressive and fatal 

within 1-2 years.  Type 3 is the chronic Neuronopathic form with a severity between 

that of type II and III  [22]. There is also a rare perinatal-lethal Gaucher disease 

phenotype which features hydrops fetalis, in utero fetal death and neonatal 

distress. When hydrops is absent, neurological involvement begins in the first week 

and leads to death within three months [32].  

1.4.4 Pathophysiology 

Gaucher cells are lipid laden macrophages which have a “crumpled paper” 

appearance with eccentric nuclei under light microscopy as seen in Figure 1.3a [33]. 

This appearance is caused by the presence of GlcCer which aggregates in a 

characteristic twisted fibrillar arrangement that can be observed by electron 

microscopy as seen in Figure 1.3b [34].  Gaucher cells mainly infiltrate bone marrow 

and the spleen but also infiltrate the liver and other organs and are thought to be a 

major cause of manifestations of the disease [35]. While GlcCer and 

glucosylsphingosine accumulation and subsequent proliferation of lipid laden 

macrophages account for the visceral manifestations of GD, the precise mechanism 

particularly of non-visceral symptoms is still uncertain. One proposed mechanism is 

the activation of pro- and anti-inflammatory pathways by incorrectly folded 

proteins in the endoplasmic reticulum [36]. Analysis of the lipid composition of liver, 

spleen, brain, cerebellum and cerebrospinal fluid from a GD type II patient who died 

at the age of 5 months demonstrated a marked increase of total glycolipids not only 

in the peripheral tissues but also in the brain cerebellum and cerebrospinal fluid, 

with a prevalence of GlcCer. Interestingly, the fatty acid composition of GlcCer 

showed a prevalence of stearic acid in the central nervous system, while in the 

peripheral tissues palmitic acid was prevalent. This result suggests a different origin 

of the GlcCer stored in different tissues [37]. 



30 
 

1.4.5 Laboratory findings and diagnosis 

Due to the phenotypic diversity it can often take some time before a diagnosis of 

GD is suspected and confirmed. Laboratory findings include thrombocytopenia, 

anaemia, leucopoenia and increased erythrocyte sedimentation rates. Bone marrow 

may have the characteristic Gaucher cells [35] shown in Figure 1.3.  

 

Figure 1.3-  Microphotographs of Gaucher cells. 

 (a) 1.Bone marrow aspirate with stripy, basophilic, storage cell with the classic “crumpled 
paper” appearance. MGG stain (X400); (b) EM showing part of a nucleus and several 
‘angulate lysosomes’ with tubular storage inclusions (X10,000). Pictures courtesy of Glenn 
Anderson, Histopathology, Great Ormond Street Hospital. 

 

Biochemical findings may include increased tartrate resistant acid phosphatase 

(TRAP), angiotensin converting enzyme (ACE), liver enzymes and urea. The 

lysosomal enzyme b-hexosaminidase is sometimes elevated [38] and it has been 

suggested that it could be used as a screening test [39], however marked variation 

in levels makes it unreliable as a screening test [40]. See Chapter 5 for further 

discussion of total beta-hexosaminidase in GD and oxidative stress. 
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Chitotriosidase, a chitinase is hypersecreted by the affected macrophages, and as 

shown in Table 1.1,  plasma levels are markedly elevated in GD patients compared 

to unaffected individuals and other lysosomal storage disorders [41]. Plasma 

chitotriosidase activity levels correlate with liver and spleen volume, haemoglobin 

concentration, platelet count, and bone manifestations [42]. However, about 5% of 

the general population have a null allele in their chitotriosidase gene and it is 

therefore not of use in those GD patients who are unable to produce it [41].  

Table 1.1 Chitotriosidase activities in plasma from controls, Gaucher disease patients and 
patients with other lysosomal storage diseases. 

Condition Plasma  

Chitotriosidase 

(nmol / hr / mL) 

Unaffected 0 - 150   

Gaucher 2,000 - 35,000 

Niemann Pick 178 – 3372   

GM1 gangliosidosis 174 – 1984   

Wolman, CESD 284 – 1015   

Krabbe leucodystrophy 53 – 1589   

 

An alternative macrophage biomarker is CC chemokine ligand 18 (CCL18), originally 

named pulmonary and activation-regulated chemokine (PARC). Plasma CCL18 

originates from Gaucher cells and levels reflect the overall body burden of Gaucher 

cells. Plasma CCL18 levels are elevated 10- to 50-fold above normal values in 

patients with active GD [43].  

The diagnosis of GD is confirmed by demonstrating deficient GBA1 activity in 

patient samples with subsequent mutation analysis. GBA1 activity is usually assayed 

in dried blood spots or leucocytes, but cultured fibroblasts may be used [22]. 
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1.4.6 Treatment  

Early treatment of Gaucher disease involved splenectomy to ameliorate the 

consequences of hypersplenism. Haematological parameters returned to normal in 

all cases and remained so throughout the follow-up period [44].  Splenectomy is 

now contraindicated in all but emergency situations such as splenic rupture or 

profound thrombocytopenia necessitating platelet transfusions or life-threatening 

internal haemorrhage. In such instances, partial, rather than total, splenectomy 

should be considered [45].  

The first specific treatment for GD was bone marrow transplantation (BMT) or 

haematopoietic stem cells transplantation (HSCT) for severe type I and 3 patients 

[46]. HCT is effective in alleviating most disease manifestations of GD including 

arresting further neuropsychological deterioration in type III disease and greatly 

reducing skeletal problems in severe early onset type I disease [47]. Two years after 

BMT, plasma chitotriosidase activity in eight patients had fallen by over 93% and 

continued to fall until 6 patients had normal levels and 2 patients had activities 

slightly above the reference range [48]. However BMT and HSCT is associated with 

significant morbidity and mortality [47] and these treatments are no longer offered 

due to the availability of new therapies with greater benefit to risk ratios [35].  

Shortly after the discovery of the enzymatic deficiency in GD [49, 50], it was 

suggested that replacing or supplementing the deficiency by exogenous 

administration of the enzyme could be a potential therapeutic approach [51]. Initial 

experiments using purified GBA1 isolated from human placenta showed promise 

[52] but it wasn’t until improved large-scale purification techniques were developed 

that larger trials could take place [53]. Outcomes improved after it was found that 

the enzyme could be targeted to macrophages by the sequential enzymatic removal 

of N-acetylneuraminic acid, galactose and N-acetylglucosamine with exoglycosidase 

to expose mannose residues which bind to mannose lectin on the macrophage cell 

surface [54].  

This led to the development by Genzyme, of Ceredase (alglucerase), a purified 

macrophage targeted GBA1 extracted from human placenta as an enzyme 
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replacement therapy (ERT) for GD. This was the first commercial enzyme 

replacement therapy for any lysosomal storage disorder [55]. To obtain sufficient 

protein to treat an adult GD patient with Ceredase required several hundred metric 

tons of placentas each year and at the peak period of manufacturing, placentas 

from about one-third of the world’s births found their way to the tissue banks of 

the Pasteur Mérieux of Lyon, France. There, human immunoglobulin was extracted 

from the tissue, after which the residue was obtained by Genzyme for enzyme 

extraction, purification and remodelling to produce Ceredase [55].  

Subsequently in 1995, Genzyme launched Cerezyme (imiglucerase), a recombinant 

human glucocerebrosidase expressed in genetically engineered Chinese hamster 

ovary cells. As with the purified placental product, this enzyme also required further 

modification by exoglycosidases to expose glycan residues which mediate delivery 

macrophages [56]. A study of data from the Gaucher Registry of 1028 GD type 1 

patients after 2-5 years enzyme replacement therapy with either Ceredase or 

Cerezyme demonstrated that ERT prevents progressive manifestations of, and 

ameliorates GD–associated anaemia, thrombocytopenia, organomegaly, bone pain, 

and bone crises. However, some of the more severely affected patients continued 

to have signs or symptoms of the disease, and therapy was more effective when 

initiated before irreversible damage occurs [57]. 

Other ERTs for GD have now been developed including VPRIV® (velaglucerase) 

produced using human fibroblasts by Shire [58] and ELELYSO® (taliglucerase alfa) 

produced using carrot cells by Pfizer and Protalix [59].  All of the ERT therapies have 

similar therapeutic benefits and effectiveness on normalising haematological 

parameters [60]. ERT is not a cure, and requires regular intravenous administration 

of the drug for the life time of the patient. The dose and frequency of 

administration varies from country and may be individualised for each patient [61, 

62]. ERT is not effective at treating the neurological manifestations of GD type 2 or 

3 as it does not cross the blood-brain barrier [63].  

An alternative approach to treatment proposed in 1980 is to reduce the amount of 

substrate accumulating by inhibiting its synthesis [64]. Substrate reduction therapy 
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(SRT) uses small molecules to slow the rate of glycolipid biosynthesis which should 

lead to fewer GSLs entering the lysosome thereby reducing the rate of storage. 

Complete balance might be achieved in patients with residual GBA1 activity [65]. 

Advantages of using such an approach is that the treatment would be oral, avoiding 

regular intravenous infusion, and would use small molecules which would be less 

likely to cause an immune response compared to ERT,  and which unlike ERT could 

cross the blood-brain barrier potentially treating neurological manifestations [65]. 

The first compound approved for SRT in GD was N-butyldeoxynojirimycin (NBDNJ) 

marketed as ZAVESCA® (Miglustat) which is a glucose analogue which acts as an 

orally active competitive, reversible inhibitor of glucosylceramide synthase [66].  

In the US, Zavesca is indicated as monotherapy for the treatment of adult patients 

with mild to moderate GD1 for whom ERT is not a therapeutic option (e.g. due to 

allergy, hypersensitivity, or poor venous access). In the European Union, Zavesca is 

also indicated for the treatment of progressive neurological manifestations in adult 

patients and paediatric patients with Niemann-Pick type C (NP-C) disease [67]. It can 

produce side effects including diarrhoea, weight loss, hand tremors and possible 

peripheral neuropathy although these generally regress with dose reduction or 

treatment discontinuation [35]. Gastrointestinal events, mainly diarrhoea, have 

been observed in more than 80% of patients, either at the outset of treatment or 

intermittently during treatment. The mechanism is most likely inhibition of 

intestinal disaccharidases such as sucrase-isomaltase in the gastrointestinal tract 

leading to reduced absorption of dietary disaccharides [67]. Approximately 37% of 

patients in clinical trials in type 1 Gaucher disease, and 58% of patients in a clinical 

trial in Niemann-Pick type C disease reported tremor on treatment [67]. Despite the 

fact that it crosses the blood–brain barrier, Miglustat has not been found to have 

any effect on neurological symptoms in GD3 [35]. It has been also found that 

Miglustat treatment in addition to ERT does not appear to have significant benefits 

on the neurological manifestations of GD3 but may have positive effects on 

systemic disease (pulmonary function and chitotriosidase activity) in patients with 

GD3 [68]. 
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Another substrate inhibitor, Eliglustat (Cerdelga®, Sanofi-Genzyme) was granted a 

marketing authorization in 2015. It too is an orally administered GlcCer synthase 

inhibitor, but is an analogue of the ceramide part of glucosylceramide and is 

therefore a more specific and more potent inhibitor than Miglustat [35]. In the 

phase 3 Study (ENCORE) of Eliglustat Tartrate (Genz-112638) in patients with GD 

who had reached therapeutic goals with ERT at 1 year, Eliglustat was found to be as 

effective as imiglucerase enzyme therapy in maintaining stable platelet counts, 

haemoglobin concentrations, and spleen and liver volumes. Mean bone mineral 

density remained stable and was maintained in the healthy reference range 

throughout. When the study was extended, Eliglustat was well tolerated over 4 

years and few patients withdrew because of adverse events that were considered 

related to the study drug. No new or long-term safety concerns were identified [69]. 

Eliglustat does not cross the blood-brain barrier and is therefore only suitable for 

non-neurological GD patients [70].  

GD like many other lysosomal storage disorders is a good candidate for gene 

therapy as it is a monogenic disorder, only a small amount of enzyme is required to 

correct symptoms and cells have the ability to cross-correct i.e. the ability for 

extracellular LSD enzymes to be taken up and targeted to the lysosomes of 

otherwise enzyme-deficient cells [71]. Currently, lentiviral haemopoietic stem-cell 

gene therapy is being trialled in early-onset metachromatic leucodystrophy (MLD), a 

fatal demyelinating lysosomal disease with no approved treatment. Preliminary 

evidence has demonstrated the safety and therapeutic benefit of the treatment 

[72]. Gene therapy clinical trials are also underway for Fabry disease, 

Mucopolysaccharidosis type II (MPS II/Hunter syndrome), Mucopolysaccharidosis 

type III (MPS III/Sanfilippo syndrome) types A and B, infantile Batten’s disease 

(INCL), and Pompe disease [71].  

 A preliminary gene transfer protocol was used on three adult GD3 patients using 

retroviral transduction of peripheral blood (PB) or bone marrow (BM) CD34+ cells 

with the G1Gc vector which uses the viral LTR promoter to express the human GBA1 

cDNA. The corrected cells were then injected into patients. Results were 

disappointing as the GBA1 levels proved too low for any clinical effect [73]. 
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Subsequently, lentiviral vector gene transfer techniques have been used in a murine 

disease model of type 1 GD with promising results. GBA1 activity above levels 

required for clearance of glucosylceramide from tissues resulted in reversal of 

splenomegaly, reduced Gaucher cell infiltration and restored haematological 

parameters [74]. There are currently a number of phase I trials of gene therapy for 

GD type 1 taking place [75] .  Evaluation of AAV2/9 vector to transduce the nervous 

system and target gene expression to specific neural cell types following 

intravenous injection into fetal and neonatal mice, produced global delivery to the 

central (brain, spinal cord, and all layers of the retina) and peripheral (myenteric 

plexus and innervating nerves) nervous system and may be a potential system for 

treating neuronopathic GD [76].  

Loss-of-function diseases such as GD are often caused by missense mutations that 

disrupt the three-dimensional conformation of mutant proteins. Such misfolded 

proteins may be recognized by the quality control systems of the endoplasmic 

reticulum (ER) and degraded, retained in the ER, or abnormally glycosylated and 

mis-trafficked. Pharmacological chaperone therapy is based on the concept of using 

small-molecule ligands or pharmacological chaperones that can interact with 

mutant proteins, enhancing their stability, and allowing for correct trafficking. As a 

result, the enzymatic activity of the mutant protein is partially rescued [75]. 

Isofagomine, is an active site inhibitor of GBA1 that acts as a pharmacological 

chaperone and has shown promise in mouse studies with increases in GBA1 enzyme 

activity and protein levels and a decrease in accumulated GlcCer and 

glucosylsphingosine of 75 and 33%, respectively [77]. In phase II clinical trials it was 

shown that isofagomine (Plicera®), increased patient GBA1 activity without 

unwanted side effects, however, the effects were not sufficient to significantly 

reduce symptoms of GD [78]. Enhancement of GBA1 activity was demonstrated 

using α-1-C-tridecyl-DAB at an effective concentration 10-times lower than 

isofagomine. α-1-C-Tridecyl-DAB is the first example of a pyrrolidine iminosugar as a 

new class of pharmacological chaperones with the potential for treatment of GD 

[78]. Ambroxol is a licensed expectorant, which has been demonstrated to increase 

GBA1 activity and protein levels and therefore be a potential chaperone therapy in 
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GD. An open label pilot study of Ambroxol in conjunction with ERT in patients with 

nGD demonstrated its safety, tolerability and effectiveness. It was shown that it 

significantly increased lymphocyte GBA1 activity, permeated the blood–brain 

barrier, and decreased glucosylsphingosine levels in the cerebrospinal fluid. 

Myoclonus and seizures improved in all patients. Relief from myoclonus led to 

impressive recovery of gross motor function in two patients, allowing them to walk 

again [79]. A pilot study in type I GD patients who were not receiving ERT also 

demonstrated tolerability and efficacy [80].  

1.4.7 Monitoring of treatment 

Monitoring of patients whether on treatment or not, includes laboratory testing of 

haematological parameters and biomarkers as well as regular clinical and 

radiological evaluations [35].  The levels of chitotriosidase tend to fall during 

successful treatment so it is a useful biomarker as well as screening/confirmatory 

test for the majority of GD patients who express it [41]. For those patients that 

express chitotriosidase it is a preferable marker to ACE and to acid phosphatase 

[81]. Tartrate-resistant acid phosphatase (TRAP) is neither specific for GD nor 

greatly elevated and the protein is unstable and is subject to wide analytical 

variability. ACE activity is subject to variable expression related to a common 

genetic polymorphism and is decreased by the use of frequently-prescribed ACE 

inhibitors [82].  

A third of GD patients will be heterozygous for the chitotriosidase mutation and so 

while it is a useful marker for an individual patient, it has limited use in comparing 

patients [35]. Plasma CCL18 concentrations decrease during therapy, comparable to 

chitotriosidase and monitoring of plasma CCL18 levels is useful in monitoring 

disease progression and effectiveness of treatment, especially in patients who are 

deficient in chitotriosidase activity [83]. Glucosylsphingosine is elevated in GD and 

has been found to correlate with changes in chitotriosidase in the majority of GD 

patients on treatment who were informative for this marker [84]. 
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1.4.8 Genetics 

GD is an autosomal recessive disease. The gene encoding GBA1 is located on the 

long arm of chromosome 1 (1q21) and contains 11 exons. There is a highly 

homologous pseudogene (GBAP) at the same locus (16 kb downstream) which is 

responsible for recombination events between GBAP and GBA1 e.g., RecNciI allele 

[35]. More than 400 mutations have been described in the GBA1 gene [35]. Most of 

the disease alleles in GD are missense mutations that lead to GBA1 with decreased 

catalytic function and/or stability [85]. Several nonsense mutations have been 

described but occur in a heteroallelic state with a missense mutation. Other 

mutation types including gene fusions with the pseudogene, deletions, and 

frameshift mutations have been described. GD is a pan-ethnic disorder but is most 

common in the Ashkenazi Jewish population, where prevalence rates are estimated 

to be between 1:400-1:2500. Worldwide, birth prevalence rates of symptomatic GD 

have been estimated to be between 1:57,000 to 1:110,000 which translates into an 

overall prevalence rate of about 1:100,000 [6, 22, 30, 86]. The most common 

mutation in the Ashkenazi Jewish population is the N370S amino acid substitution 

which is associated with non-neuronopathic disease only. Many homozygotes for 

N370S do not come to medical attention until middle age or not at all. Other 

mutations such as the L444P are highly associated with Neuronopathic disease [22]. 

Six mutations account for about 96% of the mutant alleles among Ashkenazi Jews.  

Two of these, N370S and R496H, have been reported in mild non-neurological cases 

or in asymptomatic patients. Three others (84insG, L444P and IVS2+1G→A) are 

known to be involved in the rare severe neuropathic forms of GD.  And V394L was 

reported in type 3 neuropathic form in combination with L444P or RecNciI allele 

[87]. The N370S mutation influences the flexibility of the loop 1 region of GBA1 

resulting in enzyme with reduced catalytic activity with normal stability that is 

expressed at normal or near normal levels [88]. L444P is located in the hydrophobic 

core of the Ig-like domain. Mutations cause a local conformational change by 

disrupting the hydrophobic core, resulting in altered folding of this domain, 

producing unstable protein. This has been suggested to affect the interaction of the 

enzyme with saposin C [89]. 
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1.4.9 Clinical heterogeneity 

Studies of genotype-phenotype correlations reveal significant genotype 

heterogeneity among GD patients with similar clinical phenotypes.  Conversely, 

individuals sharing the same genotype can present with and exhibit different 

disease phenotypes, clinical courses and responses to therapy [23]. For example, 

patients with oculomotor abnormalities have many different genotypes [90]. 

Differences have been observed among 24 sibling pairs in Canada with GD1 where 

there was concordance in 14 of the pairs but none between the other 10 pairs of 

siblings [91].  Subjects with genotype N370S/N370S can vary from asymptomatic 

adults to children with significant organomegaly, growth delay, or bone disease 

while a review of 35 patients with genotype L444P/L444P, each confirmed not to 

have a recombinant allele, demonstrated phenotypes ranging from death in early 

childhood, to autism to successful college  students [92]. One of the few identified 

genotype–phenotype correlations involves mutation N370S which is encountered 

solely in patients with GD1. Since the observed frequency of N370S homozygotes is 

considerably less than would expected when calculated from the allele frequency in 

the Ashkenazi Jewish population, the majority of individuals with this genotype are 

probably asymptomatic or do not reach medical attention [93]. 

Mutation D409H is associated with an atypical GD phenotype, which includes 

calcification or fibrosis of the cardiac valves, corneal opacities, hydrocephalus, and 

dysmorphic features [94], However, not all individuals homozygous for D409H, 

develop this unique phenotype, and it is also associated with a type 2 phenotype 

[95].  

Differences have been observed among monozygotic twins homozygous for the 

N370S allele  who had cohabited all their lives where one twin suffered from 

fatigue, hepatosplenomegaly, thrombocytopenia and bone manifestations while the 

other twin remained asymptomatic [96]. Another group have described 

monozygotic twin sisters, born to consanguineous Moroccan parents, who are 

highly discordant for the manifestations of Gaucher disease. Both carry the 

N188S/N188S genotype. One twin has severe visceral involvement, epilepsy, and a 
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cerebellar syndrome, while her twin does not manifest any signs or symptoms of 

Gaucher disease but suffers from type 1 diabetes mellitus [97]. 

1.5 Action myoclonus-renal failure syndrome 

LIMP2 encoded by the scavenger receptor class B member 2 gene (SCARB2), is a 

ubiquitously expressed transmembrane protein that is found predominantly in late 

endosomes and lysosomes and has been implicated in the biogenesis and 

maintenance of endosomes and lysosomes [98, 99]. LIMP2 mediates the mannose-

6-phosphate independent trafficking of GBA1 to lysosomes [28]. Deficiency of 

LIMP2 causes action myoclonus-renal failure syndrome (AMRF) [100, 101]. AMRF is 

an autosomal recessive progressive myoclonus epilepsy associated with renal 

dysfunction that appears in the second or third decade of life. Cases with 

progressive myoclonus epilepsy associated with SCARB2 mutations without renal 

compromise have also been reported. Additional neurological features can be 

demyelinating peripheral neuropathy, hearing loss and dementia. The course of the 

disease is relentlessly progressive [102]. LIMP2-deficient fibroblasts like those from 

patients with Gaucher disease (GD) show almost no active GBA1. However, white 

blood cells contain considerable amounts of residual enzyme. Consequently, AMRF 

patients do not acquire lipid-laden macrophages and do not show increased plasma 

levels of macrophage markers, such as chitotriosidase, seen in patients with GD. 

Plasma GlcCer concentrations were normal in the AMRF patients investigated as 

well as in LIMP2-deficient mice [103]. 

Saposin C deficiency, caused by a mutation in the PSAP gene is an extremely rare 

cause of GD [104]. So far, five unrelated patients have been reported, of which two 

displayed a GD3 phenotype and two displayed a GD1 phenotype [105]. 
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1.6 GBA2 (EC3.2.1.45, GH116) 

1.6.1 GBA2 Introduction 

It been known since the role of GBA1 in GD was elucidated that there were other 

non lysosomal b-glucosidases in the cell which were not involved in GD including a 

cytosolic -glucosidase present in various tissues but absent in fibroblasts and the 

lactase-phlorizin hydrolase exclusively present in the microvilli of the intestine 

[106]. Later, it was reported that human liver contains -glucosidase activity active 

towards bile acid beta-glucosides, which was different from the previously 

described -glucosidases [107]. Using conduritol  epoxide (CBE) which is an 

irreversible inhibitor of the lysosomal GBA1, It was subsequently confirmed that 

there was a CBE-insensitive non-lysosomal -glucosidase which could metabolise 

glucosylceramide active in brain, spleen, fibroblasts and various cell lines and was  

not deficient in Gaucher disease [108]. The authors also demonstrated that the non-

lysosomal enzyme behaved differently to GBA1 in the presence of sodium 

taurocholate (0.5% [mass/vol]) which stimulated the activity of the CBE-sensitive 

enzyme (GBA1) approximately two-fold whereas the CBE-insensitive enzyme 

activity was completely lost in the presence of sodium taurocholate. The presence 

in the assay of 1mg/mL of the GBA1 activator protein Saposin C resulted in a 

doubling in the activity of the CBE-sensitive enzyme while having no effect on the 

CBE-insensitive enzyme. The CBE-sensitive enzyme had a pH optimum of about 4.5 

compared to 5.5 for the CBE-insensitive enzyme. While the physiological role of the 

CBE-insensitive enzyme was still unclear the authors suggested it was likely to be 

involved in non-lysosomal glycosphingolipid metabolism and questioned whether 

the enzyme may compensate for the GBA1 deficiency by metabolising some of the 

unhydrolysed substrate [108].  

In 2006 Yildiz and colleagues generated a GBA2 deficient mouse model [109]. To 

their surprise they found despite being deficient in the bile acid b-glucosidase, the 

mice had normal plasma triglyceride, cholesterol and lipoprotein levels and normal 

bile acid compositions. The only clinical finding was that there was reduced 

fecundity in the male mice but no effects on female reproductive fitness were 
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observed.  The infertility was associated with the accumulation of GlcCer in tissues 

especially the testes where GBA2 was highly expressed. Microscopic examination of 

sperm showed abnormally large, round heads (globozoospermia), abnormal 

acrosomes, and disordered mitochondria and defective mobility. GlcCer also 

accumulated in the brain and liver. They concluded that GBA2 was able to catalyse 

the hydrolysis of glucosylceramide as well as bile acid glucosides but did not play a 

major role in cholesterol and bile acid metabolism. Although there was an 

accumulation of GlcCer, there were no GD like symptoms in the affected mice. Yildiz 

suggested that two enzymes may not compensate for each other because of their 

unique tissue specific expression patterns and subcellular localizations. However 

the knock-out mice only lacked exons 5-10 and retained 50% of normal glucosidase 

activity [109].  

Shortly afterwards, it was demonstrated that the previously described bile-acid 

(non-lysosomal) glucosylceramidase was in fact GBA2, which had been previously 

discounted as it been reported to be expressed specifically in liver and to be 

inactive against GlcCer [110].   

More recently it has been shown that GBA1 is a second bile acid b-glucosidase. 

However while a deficiency of GBA1 lead to lysosomal GlcCer accumulation, and 

GBA2 to extra-lysosomal GlcCer accumulation, neither deficiency leads to an 

accumulation of bile acid -glucoside [111].  

The mouse GBA2 mRNA is most abundant in the testes and to a lesser extent in the 

brain with lesser amounts in other tissues, however the protein expression and 

activity levels are higher in the brain than in the testes [109]. The human GBA2 gene 

is on chromosome 9, mapping in position p.13.3. Human GBA2 mRNA is mainly 

expressed in the brain, heart, muscle, kidney and placenta and to a lesser extent in 

liver, spleen and lung. The protein contains 927 amino acids with a molecular 

weight of 104.6 kDa  [112]. 

There is still debate about the localisation of GBA2 within the cell. Matern et al 

found GBA2 to be a single pass trans-membrane protein [112] while Boot and co-
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workers found it to be located at or close to the cell surface. Yildiz et al stated that 

GBA2 is a resident ER protein [109]. They later generated GBA2-specific antibodies 

and developed an assay that discriminates between GBA1 and GBA2 without the 

use of detergent. They found that GBA2 is not an integral membrane protein but 

rather a cytosolic protein that tightly associates with cellular membranes localised 

at the ER and Golgi, which they suggest puts GBA2 in a key position for a lysosome-

independent route of GlcCer-dependent signalling [113]. Others suggest that as 

GBA2 generated ceramide is rapidly converted to sphingomyelin, GBA2 must be in 

close contact with sphingomyelin synthase 1 (SMS1) which is located in the Golgi 

apparatus and SMS2 which is located on the cell surface [110, 111].  

GBA2 was previously thought to be an intrinsic membrane protein with residues 

689–708 predicted as a transmembrane domain but is easily extracted from cells in 

buffer without detergents. The previously predicted hypothetical transmembrane 

domain corresponds to H10, an internal helix in the catalytic domain of TxGH116 

and the derived GBA2 model, which is incompatible with it being a transmembrane 

helix. A new model supports the peripheral membrane localization of GBA2, where 

it may bind to an intrinsic membrane protein or polar lipid head groups [114]. 

1.6.2 GBA2 clinically 

It had been shown that administration of the GBA2 inhibitor, NBDNJ caused 

impairment of spermatogenesis in mice and it was suggested that it may have a role 

as a male contraceptive [115]. Later it was shown that GBA2 knockout mice have 

reduced male fecundity but are otherwise healthy [109]. NBDNJ marketed as 

Zavesca (Miglustat) is licensed as a substrate reduction therapy (see 1.4.6). Gaucher 

patients are given 100mg of NBDNJ, three times a day resulting in low micromolar 

plasma concentrations which should lead to complete GBA2 inhibition and 

following initiation of Miglustat therapy, Gaucher patients show even higher 

concentrations of GlcCer in erythrocytes than before therapy [116]. The growing 

long-term experience with Zavesca substrate reduction therapy indicates that this 

treatment is without major adverse effects but because of the evidence from mice, 

male patients seeking to conceive are advised to cease Zavesca treatment for three 
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months [117].  However, there was no evidence that  Zavesca impaired 

spermatogenesis in healthy volunteers [118] which indicates that GlcCer 

metabolism is less important in humans than in mice. Zavesca (Miglustat) has been 

clinically licensed for over ten years for use in type 1 Gaucher disease, and does not 

give rise to ataxia or paraplegia [119].  

Although GBA2 knock-out mice have no neurological symptoms it is now apparent 

that mutations in GBA2 can lead to neurological impairment in humans. It has been 

found that mutations in GBA2 cause hereditary spastic paraplegia (HSP) [120, 121], 

autosomal recessive cerebellar ataxia (ARCA)[122, 123] and a Marinesco-Sjogren-

Like Syndrome [116].  

Homozygosity mapping and whole-exome sequencing performed to identify the 

genetic origin of cerebellar ataxia in four unrelated consanguineous families of 

Tunisian descent identified mutations within the GBA2 gene. All affected individuals 

were homozygous for three different mutations in the GBA2 gene. The clinical 

presentation in all 10 patients (six male, four female) was progressive cerebellar 

ataxia which began in childhood or early adulthood. One affected individual also 

exhibited mild intellectual disability. The course of the disease was slowly 

progressive. There were no lipid abnormalities. One individual presented with 

hepatomegaly but other Gaucher disease features were absent in this and all the 

other patients. One individual had three children [122].    

Using whole-exome sequencing, a Cypriot group identified a novel missense 

mutation (c.1780G > C [p.Asp594His] in the GBA2 gene in three patients from one 

family who presented with mixed features of cerebellar ataxia and spasticity. 

Spasticity was increased during the disease progression affecting initially the lower 

limbs and truncal muscles and later the upper limbs. Some additional features such 

as cognitive impairment, hearing loss, urinary incontinence and dysphagia often 

observed in other genetic diseases with spastic-ataxia as the predominant clinical 

feature were observed in this family as well [123]. 

Spastic paraplegia 46 (SPG46) refers to a locus mapped to chromosome 9 that 

accounts for a complicated autosomal-recessive form of hereditary spastic 
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paraplegia (HSP). Using next-generation sequencing in three independent families, 

four different mutations in GBA2 were identified (three truncating variants and one 

missense variant), which were found to cosegregate with the disease and were 

absent in controls. The overall phenotype was a complex HSP with mental 

impairment, cataract, and hypogonadism in males associated with various degrees 

of corpus callosum and cerebellar atrophy on brain imaging. The two affected men 

presented with bilateral testicular hypotrophy in the absence of hormonal 

dysfunctions. Semen analysis of one of the subjects revealed extremely severe 

spermatozoid head abnormalities with necrospermia and severe reduction in 

velocity [120]. 

Using Sanger sequencing and targeted re-sequencing, an Italian research group 

found a novel homozygous mutation in exon 3 of GBA2 in three siblings, a pair of 

dizygotic twins and a third brother with spastic paraplegia. No enzymology was 

performed but the change was predicted to be deleterious. Affected members of 

the family show variable phenotype, characterized by spasticity, mild cerebellar 

signs and moderate eyelid ptosis with a different degree of severity in the proband 

(severe spasticity, difficulty in walking and frequent falls) with respect to the two 

brothers (evidence of clinical signs only at neurological examination). None of these 

patients had evidence of peripheral neuropathy or showed signs of cataracts or 

hypogonadism [121].  

Marinesco-Sjögren syndrome is an autosomal recessive disorder characterized by 

cerebellar atrophy with ataxia, early-onset cataracts, hypotonia and muscle 

weakness. Single nucleotide polymorphism (SNP) chip analysis followed by Exome 

sequencing identified a 2 bp homozygous deletion in GBA2 in two Norwegian 

families, with Marinesco-Sjögren syndrome.  Enzymatic determination of the GBA2 

activity in leucocytes was performed and showed reduced activity of GBA2 

corresponding to a residual activity of 7% compared with the mean value of 15 

controls. All three patients had significantly increased concentrations of plasma 

GlcCer similar to that observed in untreated Gaucher patients while in erythrocytes, 

the concentration was higher [116]. 
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GBA2 has been reported to be down-regulated in melanoma. Inducing expression of 

GBA2 promoted GlcCer degradation and ceramide generation, followed by an 

unfolded protein response (UPR) causing apoptosis, subsequent decreased 

anchorage-independent cell growth, and a 40% reduction in vivo tumour growth. 

This not only demonstrates the anti-tumour activity of GBA2 but provides evidence 

for the role of non-lysosomal GlcCer breakdown as a source of bioactive ceramide 

and a mechanistic link between glycolipid catabolism and the UPR/death response 

of melanoma cells [124]. This may be of significance for GD patients with N370S 

mutations who have an increased risk of developing solid cancers including 

melanoma [125]. GBA2 expression has also been shown to be reduced by more 

than 50% in paediatric brain tumours such as glioblastoma compared to normal 

brain [126]. 

Miglustat has shown promise in cystic fibrosis treatment because it reduces the 

inflammatory response to infection by P. aeruginosa and restores F508del-CFTR 

chloride channel activity. Data demonstrates that the anti-inflammatory effects of 

Miglustat are likely exerted through inhibition of GBA2 rather than ceramide 

glucosyl-transferase (GlcCerT) or GBA1. Total β-glucosidase, GBA1 and GBA2 

activities were elevated in CF bronchial cells infected by P. Aeruginosa. No increased 

susceptibility to bacterial infections has been identified in patients affected by 

Gaucher disease, treated with Miglustat or in a mouse model of Sandhoff disease 

treated with Genz-529648 [127]. 

1.7 GBA3 (EC 3.2.1.21) 

GBA3, or cytosolic beta-glucosidase (EC 3.2.1.21), is a predominantly liver enzyme 

that efficiently hydrolyzes beta-D-glucoside and beta-D-galactoside, but not any 

known physiologic beta-glycoside, suggesting that it may be involved in 

detoxification of plant glycosides [128]. GBA3 was found to have significant neutral 

glucosylceramidase activity (EC 3.2.1.62), suggesting that it may be involved in a 

non-lysosomal catabolic pathway of glucosylceramide metabolism [129]. However, 

others did not find significant glucosylceramidase activity when using natural 

substrates [130]. No GBA3 activity was found in fibroblasts [131].  There was also no 
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evidence of GlcCer accumulation when GBA3 was inhibited or any association 

between GBA3 haplotypes and the severity of GD1 manifestations [130]. 

1.8 Mechanism of action of GBA1, 2 & 3 

GBA1 and GBA2 are both able through transglucosylation to catalyze in vitro the 

transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa [132]. GBA1, 

2 and 3 are retaining -glucosidases which employ a catalytic mechanism that is 

commonly referred to as the Koshland double displacement mechanism which 

involves two amino acid residues (Glu and Asp) residing in the active site. In 

retaining -glucosidases, these acidic residues are positioned about 5-6 A apart such 

that one can act as the nucleophile and the other as a general acid/base catalyst 

[133]. In the first step of the reaction, called glycosylation, the nucleophile residue 

(Glu-528 in GBA2) attacks the glucose anomeric centre to create a glucosyl-enzyme 

intermediate, while the acid/base residue (Asp-678 in GBA2) protonates the 

glycosidic oxygen, leading to the release of aglycone (-OCH3). In the second step 

(known as the deglycosylation step), the glycosyl enzyme is hydrolyzed by water, 

with the other residue now acting as a base catalyst deprotonating the water 

molecule as it attacks [134].     
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1.9 Parkinson’s disease 

1.9.1 Introduction/history 

Parkinson’s disease (PD) is one the parkinsonian syndromes, a family of related 

movement disorders characterised by akinesia. The principal parkinsonisms can be 

divided into alpha-synucleinopathies and tauopathies. Alpha-synucleinopathies 

include PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) 

[135]. α-Synuclein is a protein of 140 residues that is predominantly and 

ubiquitously expressed in the brain and is important for the normal function and 

integrity of synapses [136]. 

Parkinsonian tauopathies include corticobasal degeneration (CBD), frontotemporal 

dementia with Parkinsonism linked to chromosome 17 (FTDP-17) and progressive 

supranuclear palsy (PSP) [135]. Tau is a microtubule-associated protein, 

predominantly found in neurons whose major function is to bind to and stabilize 

microtubules. Tauopathies are neurodegenerative diseases characterised by the 

observation of hyperphosphorylated, insoluble aggregates of tau in neurons and 

glia of affected brain regions. The best known example is Alzheimer’s disease [137].  

Parkinson’s disease is a common neurodegenerative disorder that affects over 1% 

of the population aged over 65 years of age. It is named after James Parkinson who 

first described it in 1817 when he published “An essay on the shaking palsy” [138]. 

Parkinson described six patients, three of them noticed casually in the street, and 

one only observed from a distance, with common symptoms including “involuntary 

tremulous motion” and “a propensity to bend the trunk forwards, and to pass from 

a walking to a running pace” [139].  In the 1860s the renowned French physician Dr 

Jean Martin Charcot at the Salpêtrière hospital in Paris, further described the 

disease and the symptoms of postural instability, bradykinesia, rigidity and tremor, 

identified by Dr Parkinson and added hypomimia and micrographia. He recognised 

that not all patients had tremor and suggested the term Parkinson’s disease be used 

rather than paralysis agitans (shaking palsy)[140]. The prevalence of PD rises with 

age from 1% of those over 60 years of age to 4% of the population over 80. The 
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mean age of onset is approximately 60 years of age, however 10% of cases are 

classified as young onset occurring between 20 and 50 years of age [141].  

The prevalence of PD is higher in men than women with ratios of 1.1:1. to almost 

3:1 being reported [141]. 

1.9.2 Clinical  

Clinical symptoms include hypo- and bradykinesia, rigidity and tremor. Other 

symptoms include postural instability, dysphagia, speech problems, depression and 

dementia, autonomic dysfunction and cognitive decline [141]. 

1.9.3 Diagnosis  

The diagnosis of PD is generally based on clinical findings although various forms of 

brain imaging may be useful. The United Kingdom Parkinson’s Disease Society Brain 

Bank has advocated a set of criteria that should be applied when diagnosing the 

condition. The Queen Square Brain Bank (QSBB) criteria for the diagnosis of PD 

requires the finding of bradykinesia and at least one of the following symptoms; 

muscular rigidity, 4- to 6-Hz resting tremor or postural instability. Supportive criteria 

include unilateral onset, progressive onset and 70-100% response to levodopa. 

Exclusion criteria include repeated head injury, repeated strokes and sustained 

remission [135].   

A number of scales have been developed to monitor PD including: The movement 

Disorder Society’s Unified Parkinson's Disease Rating Scale (UPDRS); Non-Motors 

Symptoms Questionnaire (NMSQuest) and the Hoehn and Yahr scale. The Hoehn 

and Yahr scale ranges from stage 1 where there is unilateral involvement only with 

minimal or no functional impairment, to stage 5 where the patient is wheelchair 

bound or bedridden unless aided [142]. The UDPRS is a more extensive scale 

assessing over 40 aspects of the disease in four parts covering non-motor 

experiences of daily living (mentation), motor experiences of daily living,    motor 

function (clinical examination) and motor complications [138]. 

https://www.parkinsons.org.uk/professionals/resources/unified-parkinsons-disease-rating-scale
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1.9.4  Treatment 

So far no drug has proved to be neuroprotective in PD [135]. The main treatment is 

the dopamine precursor, levodopa on its own or with a peripheral dopa 

decarboxylase inhibitor or dopamine agonist. Other treatments include monoamine 

oxidase type B (MAO-B) inhibitors, glutamate antagonists, anticholinergics and 

surgery [138]. When a patient is first diagnosed they may not yet feel a need for 

symptomatic treatment and clinicians may wait until symptoms are affecting daily 

life before initiating treatment [135].  

1.9.5 Causes  

Parkinson's disease is a synucleinopathy, a group of various neurodegenerative 

disorders that share a common pathological lesion comprised of aggregates of α-

synuclein protein in vulnerable populations of neurons and glia. Other 

synucleinopathies include dementia with Lewy bodies (DLB), multiple system 

atrophy (MSA), and neurodegeneration with brain iron accumulation (NBIA) [143]. 

Parkinsonian symptoms result from the degeneration of approximately 60% of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) leading to a 

loss of 80% of dopamine in the striatum [144]. Under normal circumstances, 

dopamine is involved in control of the basal ganglia, which function to facilitate 

behaviour and movements that are required and appropriate, and to inhibit 

unwanted or inappropriate movements. The loss of dopamine causes dysfunction of 

the basal ganglia leading to abnormal motor control, alterations in muscle tone and 

abnormal involuntary movements, or dyskinesias [145].  

Although it had been observed that about 15% of PD patients had a strong family 

history of PD, it was for a long time thought of as being largely caused by 

environmental agents. This was supported by the outbreak of post-encephalitic 

parkinsonism in the early 1900s, the biological effects of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) identified in 1983 and the finding of a lack of difference 

in concordance for PD in monozygotic twins compared to dizygotic [146]. This 

changed with the identification of missense mutations in -synuclein, encoded by 
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SNCA identified in large American-Italian family called the Contursi kindred. 

Subsequently, a triplication of the SNCA locus was identified in another family called 

the Iowa kindred [147]. Genetic forms of the disease now account for up to 20% of 

cases of PD [144]. This includes autosomal dominant forms such as PARK1 and 

Leucine-Rich Repeat Kinase 2 (LRRK2), autosomal recessive causes such as PRKN 

and PINK1 and risk loci such as GBA [147, 148]. To date, Genome-wide association 

studies (GWAS) have led to the discovery of as many as 28 genetic risk loci for 

sporadic PD. The associated risk variants can be common in the population but 

convey only a slightly increased risk of developing PD. If all known risk factors are 

considered together, they are only associated with an odds ratio of 3 to 4 and 

therefore explain only a part of the expected heritability of PD [149]. 

Various molecular mechanisms have been suggested or identified for the loss of 

dopaminergic neurons in PD including mitochondrial impairment, oxidative stress, 

ubiquitin–proteasome system (UPS) dysfunction and altered calcium homeostasis 

[144].  

Evidence for mitochondrial involvement include the findings of a significant loss of 

mitochondrial complex I in SNpc of PD brains [150], and the PD symptoms caused  

by complex I inhibition by MPTP [151, 152].  See chapter five for further discussion. 

1.10 Gaucher Parkinson’s 

1.10.1 Introduction 

Since the report of six GD1 patients with Parkinson’s disease in 1996 it has been 

recognised that there is an association between PD and GD [153]. In 2004, it was 

reported that Parkinsonism was more common in GD carriers than the general 

population [154]. A later prospective study estimated that the risk of PD in GD1 

patients was 21 times greater than the general population [155]. A large meta-

analysis of 5691 PD patients and 4898 controls from 16 centres around the world 

found that the odds ratio for any GBA mutation in PD patients versus controls is 

5.43. PD Patients with GBA1 mutations were more likely have affected relatives and 

presented earlier with the disease than those without [156].  GD heterozygote 
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status is now also known to be the strongest genetic risk factor for PD [157]. GBA1 

heterozygotes with non N370S mutations associated with GD have an increased risk 

of PD compared to those with N370S mutations [157]. The p.E326K polymorphism 

in GBA1 which does not cause GD is as significant risk factor as classic GD mutations 

for developing PD [158]. While GBA1 associated PD is most common in the 

Ashkenazi Jewish population, GBA1 mutations are a significant risk factor for 

developing PD across the world  including Belgium [159], Canada [160], China [161], 

Korea [162], Sweden [163] and Thailand [164]. The differing risk found in different 

populations and centres may reflect differences in ethnicity but also the methods 

used and mutations screened for [156]. The exact risk for GD patients developing 

PD is not known, but has been estimated as 20- to 30-fold while 5–10% of PD 

patients have GBA mutations, making them numerically the most important risk 

factor for the disease identified to date [165]. In the UK, GBA1 mutations are found 

at a higher frequency than any other known Parkinson's disease gene [166].  

 A Genome-Wide Association Studies (GWAS) of 418 patients with clinical diagnoses 

of PD and 306 unaffected and unrelated control subjects found the largest risk 

effect for variants in GBA, with odds ratios (OR) of 4.46 (p= 0.05) for rs76763715 

(N370S, MAF 0.00665) and 4.98 (p=0.009) for rs75548401 (K26R, MAF 

0.01173)[167]. Another GWAS study of 478 PD patients and 337 healthy individuals 

also found mutations in GBA to be the most common risk factor with 11% of the PD 

patients and 4.5 % controls carrying heterozygous variants in the GBA gene leading 

to an OR of 2.28  (p = 0.0007). This compares to an OR of 1.86 (p=0.01) for LRRK2 

variants [168]. 

While the majority of GD patients with PD present with Gaucher symptoms, some 

patients have been diagnosed with GD after a diagnosis of PD [169]. As a result, it is 

now becoming routine to screen patients with Parkinsonism for GD. However, while 

the incidence of Parkinsonism is higher in GD1 patients than reference populations, 

the majority of Gaucher patients do not develop PD. The likelihood of an individual 

patient with GD1 developing Parkinsonism before the age of 70 years is only 5% to 

7% compared to the incidence of Parkinsonism in the general population estimated 
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at 0.3% in the entire population, and 1% in those over 60 years of age [87]. The vast 

majority of GD carriers also never develop PD [170]. 

1.10.2 Clinical presentation  

It is not possible to discriminate individual PD patients with GBA1 mutations (PD-

GBA1) from those with idiopathic PD (iPD) [171]. Patients with PD-GBA1 present 

with the classic PD symptoms of asymmetric tremor, rigidity and bradykinesia [172, 

173]. At the point of diagnosis, patients with PD-GBA1 mutations appear clinically 

indistinguishable from idiopathic disease, however the risk of progression to 

dementia is more than five times that of iPD patients [174, 175]. PD-GBA1 patients 

also showed a 4-fold increase in the risk of progression to Hoehn and Yahr stage 3, 

an end-point associated with impaired quality of life [175]. The age at onset (AAO) 

of GD patients with PD has found to be earlier with a mean of 49.7 years compared 

to GD heterozygotes with PD with a mean AAO of 54.9 years and iPD patients with a 

mean AAO of 62.4 years [176]. Pain, particularly shoulder pain, has been found to 

be a significantly more frequent presenting symptom in PD-GBA1 (10.3%) than in 

iPD (3%) [173]. 

As well as the documented anosmia in PD patients including PD-GBA1, It is known 

that the ability to discriminate colour is poor in PD patients. Interestingly, it has 

been found that GD patients have better colour discrimination than healthy 

controls and although colour discrimination is reduced in GD patients with PD and 

GD carriers with PD, both groups have significantly better colour discrimination 

than those with iPD [177].   

1.10.3 Pathophysiology  

Various theories that have been proposed to explain the link between GD and PD. It 

has been suggested that:- 

- Misfolded GBA1 directly contributes to α-synuclein accumulation. 

Mutant GBA1 mutations, resulting in misfolded mutant protein may contribute to 

the enhanced aggregation of α-synuclein directly, by a biochemical interaction with 
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α-synuclein [178]. This is supported by the finding of significant co-localization 

between GBA1 and α-synuclein in Lewy neurites and α-synuclein positive inclusions 

in GD homozygotes with PD with 90% of Lewy bodies showing a positive signal for 

GBA1, compared to 75% in GD heterozygotes and only 10% of PD patients without 

GBA1 mutations [179]. It has also been demonstrated using cellular and in vivo 

models that mutant GBA1 promotes α-synuclein accumulation in a dose- and time-

dependent manner [180]. Another theory is that the accumulation of GlcCer in 

neurons due to GBA1 deficiency promotes the formation of toxic α-synuclein 

oligomers triggering further depletion of GBA1 and further stabilization of the α-

synuclein oligomers by GlcCer accumulation, resulting in a self-propagating positive 

feedback loop leading to neurodegeneration [181]. 

- Misfolded GBA1 burdens the autophagy or lysosomal systems.   

α-synuclein is degraded in part by chaperone-mediated autophagy (CMA) and also 

by the lysosome. Disruption to autophagy or lysosomal systems either directly by 

mutant GBA1 or by accumulating substrate due to GBA1 deficiency could impair α-

synuclein elimination. Alternatively the elimination of damaged mitochondria by 

mitophagy could be compromised although there is no experimental evidence of 

this in PD-GBA1  [178].  

- GBA1 mutations impair endoplasmic reticulum retention associated 

degradation (ERAD). 

It has been shown that GBA1 variants present variable degrees of ERAD. The 

authors proposed that unlike wild type protein, mutant GBA1 is a substrate for 

parkin-mediated ERAD degradation. Mutant GBA1 interaction with parkin could 

block interactions with other parkin substrates, interfering with their UPS mediated 

breakdown, which could lead to ER stress and eventual cell death [182]. 

 

- GlcCer accumulation alters lipid metabolism in GD. 

Under normal conditions, α-synuclein co-localizes with lipid rafts that mediate its 

delivery to the synapse, but under conditions of altered lipid metabolism, this 
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association is disrupted. This leads to a redistribution of the protein to the cell body 

from neurites, which could lead to the formation of abnormal and potentially toxic 

α-synuclein species. A disruption of normal α-synuclein–lipid interactions due to 

diminished GBA1 activity could represent a pathway that leads to cellular death 

[183].  

 

- Macrophage proliferation enables the prionic spread of -synuclein. 

It has been demonstrated that -synuclein aggregation is transmitted between 

neurons in the brain raising the possibility that PD is a prion disease. And is has 

been suggested that Gaucher cells could accumulate -synuclein, which could 

acquire the prion form, which may be accidently transported or released by the cell 

[184].    

None of the mechanisms that involve mutant/misfolded GBA protein explain why 

PD has been described in GD patients with null mutations i.e. with no protein 

product at all. Theories involving the accumulation of substrate (GlcCer or 

glucosylsphingosine) do not explain why GD carriers who should not be 

accumulating unhydrolysed substrate have a higher risk of developing PD.  

The clinical heterogeneity seen in GD has been observed with regards to PD in a pair 

of monozygotic brothers, who were heterozygous for the N370S mutation, where 

one was diagnosed with PD at age 63, while no signs or symptoms were found in his 

twin after detailed clinical examination [185].  

1.10.4 Treatment  

Most studies have shown that patients with PD-GBA1  have a good response to l-

DOPA, similar to those with iPD [169]. Enzyme replacement therapy in GD patients 

does not cross the blood-brain barrier and does not seem to have any effect on the 

progression of parkinsonian symptoms [169].  However, substrate reduction 

therapy may prove useful.  The effects of PD-linked GBA mutations were reversed 

by the molecular chaperones ambroxol and isofagomine in human cell and fly 

models, providing proof of principle that small molecule chaperones can reverse 
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mutant GBA-mediated ER stress in vivo and might prove effective for treating PD 

[186]. 

1.11 GBA1 association with other movement disorders 

There is a significant association between GBA1 mutation carrier status and 

dementia with Lewy bodies (DLB) with an odds ratio of 8.28 (confidence interval 

4.78-14.88). The same group found an odds ratio for GBA1 and PD with dementia 

(PDD) of 6.48 (confidence interval 2.53-15.37) [187]. GBA mutations have been 

found at autopsy in 23% of brain samples of cases with DLB [188] and it has also 

been reported that there is a decrease in GBA activity in cerebrospinal fluid of DLB 

patients [189]. 

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder, 

characterized by autonomic failure, poor levodopa-responsive parkinsonism, 

cerebellar ataxia, and various pyramidal symptoms [143]. There is conflicting 

evidence with regards the association of GBA1 mutations and multiple system 

atrophy (MSA). Three groups found no association [169], while another found that 

mutations in GBA1 are a risk factor for MSA but with an odds ratio of 2.43 

(confidence interval 1.14-5.21) the risk factor is lower than that for PD [190]. 

Neurodegeneration with brain iron accumulation (NBIA) comprises a spectrum of 

progressive extrapyramidal disorders characterized by high levels of iron 

accumulation in the brain. There is no correlation with GBA1 and NBIA reported in 

the literature [143]. 

1.12 Alzheimer’s disease and GBA1 

Significant reductions of GBA1 expression and enzyme activity has been reported in 

the brain of patients with Alzheimer disease (AD) suggesting that this deficiency 

could play a role in the development of AD by inducing lysosomal dysfunction 

although the mechanism is unknown. Over-expression of GBA1 promoted the 

lysosomal degradation of Abeta1-42 oligomers, restored the lysosomal impairment, 

and protected against the toxicity in neurons treated with Abeta1-42 oligomers 
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[191]. However, GBA1 measurement in amygdala from AD patients found no 

difference in activity compared to controls [192]. 

1.13 Case study - Atypical parkinsonism with apraxia and supranuclear gaze 

abnormalities in type 1 Gaucher disease. 

This is a summary of a previously reported case of a genetically proven GD1 patient 

with an atypical parkinsonian corticobasal degeneration (CBD) like syndrome [193].  

The patient, a male of Ashkenazi Jewish ancestry was diagnosed with GD1 at the 

age of 17 after the finding of asymptomatic mild thrombocytopenia and 

hepatosplenomegaly. He did not receive treatment for his GD.  He had no further 

symptoms until the age 60, when he experienced difficulty in performing complex 

intellectual tasks and forgetfulness. He then developed problems with reading and 

writing and became apathetic, fearful, socially withdrawn and developed 

depression. On examination, “there was facial hypomimia and global bradykinesia. 

Speech was hypophonic, agrammatic and non-fluent. He had apraxia of eyelid 

opening and closure, bilateral gestural dyspraxia, grasping and magnetism, and 

abnormal posturing of his right arm, with bilateral stimulus sensitive myoclonus to 

touch. There was difficulty in initiating eye movements and a supranuclear gaze 

abnormality with restriction and hypometric saccades, especially in the vertical 

plane. Right predominant cog-wheel rigidity and bradykinesia of the limbs was 

noted. Gait was slow and short stepped, with occasional freezing and impaired 

postural reflexes.” Apart from mild neutropenia and thrombocytopenia, routine 

blood tests were normal. Genetic testing was negative for LRRK2 and tau gene 

mutations [193]. See paper in appendix for further details. 

Testing performed in our laboratory summarised in Table 1.2 revealed that 

leucocyte GBA1 activity was very low and consistent with a diagnosis of GD. Plasma 

chitotriosidase was elevated which is consistent with the diagnosis of GD but the 

level was much lower than usually observed in untreated GD. The probably reflects 

the very mild GD phenotype exhibited by the patient. GBA gene analysis showed he 

was a compound heterozygote for the N370S/L444P (p.Asn409Ser/p.Leu483Pro) 

GBA1 mutations. Analysis of CSF monoamine metabolites revealed marked 
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impairment of not just dopamine but also serotonin turnover demonstrated by 

undetectable levels of the dopamine metabolite homovanillic acid (HVA) and the 

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). 

Table 1.2 - Laboratory results of a GD patient with atypical parkinsonism. 

Leucocyte GBA1 0.4 (5.4-16.8 nmol/hr/mg protein) 

Plasma chitotriosidase 623 (0-150 nmol/L/hr) 

Mutation N370S/L444P 

CSF HVA <0.5 (71 – 565 nmol/L) 

CSF 5-HIAA <0.5 (58 – 220 nmol/L) 

 

Regarding the low 5-HIAA, there are reports of low serotonin and its metabolites in 

parkinsonism but not as profound as observed in this patient. It has been suggested 

that l-Dopa treatment stimulates serotonergic neurons to preferentially release 

dopamine thereby reducing serotonin release, so reduced 5-HIAA levels in CSF 

might be expected to reflect l-Dopa treatment [194]. Herbert et al., observed that l-

Dopa treated PD patients had lower levels of 5-HIAA than non l-Dopa treated PD 

patients. However, the levels of 5-HIAA were also reduced in the l-Dopa treated PD 

patients compared to controls. Reduced 5-HIAA levels in PD patients could 

therefore reflect intrinsic serotonergic deficits in PD which may be exacerbated by l-

Dopa treatment [195]. Another group reported significantly reduced CSF levels of 

both serotonin and 5-HIAA in PD patients compared to age-matched control 

subjects, and patients with Alzheimer's disease. However, no correlation emerged 

between serotonin/5-HIAA concentrations and UPDRS-III, disease duration or age 

and levels did not correlate with the presence of depression, apathy or sleep 

disturbance [196].  
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There is only one report in the literature investigating GBA1 mutations and CBD. An 

Italian study of 2766 unrelated consecutive patients with a clinical diagnosis of 

primary degenerative parkinsonism including 34 patients with CBD, and 1111 

controls confirmed the association of GBA1 mutations with PD and DLB, but found 

no association with CBD or PSP. The authors suggest that GBA1 dysfunction is 

relevant for synucleinopathies, such as PD and DLB, but not for tauopathies such as 

CBD and PSP [197]. However, while the finding of CBD in a GD1 patient could be 

coincidental, this case study raises the possibility of an association between GD and 

atypical parkinsonism such as CBD.  

1.14  Other Lysosomal storage disorders and PD 

While the link between GD and PD is now well established there is evidence that 

other LSDs may also have a connection to PD. Features of PD have been described 

in five of the six most common LSDs, including metachromatic leucodystrophy,  

mucopolysaccharidosis IIIA, Fabry disease and mucopolysaccharidosis II as well as 

GD [198]. A decrease in the enzyme activity and protein levels of alpha-

galactosidase, the enzyme associated with Fabry disease has been found in sporadic 

PD [199]. A decrease in the enzyme activity of arylsulphatase A, the enzyme 

associated with metachromatic leucodystrophy has been found in familial 

parkinsonism [200]. Parkinsonian tremor has been described in a heterozygote for 

Niemann-Pick C disease [201]. Other connections between common neurological 

diseases and rare LSDs are being identified. Mutations in the gene that codes for 

progranulin (GRN) one of the genes which is long-known to cause frontotemporal 

dementia when mutated in one of its alleles, were recently shown to cause a novel 

LSD, neuronal Ceroid lipofuscinosis 11 (CLN11), when affecting both its copies [202].  

A candidate-gene study of 347 Greek patients with sporadic PD and 329 healthy 

controls conducted to investigate the association between 5 polymorphisms in the 

SCARB2 gene and the development of PD revealed an association for the rs6825004 

polymorphism [203]. This association was also reported in a DLB study [204]. The 

largest case-control genome-wide association study (GWAS) of PD based on a single 
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collection of individuals to date (3,426 cases and 29,624 controls discovered a novel 

genome-wide significant association with PD-rs6812193 near SCARB2 (p = 7.6 x 10(-

10), OR = 0.84) [205]. Others were not able to replicate the association with 

rs6825004 but confirmed the association with rs6812193. They also found that the 

increased risk is not mediated by changes in GBA1 activity [206]. However, a study 

of the relative RNA expression by real-time PCR, and LIMP-2 levels on Western blots 

failed to demonstrate any appreciable difference in SCARB2 expression and LIMP-2 

levels among samples after grouping by rs6812193 or rs6825004 genotypes 

suggesting that  the two reported SNPs may not be related to SCARB2 and 

demonstrate the challenges in interpreting some association studies [207]. While 

further work is required to confirm the risk of PD associated with SCARB2, evidence 

form LIMP2 deficient mice has demonstrated that LIMP-2 expression is critical for 

GBA1 activity and α-synuclein clearance [208]. 

Loss-of-function mutations in ATP13A2, the gene encoding P-type ATPase, 

responsible for lysosomal acidification causes Kufor-Rakeb syndrome (PARK9), an 

autosomal recessive form of early-onset parkinsonism with pyramidal degeneration 

and dementia [209]. And mutations in the vacuolar protein sorting 35 homolog 

(VPS35) gene at the PARK17 locus, which encodes a protein involved in endosomal-

lysosomal trafficking has been identified as causative of a late-onset PD [210, 211].  

However, no association was found between the  D620N mutation of the VPS35 

gene and PD in a study of 124 patients in Hungary [212]. 

1.15 Hypotheses 

Mutations in GBA1 are the hereditary basis of GD and are a risk factor for 

developing PD. The vast phenotypic variations among patients with GD including 

those with the same genotype and the discordant GD phenotypes observed in some 

monozygotic twins demonstrate the complexity of the disorder and supports a role 

for genetic modifiers [23, 90-93, 95-97]. This equally applies to the situation where, 

although they have a significantly higher risk of doing so than the general 

population, most GD patients and carriers do not develop Parkinson’s disease [87, 
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170]. GBA2 is a non-lysosomal beta-glucosidase capable of hydrolysing the same 

substrates as GBA1  [134] and could be a modifying factor in GD and PD-GBA1.  
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1.16 Aims 

1. To document the prevalence of GBA1 insufficiency in patients being 

investigated for Parkinsonism or dystonia. 

2. To develop and optimise methods for the measurement of GBA1 and GBA2 

activities in various tissue types from clinical samples and model systems. 

3. To use these methods to document GBA1 and GBA2 activities in various 

tissue types from clinical samples and model systems. 

4. To document the downstream consequences of inhibition of GBA1 and/or 

GBA2. 

5. To determine if GBA1 is susceptible to oxidative stress and the effects of 

oxidative stress on GBA1. 
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Chapter 2 Materials and general methods  

2.1 Reagents  

The following materials were purchased from Sigma-Aldrich (Poole, UK). 

Bicinchoninic acid; BSA protein standard; 4 % (w/v) Copper (II) sulphate solution; N-

butyldeoxynojrimicin; conduritol  epoxide; 3-methyldopa; acetyl-Coenzyme A; 

Oxaloacetate; and 4-methylumbelliferyl--d-galactopyranoside; In Vitro Toxicology 

Assay Kit, MTT based; Dimethyl sulfoxide (DMSO); Glycine; Sodium hydroxide; 

Trizma® base (Tris); 4–methylumbelliferone; Ethylenediaminetetraacetic acid 

tetrasodium salt dehydrate (EDTA); 4-methylumbelliferyl-2-acetamido-2-deoxy--D-

gluco-pyranoside;4–methyl-umbelliferone; PBS (pH 7.4) P3813-10PAK. 

The following materials were purchased from VWR international (Lutterworth, 

UK) 

2-Methoxyethanol; Acetic acid; Citric acid; Sodium phosphate; Citrate phosphate; 

sodium acetate. 

The following materials were purchased from ThermoFisher Life Technologies Ltd 

(Paisley, UK) 

Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 nutrient mixture (DMEM/F12); L-

glutamine; Hanks' Balanced Salt Solution without calcium; magnesium, or phenol 

red (HBSS); 0.25% Trypsin-EDTA; Trypan Blue stain (0.4%); C-Chip disposable 

haemocytometer; MycoFluor™ Mycoplasma Detection Kit; 4X LDS NP0007, 10X DTT 

NP0004, NuPAGE antioxidant NP0005, NuPAGE antioxidant NP0005, 20X MOPS (3-

(N-morpholino)propanesulfonic acid)  running buffer (dilute to 1X for use) NP0001, 

Magic Mark LC5602, SeeBlue Plus 2 (Rainbow Marker) LC5925, SimplyBlue 

SafeStain LC6060, NuPAGE 4-12% Bis-Tris Gel NP0322BOX, Iblot Transfer Stack PVDF 

Mini IB401002. 
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The following materials were purchased from Labtech International Limited 

(Uckfield, UK) 

Fetal bovine serum (FBS). 

The following materials were purchased from Melford (Ipswich, UK) 

4-methyl--d-glucopyranoside; 4-methyl--d-glucopyranoside. 

The following materials were purchased from Merck Millipore (Watford, UK) 

Taurocholic Acid, Sodium Salt, ULTROL® Grade. 

The following materials were purchased from ThermoFisher Scientific (Paisley, 

UK) 

Triton™ X-100 Surfact-Amps™ Detergent Solution. 

The following materials were purchased from Toronto Research Chemicals  

Acarbose. 

The following materials were purchased from DAKO 

10X TBST (Tris-buffered saline tween-20) S3306. 

The following materials were purchased from Abcam 

Anti-GBA (reacts with human GBA1, 500 μg/mL) ab55080, Anti-GBA2 (reacts with 

human GBA2, 500 μg/mL) ab205064. 

The following materials were purchased from New England Biolabs 

Blue Pre-stained Protein Standard, Broad Range (11-190 kDa) ladder P7706S. 
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The following materials were purchased from Santa Cruz 

Donkey anti-rabbit IgG-HRP (400 μg/mL) sc-2313, Goat anti-mouse IgG-HRP (400 

μg/mL) sc-2005, Anti- GAPDH (FL-335) (reacts with human GAPDH, 200 μg/mL): sc-

25778. 

The following materials were purchased from Thermo Scientific 

IP Lysis Buffer 87787, Halt Protease Inhibitor (PI) Cocktail 78410, EDTA 78410, 

Inhibitor Solution 78410, SuperSignal West Pico Chemiluminescent Substrate 

34080, ECL (Enhanced chemiluminescence ) Reagents 1 & 2 (part of a kit) 32209. 

2.2 Samples 

All human patient samples and controls were processed and stored in accordance 

with Royal College of Pathologists guidelines. 

2.3 Plasma and leucocyte preparation. 

Blood was collected into lithium heparin tubes which were centrifuged at 1625 RCF 

at +4oC for ten minutes. The plasma was removed into a labelled 2.5 mL tube and 

fast frozen in dry ice/methanol and then stored at -20oC until required.  

Leucocytes were obtained from blood using water to preferentially lyse red cells 

from the pellet. The buffy coat (white cell layer) was removed from the red cells 

after the removal of the plasma, into a labelled 2.5 mL tube to which some 0.9% 

saline had been added. This was stored on ice while the original blood tube was 

centrifuged again at 1625 RCF at +4oC for ten minutes after the addition of 0.9% 

saline and mixing. Any cells remaining at the buffy coat layer after the second 

centrifugation were removed and added to the tube with first cells harvested. This 

tube was filled with 0.9% saline and centrifuged at 1625 RCF at +4oC for five 

minutes. Then all the liquid was removed and 1.5 mL of cold distilled water was 

added and the tube agitated for 90 seconds, after which 0.5 mL of 3.6% saline was 

added to return the osmolality to isotonicity. This tube was centrifuged at 1625 RCF 

for 10 seconds to preferentially precipitate the intact leucocytes. The liquid above 
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was removed and the process was repeated a second time to clean up the leucocyte 

pellet. If necessary a third lysis step was carried out. Once a satisfactory leucocyte 

pellet was obtained, it was washed once in 0.9% saline, the saline removed after 

centrifugation and then 50 L of water was added and the pellet was fast frozen in 

dry ice/methanol and then stored at -20oC until required.  

2.4 Prepared Reagents 

2.4.1 Buffers 

MV Buffers 

A solution of 0.1 M citric acid was prepared by dissolving 21.0 g of citric acid in 1L of 

deionised H20 (dd H20).  A solution of 0.2 M di-sodium hydrogen phosphate 

(Na2HPO4) was prepared by dissolving 28.4 g of di-sodium hydrogen phosphate in 1L 

of deionised H20. These stock solutions were stored at -20oC until required. 

MV 4.0 buffer was prepared by adding 90 mL of 0.1 M citric acid to 60 mL of 0.2 M 

Na2HPO4 and adjusting where necessary until the pH was exactly 4.0. 

MV 4.1 buffer was prepared by adding 90 mL of 0.1 M citric acid to 60 mL of 0.2M 

Na2HPO4 and adjusting where necessary until the pH was exactly 4.1. 

MV 4.5 buffer was prepared by adding 108 mL of 0.1 M citric acid to 92 mL of 0.2M 

Na2HPO4 and adjusting where necessary until the pH was exactly 4.5. 

MV 5.4 buffer was prepared by adding 88 mL of 0.1 M citric acid to 112 mL of 0.2M 

Na2HPO4 and adjusting where necessary until the pH was exactly 5.4. 

For the pH curves a range of buffers of different pH were prepared by mixing the 

appropriate amount of 0.1 M citric acid to 0.2M Na2HPO4 and adjusting where 

necessary until the desired pH was obtained. 
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Acetate buffers 

Acetate buffer pH 3.8 was prepared by adding 58 L of glacial acetic acid to 8mL of 

deionised H20, adjusting pH to 3.8 with 1mol/L NaOH and then making up to 10 mL 

with deionised H20. 

Acetate buffer pH 4.95 was prepared by adding 29 L of glacial acetic acid to 8mL of 

deionised H20, adjusting pH to 4.95 with 1mol/L NaOH and then making up to 10 mL 

with deionised H20. 

Acetate buffer pH 6.5 was prepared by adding 58 L of glacial acetic acid to 8mL of 

deionised H20, adjusting pH to 6.5 with 1mol/L NaOH and then making up to 10 mL 

with deionised H20. 

The in use working buffers were stored at +4oC and stocks were stored at -20oC until 

required. 

2.4.2 0.25M Glycine-NaOH pH10.4 stopping reagent 

A 1M glycine/NaOH solution was prepared by adding 64 g NaOH to 200 mL of 

deionised H20, and keeping cooled on ice while stirring until completely dissolved 

and the solution was cool. 150 g of glycine was dissolved in 1600 mL of deionised 

H20. The NaOH solution was slowly added to the glycine solution, with stirring until 

the pH reached 10.4. The volume was made up to 2 litres with deionised H20. 

Working 0.25M glycine/NaOH stopping reagent was prepared by taking 250 mL of 

1M glycine/NaOH and making the volume up to one litre with deionised H20. 

Working 0.25M glycine/NaOH was stored at room temperature. 

2.4.3 4-methylumbelliferone standard 

A 200 M stock solution of 4-methylumbelliferone (4-MU) was prepared by 

dissolving 17.6 mg of 4-MU in a few mL of ethanol and then making up to 500mL 

with deionised H20. This was then filtered through a 0.22 M filter and aliquoted 

into sterile universals. Working solution was prepared by taking 5 mL of 200 M 

stock and making up to 20 mL with deionised H20 to give a 50 m solution. Then 5 
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mL of 50 M solution was made up to 50 mL with deionised H20 to give a 5 M 

working standard. 200 L of the working standard was then aliquoted into 1.5 mL 

Eppendorf tubes, equivalent to 1 nm of 4-MU per tube. Both stock and working 

standards were stored at -20oC until required. When required an aliquot of working 

standard was thawed and 1 mL of Glycine/NaOH stopping reagent added.  

2.5 Lysosomal enzyme assays 

After rapid thawing at +37 0 C, samples were disrupted using a Soniprep 150 

ultrasonic disintegrator (MSE UK Ltd.) for 10 seconds at amplitude 8A for leucocytes 

or 6A for cultured cells.  

Protein was determined using the BCA method (see 2.11).  

2.6 Beta-glucosidase (GBA1, EC 3.2.1.45) 

At acid pH –glucosidase hydrolyses the substrate 4–methylumbelliferyl––D–

glucopyranoside to 4–methylumbelliferone and glucose. Adding sodium 

taurocholate activates lysosomal beta-glucosidase and inhibits the cytosolic beta-

glucosidase which is very active.  Adding alkaline buffer stops the enzyme reaction 

and causes 4–methylumbelliferone to fluoresce at a different wavelength from 

unhydrolysed substrate, thereby permitting its measurement in the presence of a 

vast excess of unhydrolysed substrate.  

2.6.1 Leucocyte GBA1 

Samples were assayed in duplicate. Each tube contained 80 L of 37.2 mmol/L 

sodium taurocholate (NaT) and up to 20 L of sample containing 60 g of protein. 

The volume was made up to 100 L using deionised water. Substrate blanks were 

prepared with 80 L of the NaT and 20 L deionised water.  At timed intervals 100 

L of substrate (5 mmol/L in McIlvaine citrate-phosphate buffer pH 5.4 (MV5.4) was 

added to each tube, which was briefly vortexed before incubating at +37 o C for 60 

minutes. Following the incubation, the reaction was stopped by the addition of 1.0 

mL 0.25 M glycine/NaOH buffer pH 10.4 before reading on the LS55 fluorimeter 

(Perkin Elmer) at excitation 365 nm, emission 450 nm [213]. The amount of free 4–
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methylumbelliferone (4-MU) released, corresponding to the nanomoles of 

substrate hydrolysed was calculated using a standard containing 1nmol of free 4-

MU in 200 L H2O to which 1.0 mL 0.25 M glycine/NaOH buffer (pH 10.4) had been 

added. 

2.6.2 Cultured cells GBA1 

A portion of the sonicated sample was diluted in deionised water to give a protein 

concentration of 1 mg/mL. Samples were assayed in duplicate. Each tube contained 

25 L of MV 5.4, 15 L of 148.8 mmol/L sodium taurocholate (NaT) and 10 L of 

sample. Substrate blanks were prepared as above but with 10 L of deionised water 

instead of sample.  At timed intervals 50 L of substrate (10mM in deionised water) 

was added to each tube, which was briefly vortexed before incubating at +37 o C for 

60 minutes. Following the incubation, the reaction was stopped by the addition of 

1.1 mL 0.25 M glycine/NaOH buffer pH 10.4 before reading on the LS55 fluorimeter 

(Perkin Elmer).    

2.7 Beta-galactosidase (EC 3.2.1.23) 

The lysosomal enzyme, b-galactosidase was assayed using the synthetic fluorescent 

substrate 4-methylumbelliferyl--d-galactopyranoside, which is cleaved by the 

enzyme into 4-methylumbelliferone and galactose.  

2.7.1 Leucocyte beta-galactosidase 

Each tube contained 40 L of McIlvaine citrate-phosphate buffer pH 4.1 (MV 4.1), 5 

L of 0.2 M potassium chloride and 5 L of sample. Substrate blanks were prepared 

with 40 L of the buffer, 5 L of 0.2 M potassium chloride and 5 L of deionised 

water.  At timed intervals 150 L of substrate (1mM in MV 4.1) was added to each 

tube, which was briefly vortexed before incubating at +37o C for 15 minutes. 

Following the incubation, the reaction was stopped by the addition of 1 mL of 0.25 

M glycine/NaOH buffer pH 10.4 before reading on the LS55 fluorimeter (Perkin 

Elmer) [214].    
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2.7.2 Cultured cells beta-galactosidase 

Cultured cells were assayed as above but with each sample tube containing 7 mg of 

protein and the volume made up to 50 L with 0.4% human serum albumin (HSA) in 

0.4 M sodium chloride.  
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2.8 Total -hexosaminidase (EC 3.2.1.51) 

The lysosomal enzyme total beta-hexosaminidase was assayed using the synthetic 

fluorescent substrate 4-methylumbelliferyl-N-acetyl--D-glucosamine, which is 

cleaved by the enzyme into N-acetyl--D-glucosamine and the fluorescent 4-

methylumbelliferone.  

2.8.1 Cultured cells  

A portion of the sonicated sample was diluted in deionised water to give a protein 

concentration of 1 mg / mL. For each sample 5 L of the 1mg/mL diluted enzyme 

was added to 500 L 0.2% Human Serum Albumin (HSA) in McIlvaine citrate–

phosphate pH 4.5 (MV 4.5) buffer (HSA/MV 4.5), mixed and kept on ice. Samples 

were assayed in duplicate. Each tube contained 100 L of the sample in HSA/MV 

4.5. Substrate blanks were prepared with 100 L of HSA/MV 4.5. All tubes were pre-

incubated for two minutes. Then at timed intervals 100 L of substrate was added 

to each tube, which was briefly vortexed before incubating at +37 o C for 10 

minutes. Following the incubation, the reaction was stopped by the addition of 1.0 

mL 0.25 M glycine/NaOH buffer pH 10.4 before the fluorescence was read at 

excitation 365 nm, emission 450 nm on the LS55 fluorimeter (Perkin Elmer). 

2.8.2 Leucocytes 

A portion of sonicated sample was added to an equal volume of 0.4M potassium 

chloride and the sample frozen in dry ice/methanol and the thawed at +37 o C three 

times. The sample was then centrifuged at 1625 RCF for 5 minutes at +4 o C.  For 

each sample 5 L of the centrifuged supernatant, was added to 500 L MV 4.5 

buffer, mixed and kept on ice and assayed as above. 

2.8.3 Plasma total beta-hexosaminidase 

For each sample 5 L of plasma was added to 95 L McIlvaine citrate–phosphate pH 

4.5 (MV 4.5) and then assayed in duplicate as above except sample were incubated 

for twenty minutes. 
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2.9 Acid -1,4-glucosidase (EC 3.2.1.20) in cultured cells 

At acid pH –glucosidase hydrolyses the substrate 4–methylumbelliferyl––D–

glucopyranoside to 4–methylumbelliferone and glucose. Adding alkaline buffer 

stops the enzyme reaction and causes 4–methylumbelliferone to fluoresce at a 

different wavelength from unhydrolysed substrate, thereby permitting its 

measurement in the presence of a vast excess of unhydrolysed substrate.  

Samples were assayed in duplicate. Each tube contained 90 L of Acetate buffer pH 

3.8 and 10 L of sample. Substrate blanks were prepared with 90 L of the buffer 

and 10 L of deionised water.  At timed intervals 10 L of substrate (60mM in 2-

Methoxyethanol) was added to each tube, which was briefly vortexed before 

incubating at +37 o C for 30 minutes. Following the incubation, the reaction was 

stopped by the addition of 1.08 mL of 0.25 M glycine/NaOH buffer pH 10.4 before 

reading on the LS55 fluorimeter (Perkin Elmer).     
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2.10 Citrate synthase (EC 2.3.3.1) 

Citrate synthase catalyses the condensation of oxaloacetate and acetyl-coenzyme A 

to form citric acid and coenzyme A in the first step of the Krebs’s cycle. This takes 

place in the mitochondrial matrix. Citrate synthase is commonly used as a measure 

of mitochondrial activity [215, 216]. The citrate synthase assay is based on the 

method of Shepherd and Garland 1969 [217]. The assay measures the production of 

coenzyme A as a result of a reaction between free coenzyme A with 5,5’-Dithio-bis 

(nitrobenzoic acid (DNTB).  

Sample was added (20L) to a 1.5 mL cuvette containing 950 L of 100mM Tris 

buffer pH 8 with 0.1 % V/V Triton, 10 L of 10 mM Acetyl-Co-A and 10 L of 20 mM 

DTNB. A reference for each sample was set up with set up in the same way but with 

960 L of Tris buffer. The reagents were mixed gently by inversion. An initial 

baseline reading was obtained by measuring absorbance for two minutes before 

the reaction was started by the addition of 10 L of 20 mmol/L oxaloacetate to the 

sample cuvettes. The cuvettes were incubated at +30oC and the reaction was 

measured at 412 nm for 10 minutes at thirty second intervals on  a Uvikon 922 

spectrophotometer (Biotek instruments). The absorbance difference between the 

sample and reference cuvette for each sample was converted to molar 

concentration using the Beer-Lambert law. The extinction coefficient used for DTNB 

was 13.6 x 103 M-1 cm-1 (path length 1cm, volume 1mL). Results are expressed as 

nmol/min/mg protein. In order to validate the assay, the linearity between citrate 

synthase activity and the protein concentration was determined. A control 

homogenate of known protein concentration was diluted to give a range between 

of 0.5 mg/mL and 2.5 mg/mL. The assay was linear up to 2.5 mg/mL but for assay all 

samples were diluted to 1mg/mL (Figure 2.1). 
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Figure 2.1 - A plot to show the relationship between citrate synthase activity and 
protein concentration.  

The assay was linear up to 2.5 mg/mL, R2 = 0.993, n=3. 
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2.11 Total Protein assay 

Total protein was determined by the bicinchoninic acid assay (BCA) assay [218] 

using bovine serum albumin as a standard. Bicinchoninic acid (BCA) sodium salt, is a 

stable, water-soluble compound which forms a purple complex with cuprous ion 

(Cu1+) in an alkaline environment. The reaction combines the well-known biuret 

reaction, where protein reacts with Cu2+ in alkaline medium to produce Cu1+. Two 

molecules of BCA react with one of Cu1+ to form a purple colour with maximal 

absorbance at 562 nm. 

To 50 L of sample or standard, 1 mL of bicinchoninic acid was added and incubated 

at +37 o C for 10 minutes after vortexing. Then 20 L of 4 % (w/v) Copper (II) 

sulphate solution was added and incubated at +37 o C for 20 minutes after 

vortexing. Absorbance was read on a Cecil CE2041 spectrophotometer at 562 nm. 

Sample protein concentration was calculated from the BSA standard curve (0-

50mg/mL). While the assay was shown to be linear up to 200mg/mL (Figure 2.2), 

the routine standard curve used was 0-50mg/mL. If the absorbance of a sample was 

lower than the lowest standard (5mg/mL), the assay was repeated with a larger 

sample volume and likewise if the absorbance reading was higher than the top 

standard (50 mg/mL), the assay was repeated with a smaller volume. The majority 

of the assays used a sample volume between 2.5 L and 20 L with the volume 

made up to 50 L with deionised water. 
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Figure 2.2 - BCA protein standard curve. 

The protein assay is linear up to 200mg/mL, R2 = 0.992, n=3. 
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2.12 Cell culture 

2.12.1 SH-SY5Y cells 

The SH-SY5Y cell line has become a popular cell model for PD research because this 

cell line possesses many characteristics of dopaminergic neurons [219]. These cells 

express tyrosine hydroxylase and dopamine-β-hydroxylase, as well as the dopamine 

transporter [220]. Moreover, this cell line can be differentiated into a functionally 

mature neuronal phenotype in the presence of various agents. SH-SY5Y was thrice-

cloned originally from SK-N-SH and first reported in 1978. A neuroblast-like sub-

clone of SK-N-SH, named SH-SY, was sub-cloned as SH-SY5, which was sub-cloned 

again as SH-SY5Y. This cell line is genetically female (has two X chromosomes, but 

no Y), as the original line was established in 1970 from a bone marrow biopsy of a 

metastatic neuroblastoma site in a four year-old female [221].  

2.12.1.1 Cell seeding and passage 

SH-SH5Y cells were obtained from the European Collection of Cell Cultures (Health 

Protection Agency, Salisbury, UK) and cultured in accordance with the supplier’s 

instructions.  

Cells were seeded at 1 x 104 cells/cm2 in a 75 cm2 tissue culture flask in working 

medium i.e.  Dulbecco’s Modified Eagle’s Medium/Ham’s F-12 nutrient mixture 

(DMEM/F-12) supplemented with 100mL/L fetal bovine serum (FBS) and 5 mmol/L 

L-glutamine. Cells were grown in 10mL of working medium at +37OC in 5% CO2. Cell 

culture medium was replaced the day after seeding and every 48 hours thereafter. 

Cells were passaged at 80-90 % confluence approximately every 6 days.  

To passage the cells, the medium was removed from the flask and the cells were 

washed with 6mL of Hanks' Balanced Salt Solution (HBSS). After removing the HBSS, 

cells were detached with 4mL/flask of 0.25% trypsin-EDTA incubated at +37OC for 3 

minutes. The 0.25% trypsin-EDTA was diluted down with the addition of 8mL of 

medium.  
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The detached cells could then be prepared for storage, passaged into one or more 

flasks or harvested for assays. 

2.12.1.2 Cell storage 

The cells were passaged as described above, harvested and centrifuged at 500 g for 

five minutes at +4 OC. The supernatant was removed and the cells suspended in 

working medium. An aliquot of cell suspension was mixed 1:1 with 0.4% Trypan 

blue and cells were counted manually using a C-Chip disposable haemocytometer. 

Cells were stored in 1mL aliquots in cryovials at a density of 1 x 106 cells/mL in 

freezing medium containing 700 mL/L 1:1 DMEM/F-12 with 200 mL/L FBS and 100 

mL/L Dimethyl sulfoxide (DMSO). The aliquots were frozen overnight in a -80OC 

freezer before being transferred into liquid nitrogen. 

The cells arrived at passage 16 and after culture 18 vials of 1mL of cells in freezing 

medium were stored at passage 19. A fresh aliquot was reconstituted for each 

experiment. 

2.12.1.3 Cell recovery 

Cells were recovered from liquid nitrogen, thawed rapidly in a +37 OC waterbath and 

quickly seeded at a density of 1 x 104 cells/cm2 in 75 cm2 flasks and then cultured 

and passaged as previously described. 

2.12.1.4 Cell harvesting and washing 

The cells were passaged as described above, harvested and centrifuged at 500 g for 

five minutes at +4 OC. The supernatant was removed and the cells were re-

suspended in 4mL 0.9% sodium chloride. The cells were centrifuged again at 500 g 

for five minutes at +4 OC. The supernatant removed and the cells were re-

suspended in another 4mL 0.9% sodium chloride. This was repeated again. After the 

third wash in 4mL 0.9% sodium chloride, the supernatant was removed from the 

centrifuged cells and 50 L of deionised water added. The cells were then quickly 

frozen in a dry ice/methanol cooling bath before being store at -20 OC until assay. All 

enzyme assays were performed at passage 22-24. 
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2.12.1.5 Mycoplasma testing 

Mycoplasma infections are relatively common in laboratory cell cultures and are 

difficult to detect as they are not visible to the naked eye or under routine light 

microscopy. Mycoplasma infections, which are typically difficult to detect during 

routine cell culture work, can cause physiological and morphological distortions that 

affect experimental results [222]. The MycoFluor™  Mycoplasma Detection Kit 

couples the use of a fluorescent nucleic acid stain with fluorescence microscopy 

[223]. 

Cultured cells were tested for mycoplasma as per the kit instructions, when they 

were been passaged for storage or just before a final experiment. When being 

passaged, 2-3 drops of cell suspension was placed on a sterile cover slip in a sterile 

Petri dish and 4 mL of working tissue culture medium. The cells were grown until 

approximately but no more than 75% confluence.  Fixative solution (3:1 (v/v) 

solution of 100% methanol:glacial acetic acid) was prepared fresh on the day of use. 

Fixative equivalent to the volume of medium in the Petri dish i.e. 4mL was gently 

added directly to the medium containing coverslip. After about 5 minutes, the 

solution of fixative and medium was removed and 4 mL of fresh fixative added. 

After an additional 10 minutes, the fixative was removed and the coverslip gently 

washed twice with deionised water. Working MycoFluor™ reagent was prepared by 

adding 1 volume of 20X concentrated MycoFluor™ reagent to 19 volumes of 

deionised water. The coverslip was covered in the Working MycoFluor™ reagent for 

10 minutes shielded from light. The coverslip was then removed with forceps, held 

vertically, and the excess medium that accumulated on its edge gently blotted. The 

coverslip was then placed cell side down, onto a clean microscope slide and sealed 

using the coverslip sealant provided in the kit. Once dry, the slide was examined on 

a Nikon Eclipse Ci fluorescent microscope, excitation 365 nm and band-pass 450 nm 

using a 100X oil immersion objective. 

2.12.2 Fibroblasts culture 

Fibroblasts were cultured and processed as per the SH-SY5Y cells except the culture 

medium was HAMS F10, with 12% fetal calf serum and 1% penicillin/streptomycin. 



80 
 

2.13 Statistical analysis 

The statistical significance of data sets was assessed using Student’s t-test where 

there were two sets of data. Comparisons were made using a one way analysis of 

variance (ANOVA) followed by a Newman-Keuls multiple comparison test, where 

there were more than two sets.  P<0.05 was considered significant.  

All graphs display the mean ± the standard error of the mean (SEM), unless 

otherwise stated.  
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Chapter 3 Characterisation of GBA1 and GBA2 activities in various 

tissues. 

3.1 INTRODUCTION 

There is a growing interest in the potential role of GBA1 and GBA2 in modifying the 

disease phenotype of GD and the pathogenesis of PD [224-226]. In order to 

evaluate the potential interplay between these two enzymes and their potential 

contributions to GD/PD, reliable enzyme assays are required.   

As discussed previously in chapter 1, although GBA1 and GBA 2 are both 

glucosylceramidases, the two enzymes act on different glycolipids, do not share 

sequence identity and are expressed in different tissues and subcellular 

compartments. They respond differently to inhibitors, summarized in Table 3.1. This 

has been used in the routine measurement of GBA1 in leucocytes which is 

measured in the presence of sodium taurocholate which activates GBA1 and 

inhibits GBA2 [213]. These different responses to inhibitors can be exploited to 

enable the measurement of both GBA1 and GBA2 using the artificial fluorescent 4-

Methylumbelliferyl β-D-glucopyranoside substrate.  

Table 3.1 - A comparison of the properties of GBA1 and GBA2. 

 GBA1 GBA2 

Chromosome 1 9 

Location Lysosome Non-

lysosomal 

Inhibited by CBE Yes No 

Inhibited by NBDNJ No Yes 

Inhibited by NAT No Yes 

Activated by NAT Yes No 
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AIMS 

Whilst methods for the determination of GBA1 in a range of cell types and tissues 

have been developed often using the synthetic substrate, 4–methylumbelliferyl––

D–glucopyranoside, there is less data available regarding GBA2 activity. 

Consequently, prior to assessment of these enzymes in clinical samples and model 

systems, protocols were developed here for the reliable measurement of GBA1 and 

GBA2 using brain as the most relevant tissue and leucocytes as an easy accessible 

sample type. 

Two separate approaches to measuring GBA2 were investigated. The first using the 

GBA1 inhibitor CBE, with the activity remaining being non-lysosomal beta-

glucocerebrosidase i.e. GBA2. And the second approach, using the GBA2 inhibitor, 

with GBA2 activity calculated as the difference in activity with and without NBDNJ 

inhibition. 

Following the establishment of the assays, the relative activities of the two enzymes 

were recorded in a range of tissue and cell types to ascertain whether there is 

evidence of the differing metabolic roles of the enzymes across the samples 

studied.  

In this study, brain, leucocytes, plasma, cultured fibroblasts, and astrocyte (1321N) 

and neuronal cell (SH-SY5Y) lines were studied.  
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3.2 Methods and materials  

3.2.1 Brain 

Brains from mixed sex CD1 mice were removed and stored at −80 °C until assayed 

for this study. The brains were supplied by Matthew Gegg (Department of Clinical 

Neuroscience, UCL Institute of Neurology, Hampstead Campus, Rowland Hill Street, 

London). Mouse procedures and welfare were approved by the University College 

London Animal Welfare and Ethical Review Board (AWERB) and in accordance with 

project and personal licenses granted by the UK Home Office and the Animal 

(Scientific Procedures) Act of 1986. 

Brain samples were homogenised in water as a 2.5% brain homogenate using a mini 

glass homogeniser. Protein levels were determined using the BCA method and the 

sample diluted in water to a protein concentration of 2 mg/mL.  

3.2.2 Leucocytes and plasma 

Leucocytes and plasma were isolated from lithium heparin blood samples and 

prepared by the method described previously in section 2.3. The samples had been 

collected after clinical consent for clinical investigation from patients at Great 

Ormond Street Hospital for Children NHS foundation Trust. After rapid thawing at 

+37 0 C, leucocyte pellets were sonicated with a Soniprep 150 ultrasonic 

disintegrator (MSE UK Ltd.) for 10 seconds at amplitude 8A. A pooled leucocyte 

preparation was prepared by combining sample remaining after routine assay from 

twenty leucocyte pellets from patients who had been found to have unaffected 

levels of the lysosomal enzymes that had been measured in those samples. 
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3.2.3 SH-SY5Y cells and 1321N1cells  

SH-SY5Y cells from were cultured and harvested as described previously in section 

2.12.1. The 1321N1 cell line is a human astrocytoma cell line isolated in 1972 as a 

sub clone of the cell line 1181N1 which in turn was isolated from the parent line U-

118 MG, one of a number of cell lines derived from malignant gliomas [227]. 

Harvested 1321N1 cells were kindly provided by Matthew Gegg from the Royal Free 

Hospital. 

3.2.4 Cultured fibroblasts 

Fibroblasts from disease controls were cultured and harvested as described 

previously in section 2.12.2. The samples had been collected after clinical consent 

for clinical investigation from patients at Great Ormond Street Hospital for Children 

NHS foundation Trust. Samples were processed and stored in accordance with Royal 

College of Pathologists guidelines, UK. Control samples were from patients who had 

lysosomal enzymes measured as part of their investigations but were not found to 

have a deficiency of a lysosomal enzyme.  

3.2.5 Cerebrospinal fluid  

Discarded anonymised Cerebrospinal fluid (CSF) was kindly provided by the 

Neurometabolic unit at The National Hospital for Neurology and Neurosurgery. The 

CSF had been through one freezer thaw cycle prior to storage at -80oC. 

3.2.6 Control lysosomal enzyme activities 

The activities of beta-galactosidase, total beta-hexosaminidase and alpha-

glucosidase were determined as control enzymes as described in chapter 2. The 

assay of control enzymes is to determine if any changes observed in GBA1 were due 

to an overall change in lysosomal content or activity and to exclude any samples 

that had become degraded from analysis. 
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3.2.7 Protein determination 

Sample protein concentration was determined using the BCA protein method 

described in section 2.11. 
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3.3 Experimental protocol and results of method development in brain 

3.3.1 Feasibility experiment to determine if beta-glucosidase activities are 

measureable in brain 

As an initial experiment a 2.5% homogenate of human brain was prepared and 

beta-glucosidase was assayed using the fibroblast GBA1 method described 

previously in section 2.6.2 but substituting water or various inhibitors for NaT. The 

sample was assayed with no inhibitor, with 1mM CBE, with 148.8 mmol/L NaT and 

with both 1mM CBE and 148.8 mmol/L NaT. Beta-galactosidase was measured as 

per the leucocyte assay described in section 2.7.1 to ascertain its usefulness as a 

control enzyme in brain.  

The initial feasibility experiment showed that beta-glucosidase activity was 

measurable in brain (Table 3.2). The addition of sodium taurocholate led to a 

significant 72% decrease in activity (P<0.01) whereas the addition of CBE led to a 

smaller but still significant 28% decrease (P<0.01) indicating that GBA1 is not the 

main source of beta-glucosidase activity in brain. Beta-galactosidase activity was 

73.3 nmol/hr/mg ptn and easily measurable using the leucocyte assay and so can be 

used as a control enzyme when comparing different samples/groups. 

Table 3.2 - Beta-glucosidase activities in a 2.5% homogenate of brain. 

 

Inhibitor 

 

Activity 

measured 

Beta-glucosidase 

Activity 

(nmol/hr/mg ptn) 

None Total inactivated 48.18 ± 0.07 

NaT Activated lysosomal 13.50 ± 0.5 

1mM CBE GBA1 inhibited 34.5 ± 0.5 

1mM CBE & 

148.8 mmol/L NaT 

GBA1 & 2 inhibited 1.57 ± 0.10 
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3.3.2 pH curves for beta-glucosidase activities in brain 

To ascertain the optimum pH to measure non-lysosomal beta-glucosidase, a 2.5 % 

homogenate of brain in water was assayed in triplicate as described previously with 

10 L of sample but 70 L of the appropriate pH buffer in each tube rather than 

water and the substrate was made up in water. The buffers ranged from pH 4.6 to 

pH 7.0. Blanks were set up in duplicate for each pH as per samples but substituting 

water for sample. Each pH point was assayed under 4 conditions; with no inhibitor, 

with 1mM CBE, with 148.8 mmol/L NaT and with both 1mM CBE and 148.8 mmol/L 

NaT. 

The maximum activity under all conditions was observed at pH 5.6 indicating that 

the in vitro pH optimum for both lysosomal and non-lysosomal beta-glucosidase in 

brain against the artificial substrate is essentially the same under these assay 

conditions (Figure 3.1). 
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Figure 3.1 -pH curve for brain beta-glucosidase (pH 4.6-7.0). 

Sample assayed with no inhibitor, 1mM CBE, 148.8 mmol/L NaT and with both 1mM CBE 
and 148.8 mmol/L NaT. The maximum activity under all conditions was observed at pH 5.6. 
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To confirm the initial findings the experiment was repeated as before but with more 

pH points over the range of interest i.e. pH 5.0-5.8. Additionally the samples were 

assayed with 2.5 M of the GBA2 inhibitor NBDNJ.   

 

When the experiment was repeated with more pH points between pH 5.0 to 5.8, 

the maximum activity without any inhibitor was at pH 5.6. The maximum activity in 

the presence of the GBA1 inhibitor CBE was at pH 5.2 but there was no significant 

difference in the activity at any pH from 5.0 to 5.6 (Figure 3.2). 
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Figure 3.2 - Brain beta-glucosidase activities at various pH (5.0-5.8) 

Assayed with no inhibitor, 1mM CBE, 2.5 M NBDNJ, 148.8 mmol/L NaT and with 

both 1mM CBE and 2.5 M NBDNJ.  
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3.3.3 CBE inhibition of brain beta-glucosidase activity 

To ascertain the optimum concentration of CBE to inhibit lysosomal beta-

glucosidase and the time required for inhibition to happen, 2.5% brain homogenate 

was assayed as previously described with a range of CBE concentrations from 0-

5mM. CBE or water was added to the samples which were left to incubate on ice for 

times varying from 2-60 minutes before assay. Blanks were set up for each CBE 

concentration and incubation time as per the samples but with the addition of 

water instead of sample.  

Increasing concentrations of CBE led to increasing inhibition of beta- glucosidase 

activity, however inhibition at each concentration did not change significantly with 

increasing time of inhibition before assay indicating that it is not time dependent 

(Figure 3.3).  
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Figure 3.3 - Brain beta-glucosidase activities with varying concentrations of CBE. 

 

  



90 
 

3.3.4 NBDNJ inhibition of brain beta-glucosidase in the presence of CBE 

Three sets of tubes were set up in triplicate with 10 L of 2.5% brain homogenate 

and NBDNJ varying from 0-25 M in the tube.  One set contained of tubes 

contained no CBE, one set 1.0 mM CBE and the third set 5.0 mM CBE. Blanks were 

set up for each condition with water replacing sample. Beta-glucosidase activity was 

measured as previously described. 

There was an 88% decrease in beta-glucosidase activity when assayed with 2.5 M 

NBDNJ in the absence of CBE. Increasing NBDNJ had a negligible effect (Figure 3.4). 

Assaying with 2.5 M of the GBA2 inhibitor NBDNJ led to a 87.6% decrease in the 

measurable beta-glucosidase activity whereas increasing concentrations of the 

GBA1 inhibitor CBE led to greater inhibition with almost 50% decrease in activity 

with 5.0 mM CBE. This would indicate that one of the inhibitors is not specific. 
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Figure 3.4 - Brain beta-glucosidase activities with varying concentrations of NBDNJ in the 
presence of none, 1mM or 5.0 mm CBE.  
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3.3.5 CBE inhibition in brain in the presence of NBDNJ 

Two sets of tubes were set up in triplicate with 10 L of 2.5% brain homogenate and 

CBE varying from 0-2.0 mM in the tube.  One set contained of tubes contained 2.5 

mm NBDNJ and the other set the same volume of water. Blanks were set up for 

each condition with water replacing sample. Beta-glucosidase activity was 

measured as previously described. 

In the absence of NBDNJ there was a continuing decrease in beta-glucosidase 

activity with increasing concentrations of CBE (Figure 3.5). However, beta-

glucosidase activity was reduced by 97% in the presence of 0.2 mM CBE when 

assayed with 2.5 M NBDNJ compared to the activity with neither inhibitor. There 

was no further decrease in activity with increasing CBE concentration in the 

presence of NBDNJ. 

0 .0 0 .5 1 .0 1 .5 2 .0

0

2 0

4 0

6 0

8 0

C B E  m M

B
r
a

in
 b

e
ta

-g
lu

c
o

s
id

a
s

e
 a

c
ti

v
it

y

 (
n

m
o

l/
h

r
/m

g
 p

r
o

te
in

)

N B D N J  0  m M

N B D N J  2 .5 M

 

Figure 3.5 - Brain beta-glucosidase activities with varying concentrations of CBE in 

the presence of none or 2.5 M NBDNJ.  
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3.3.6 The effect of protein concentration on brain beta-glucosidase activity 

Two sets of tubes were set up in triplicate with varying amounts of 2.5% brain 

homogenate which had been diluted to either 0.2mg/mL or 2.0 mg/mL protein. This 

gave a range of protein from 0.0025 mg/tube to 0.25 mg/tube. One set of tubes 

contained 2.5 M NBDNJ and the other set the same volume of water. Blanks were 

set up for each condition with water replacing sample. Beta-glucosidase activity was 

measured as previously described. 

Increasing protein concentrations led to a steady increase in fluorescence and 

activity/tube over the range examined (0-0.25mg/mL) with and without the 

presence of NBDNJ (Figure 3.6). However, the rate of reaction peaked at 

0.05mg/mL with and without the presence of NBDNJ (Figure 3.7). Experiments to 

date have had a protein of 0.1mg/mL which is on the linear part of the curve. 

Samples with proteins above 0.15 mg/mL had high fluorescence readings requiring 

dilutions to obtain a valid reading. Future experiments and assays will be done with 

a protein of 0.1mg/mL in the reaction tube equivalent to 10 L of a 2mg protein/mL 

sample in a final assay volume of 200 l. 
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Figure 3.6 - Brain beta-glucosidase activities expressed as nmol/hr/tube with 

varying protein levels in the presence of none or 2.5 M NBDNJ.  
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Figure 3.7 - Brain beta-glucosidase activities expressed as nmol/hr/mg protein with 

varying protein levels in the presence of none or 2.5 M NBDNJ.  
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3.3.7 The effect of substrate concentration on brain beta-glucosidase activity 

To ascertain the optimum substrate concentration, a 2.5 % homogenate of brain in 

water was assayed in triplicate as previously with substrate ranging from 1mM to 

20mM. Blanks were set up in duplicate for each substrate concentration as per 

samples but substituting water for sample. Each substrate concentration was 

assayed with either no inhibitor or 2.5 M NBDNJ. 

Enzyme activity had reached maximum velocity by 10mM substrate (Figure 3.8). 

Experiments to date have used 10mM substrate and future experiments and assays 

will be done at this concentration. 
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Figure 3.8- Brain beta-glucosidase activities with varying substrate concentrations in the 

presence of none or 2.5 M NBDNJ.  
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The experiment was repeated with 1mM CBE or with 148.8 mmol/L NaT (Figure 

3.9).  Again, enzyme activity had reached maximum velocity by 10mM substrate. 
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Figure 3.9 - Brain beta-glucosidase activities with varying substrate concentrations 
in the presence of 1 mM CBE or 149 mM Sodium taurocholate.  
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3.3.8 The effects of CBE and NBDNJ on fluorescence 

To ascertain if the presence of either CBE or NBDNJ had any quenching effects or 

auto-fluorescence, four sets of standards were prepared in triplicate as described in 

section 2.4.3 with one set containing no inhibitor, one set 25 M  NBDNJ, one set 

5.0 mM CBE and one set 25 M  NBDNJ and 5.0 mM CBE.  

There was no evidence that either CBE and/or NBDNJ had any quenching effect or 

auto-fluorescence at levels higher than used in any of the experiments (Table 3.3). 

This confirms that any change in enzyme activities is due to inhibition of enzyme 

activity. 

Table 3.3 - Fluorescence of 4-MU standard with no inhibitor, 25 M NBDNJ, 5.0 mM CBE 

or 25 M NBDNJ and 5.0 mM CBE.  

 No 

Inhibitor 

25 M 

NBDNJ 

5.0 mM 

CBE 

25 M  

NBDNJ 

and 5.0 

mM CBE 

Fluorescence 

units 

437 

± 0.6 

440 

± 3.1 

436 

± 0.6 

440.3 

± 1.9 
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3.3.9 Summary of brain GBA1 and GBA2 assays. 

GB1 and GBA2 are both measurable in brain. GBA2 is the predominant beta-

glucosidase activity in brain.  

GBA1 and GBA2 are measureable in brain by homogenising brain as a 5% 

homogenate, measuring the protein and diluting down to 2mg/mL protein in water. 

10 L of 2 mg/mL sample is incubated with 100 L of 10mM 4–methylumbelliferyl–

–D–glucopyranoside substrate in MV buffer pH 5.4 for +37 o C for 60 minutes 

before stopping with 1.0 mL 0.25 M glycine/NaOH buffer (pH 10.4) and reading the 

fluorescence at excitation 365 nm, emission 450 nm. GBA1 is measured by 

performing the assay with 148.8 mmol/L sodium taurocholate, whereas GBA2 is 

measured by performing the assay with and without 2.5 mol NBDNJ.  

The same techniques used to develop the assays in brain are next used to 

investigate GBA2 activity in leucocytes, based on the established leucocyte GBA1 

assay described in section 2.6.1. 
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3.4 Experimental protocol and results of method development in leucocytes 

3.4.1 Leucocyte Feasibility experiment 

As an initial experiment a pooled leucocyte pellet was assayed as described using 

the leucocyte method described in section 2.6.1 but substituting water or various 

inhibitors for NaT. The sample was assayed with no inhibitor, with 37.2 mmol/L NaT 

or with 1mM CBE.  

Lysosomal beta-glucosidase is routinely assayed in leucocytes but the initial 

feasibility experiment showed that there is a measurable level of non-lysosomal 

beta-glucosidase activity in leucocytes i.e. that remaining in the presence of CBE 

(Table 3.4). The addition of sodium taurocholate led to a significant 126% increase 

in activity (P<.01) whereas the addition of CBE led to a 61% decrease (P<.01) 

indicating that GBA1 is the main source of beta-glucosidase activity in leucocytes. 

Table 3.4 - Beta-glucosidase activities in a pooled leucocyte pellet. 

 

Inhibitor 

Activity 

measured 

Beta-glucosidase 

Activity 

(nmol/hr/mg ptn) 

None Total inactivated 3.91 ± 0.09 

NaT 
Activated 

lysosomal 
8.82 ± 0.22 

1mM CBE GBA1 inhibited 1.53 ± 0.19 
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3.4.2 Leucocyte GBA2 pH curve 

To ascertain the optimum pH to measure non-lysosomal beta-glucosidase, the 

pooled leucocyte sample was assayed as previously described in the presence of 

CBE to inhibit GBA1. The sample was assayed in triplicate at each pH point with 10 

L of sample, 80 L of the appropriate buffer and 10 L of 20 mM CBE equivalent to 

a final concentration in the tube of 1 mM after the addition of 100 L of substrate 

which was prepared in water rather than buffer. The buffers ranged from pH 2.8 to 

pH 8.0. Blanks were set up in duplicate for each pH as per samples but substituting 

water for sample. 

The maximum activity in the presence of 1mM of the GBA1 inhibitor CBE was at pH 
5.4-5.6 (Figure 3.10) which indicates that under these assay conditions the pH 
optimum of GBA2 is pH 5.4. 
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Figure 3.10 - Brain beta-glucosidase activity at various pH in the presence of, 1mM 
CBE. The maximum activity was at pH 5.4-5.6.  
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3.4.3 CBE inhibition of leucocyte beta-glucosidase activity 

To ascertain the optimum concentration of CBE to inhibit lysosomal beta-

glucosidase and the time required for inhibition to happen, a pooled leucocyte 

pellet was assayed as described previously with a range of CBE concentrations from 

0-5mM. CBE or water was added to the samples which were left to incubate on ice 

for times varying from 5-60 minutes before assay. Blanks were set up for each CBE 

concentration and incubation time as per the samples but with the addition of 

water instead of sample.  

Increasing concentrations of CBE led to increasing inhibition of beta- glucosidase 

activity (Figure 3.11). The level of decrease in activity was greater as the incubation 

time with CBE increased indicating that unlike brain there is a time-dependent 

inhibition with CBE. After 60 minutes of pre-incubation with 5 mM CBE, there was a 

77% decrease in activity which would indicate that GBA1 accounts for most of the 

beta-glucosidase activity in leucocytes. 
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Figure 3.11 - Leucocyte beta-glucosidase activities with varying concentrations of CBE.  
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3.4.4 NBDNJ inhibition in leucocytes in the presence of CBE 

Two sets of tubes were set up in triplicate with 10 L of the pooled leucocyte 

sample and NBDNJ varying from 0-3 M in the tube.  One set contained of tubes 

contained no CBE while the other set contained 1.0 mM. Blanks were set up for 

each condition with water replacing sample. Beta-glucosidase activity was 

measured as previously described. 

There was a 64% decrease in beta-glucosidase activity when assayed with 2.5 M 

NBDNJ in the absence of CBE. Increasing NBDNJ had a negligible effect (Figure 3.12). 

In contrast to the previous experiment this would indicate that GBA1 accounts for 

most of the beta-glucosidase activity in leucocytes. 
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Figure 3.12 - Brain beta-glucosidase activities with varying concentrations of NBDNJ in the 
presence of no or 1mM mm CBE.  
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3.4.5 The effect of substrate concentration on leucocyte beta-glucosidase activity 

To ascertain the optimum substrate concentration, a pooled leucocyte pellet was 

assayed in triplicate as previously with substrate ranging from 1mM to 20mM. 

Blanks were set up in duplicate for each substrate concentration as per samples but 

substituting water for sample. Each substrate concentration was assayed with 

either 1mM CBE or 2.5 M NBDNJ. 

Enzyme activity had reached maximum velocity by 10mM substrate. Experiments to 

date have used 10mM substrate and future experiments and assays will be done at 

this concentration (Figure 3.13). 
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Figure 3.13 - Leucocyte beta-glucosidase activities with varying substrate concentrations 

in the presence of 1 mM CBE or 2.5 M NBDNJ.  
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3.4.6 Summary of leucocyte GBA1 and GBA2 assays 

GBA1 and GBA2 are measureable in leucocytes. Cell pellets are disrupted by 

sonication at amplitude 8 for 10 seconds, protein measured and the sample diluted 

down to 3mg/mL protein in water. 20 L of 3 mg/mL sample is incubated with 100 

L of 5mM 4–methylumbelliferyl––D–glucopyranoside substrate in MV buffer pH 

5.4 for +37 o C for 60 minutes before stopping with 1.0 mL 0.25 M glycine/NaOH 

buffer (pH 10.4) and reading the fluorescence at excitation 365 nm, emission 450 

nm. GBA1 is measured by performing the assay with 80 L 37.2 mmol/L sodium 

taurocholate, whereas GBA2 is measured by performing the assay with and without 

2.5 mol NBDNJ.  

The assayed conditions evaluated in brain and leucocytes will be used to investigate 

GBA1 and GBA2 activities in plasma, cultured fibroblasts, CSF, SH-SY5Y and 1321N1 

cells.  
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3.5 Experimental protocol and results of method development in plasma 

Feasibility experiment to determine if beta-glucosidase activities are measureable 

in plasma 

As an initial experiment, plasma was assayed as described using the fibroblast GBA1 

method described section 2.6.2 but substituting water or various inhibitors for NaT. 

The samples were assayed in the presence of no inhibitor, 1mM CBE, 2.5 M 

NBDNJ, 1mM CBE with 2.5 M NBDNJ, and 148.8 mM sodium taurocholate.  Each 

tube contained 20 L of plasma, 40 L of inhibitor or water and the volume made 

up to 100 L with water.  At timed intervals 100 L of substrate (10mM in MV 5.4 

buffer) was added to each tube, which was briefly vortexed before incubating at 

+37 o C for 60 minutes. Following the incubation, the reaction was stopped by the 

addition of 1.0 mL 0.25 M glycine/NaOH buffer pH 10.4 before reading on the LS55 

fluorimeter (Perkin Elmer).    

There was minimal fluorescence detected in any of the samples after 60 minutes 

incubation using 20 L of sample.  

The experiment was repeated as above but using 20 L of sample and incubating 

for 20 hours. Blanks were set up for each sample and assay condition as per the 

tests but with the addition of the plasma which had been incubated separately at 

+37 o C for 20 hours, to the substrate and inhibitors after the incubation and 

addition of the stopping reagent.  

When the experiment was repeated using 20 L of sample and incubating for 20 

hours much higher fluorescence was detected but the activity measured was still 

very low. 

The experiment was repeated in three control samples as above but using 50 L of 

sample and incubating for 22 hours.  

When the experiment was repeated using 50 L of sample and incubating for 22 

hours much higher fluorescence values were detected. Incubation with CBE led to a 

large decrease in activity, indicating that beta-glucosidase activity in plasma is 
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largely GBA1. This was confirmed by the large increase in activity when incubated 

with Nat and the small decrease in activity seen when assayed with NBDNJ (Table 

3.5). No further method development was performed. See section 4.4.3 for further 

plasma results assayed as described above. 

Table 3.5 - Beta-glucosidase activities in plasma. 

GBA1 was estimated to be 1745 ± 29 pmol/hr/mg while GBA2 was estimated to be 43 ± 6 
pmol/hr/mg (n=3). 

Inhibitor Activity 

(pmol/hr/mg) 

None 148 ± 18 

NBDNJ 105 ± 11 

NaT 1745 ±  29 

CBE 40 ± 7 

 

  



106 
 

3.6 Experimental protocol and results of method development in cultured 

fibroblasts  

Three control fibroblasts were prepared and beta-glucosidase assayed using the 

fibroblast GBA1 method described in section 2.6.2 but substituting water or various 

inhibitors in place of NaT where required. The samples were assayed with no 

inhibitor, 1.0 mM CBE, 2.5 M NBDNJ, or 148.8 mM NaT.  

Fibroblasts had the most activity total GBA activity of all tissues tested, almost 100 

times that of leucocytes. There was no significant difference in the activity with and 

without NBDNJ. As well as negligible inhibition with NBDNJ there was a 98% 

inhibition with CBE indicating that it was almost all GBA1 (Table 3.6). GBA2 activity 

was estimated to be 2.8 ± 6.7 nmol/hr/mg compared to GBA1 at 1121 ± 111 

nmol/hr/mg. See section 4.4.4 for further results. 

Table 3.6 - Beta-glucosidase activities in control cultured fibroblasts (n=3). 

Inhibitor 
Activity 

(nmol/hr/mg) 

None 306.8 ± 70.9 

NBDNJ 304.0 ± 67.2 

NaT 1121 ± 111 

CBE 7.3 ± 0.9 
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3.7 Experimental protocol and results of method development in CSF 

Six sets of tubes were set up in duplicate with 100 L of CSF.  One set of tubes had 

no inhibitor, 1.0 mM CBE, 2.5 M NBDNJ, 1.0 mM CBE and 2.5 M NBDNJ, 148.8 

mM NaT and 148.8 mM NaT with 2.5 M NBDNJ. Blanks were set up for each 

condition with water replacing sample. Beta-glucosidase activity was measured as 

described previously in section 2.6.2. 

The activity when assayed with NaT was significantly lower compared to all other 

conditions (P<0.01) which would indicate that lysosomal beta-glucosidase is not the 

major beta-glucosidase in CSF. However, the addition of either CBE or NBDNJ or 

both did not lead to a significant decrease compared to activity when no inhibitor 

was used (Table 3.7). Method development or further assays were not pursued. 

Table 3.7 - Beta-glucosidase activity in a cerebrospinal fluid. 

CSF assayed with no inhibitor, 1.0 mM CBE, 2.5 M NBDNJ, 1.0 mM CBE and 2.5 M NBDNJ, 
148.8 mM NaT.  

 

Inhibitor 

Beta-glucosidase 

activity 

(pmol/hr/mL) 

None 67 ± 2 

CBE 57 ±  2 

NBDNJ 62 ±  1 

CBE &NBDNJ 59 ±  2 

NaT 22 ±  2 
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3.8 SH-SY5Y & 1321N1 cells 

Harvested SH-SY5Y & 1321N1 cells were assayed as described previously in section 

3.6. Unlike brain, GBA2 did not predominate in the cultured human brain cells 

comprising 17.6% of the total activity in SH-SY5Y cells and 7.1% in the 1321N1 cells 

(Table 3.8). However, both activated GBA1 (NaT) and GBA2 whether calculated as 

the activity remaining in the presence of CBE or as the difference in activity with 

and without NBDNJ, were significantly higher in the neuronal cell line compared to 

the astrocyte cell line. GBA1 in SH-SY5Y cells was estimated to be 256.2 ± 15 

compared to 144.7 ± 8.1 nmol/hr/mg protein in 1321N1 cells. GBA2 in SH-SY5Y cells 

was estimated to be 8.4 ± 1.6 compared to 2.5 ± 0.1 nmol/hr/mg protein in 1321N1 

cells. The levels of the lysosomal enzyme b-galactosidase (b-gal) were comparable 

between the two cells types at 380 ± 25 in SH-SY5Y cells and 380 ± 25 in 1321N1 

cells (p = 0.128) 

Table 3.8 - Beta-glucosidase activities (nmol/hr/mg protein) in a cultured SH-SY5Y 
and 1321N1.  

Inhibitor SH-SY5Y 

n=5 

1321N1 

n=4 

Two-tailed 

P value 

None 47.7 ± 5.8 35.1 ± 1.9 0.135 

NBDNJ 39.3 ± 4.6 32.6 ± 1.8 0.290 

NaT 256.2 ± 15 144.7 ± 8.1 0.002 

CBE 10.6 ± 1.6 4.2 ± 0.4 0.021 

 

Cultured microglia cells assayed at the same time had a total activity of 63.5 

nmol/hr/mg which was 15.2% GBA2. (cells donated by Adrian Isaacs). 
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3.9 Discussion  

3.9.1 Brain 

The initial feasibility experiment showed that beta-glucosidase activity was 

measurable in brain. The addition of sodium taurocholate led to a significant 72% 

decrease in activity (P<0.01) whereas the addition of 1 mM CBE led to a smaller but 

still significant 28% decrease (P<0.01) indicating that GBA1 is not the main source of 

beta-glucosidase activity in brain. This was confirmed by demonstrating a large 

decrease in activity with 2.5 M of NBDNJ indicating that most of the activity was 

GBA2. There was almost no activity left when both CBE and NBDNJ were used. 

Maximal GBA activity was between pH 5.4-5.6 under the four conditions studied i.e. 

with no inhibitor, with CBE, with NBDNJ and with NaT. 

Assaying with 2.5 M of the GBA2 inhibitor NBDNJ led to a 87.6% decrease in the 

measurable beta-glucosidase activity whereas increasing concentrations of the 

GBA1 inhibitor CBE led to greater inhibition with almost 50% decrease in activity 

with 5.0 mM CBE. This would indicate that one of the inhibitors is not specific. 

Because of the possibility that the CBE may also be inhibiting GBA2 and the 

possibility that GBA activity remaining after inhibition with CBE may not just be 

GBA2 activity, estimation of GBA2 in brain samples should be determined by 

assaying samples with and without pre-incubation with 2.5 mol NBDNJ and GBA2 

calculated as the difference between the two.  

3.9.2 Leucocytes  

Increasing concentrations of CBE which inhibits GBA1 and longer pre-incubation 

times gave greater inhibition of the measureable GBA activity. The remaining non-

GBA 1 activity should reflect GBA2 assuming that all the GBA1 has been inhibited 

and that there is no other b-glucosidase present capable of acting on the 

fluorescent substrate used. Increasing concentrations of NBDNJ gave greater 

inhibition of the measureable GBA activity. The remaining non-GBA 2 activity should 

reflect GBA1 assuming that all the GBA2 has been inhibited and that there is no 
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other b-glucosidase present capable of acting on the fluorescent substrate used. 

GBA1 measured this way was lower than when measured with NaT but correlated 

well. The maximal GBA activity in the presence of CBE i.e. GBA2 activity was at pH 

5.4-5.6 which is similar the known optimum pH of 5.4 for GBA1 when measured 

with NaT.  Because of the possibility that the GBA activity remaining after inhibition 

with CBE may not just be GBA2 activity, estimation of GBA2 in patient samples was 

determined by assaying samples with and without pre-incubation with 2.5 mol 

NBDNJ and GBA2 calculated as the difference between the two. The assays were 

done at pH 5.4 to simplify the process when simultaneously measuring GBA1 with 

NaT. 60 g protein was used for assay. 

Although, GBA2 was identified as being CBE-insensitive it has since been reported 

by Ridley et al. that GBA2 activity is inactivated in vitro by CBE in a time-dependent 

manner. CBE inactivated GBA2 less efficiently, due to a lower affinity for this 

enzyme (higher KI) and a lower rate of enzyme inactivation compared with the well 

characterized impact of CBE on the GBA1 [228]. Others have also shown that 

Zebrafish GBA2 which  is functionally and pharmacologically similar to human GBA2 

is susceptible to inhibition by CBE in a time-dependent manner [229].  

It is notable that CBE inhibition in brain was not time dependent whereas it was in 

leucocytes.  

3.9.3 Plasma 

Because of the low levels of activity observed, the large amount of sample required 

and the fact that most of the activity was GBA1 further optimisation or investigation 

of the assay conditions was not pursued. However, these conditions were used to 

assay beta-glucosidase activities in plasma from 5 patients with Gaucher disease 

and 11 controls. The results are discussed in section 4.4.3. 
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3.9.4 SH-SY5Y and 1321N1 cells  

Both GBA1 and GBA2 were measurable in the cultured SH-SY5Y and 1321N1 cells 

but unlike brain GBA2 did not predominate. This may be a limitation of using a 

cancer derived cell in monoculture which may not reflect what happens in the more 

complex environment of the brain. GBA2 activity has been found to increase more 

than three-fold during neuronal differentiation [230] and a sevenfold increase in 

GBA2 activity was observed in mature neurons with respect to undifferentiated 

cells, which was fourfold higher than GBA1, the main β-glucosidase in 

undifferentiated neurons [231]. However, the finding of higher levels of both GBA1 

and GBA2 in neuronal cells than astrocyte cells is consistent with findings using in 

situ labelling with fluorescent activity based probes [232]. 

3.9.5 Fibroblasts 

Fibroblasts had the most activity of all the tissues assayed. The majority of it was 

GBA1 activity. Because of the low levels of GBA2 activity further optimisation or 

investigation of the assay conditions was not pursued. However, these conditions 

were used to assay beta-glucosidase activities in leucocytes from 5 patients with 

Gaucher disease and 16 controls. The results are in section 4.4.4. 

3.9.6 CSF 

Although CSF might be a useful indicator of enzyme activities in the brain area, it is 

not a material we have ready access, particularly from Gaucher patients and so 

further investigation was not pursued. The preliminary experiment indicates that 

GBA2 activity might predominate. 

General discussion 

The pH optimum for GBA2 determined here in leucocytes and brain agrees with  

that found in early investigations of the non-lysosomal beta-glucosidase where it 

was found that the CBE-sensitive enzyme i.e. GBA1 had a pH optimum of about 4.5 

compared to 5.5 for the CBE-insensitive enzyme [108]. However, others have found 

a pH optimum of and have assayed at pH 5.8 using the synthetic substrate with 
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1mM CBE [110, 233]. However, the data here indicates that CBE may be inhibiting 

GBA2 as well as GBA1 and so GBA2 activity was determined with and without 

NBDNJ. It has been shown that NBDBJ has an IC50 of 50 M against 

Glucosylceramide synthase (GCS), 400 M against GBA1 and only 0.23  M against 

GBA2 [234] so although it too is not a specific inhibitor, its inhibition of GBA1 is 

negligible at the concentrations used here. Other have measured GBA2 at pH 5.8 

after pre-incubation with 100 nM MDW933, which is suggested to be a more 

specific inhibitor of GBA2 for 30 min at 37°C [235]. There is little information about 

the Km of GBA2 for GlcCer but the Km against the artificial fluorogenic substrate is in 

the hundred micromolar range [134]. 

3.10 Conclusions 

GBA2 is the predominant beta-glucosidase in brain and also in leucocytes but to a 

lesser extent than in brain.  

There is little if any GBA2 activity in fibroblasts using these methods. 

These methods are used in chapter four to document GBA1 and GBA2 activities in 

various tissues from Gaucher and/or Parkinson’s disease clinical and model systems. 
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Chapter 4 GBA1 and GBA2 activities in clinical and models systems of 

Gaucher and/or Parkinson’s disease. 

4.1 INTRODUCTION 

The role of GBA1 in Gaucher disease has been established since 1965 [49]. Gaucher 

disease has a very wide phenotype with poor genotype/phenotype correlation 

which indicates there may be modifying factors which influence the course of the 

disease. Additionally, it has only been since 1996 that its role in Parkinson’s disease 

has been appreciated [153] but most GD patients do not develop PD which again 

indicates that there may be additional modifying factors [23, 178]. 

GBA2 previously thought to be a bile acid beta-glucosidase is now known to be a 

non-lysosomal glucosylceramidase and in recent years mutations in GBA2 have 

been identified in patients with ataxia [122, 123], hereditary spastic paraplegia 

[120, 121] and Marinesco-Sjögren syndrome [116].   

The fact that both enzymes are capable of performing the same reactions raises the 

possibility that one may be able to compensate for the absence of the other. 

The overall aim of this chapter is to investigate the interplay between GBA1 and 

GBA2 using the established methods for GBA1 and the methods developed for 

GBA1 and GBA2 in chapter 3 to investigate their activities in various tissues from 

patients with Gaucher disease, Parkinson’s disease and in model systems using SH-

SY5Y cells. 
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AIMS 

In order to evaluate the potential interplay between GBA1 and GBA2 in GD and/or 

PD, a number of clinically available and model systems were utilised as follows:- 

 Leucocyte GBA1 in PD/dystonia 

o To investigate GBA1 activity in leucocytes from patients with 

Parkinsonism and/or dystonia to determine the role or fate of the 

enzyme in those conditions.  

o To determine if leucocyte GBA1 activity is affected by age. 

o To determine if the treatments for PD can have an effect on 

leucocyte GBA1. 

 Leucocyte GBA2 in Gaucher disease and PD/dystonia 

o To establish a reference interval for leucocyte GBA2. 

o To determine if leucocyte GBA2 activity is altered in GD, other 

storage disorders and PD and/or dystonia. 

 Plasma GBA1 and GBA2 in Gaucher disease  

o To determine the usefulness of GBA1 and GBA2 measurement in 

plasma. 

o To investigate GBA1 and GBA2 activities in plasma from patients with 

GD. 

 To investigate GBA1 and GBA2 in cultured fibroblasts from patients with GD. 

 To investigate GBA1 and GBA2 in brain from a GD mouse model and human 

patients. 

 To determine the effects of GBA1 inhibition on GBA2 activity and GBA2 

inhibition on GBA1 activity in SH-SY5Y cells.  
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4.2 METHODS  

4.2.1 Leucocytes and plasma 

Leucocytes and plasma were isolated from lithium heparin blood samples and 

prepared by the method previously described in section 2.3. The samples had been 

collected after clinical consent for clinical investigation from patients at Great 

Ormond Street Hospital for Children NHS foundation Trust or The National Hospital 

for Neurology and Neurosurgery (NHNN), Queen Square, London. Samples were 

processed and stored in accordance with Royal College of Pathologists guidelines, 

UK. This included samples from patients with suspected and subsequently 

confirmed GD; patients with GD who were being monitored after been treated with 

either enzyme replacement therapy or bone-marrow transplant; and patients who 

had specific GBA1 measurement or a lysosomal neurological screen as part of the 

investigation of their dystonia or PD. The dystonia group includes all patients with 

dystonia regardless of the type. Control samples were from patients who had 

lysosomal enzymes measured as part of their investigations but were not found to 

have a deficiency of a lysosomal enzyme and who were not being investigated for 

either dystonia or PD. 

4.2.2 Cultured fibroblasts 

Fibroblasts from Gaucher patients and disease controls were cultured and 

harvested as previously described in section 2.12.2. The samples had been collected 

after clinical consent for clinical investigation from patients at Great Ormond Street 

Hospital for Children NHS foundation Trust. Samples were processed and stored in 

accordance with Royal College of Pathologists guidelines, UK. Control samples were 

from patients who had lysosomal enzymes measured as part of their investigations 

but were not found to have a deficiency of a lysosomal enzyme. GD samples were 

from patients with a clinical diagnosis of GD confirmed by enzyme testing and 

mutational analysis. 
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4.2.3 Mouse Brain 

A conditional mouse model of GD type 2 (neuronopathic GD) has been developed 

that displays a marked loss of brain GBA1 activity with associated GlcCer 

accumulation [236]. The model was generated by the insertion of a loxP-neo-loxP 

(lnl) cassette into intron 8 of the GBA gene which causes a splicing defect. These 

gbalnl/lnl mice were then bred with keratin-14-Cre transgenic mice in which Cre 

recombinase expression is driven by the K14 promoter, allowing excision of the lnl 

cassette and restoration of normal GBA1 activity in the skin without which the 

model does not survive [236]. After an initial symptom free period of around 10 

days, the mice develop a rapidly progressing neurological degeneration and death 

occurs by three weeks of age if not already sacrificed. This mouse model was the 

first genetically induced model for nGD paving the way for the investigation of 

pathogenic mechanisms and potential treatments [237]. These mice (lnl/lnl) were 

backcrossed with wild type CD1 mice (wt/wt). 

Brains from mixed sex GBA1 deficient (lnl/lnl) mice at end-stage disease pathology 

(day 12) (n = 5) and age matched heterozygote (n = 9) (lnl/wt) and wild type (wt/wt) 

mice (n = 7) were removed and stored at −80 °C until assayed for this study. The 

brains were supplied by Ahad Rahim (UCL School of Pharmacy, University College 

London, London, UK) and Simon Waddington (UCL Institute of Child Health, 

University College London, London, UK). Mouse procedures and welfare were 

approved by the University College London Animal Welfare and Ethical Review 

Board (AWERB) and in accordance with project and personal licenses granted by the 

UK Home Office and the Animal (Scientific Procedures) Act of 1986. 

4.2.4 Human brain 

Using the methods developed, collaborators at UCL investigated GBA1 and GBA2 

activity in control brains (n = 10), PD brains from GBA1 mutation carriers (PD+GBA1; 

n = 14), and sporadic PD brains (n = 14) obtained from the Queen Square Brain Bank 

for Neurological Disorders (London, UK) following local ethical approval. All PD 

cases met the UK Brain Bank Clinical Criteria for PD.  
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4.2.5 Control lysosomal enzyme activities 

The activities of beta-galactosidase or total beta-hexosaminidase were determined 

as control enzymes as described in sections 2.7 and 2.8 respectively. The assay of 

control enzymes is to determine if any changes observed in GBA1 were due to an 

overall change in lysosomal content or activity and to exclude any samples that had 

become degraded from analysis. 

4.2.6 Protein determination 

Sample protein concentration was determined using the BCA protein method 

described in section 2.11. 
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4.3 Experimental protocol 

4.3.1 Leucocyte GBA1 activity in patients with in PD and dystonia 

The results of GBA1 assay on leucocyte samples from adult patients being 

investigated for dystonia or Parkinsonism, assayed as described in section 2.6.1  

were analysed to identify the association of GBA1 with these conditions and the 

effect of these conditions on GBA1. Only samples with levels of the control enzyme 

beta-galactosidase within the established reference interval were included in the 

analysis. 

4.3.2 Effect of age on Leucocyte GBA1  

To ascertain whether there is an age related decrease in leucocyte GBA1, ten years 

of routine GBA1 results from the Enzyme Laboratory at Great Ormond Street 

Hospital were reviewed. Results from patients with incomplete data such as gender, 

DOB or date of sample collection were excluded as were any samples with GBA1 

results in the Gaucher affected range of 0-2.5 nmol/hr/mg ptn. Only samples with 

unaffected levels of the control enzyme beta-galactosidase were included in the 

review. 

4.3.3 Effect of L-Dopa treatment on leucocyte GBA activity 

The finding of lower levels of GBA1 activity in some patients with PD or dystonia 

raised the possibility that the treatment for these disorders may affect the levels of 

enzyme activity. The most common drug used for the therapy of PD is l-3,4-

dihydroxyphenylalanine (l-DOPA).  The principal metabolite of l-DOPA is  3-

methyldopa (3OMD)(Figure 4.1) [238].  

To ascertain whether either l-DOPA or 3OMD could affect GBA1 activity, a “normal” 

pooled leucocyte pellet was prepared by combining ten leucocyte samples from 

patients who were not being investigated for either PD or dystonia. All of the 

samples selected had unaffected levels of leucocyte GBA1 and beta-galactosidase. 
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Figure 4.1 - L-DOPA metabolism (From Thanvi 2004[238]) 

 

Effect of 3-methyldopa on leucocyte GBA activity 

GBA1 and beta-galactosidase were assayed in the pooled leucocyte pellet as 

described previously in sections 2.6.1 and 2.7.1, after being incubated with 0-60 

mol/L 3OMD at +37oC for 30 minutes prior to enzyme assay to ascertain whether 

this principal L-DOPA metabolite could affect GBA1 activity in PD patients receiving 

L-DOPA.  This range of 3OMD covers the reported  0-52.2 mol/L range of the 

metabolite in the plasma of patients treated long term with levodopa [239]. 

Effect of l-DOPA on leucocyte GBA activity 

GBA1 and beta-galactosidase were assayed in the pooled leucocyte pellet as 

described previously in sections 2.6.1 and 2.7.1, after being incubated with 0-25.9 

mol/L l-DOPA at +37 o C for 30 minutes prior to enzyme assay to ascertain whether 

this mainstay of PD treatment could affect b-glucosidase activity in PD patients 

receiving it.  This range of l-DOPA covers the reported range of 2.5-14.7mol/L (1.7 

± 1.2 mg/mL) found in the plasma of patients treated long term with it [240]. 
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4.3.4 GBA2 in leucocytes 

Using the method developed in chapter 3 (described in section 3.4.6), GBA2 activity 

was assayed in leucocytes from patients newly diagnosed with Gaucher disease, 

Gaucher disease patients on treatment, patients with other storage disorders and 

patients with a clinical diagnosis of Parkinsonism or dystonia. Only samples with 

levels of the control enzyme -galactosidase within the established reference 

interval were included to exclude degraded samples.  

To establish a reference interval, GBA2 results from all patients that had unaffected 

levels of GBA1 and did not have a diagnosis of Gaucher disease, or other storage 

disorder (n=111) were analysed using Analyse-it for Microsoft Excel (version 2.20) 

Analyse-it Software, Ltd. http://www.analyse-it.com/; 2009. Some of the control 

samples were assayed in the enzyme laboratory by Emmaline Cullen. 

4.3.5 Plasma 

Total beta-glucosidase, GBA1 and GBA2 enzyme activities were assayed as 

described in section 3.5, in plasma from patients with Gaucher disease and from 

disease controls. The control samples were from patients with unaffected levels of 

leucocyte GBA1. Only samples with unaffected levels of the control enzyme total 

beta-hexosaminidase were included. 

4.3.6 Cultured fibroblasts 

Total beta-glucosidase, GBA1 and GBA2 enzyme activities were assayed as 

described in section 3.6, in cultured fibroblasts from patients with Gaucher disease 

and from disease controls. The control samples were from patients who were not 

known or suspected to have a lysosomal storage disorder. 

4.3.7 Mouse Brain GBA1 and GBA2 

GBA1 and GBA2 enzyme activities were assayed as described in section 3.3.9 in 

brains from mice described earlier (4.2.3). 
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4.3.8 Human Brain 

Using the methods developed, collaborators at UCL investigated GBA1 activity in 

the brain of 14 PD patients carrying heterozygous GBA mutations with characteristic 

PD pathology (GBA-PD), 14 patients with sporadic PD (PD) and 10 control brains. 

The brain regions analysed included cerebellum, frontal cortex, putamen, amygdala, 

and substantia nigra. The 3 groups were matched for age (control, 67.7 ± 6.0 years; 

PD+GBA1, 67.5 ± 2.8 years; PD, 68.9 ± 2.8 years) and post-mortem delay (control, 

53.5 ± 8.1 hours; PD+GBA1, 50.5 ± 6.6 hours; PD, 41.8 ± 5.0 hours) [192].  

4.3.9 Effect of GBA1 inhibition on SH-SY5Y cells 

SH-SY5Y cells were cultured and harvested as described previously in section 2.12.1 

but with the addition of no, 100M or 200 M CBE added to the medium. Cells 

were harvested on day 17 and assayed as described previously in section 3.8. 

4.3.10 Effect of GBA2 inhibition on SH-SY5Y cells 

SH-SY5Y cells were cultured and harvested as described previously in section 2.12.1 

but with the addition of no, 5mm or 10mm NBDNJ added to the medium. Cells were 

harvested on day 17 and assayed as described previously in section 3.8. 
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4.4 RESULTS 

4.4.1 Leucocyte GBA1 in Parkinsonism and dystonia 

GBA1 Results from 167 patients being investigated for either Parkinsonism or 

dystonia were reviewed. 12.6 % of this highly selective population were in the 

heterozygote range. 63.4% were in the overlap range between heterozygote and 

unaffected status so may or may not be heterozygotes.  

There were 68 patients with dystonia summarised in Table 1.1. Although the 

average age of the female patients was higher than the males, the difference was 

not significant (p= 0.0624). Overall, 11.8% had GBA1 levels in the heterozygote 

range. The mean GBA1 levels were comparable between males at 7.72 ± 0.41 and 

7.9 ± 0.34 in females (p= 0.7681), however more males had levels of GBA1 in the 

heterozygote range.  

Table 4.1 - Leucocyte GBA1 results from patients being investigated for dystonia.  

Numbers and percentage of patients with results in each reference range i.e. 
heterozygote, overlap and unaffected (above overlap range) are displayed. 

Dystonia 

 All Male Female 

n 68 34 34 

Age range 17-74 18-71 17-74 

Average age 43.4 39.5 47.2 

Heterozygote enzyme activity 

(2.5-5.4 nmol/hr/mg protein) 
8 (11.8%) 6 (17.6%) 2 (5.9%) 

Heterozygote/unaffected  

overlap enzyme activity 

(5.4-8.9 nmol/hr/mg protein) 

47 (69.1%) 21(61.8%) 26 (76.5%) 

Unaffected enzyme activity 

(8.9-16.8 nmol/hr/mg protein) 
13 (19.1%) 7 (20.6%) 6 (11.7%) 
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The GBA1 results are displayed in Figure 4.2 and the control enzyme beta-

galactosidase in Figure 4.3. There was no significant difference in the beta-

galactosidase levels between the three groups i.e. patients with GBA1 in the 

heterozygote range, overlap range or unaffected range. 
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Figure 4.2 – Leucocyte GBA1 in patients with dystonia. 

Data displayed as those results in the heterozygote range, those in the overlap between the 
heterozygote and unaffected range and those in the unaffected range (** p<0.01). 

G D  

C a r r ie r

 r a n g e

G D  

c a r r ie r /

u n a f fe c te d  

o v e r la p  r a n g e

G D  

U n a f fe c te d

 r a n g e

0

1 0 0

2 0 0

3 0 0

4 0 0

L
e

u
c

o
c

y
te

b
e

ta
-g

a
la

c
to

s
id

a
s

e
 a

c
ti

v
it

y

 (
n

m
o

l/
h

r
/m

g
 p

r
o

te
in

)

 

Figure 4.3 – Leucocyte beta-galactosidase in patients with dystonia. 

Data displayed as those results with GBA1 in the heterozygote range, those in the overlap 
between the heterozygote and unaffected range and those in the unaffected range. There 
was no significant difference between any groups.  
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There were 99 patients with Parkinsonism. While there was equal numbers of male 

and female patients being investigated for dystonia, over 70% of the patients being 

investigated for Parkinsonism were male. This probably reflects the increased 

incidence of PD in males [241].   

There was no significant difference in the average age of the males and females (p= 

0.2546). Overall, 13.1% had GBA1 levels in the heterozygote range. The mean GBA1 

levels were comparable between males at 8.04 ± 0.26 and 7.86 ± 0.38 in females 

(p= 0.7681), however in contrast to dystonia, more females had levels of GBA1 in 

the heterozygote range (Table 4.2).  

Table 4.2 - Leucocyte GBA1 results from patients being investigated for Parkinsonism. 

Numbers and percentage of patients with results in each reference range i.e. heterozygote, 
overlap and unaffected (above overlap range) are displayed. 

Parkinsonism 

 All Male Female 

n 99 71 28 

Age range 29-80 29-80 41-79 

Average age 54.7 53.8 56.8 

Heterozygote enzyme activity 

(2.5-5.4 nmol/hr/mg protein) 

13 (13.1%) 8 (11.3%) 5 (17.9%) 

Heterozygote/unaffected  

overlap enzyme activity 

(5.4-8.9 nmol/hr/mg protein) 

59 (59.6%) 43 (60.6%) 16 (57.1%) 

Unaffected enzyme activity 

(8.9-16.8 nmol/hr/mg protein) 

27 (27.3%) 20 (28.2%) 7 (25.0%) 

 

The GBA1 results are displayed in Figure 4.4 and the control enzyme beta-

galactosidase in Figure 4.5. There was no significant difference in the beta-

galactosidase levels between those patients with GBA1 in the heterozygote range 

and those in the overlap range or between those in the overlap range and the 
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unaffected range unaffected range. However beta-galactosidase was lower (P<.01) 

in the samples from those in the heterozygote at 180 ± 29 compared to those on 

the unaffected range at 223 ± 40 nmol/hr/mg protein. 
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Figure 4.4 - Leucocyte GBA1 in patients with parkinsonism. 

Results displayed as those in the heterozygote range, those in the overlap between the 
heterozygote and unaffected range and those in the unaffected range (** p<0.01). 
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Figure 4.5 - Leucocyte beta-galactosidase in patients with dystonia. 

Results displayed as those with GBA1 in the heterozygote range, those in the overlap 
between the heterozygote and unaffected range and those in the unaffected range (** 
p<0.01). 
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4.4.1.1 Is Leucocyte GBA1 influenced by age? 

To exclude the possibility that the increased number of low GBA1 levels being 

observed is due to increased testing of older patients, ten years of routine leucocyte 

GBA1 results, assayed in the Lysosomal Laboratory at Great Ormond Street Hospital 

were reviewed. This includes patients being screened specifically for Gaucher 

disease, Parkinsonism, dystonia or other neurological symptoms. After excluding 

unsuitable samples or requests with incomplete data, there were 478 patient 

results remaining, of which there were 197 females and 281 males ranging from 3 

days to 86 years of age.  

While some young children had higher than average levels of GBA1 (Figure 4.6), 

there is no correlation between GBA1 activity and patient age (R² = 0.0013).  

 

Figure 4.6 - Leucocyte GBA1 against age of patients at time of testing, n= 478, R² = 
0.0013. 

 

When the data was divided into age groups of fifteen year intervals (Figure 4.7) 

there was no statistical significant difference between any of the age groups.  

y = 0.0038x + 7.7588 
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Figure 4.7 - Leucocyte GBA1 in different age groups. 

 

To determine if there could comparative loss of GBA1 compared to other lysosomal 

enzymes, the ratio of GBA1 to beta-galactosidase was calculated. Again there was 

no evidence of an age-related decline in GBA1 (n= 478, R² = 0.0127). 

There was no evidence of any gender differences in GBA1 values across all age 

groups or in the over 60s (Table 4.3). 

Table 4.3 - GBA1 activity (nmol/hr/mg protein) in male and females. 

 All ages groups Over 60s 

 Female Male Female Male 

n 197 281 40 51 

GBA1 7.66 ± 0.18 8.04 ± 0.16 7.89 ± 0.30 8.37 ± 0.34 
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4.4.1.2 Effect of PD treatments on leucocyte GBA activity 

No effect on GBA1 or beta-galactosidase enzyme activities was observed with up to 

60 mol/L 3OMD in vitro (Table 4.4). 

 

Table 4.4 - The effect of 3OMD on GBA1 and beta-galactosidase (B-GAL) enzyme 
activities (nmol/hr/mg ptn). 

 

 

Enzyme 

3OMD (mol) 

0 10 20 30 40 50 60 

GBA1 9.6 9.9 9.8 9.9 9.7 9.8 9.7 

B-GAL 187 187 185 186 182 188 186 

 

 

No effect on leucocyte GBA1 or beta-galactosidase enzyme activity was observed 

with up to 25.9 mol l-DOPA in vitro (Table 4.5).  

Table 4.5 - The effect of l-DOPA on GBA1 or beta-galactosidase activities 
(nmol/hr/mg ptn). 

 

 

Enzyme 

l-DOPA (mol) 

0        4.3 8.6      17.3 25.9 

GBA1  8.2   8.00 7.7 8.1 7.9 

B-GAL 160 159 156 162 171 
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4.4.2 GBA2 in controls, GD, PD and other LSDs 

The mean ± SEM leucocyte total beta-glucosidase activity i.e. with no inhibitor from 

111 patients that did not have a diagnosis of Gaucher disease or other storage 

disorder was 1.79 nmol/hr/mg ptn ± 0.10.  The mean ± SEM leucocyte beta-

glucosidase activity assayed with NBDNJ was 0.56 nmol/hr/mg ptn ± 0.02.  The 

mean ± SEM GBA2 activity calculated as the difference between the two, is 1.22 

nmol/hr/mg ptn ± 0.09 which represents an average of 61.6% of the total beta-

glucosidase activity of leucocytes. 

A histogram of the GBA2 (nmol/hr/mg ptn) results with suggested reference 

interval using Analyse-it for Microsoft Excel (version 2.20) are displayed in Figure 

4.8. The data is not normally distributed and suggests a reference interval of -0.997 

to 3.567 nmol/hr/mg ptn. 

 

Figure 4.8 -  Histogram of leucocyte GBA2 activities with suggested 95% reference 
limits. 

 

Various transformations were used to normalise the data. The best fit with was 

log10 transformation which resulted in a 95% confidence interval of 0.124 to 3.620 

nmol/hr/mg protein. Even with this transformation the data was not perfectly 

normalised. This could be because lower end of the “normal range” is obscured by 
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samples with low levels due to sample degradation. It was not possible to source 

many fresh leucocyte pellets and so most of the tests were done on sample 

remaining after routine assays.  

The data for all leucocyte samples assayed is summarised in Table 4.6 and displayed 

in Figure 4.9 with results outside the established reference interval being in purple. 

The mean value for newly diagnosed Gaucher patients was significantly higher than 

the controls and patients with PD or dystonia (p<0.05). The mean value for other 

storage disorders was significantly higher than the controls and patients with PD or 

dystonia (p<0.05). All other comparisons were not significant. 

 

Table 4.6 - Leucocyte GBA2 activity (nmol/hr/mg protein) 

Leucocyte GBA2 activity in newly diagnosed GD patients, treated GD patients, patients with 
other storage disorders, controls and patients with either PD and or dystonia. 

Patient Group GBA2 

(nmol/hr/mg protein) 

New GD  (n=13) 2.98 ± 0.73 

Treated GD  (n=12) 2.04 ± 0.58 

Other Storage Disorders (n=14) 2.85 ± 0.75 

Controls  (n=62) 1.25 ± 0.12 

PD/Dystonia  (n=49) 1.32 ± 0.20 

All  (n=150) 1.63 ± 0.40 

 

Of 13 newly diagnosed cases of Gaucher disease 7 (54%) were above the reference 

interval. In contrast only 2 of the 12 (17%) known and treated Gaucher patients had 

elevated GBA2 levels. Of 14 patients with a diagnosis of a different storage disorder, 

5 (36%) had elevated levels of GBA2.  Among the 62 samples in the “control” group, 

none were above the reference interval. This control group is not a “normal” 

control group but is composed of patients who were investigated for but were not 

found to have a diagnosis of a storage disorder and who were not being 
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investigated for parkinsonism or dystonia. Of the 49 patients being investigated for 

Parkinsonism or dystonia 3 (6%) had elevated levels (Figure 4.9).  
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Figure 4.9 - Leucocyte GBA2 activity (nmol/hr/mg protein) in different conditions. 

Results are from newly diagnosed GD patients, treated GD patients, patients with other 

storage disorders, controls and patients with either PD and or dystonia. Results in purple 
are outside the 95% confidence interval. 

The mean age of the newly diagnosed GD patients was 2.98 years compared to 

30.25 in the treated patients. There was no correlation between GBA2 levels and 

the age of the patient in either the newly diagnosed (R² = 0.006) or treated (R² = 

0.027) Gaucher disease patients (Figure 4.10).  
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Figure 4.10 - Leucocyte GBA2 activity in newly diagnosed and treated Gaucher 
patients against age of patient at time of testing. 

 

The genotype or phenotype of the majority of the newly diagnosed GD patients was 

not known but the second highest GBA2 value of 6.01 nmol/hr/mg protein was 

from a 49 year old type 1 GD patient (N370S homozygote) and the highest GBA2 of 

7.37 nmol/hr/mg protein was from a type 3 GD patient (L444P homozygote).  

The data for the treated patients is summarised in Table 4.7. Although the mean 

GBA2 activity was lower in GD3 patients compared to GD1 patients, the difference 

was not significant (p= 0.61). 

Table 4.7 - GBA2 activity (nmol/hr/mg protein) in treated patients with either 
Gaucher disease type 1 (GD1) or type 3 (GD3). 

 Gaucher Type 

 GD1 

(n=7) 

GD3 

(n=5) 

GBA2 2.30 ± 0.89 1.66 ± 0.67 

Range 0 - 6.7 0.41 -4.1 
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As would be expected, plasma chitotriosidase was significantly higher (p= 0.003) at 

15052 ± 4321 nmol/hr/mL in newly diagnosed patients compared to 280 ± 77 

nmol/hr/mL in treated patients. There was no correlation between GBA2 levels and 

the plasma chitotriosidase levels in new (R² = 0.014) or treated (R² = 0.059) Gaucher 

disease patients (Figure 4.11).  

 

0

1 
1 0

4

2 
1 0

4

3 
1 0

4

0

2

4

6

8

6


1
0
4

C h it o t r io s id a s e  (n m o l/ h / m l)

G
B

A
2

 a
c

ti
v

it
y

(n
m

o
l/

h
/

m
g

)

T r e a te d

G D

N E W

G D

 

Figure 4.11 - Leucocyte GBA2 activity in newly diagnosed and treated Gaucher 
patients against plasma chitotriosidase. 

 

  



134 
 

There was no correlation between leucocyte GBA2 and GBA1 levels in new (R² = 

0.244) or treated (R² = 0.004) Gaucher disease patients (Figure 4.12).  
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Figure 4.12 - Leucocyte GBA2 activity in newly diagnosed and treated Gaucher 
patients against leucocyte GBA1. 

 

 

GBA2 was also assayed in 20 samples which had leucocyte GBA1 levels between 2.5 

and 5.3 nmol/hr/mg protein i.e. in the carrier range above the upper limit of the GD 

affected reference interval and below the lower limit of the unaffected reference 

interval. All samples had normal levels of the control enzyme beta-galactosidase. 

GBA2 ranged from 0-3.54 nmol/hr/mg ptn with a mean of 0.90 ± 0.23. None had a 

GBA2 above the reference interval while 5 (25%) had values below the reference 

interval.  
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Other storage disorders 
 

Of 14 patients tested with a diagnosis of a storage disorder other than Gaucher 

disease 5 (36%) had elevated GBA2 activity (Table 4.8).  

Table 4.8 – Leucocyte GBA2 in patients with storage disorders other than Gaucher 
disease. (↑ = above upper limit of control range) 

 

Disease 

 

Sex 

AGE 

(d=day, 

m=month, 

y=year) 

GBA2 

(nmol/hr/mg  

Protein)  

Beta-Mannosidosis F 4m 2.8 

Mongolian blue spots ? MPS F 1y 8.5 ↑ 

MPS I F 16m 4.8 ↑ 

MPS I F 10y 0.3 

Pompe – GSD II F 1d 0.2 

CLN6 M 8y 6.2 ↑ 

Fabry M 50y 0.3 

GM2 - Tay-Sachs disease M 18m 0.2 

Hemophagocytic Lymphohistiocytosis M 12m 5.7 ↑ 

Mucolipidosis M 7d 5.4 ↑ 

Mucolipidosis M 22y 0.7 

MPS II M 2y 3.5 

Niemann-Pick disease A/B M 11m 0.5 

Niemann-Pick disease A/B M 21 0.9 

 

Samples from patients with Fabry disease, GM2 gangliosidosis (Tay-Sachs disease) 

and Niemann-Pick disease A/B all of which like Gaucher disease are disorders of 

sphingolipid metabolism had normal GBA2 enzyme activities. Samples from patients 

with Beta-Mannosidosis, Pompe disease (GSD II) and MPS II (Hunter disease) also 

had normal GBA2 levels. Of the two patients with MPS I (Hurler disease), a 



136 
 

lysosomal storage disorder of mucopolysaccharide metabolism, one from a 16 

month old patient had an elevated GBA2 whereas the other from a 10 year old had 

normal level. Likewise, of the two patients with mucolipidosis, one from a 7 day old 

patient had an elevated level whereas the other from a 22 year old had a normal 

level.  

Elevated GBA2 was seen in CLN6, a late infantile variant neuronal ceroid-

lipofuscinosis and in Hemophagocytic Lymphohistiocytosis, a rare but potentially 

fatal disease of normal but overactive histiocytes and lymphocytes. The highest 

GBA2 observed in all the samples assayed was from a patient with a suspected but 

currently undiagnosed disorder who presented with blue Mongolian spots.  

Low or undetectable GBA2 activities were observed in 23% of new GD patients, 17% 

of treated GD patients, none of the patients with other storage disorders, 5% of the 

controls and 20% of the PD/dystonia patients. 
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4.4.3 Plasma 

The plasma assays were not fully developed but it was possible to measure both 

GBA1 and GBA2 activities. GBA1 was statistically higher in control compared to GD 

plasma. Although higher in GD plasma, there was no significant difference in the 

levels of GBA2 activity between control and Gaucher plasma (Table 4.9).  

Table 4.9 – GBA1 and GBA2 activities in plasma from controls and patients with 
Gaucher disease. 

Activity 

(nmol/h/mg) 

Controls 

(n=11) 

Gaucher 

(n=5) 

*(n=4) 

 

Two-tailed 

P value 

GBA1 1.46 ± 0.24 0.18 ± 0.06 <0.01 

GBA2  0.04 ± 0.01 0.06 ± 0.05* 0.53 

 

Incubation with NBDNJ led to a moderate decrease in activity indicating that the 

majority of GBA activity in plasma was GBA1. This was confirmed with an 11 fold 

increase in activity when incubated with NaT.   

GBA2 accounted for 29% of the total beta-glucosidase activity in control plasma. 
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Although GBA1 was higher as expected in controls compared to GD plasma, one of 

the unaffected samples had a plasma GBA1 level comparable to the Gaucher 

disease samples. The reason for the low activity in an unaffected patient is 

unknown although pseudodeficiencies in plasma of other lysosomal enzymes have 

been described [242].  

There was poor correlation between the plasma and leucocyte GBA1 activities (R² = 

0.327) (Figure 4.13). 
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Figure 4.13 – Plasma GBA1 activity against leucocyte GBA1 from unaffected 
controls (blue) and patients with Gaucher disease (purple). 
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There was no statistically significant difference in the level of plasma GBA2 activity 

between control and Gaucher plasma (Table 4.9). However, one of the Gaucher 

samples had a GBA2 level that was considerably higher than any of the other 

Gaucher or unaffected plasma samples. Two of the unaffected patient samples and 

one of the GD samples had no detectable GBA2 activity (Figure 4.14). 
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Figure 4.14 - GBA2 activity in plasma from unaffected controls (blue) and patients 
with Gaucher disease (purple). 
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There was poor correlation (R2 =0.591) between plasma and leucocyte GBA2 (Figure 

4.15). 
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Figure 4.15 - Plasma GBA2 against leucocyte GBA2. Unaffected controls (blue) and 
patients with Gaucher disease (purple). 
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4.4.4 Cultured fibroblasts 

Fibroblasts had the most total GBA activity of all tissues tested, almost 100 times 

that of leucocytes. There was no significant difference in the activity with and 

without NBDNJ in either control cells (325 ± 45 nmol/h/mg V 325 ± 45 nmol/h/mg, 

P=0.992) or Gaucher cells (35 ± 12 V 33 ± 11, P= 0.924). As well as negligible 

inhibition with NBDNJ there was a 99% inhibition with assayed in the presence of 

CBE indicating that most if not all beta-glucosidase activity in fibroblasts is GBA1 

(Table 4.10).  

Table 4.10 - Beta-glucosidase activities (nmol/h/mg) in cultured fibroblasts from 
controls and patients with Gaucher disease.  

inhibitor 
Controls 

(n=16) 

Gaucher 

(n=5) 

Two-tailed 

 P value 

None 325 ± 45 35 ± 12 0.002 

NBDNJ 325 ± 45 33 ± 11 0.002 

Nat 1216 ± 121 116 ± 36 <0.001 

CBE 3.2 ± 0.9 0.35 ± 0.15 0.209 

 

There was no significant difference in the measurable GBA2 levels between controls 

and GD cells.  The mean GBA2 in controls was effectively zero (-0.6 ± 2.1. 

nmol/h/mg) and in GD fibroblasts (1.6 ± 0.4 nmol/h/mg). The calculated value of -

0.6 nmol/h/mg is probably just a reflection of analytical imprecision.  
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4.4.5 GBA1 and GBA2 activity in GBA1 knockout mouse brain  

This work has been published [243]. See paper in appendix. 

Calculation of GBA1 and GBA2 activities in mouse brain tissue revealed that GBA2 

accounts for approximately 85% of the total activity beta-glucosidase activity in wild 

type (wt/wt) tissue. The addition of sodium taurocholate decreased total GBA 

activity thereby providing further evidence to suggest that the majority of GBA 

activity in the brain is GBA2.  

The effect of taurocholate is in contrast to that seen in tissues such as fibroblasts 

and leucocyte homogenates where an approximate 4 and 9 fold increase in GBA 

activity respectively was observed upon taurocholate addition. This is indicative of 

the relative predominance of GBA1 in these cell types. 

As expected, GBA1 activity in brain from GBA 1 deficient (lnl/lnl) animals was 

markedly decreased when compared to the heterozygote (lnl/wt) or wt/wt brain 

(Figure 4.16). For lnl/wt brains, activity was also significantly decreased when 

compared to wt/wt brains. Evaluation of GBA2 activity revealed a significant 

increase in lnl/lnl brains when compared to either lnl/wt or wt/wt brains (Figure 

4.17). There was no significant difference in GBA2 activity between heterozygote 

(lnl/wt) or wt/wt brains.  These results have been published (see appendix) [243]. 

The GBA1 assay was used again to successfully confirm the effectiveness of gene 

therapy in this mouse model when the long-term treated mice had a mean brain 

GBA1 of 21.0 ± 2.8 compared to 25.9 ± 2.6 nmol/hr/mg protein in control mice 

brains. There was insufficient sample to confirm if GBA2 levels had changed in 

response to treatment. 
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Figure 4.16 - Brain GBA1 activity in wildtype (n=7), GBA 1 heterozygotes (lnl/wt) 
(n=9) and GBA 1 deficient (lnl/lnl) mice (n=5) (** p<0.01). 
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Figure 4.17 - Brain GBA2 activity in wildtype (n=7), GBA 1 heterozygotes (lnl/wt) 
(n=9) and GBA 1 deficient (lnl/lnl) mice (n=5)(** p<0.01). 
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4.4.6 Human Brain 

This work has been published [192] – see appendix. GBA1 activity was significantly 

decreased (p< 0.01) in the cerebellum, putamen, amygdala and substantia nigra 

(SN) but not the frontal cortex of PD brains with GBA1 mutations compared to 

controls (Figure 4.18). The greatest decrease (58%) was found in SN followed by 

cerebellum.  GBA1 activity was also significantly decreased (p < 0.05) but to a lesser 

extent in the cerebellum and substantia nigra of sporadic PD brains but not in the 

frontal cortex, putamen, or amygdala. It is unclear why GBA1 would be reduced in 

the cerebellum as it is not affected in PD [192].  

GBA1 protein expression was significantly decreased in the cerebellum of both 

PD+GBA1 and sporadic PD brains GBA1 was significantly decreased in the putamen 

of PD+GBA1 brains but not sporadic PD brains. GBA1 was significantly decreased in 

the substantia nigra of PD+GBA1 brains and sporadic PD brains (Figure 4.19) [192]. 

No differences were found in  the messenger  RNA  (mRNA)  content  of  GBA  

indicating that  alteration  of  the  activity was  not  attributed   to  decreased   

expression.  Other lysosomal  proteins,  such  as beta-hexosaminidase, cathepsin  D  

or  lysosomal integral  membrane  protein  2  (LIMP-2),  were  unaffected, indicating 

that the loss of GBA1 activity is not due to a general reduction in lysosomal content 

or activity. GBA1 activity was unaffected in the amygdala of Alzheimer disease 

patients, suggesting that the deficiency of GBA1 seen in sporadic PD brains is not 

simply due to neurodegeneration [192]. 

The activity of GBA2 was not significantly affected in any region of either GBA-PD or 

PD brains compared to controls. The GBA-PD patients were heterozygotes for GD 

which would mean they have significant residual GBA1 activity and therefore it’s 

unlikely that GBA2 would be increased. 

GBA1 activity in control brains was highest in the putamen, followed by the 

amygdala, the cerebellum, frontal cortex and the lowest levels were in the 

substantia Nigra. GBA2 activity in control brains was highest in the cerebellum, 

followed by the putamen, the amygdala, the frontal cortex and the lowest levels 

were in the substantia Nigra [192]. 
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Figure 4.18 - GBA1 activity in human brain. 

GBA1 activity in control brains (black bars), PD brains carrying GBA1 mutations 
(white bars), and sporadic PD brains (grey bars). (CBM= cerebellum, FCX = frontal 
cortex, PUT = putamen, AMYG = amygdala, SN = substantia Nigra). *p < 0.05 versus 
control, **p < 0.01 versus control (from Gegg et al [192]). 

 

Figure 4.19 - GBA1 protein expression in human brain. 

GBA1 protein expression in control brains (black bars), PD brains carrying GBA1 mutations 
(white bars), and sporadic PD brains (grey bars). (CBM= cerebellum, PUT = putamen, SN = 

substantia Nigra). *p < 0.05 versus control, **p < 0.01 versus control (from Gegg et al 
[192]).  
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4.4.7 GBA1 inhibition in SH-SY5Y cells. 

As expected, growing SH-SY5Y cells in CBE led to a significant decrease of total beta-

glucosidase and GBA1 activity (Table 4.11).  The decrease was significant in cells 

harvested and tested at day 6. There was no increase in GBA2 activity in response 

even after 17 days (Table 4.11). In fact GBA2 activity at day 17 was decreased by 

5.5% at 100 mol CBE and 30.9% at 200 mol CBE but the decrease was not 

significant. There was no significant change to either total beta-hexosaminidase or 

beta-galactosidase. There was no statistical difference for any enzyme activity 

between that at 100 M CBE compared to 200 M CBE. 

Table 4.11 - Enzyme activities in SH-SY5Y cells after 17 days culture with no CBE 

(controls) and with 100 M and 200 MCBE.  

Results are expressed as the mean +/- SEM and % difference with significance to 
control (No CBE) (n=6). 

Enzyme  Activity (nmol/hr/mg protein) 

 
TOTAL 

GBA 
GBA1 GBA2 T-HEX B-GAL 

No CBE 

(Control) 

50.6 ± -2.6 246.3 ± 15.6 5.5 ± 1.5 1861 ± 104 433.5 ± 30.1 

100 M 

CBE 

6.05 ± 0.99 

- 88.0 % 

P<0.01 

2.2 ± 0.17 

- 99.1 % 

P<0.01 

5.2 ± 0.95 

- 5.5 % 

NS 

1912 ± 175 

+ 2.7 % 

NS 

382.5 ± 63.6 

-11 % 

NS 

200 M 

CBE 

4.55 ± 0.42 

- 91.0 % 

P<0.01 

1.6 ± 0.17 

- 99.4 % 

P<0.01 

3.8 ± 0.39 

- 30.9 % 

NS 

1846 ± 113 

- 0.8 % 

NS 

366 ± 31.6 

- 15.5 % 

NS 
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4.4.8 GBA2 inhibition in SH-SY5Y cells. 

Incubation with up to 10 M NBDNJ for 17 days had no significant effect on the 

activities of total beta-glucosidase, GBA1, GBA2 or the control enzymes total beta-

hexosaminidase or beta-galactosidase. However, the maximum decrease in GBA2 

achieved at 10 M NBDNJ was 42.3% which was not significant and may not be 

enough to activate any response (Table 4.12). 

 

Table 4.12 - Enzyme activities in SH-SY5Y cells after 17 days with no NBDNJ 

(control) and with 5m and 10 m NBDNJ.  

Results are expressed as the mean +/- SEM and % difference to control (No CBE) 
(n=6). 

Enzyme  Activity (nmol/hr/mg protein) 

 TOTAL 

GBA 
GBA1 GBA2 T-HEX B-GAL 

No NBDNJ 

(control) 

32.08 ± 6.7 198.9 ± 28.2 5.2 ± 1.0 1382 ± 194 337.4 ± 68.9 

5 M 

NBDNJ 

24.7 ± 4.6 

-23.0% 

194.8 ± 19.8 

-2.1% 

3.2 ± 0.5 

-38.5% 

1176 ± 161 

-14.9% 

298.9 ± 62.0 

-11.4% 

10 M 

NBDNJ 

29.5 ± 6.2 

-8.0% 

219.6 ± 24.2 

+10.4% 

3.0 ± 0.6 

-42.3% 

1486 ± 210 

+7.5% 

368.3 ± 79.0 

+9.1% 
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4.5 DISCUSSION 

Leucocyte GBA1  

Leucocyte GBA1 enzyme activity has been used for many years to identify patients 

with GD. With increased awareness of the link between GBA1 and PD it is becoming 

routine to measure GBA1 in patients with PD and or dystonia to exclude GD. GBA1 

results in the heterozygote range can be used to identify patients for mutation 

analysis. With increased testing we observed a greater number of samples than 

expected below the well established GBA1 reference interval in patients with PD 

and or dystonia. It was reported by referring clinicians that a number of these 

patients had mutational analysis for GBA1 but were not found to have mutations. 

The finding that 12.6 % of those being tested had lower than normal levels of GBA1 

with many not found to have GBA1 mutations suggests that some PD patients may 

have lower levels of enzyme due to the disease process itself. Consistent with these 

findings, leucocyte GBA1 activities have recently been found to be lower in GBA1 

heterozygotes with PD compared asymptomatic carriers [244]. However, another 

group found no difference in leucocyte GBA1 activities between sporadic PD and 

controls [245].The low GBA1 activity in leucocytes mirrors that observed in the 

human brain where GBA1 enzyme activity was lower in idiopathic brains compared 

to controls [192]. GBA1 measured using an MS/MS assay has also been found to be 

lower in dried blood spot samples from patients with idiopathic PD compared to 

controls [246].  

It has been found that GBA1 gradually diminishes with age in the substantia nigra 

and putamen of healthy controls. The reduction is comparable to that seen in GBA1 

carriers with PD and indicates that an age dependent decrease in GBA1 activity may 

lower the threshold for developing PD [247]. Analysis of leucocyte GBA1 from 478 

patients ranging from 3 days to 86 years of age does not suggest that leucocyte 

GBA1 decreases with age.  

There is also no evidence that  l-DOPA the most common drug used for the therapy 

of PD or its principal metabolite 3OMD have any effect in vitro on leucocyte GBA1 

measurement.  
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It therefore seems unlikely that either patient age or PD treatment is the cause of 

the low GBA1 activities being observed. 

GBA2 activity in human leucocytes  

GBA2 activity in human leucocytes was easily measured and leucocytes would 

appear to be suitable sample for in vitro analysis of GBA2 activity. This has been 

confirmed by others [116]. GBA2 activity was found to account for approximately 

61% of the total beta-glucosidase activity.  Whilst this proportion is not as great as 

that found in brain tissue, it may indicate a metabolic role for this enzyme within 

leucocytes and suggest usefulness of this relatively accessible cell type for 

evaluating factors influencing GBA2 activity. The finding of increased leucocyte 

GBA2 activity, in 54% of newly diagnosed GD patients, may point to a compensatory 

mechanism. However, for 3 of the 13 of the new GD patients, GBA2 activity was 

comparable to the control group.  Unfortunately, for this study it was not possible, 

due to the lack of available clinical information, to segregate the newly diagnosed 

GD patients into disease types, however there was no apparent difference in GBA2 

activities between those with GD type I and type 3. Future studies are required to 

determine whether GD disease type and/or the magnitude of intracellular substrate 

accumulation influence leucocyte GBA2 activity. Individuals were identified with 

very low or undetectable leucocyte GBA2 activity in most groups tested, data that 

appears consistent with a preliminary oral communication by Yildiz who proposed 

that GBA2 deficiency may occur with a prevalence of approximately 5% in a control 

population (European Study Group on Lysosomal Diseases Meeting, 2009, Bad 

Honnef, Germany). The same group reported that patients with very severe GD 

show not just low GBA1 but also decreased GBA2 mRNA levels and no enzyme 

activity and elevated levels of GlcCer whereas patients with GBA2 activity had no 

difference in GlcCer levels compared to controls [111]. 

The patient in the GD group with undetectable GBA2 activity is the case report 

described earlier in section 1.13, which has been  previously reported, to have a 

very mild type 1 GD associated with a severe atypical parkinsonian condition (see 

appendix) [193].  
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Leucocyte GBA2 activity was comparable between samples with GBA1 in the 

heterozygote range and control groups 

Plasma GBA1 and GBA2 

Both GBA1 and GBA2 were measurable in plasma but the activities of both are very 

low in comparison to leucocytes. Both required relatively large volumes and long 

incubation times. The level of GBA2 in comparison to total beta-glucosidase activity 

was very low and so leucocytes are probably a better sample to determine GBA1 

and GBA2 status. 

Cultured fibroblasts 

Fibroblasts had the most activity total GBA activity of all tissues tested. As well as 

negligible inhibition with NBDNJ there was a 99% inhibition with CBE indicating that 

most if not all beta-glucosidase activity in fibroblasts is GBA1. There was no 

significant difference in the measurable GBA2 levels between controls and Gaucher 

cells whether calculated as the activity remaining in the presence of CBE or as the 

difference in activity with and without NBDNJ.  These results would indicate that 

fibroblasts are not a suitable material for GBA2 determination.  This has been 

confirmed by others who were unable to detect any GBA2 activity in fibroblasts 

[116]. This is in contrast to Aureli et al. who reported increased GBA2 activity in GD 

fibroblasts and demonstrated that this effect was particularly marked for type 1 and 

2 GD cells. The increase was correlated with increased expression of GBA2 protein 

as evaluated by QRT-PCR [131].   
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Brain  

As reported in chapter 3, GBA2 activity is shown here to predominate over GBA1 in 

brain, a finding that is supported by tissue expression studies [109, 112]. These data 

may imply a particular metabolic role for GBA2 in brain. The brain is the human 

body tissue with the highest content of GSL [134]. Our observation that brain GBA2 

activity is significantly elevated in the GBA1 deficient mouse could imply the 

existence of a compensatory mechanism to limit substrate accumulation. 

Abnormally high GBA2 has also been also found in the brain of the NPC mouse 

[235]. The finding of increased leucocyte GBA2 activity, in 54% of newly diagnosed 

GD patients, may point to the existence of a similar mechanism to that occurring in 

the lnl/lnl mouse brain. However, due to its localisation it may have an effect on 

extra-lysosomal substrate accumulation but it is unlikely to affect lysosomal 

accumulation. The lnl/lnl mouse model utilised here displays significant brain 

accumulation of glucosylceramide and dramatic central nervous system (CNS) 

symptoms so although GBA2 levels are elevated they do not seem to be beneficial 

[236]. Whether glucosylceramide accumulation would be greater in the absence of 

an increased GBA2 activity remains to be demonstrated, however the symptoms 

could not be more severe without being akin to the neonatal lethal GBA1 knockout. 

Whether glucosylceramide accumulation directly contributes to the increase in 

GBA2 activity remains to be demonstrated.  

GBA2 activity in lnl/wt brain was comparable to that seen in wt/wt brains. This data 

is also in agreement with the finding that GBA2 activity is not significantly elevated 

in the brain of human GBA1 heterozygotes with PD. Also, no elevated GBA2 levels 

were observed in leucocytes from patients with GBA1 activity in the carrier range. 

The lack of response of GBA2 in heterozygotes may be due to a lack of substrate 

accumulation in carriers. Glucosylceramide accumulation is not reported to occur in 

the carriers (lnl/wt ) in this mouse model [236]. And,  while free glucosylsphingosine 

in plasma has been shown to be a highly sensitive and specific biomarker for 

diagnosis and monitoring in Gaucher disease, levels in heterozygotes are similar to 

controls [248]. 
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SH-SY5Y cells  

Inhibition of GBA1 with CBE in SH-SY5Y cells for 17 days had no effect on GBA2 

activity in SH-SY5Y cells. This may be because the turnover of sphingolipids and 

glucosylceramide is low in cultured cells as opposed to blood cells. There is also the 

possibility that GBA2 was becoming inhibited by CBE. Another possibility is that 

GBA1 inhibition is leading to glucosylceramide and glucosylsphingosine 

accumulation.  Glucosylsphingosine degraded by GBA2 releases sphingosine and 

both have been shown to inhibit GBA2 [249].  

Inhibition of GBA2 with NBDNJ in SH-SY5Y cells for 17 days had no effect on GBA1 

activity in SH-SY5Y cells. However, only a 42% decreased in measureable GBA1 was 

achieved. 

4.6 CONCLUSIONS 

The finding of low GBA1 activity in some patients with parkinsonism and dystonia 

may be secondary to factors in those conditions such as oxidative stress. This is 

investigated in chapter 5. 

Leucocytes are a suitable sample for GBA2 measurement as is brain while plasma 

had very low levels of GBA2. Under the conditions used, fibroblasts had negligible if 

any GBA2 activity. 

The findings of elevated GBA2 in the brain of a GD mouse model and in leucocytes 

from half of newly diagnosed GD patients would suggest that it has role in GD 

pathogenesis. The significance of the low or undetectable levels is currently 

unknown. Further work is required to understand what the significance is and 

whether a low or high GBA2 is preferable. 
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Chapter 5 EVALUATION OF THE INTERPLAY BETWEEN OXIDATIVE 

STRESS, MITOCHONDRIA & LYSOSOMAL FUNCTION 

5.1 INTRODUCTION 

When considering the pathogenesis of Parkinson’s disease (PD) numerous 

mechanisms have been implicated for the loss of dopamine availability and 

degeneration of dopaminergic neurons. Amongst these, are loss of mitochondrial 

function, oxidative stress and impaired lysosomal GBA activity. 

As regards mitochondrial function, it is of note that the brain has a particularly high 

energy requirement (2% of total body weight, 20% of oxygen consumption [250].  

Furthermore, within the brain, dopaminergic neurons may be particularly reliant on 

energy metabolism due to their particularly large unmyelinated axonal arbour 

[251].  Evidence of compromised mitochondrial function in PD come with the 

description of complex 1 deficiency in the substantia nigra of patients who had died 

with PD [150, 252].  Support for a decreased complex I activity contributing to PD 

come from observations around individuals who inadvertently took MPTP (1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and developed parkinsonian features 

[151].  Upon administration, MPTP rapidly crosses the blood brain barrier where it  

is metabolised to the potent complex I inhibitor MPP+ by monoamine oxidase [152]. 

MPP+ can then inhibit complex I by binding to the ubiquinone binding site [253]. This 

inhibition by MPP+ in animal models has been shown to mimic the pathology of PD 

such as dopaminergic neuron degeneration and the formation of Lewy bodies [254, 

255] .  Additionally, rotenone, another complex I inhibitor, is also associated with 

Parkinsonism [256, 257].  In addition to loss of complex I, neuronal energy 

metabolism may be further compromised as a result of loss of the key 

mitochondrial electron carrier, ubiquinone (CoQ10). It has been demonstrated that 

endogenous CoQ10 levels were decreased in GD fibroblasts and treatment with 

CoQ10 rescued some of the subsequent mitochondrial dysfunction [258]. 

Additionally, several of the proteins linked to familial forms of PD, including a-

synuclein, parkin and PINK are known to affect mitochondrial function and increase 
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oxidative stress [259].   Currently the exact mechanisms(s) responsible for the loss 

of mitochondrial function in idiopathic PD are not known.  However, there is a 

growing body of evidence to implicate oxidative stress.  Within the substantia nigra 

increased indices of oxidative stress have been documented along with 

accumulation of iron [260, 261] and loss of key antioxidants such as reduced 

glutathione (GSH) [262].  Monoamine oxidase, a key dopamine catabolic enzyme, 

may also contribute to the oxidative stress since a by-product of its action is 

generation of hydrogen peroxide [263].   The potential involvement of oxidative 

stress in PD comes from reports that the mitochondrial respiratory chain is 

susceptible to oxidative attack [264, 265].  Furthermore, complex I activity may 

become particularly susceptible when GSH levels are decreased [266, 267].  With 

regards to the oxidative stress hypothesis, it is of note that CoQ10, in addition to its 

role within the electron transport chain, can act as an antioxidant [268].  This 

property of CoQ10 therefore provides a possible explanation for the diminished 

availability described in PD.  

In addition to compromised mitochondrial function, loss of lysosomal enzyme 

activity, at the level of GBA1, is also actively being investigated as a contributing 

factor to PD.  Whilst it is established that having a mutation in GBA1, either as a 

heterozygote or homozygote, is a significant risk factor for developing PD  [85, 197, 

269] the mechanisms whereby GBA1 mutations increase  risk remain unidentified. 

Furthermore, the majority of people with GBA1 mutations do not develop PD which 

indicates that there must be other factors that dictate susceptibility, e.g. GBA2 

activity (see Chapter 4).  Analogous to the complex I story, a specific loss of brain 

GBA1 activity and expression has also been reported by us and others in idiopathic 

PD [192, 270, 271]. This loss of activity does not appear to be confined to the brain 

as we have shown that leucocyte GBA1 activity is decreased in approximately 15% 

of patients investigated with a diagnosis of PD (section 4.3.1). A finding that has 

recently also been observed in blood spots from patients with idiopathic PD [246].  

Currently the mechanism for this loss of GBA1 activity is not known. 

  



155 
 

5.2 AIMS 

In view of the points discussed above, the aims of this chapter are to- 

1. Use a neuronal cell line (SHSY5Y) to evaluate the effects of oxidative stress 

on cell viability in the presence of GBA1 +/- GBA2 inhibition. 

2. Document the effect of oxidative stress on neuronal GBA1 activity +/- GBA2 

inhibition. Additionally assess effects on other key lysosomal enzymes 

related directly or indirectly to sphingolipid metabolism. 

3. Determine whether neuronal GBA1 activity is affected by inhibition of 

complex I. 

4. Ascertain whether GBA1 inhibition has any effect on neuronal CoQ10 

5. Evaluate the effect of GBA1 inhibition +/- oxidative stress on neuronal 

mitochondrial content. 
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5.3 METHODS  

5.3.1 Cell culture 

SH-SY5Y cells were cultured as described in section 2.12.1.  

5.3.2 MTT viability assay 

The viability of cultured cells under different conditions was determined using an in 

vitro toxicology kit from Sigma based on the method developed by Mosmann in 

1983 and further developed by Denizot and Lang (1986). The MTT method is simple, 

accurate and yields reproducible results [272, 273]. The key component is (3-[4, 5- 

dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) or MTT. Solutions of MTT, 

dissolved in medium or balanced salt solutions without phenol red, are yellowish in 

colour. Mitochondrial dehydrogenases cleave the tetrazolium ring, yielding purple 

formazan crystals which are insoluble in aqueous solutions. This cleavage takes 

place only in living cells. The crystals are dissolved in acidified isopropanol. The 

resulting purple solution is spectrophotometrically measured. An increase or 

decrease in living cell number results in a concomitant change in the amount of 

formazan formed, indicating the degree of cytotoxicity caused by the test material. 

Working MTT was prepared as per the kit instructions (In Vitro Toxicology Assay Kit, 

MTT based, Sigma catalogue number TOX1-1KT) by dissolving the vial of MTT in 

working tissue culture medium. Working MTT was added to the flask or well plate at 

a volume equivalent to 10% of the medium present. The cultures were returned to 

the incubator for 2 hours. After the incubation period, the cultures were removed 

from the incubator and the resulting formazan crystals were dissolved by adding an 

amount of MTT Solubilisation Solution (10% Triton X-100 plus 0.1 N HCl in 

anhydrous isopropanol) equal to the original culture medium volume. The cultures 

were gently agitated to completely dissolve the MTT formazan crystals. When the 

assay was done in tissue culture flasks the supernatant was removed to be read in a 

cuvette on a Cecil CE2041 spectrophotometer. When the cells had been cultured in 

well plates the absorbance was read in the well plates on the Tecan Infinite M200 

platereader. The absorbance of the dissolved formazan was measured at a 
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wavelength of 570 nm. The background absorbance was measured at 690 nm and 

subtracted from the 570 nm measurement. 

5.3.3 Lysosomal and GBA2 enzyme activities 

The activities of GBA1, GBA2, beta-galactosidase, alpha-glucosidase and total beta-

hexosaminidase were determined as described in section 2.5. 

5.3.4 CoQ10 

CoQ10 was extracted from samples by the use of an organic solvent. The 

concentration of CoQ10 was then determined by reverse phase high-performance 

liquid chromatography (HPLC) with an on-line UV detector. CoQ10 was detected at 

a wavelength of 275nm. 

Sample was aliquoted into an Eppendorf tube. For leucocytes 100 µL of sample was 

used, for SH-SY5Y cells 200 µL sample was used. 30 µL of 2.0 µM of internal 

standard (Dipropoxy - CoQ10) was added to each Eppendorf tube (the diluted 1/10 

internal standard will give a theoretical value of `1` on the HPLC chromatogram). 

The sample was mixed by vortexing for 20 seconds and then subjected to two cycles 

of freeze/thawing using liquid nitrogen. 700 µL of 5:2 (v/v) hexane/ethanol was 

then added to each tube which were vigorously mixed before centrifuging at 7500 

RCF for 3 minutes at room temperature. The upper hexane layer was collected and 

stored in a fresh Eppendorf tube on ice. The lower aqueous layer was then re-

extracted with 700 µL of 5:2 (v/v) hexane/ethanol, centrifuged as before and the 

upper hexane layer collected and combined with the upper layer from the first 

extraction. The combined upper layers were then evaporated by centrifuging under 

vacuum for 15-20 minutes at room temp using an Eppendorf concentrator 5301.  

The residue was re-suspended in 300 µL of ethanol by mixing well (vortexing for 10 

seconds) before filtering directly into an autosampler vial using a 4-SF-02 (PV) filter 

attached to a 2mL plastic syringe. The vials were capped immediately after the 

addition of the filtered sample. The capped autosampler vials were placed in a HPLC 

rack. 
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A scheme of the reverse-phase HPLC system is shown in Figure 5.1. Sample (50μL) 

was injected by a Jasco Intelligent AS-950 Auto-sampler and resolved using a 

reverse-phase Techsphere octadecasilyl column (particle size 5µm, 4.6 x 150 mm) 

maintained at 25oC.  The mobile phase was prepared by adding 1.2 mL of 60% (v/v) 

perchloric acid and 7g of sodium perchlorate to 700mL of ethanol and 300 mL of 

methanol and mixing until the sodium perchlorate was dissolved. The flow rate was 

maintained at 0.7mL/minute by a Jasco PU-980 Intelligent HPLC Pump. The 

autosampler was programmed to inject 50μL of each sample onto the column 

allowing a run time of 20 minutes with 5 flushes between each injection. Following 

separation by the column, CoQ10 was detected by a Jasco FP-920 Intelligence UV 

detector at a wavelength of 275nm. Data was captured and analysed on a PC with 

Azur Data capture and Analysis software. Prior to the detection of samples the 

column was washed with 50% methanol at a flow rate of 1mL/min for 1 hour with 

the outlet going to waste. Then the system was washed with 100% Methanol at a 

flow rate of 0.7mL/min for 1 hour with the outlet going to waste. The system was 

then equilibrated with mobile phase at a flow rate of 0.7mL/min, column 

temperature 25oC. 

After assay, the chromatograms were inspected to check the peak was well defined 

and had been correctly assigned by the integrator. See Figure 5.2 for an example of 

a chromatogram. Protein concentration was determined using the BCA method 

previously described. The coenzyme Q10 result (pmol/mL) calculated automatically 

by the Azur software was adjusted where required to take account of the different 

amount of sample used and then divided by the protein result (mg/mL) to obtain 

final coenzyme Q10 result (pmol/mg). 
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Figure 5.1- Schematic of reverse-phase HPLC apparatus used to determine CoQ10 

 

 

:  

Figure 5.2 - Standard chromatogram showing CoQ10 and internal standard (I) peaks 
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5.3.5 Citrate synthase 

Citrate synthase was determined spectrophotometrically on a Unikon 941 Plus 

spectrophotometer using the method of Shepherd and Garland [217] described in 

section 2.10.  

5.3.6 Protein determination 

Sample protein concentration was determined using the BCA protein method 

described in section 2.11.  
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5.4 Experimental protocol 

5.4.1 The effect of H2O2 on cell viability  

To ascertain the effect of H2O2 on cell viability, SH-SY5Y cells were exposed to H2O2 

for 24 hours by the addition of H2O2 diluted in DMEM/F-12 to working culture 

medium i.e.  DMEM/F-12 supplemented with 100mL/L fetal bovine serum (FBS) and 

5 mmol/L L-glutamine to give a final concentration of H2O2 in the tissue culture flask 

ranging from 0.1 to 1.0 mM. The control-cultured cells were incubated with working 

culture medium. 

5.4.2 Effect of Hydrogen Peroxide Exposure on Neuronal Lysosomal enzyme activity 

with and without the additional effects of inhibition of GBA1, GBA2 or both. 

SH-SY5Y cells were cultured as described in section 2.12.1 for 14 days with CBE, 

NBDNJ or both CBE and NBDNJ.  The cells were then exposed to 0, 0.1, 0.2 and 0.4 

mM H2O2 in working medium for 24 hours before harvesting. GBA1 activity was then 

determined.  For comparison, the activity of other key lysosomal enzymes were 

assessed; alpha-glucosidase, total beta-hexosaminidase and beta-galactosidase as 

described in section 2.5.  

5.4.3 The effect of complex I inhibition using rotenone 

SH-SY5Y cells were cultured as described in section 2.12.1. Cells were exposed to 

0.1 or 0.25 mM rotenone for 24 hours prior to harvesting. The control-cultured cells 

were incubated with working culture medium.  GBA1 and beta-galactosidase 

(control enzyme) were assayed as described in section 2.5.  

5.4.4 The effect of GBA1 inhibition on CoQ10 levels  

SH-SY5Y cells were cultured as described in section 2.12.1. Cells were exposed to 

100 or 200 mM CBE for 12 days prior to harvesting. The control-cultured cells were 

incubated with working culture medium. CoQ10 was measured using HPLC as 

described in section 2.10. GBA1, measured to confirm inhibition and beta-

galactosidase, measured as a control enzyme were assayed as described in 2.5.  
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5.4.5 CoQ10 measurement in leucocytes 

CoQ10 was measured as described in section 5.3.4, in leucocyte samples from four 

patients with GD and from four controls were assayed. 

5.4.6 The effect of GBA1 inhibition on Citrate synthase activity after exposure to 

H2O2. 

SH-SY5Y cells were cultured as previously described and then treated with H2O2 at 

0.1, 0.2, mM for 24 hours after 14 days pre-treatment with CBE. Citrate synthase 

was measured as described earlier (5.3.5). 
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5.5 RESULTS  

5.5.1 The effect of H2O2 on cell viability  

A dose dependent reduction in cell viability was observed with Increasing H2O2 

concentrations (Figure 5.1). This was expected, given the known toxic effect of 

hydrogen peroxide, and supports the ability of the MTT assay to assess cell viability 

[272].  
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Figure 5.3 - Effect of H2O2 on cell viability in SHSY5Y cultured cells. 

SH-SY5Y cells were treated with H2O2 at 0.1, 0.2, 0.4, 0.6 and 1.0mM for 24 hours. Cell 
viability was assessed using the MTT assay and presented as percentage of untreated (0mM 
H2O2) control cells (n=3 independent experiments). 
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The effect of H202 on cell viability in the presence of GBA1 +/- GBA2 inhibition. 

In view of the marked loss of viability occurring at 1.0 mM experiments with GBA1 

and/or GBA2 inhibition were performed with concentrations of H2O2 ranging from 

0.1 to 0.4 Mm (Figure 5.4). Reduction in cell viability was again observed with 

increasing H2O2 concentrations. However, there was no significant difference in the 

level of response to H2O2 when GBA1, GBA2 or both enzymes were inhibited, i.e. 

when compared to each other and the control cells.   
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Figure 5.4 - Effects of GBA1 and/or GBA2 inhibition on the susceptibility of SHSY5Y 
cultured cell viability to H2O2.   

No statistical (ANOVA) difference between any group was found (n=6).   
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5.5.2 Effects of Hydrogen Peroxide Exposure on Neuronal Lysosomal enzyme activity 

+/- the additional effects of inhibition of GBA1, GBA2 or both. 

5.5.2.1 GBA1  

Exposure of control SHSY5Y cells to H202 resulted in an apparent dose responsive 

increase in GBA1 activity. However, this did not reach statistical significance (Figure 

5.5a). When GBA2 was inhibited, by NBDNJ, exposure of the cells to H202 resulted in 

a significant dose response increase in GBA1 activity (Figure 5.5a).   In the presence 

of the GBA1 inhibitor, CBE, GBA1 activity was, as expected, markedly decreased 

compared to control cells.  Exposure to H202 had no significant effect on residual 

GBA1 activity (Figure 5.5b).  In the presence of both inhibitors, residual GBA1 

activity was not significantly affected by H202 exposure (Figure 5.5b).   

 

Figure 5.5 Effects of H2O2 on beta-glucosidase (GBA1) activity. 

SH-SY5Y cells were treated with H2O2 at 0.1, 0.2, and 0.4, mM for 24 hours after 14 days 
pre-treatment with CBE, NBDNJ or both inhibitors (n=3).  
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5.5.2.2 Total beta-hexosaminidase  

Total beta-hexosaminidase was assayed as a reference enzyme. Like GBA1, it is 

involved in sphingolipid metabolism. Increasing levels of H2O2 led to increased total 

beta-hexosaminidase activity in both control and inhibited cells (Figure 5.6). Activity 

significantly increased by 54% in control cells at 0.4 mM H2O2 compared to cells with 

no H2O2. The response in GBA1 inhibited and/or GBA2 inhibited cells was even 

greater. Activity was significantly increased by 96% in GBA1 inhibited cells, 91% in 

GBA2 inhibited cells and 105% when both GBA1 and GBA2 were inhibited at 0.4 mM 

H2O2 compared to cells with no H2O2. 
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Figure 5.6 - Effects of H2O2 on total beta-hexosaminidase activity. 

SH-SY5Y cells were treated with H2O2 at 0.1, 0.2, and 0.4, mM for 24 hours after 14 days 
pre-treatment with CBE, NBDNJ or both inhibitors (n=3). 



167 
 

5.5.2.3  Plasma Total beta-hexosaminidase 

 

In light of the response of total beta-hexosaminidase to H2O2 observed in the GBA1 

inhibited SH-SY5Y cells, and the reports in the literature of elevated total beta-

hexosaminidase in GD [38, 39], activity was measured in plasma as described in 

section 2.8.3. The samples were from GD patients and controls as described in 

section 4.2.1. 

Total beta-hexosaminidase was significantly higher (p= 0.031) in Gaucher plasma at 

3.04 ± 1.41 (n=3) compared to 0.83 ± 0.06 in control plasma (n=12) (Figure 5.7). 

However, one GD patient had normal levels of total beta-hexosaminidase activity. 
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Figure 5.7 - Total beta-hexosaminidase activity in plasma from unaffected controls and 
patients with Gaucher disease 
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5.5.2.4 Alpha-glucosidase 

Unlike GBA1, beta-galactosidase or total-hexosaminidase, alpha-glucosidase is not 

involved in sphingolipid metabolism. Both CBE and NBDNJ led to significant 

decreases (P<0.01) in alpha-glucosidase activity compared to control cells showing 

that neither are specific inhibitors of beta-glucosidase (Table 5.1).  

Table 5.1 - The effect of CBE and NBDNJ inhibition on alpha glucosidase activity. 

SH-SY5Y cells were treated for 14 days with CBE, NBDNJ or both inhibitors (n=3). 

 Control GBA1 

inhibited 

GBA2 

inhibited 

GBA1 and 

GBA2 

inhibited 

alpha-glucosidase 

activity 

(nmol/hr/mg protein) 

99.2 +/- 5.7 47.1+/- 1.2 59.2 +/- 1.1 45.0 +/- 0.6 
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Incubation with 0.4 mM H2O2 led to a non-significant increase in activity of 15% in 

control cells and 12% in GBA1 inhibited cells. However, there was a significant 

increase in activity in response 0.4 mM H2O2 of 57% (P<.01) and 65% (P<.05) in cells 

where GBA2 or both GBA1 and GBA2 were inhibited respectively (Figure 5.8). 
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Figure 5.8 - Effects of H2O2 on alpha-glucosidase activity. 

SH-SY5Y cells were treated with H2O2 at 0.1, 0.2, and 0.4, mM for 24 hours after 14 days 
pre-treatment with CBE, NBDNJ or both inhibitors (n=3). 
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5.5.2.5 Beta-galactosidase 

Beta-galactosidase, like GBA and total beta-hexosaminidase, is involved in 

sphingolipid metabolism. However, in contrast to GBA1, there was no significant 

difference in the response of beta-galactosidase to H2O2 within or between any of 

the groups (Figure 5.9). 
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Figure 5.9 - Effects of H2O2 on beta-galactosidase activity. 

SH-SY5Y cells were treated with H2O2 at 0.1, 0.2, and 0.4, mM for 24 hours after 14 days 
pre-treatment with CBE, NBDNJ or both inhibitors (n=3). There was no significant difference 
in the response of beta-galactosidase to H2O2 in any of the groups. 
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5.5.3 The effect of complex I inhibition on Lysosomal enzymes 

5.5.3.1 The effect of complex I inhibition on GBA1 activity 

There was a small but non-significant increase in GBA1 activity in response to 

complex I inhibition; GBA1 activity was 309.0 +/- 17.6 nmol/h/mg in control cells 

compared to 357.5 +/- 33.8 nmol/h/mg in cells with 0.1 mm rotenone and 339.8 +/- 

4.4 nmol/h/mg in cells with 0.25 mm rotenone (Figure 5.10).  
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Figure 5.10 - Effects of Complex I inhibition on GBA 1 activity. 

SH-SY5Y were exposed to 0.1 or 0.25 mM rotenone for 24 hours prior to harvesting. 
The control-cultured cells were incubated with working culture medium (n=5). No 
significant difference was observed between the three conditions.   

 

  

  



172 
 

5.5.3.2 The effect of complex I inhibition on beta-galactosidase activity 

Beta-galactosidase activity was assayed as a control enzyme. Like GBA1, there was a 

small but non-significant increase in activity in response to complex I inhibition. 

Beta-galactosidase activity was 506 +/- 26 nmol/hr/mg protein in control cells 

compared to 598 +/- 56 in cells exposed to 0.1 mM rotenone and 575 +/- 7 in cells 

exposed to 0.25 mM rotenone (Figure 5.11).  
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Figure 5.11 - Effects of Complex I inhibition on beta-galactosidase activity. 

SH-SY5Y were exposed to 0.1 or 0.25 mM rotenone for 24 hours prior to harvesting. The 
control-cultured cells were incubated with working culture medium (n=5). No significant 
difference was observed between the three conditions.   
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5.5.4 Neuronal CoQ10 status following inhibition of GBA1 

When compared to control cells, inhibition of GBA1 with CBE treatment had no 

significant effect upon SH-SY5Y CoQ10 levels (n=6) (Figure 5.12).  

Control 100 mm 
CBE

200 mm 
CBE

0

50

100

150

200

250

C
o

Q
1
0
 (

p
m

o
l/
m

g
 p

tn
)

 

Figure 5.12 - Effects of GBA1 inhibition on SHSY5Y CoQ10 status. 
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The data is summarised in Table 5.2 which demonstrates that GBA1 was over 99% 

inhibited in the cells cultured with CBE, while the control enzyme beta-

galactosidase was unaffected.  

Table 5.2 - Effects of GBA1 inhibition on SHSY5Y CoQ10 status. 

No significant difference was observed between the three conditions (n=6). 

 CBE (mM) 

 0 100 200 

CoQ10 

(pmol/mg protein) 
152.5 +/- 9.5 127.8 +/- 18.7 123.0 +/- 2.3 

GBA1 

(nmol/hr/mg 

protein) 

281.7 +/- 18.3 0.9 +/- 0.21 0.8 +/- 0.08 

Beta-galactosidase 

(nmol/hr/mg 

protein) 

609 +/- 55 587 +/- 108 513 +/- 87 

 

5.5.5 Leucocyte CoQ10 status in GD and controls 

CoQ10 levels were higher but not significantly in leucocytes from patients with 

Gaucher disease compared to controls (Table 5.3).  

Table 5.3 - Leucocyte CoQ10 in GD and control plasma. 

 Controls 

n=4 

GD 

n=4 

 

CoQ10 (pmol/mg ptn) 68.1 ± 13.2 83.15 ± 5.09 P=0.329 

BGAL (nmol/h/mg) 205 ±  49.3 286 ±  18.8 P=0.173 

GBA1 (nmol/h/mg) 7.7  ± 1.6 0.70  ±  0.005 P=0.005 

GBA2 (nmol/h/mg) 0.3  ± 0.2 0.6  ±  0.5 P=0.588 
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5.5.5.1 Citrate synthase 

Citrate synthase activity was lower in the GBA1 inhibited cells compared to controls 

but the difference was not significant. There was a slight decrease in citrate 

synthase activity in the GBA1 inhibited cells with increasing levels of H2O2 but the 

activity at either 0.1 or 0.2 mM H2O2 was not significantly different to the control 

group (Table 5.4).  

Table 5.4 - Effects of H2O2 on citrate synthase activity. 

SH-SY5Y cells were treated with 0.1, 0.2, mM H2O2 for 24 hours after 14 days pre-treatment 
with CBE (n=3). 

H2O2 

(mM) 

Control 

 cells 

GBA1 inhibited 

 cells 

0 89.6 +/- 5.1 85.3 +/- 10.8 

0.1 91.3 +/- 2.9 77.4 +/- 16.3 

0.2 84.7 +/- 5.4 76.5 +/- 13.5 
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5.6 Discussion  

The principal aims of this chapter were to evaluate potential interactions between 

the lysosome, mitochondrion and oxidative stress, i.e. to identify potential new 

mechanisms pertinent to our understanding of the pathogenesis of PD. 

Under the conditions employed, and using H202 as a source of oxidative stress, 

exposure of the neuronal cells resulted in a dose dependent loss in cell viability.  

This is consistent with previous reports using MTT and H202 [274]. Since the MTT 

assay is reported to reflect mitochondrial dehydrogenase activity because the 

tetrazolium ring is cleaved in active mitochondria  [273], this finding is also 

consistent with observations that report, in a number of cell types, that 

mitochondrial enzymes are susceptible to oxidative damage [264, 265]. Repeating 

the dose response curve on a background of inhibition of GBA1, GBA2 or GBA1 plus 

GBA2 did not alter the sensitivity of the cells to oxidative stress.  The results 

presented here could suggest that the loss of GBA1 associated in PD may not 

exacerbate any oxidative stress mediated neuronal damage.  Similarly, under the 

conditions employed, GBA2 does not appear to contribute to the process.   

Oxidative stress has also been suggested be a mechanism for the loss of 

mitochondrial respiratory chain enzyme activities in PD, i.e. these enzymes are 

prone to direct oxidative damage as well as indirect effects due to oxidation of 

cardiolipin, a phospholipid situated on the inner mitochondrial membrane [275]. In 

contrast to this group of enzymes, GBA1 activity was not impaired following 

exposure to H202. This result implies that loss the loss of GBA1 activity reported in 

PD is not arising as a consequence of oxidative stress.  Similarly none of the other 

lysosomal enzymes studied displayed loss of activity following H202 exposure. 

Moreover, some activities significantly increased. 

As discussed in Chapter 4, GBA2 activity could play a role in dictating cellular 

vulnerability and may be a factor to consider with regards to why some but not all 

individuals with GBA1 mutations develop PD.  Whilst inhibition of GBA2 did not 

influence cell viability, loss of activity resulted in a dose response increase in GBA1 

activity following H202 exposure. Whilst the mechanism for this effect is not known, 
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these data provide further evidence for an interaction between these two enzymes 

and implies that an up-regulation of sphingolipid metabolism occurs in response to 

oxidative stress, i.e. when GBA2 activity is diminished.   

Total beta-hexosaminidase also showed a significant increase in activity following 

H202 exposure. In contrast to GBA1 this increase occurred in the absence of any 

blockade of GBA2 activity. Total beta-hexosaminidase is also involved in 

sphingolipid metabolism and so these data may again point to an up-regulation in 

this pathway in response to oxidant exposure. Total beta-hexosaminidase has been 

found to be significantly increased in CSF from PD patients [276] and also in plasma 

from most but not all GD patients [40]. However, others have found no increase in 

plasma levels [245]. Analysis here of plasma from three GD patients found that 2 

had elevated levels while the other was in the normal range and similar to 

simultaneously assayed unaffected control samples.  It is of interest to note that 

total beta-hexosaminidase is involved in the production of GM3 ganglioside, which 

plays a protective role in neurodegeneration processes taking place in PD [276]. 

Total beta-hexosaminidase has also been found to be higher in fibroblasts from GD-

PD patients but not in iPD patients [277]. The report of elevated beta-

hexosaminidase activity in CSF from PD patients has led to the suggestion that 

assessment of activity could be a useful biomarker for PD [278].  The mechanism for 

the elevation in enzyme activity or whether the elevation is harmful or beneficial is 

not known. However, in view of the reported involvement of oxidative stress in PD 

and the data presented here, it is possible that this enzyme may be reflecting 

increased oxidant exposure. Consequently, it would be of interest to evaluate total 

beta-hexosaminidase activity in more detail in other models of oxidative stress and 

in conditions where it is implicated, e.g. Alzheimer’s disease, multiple sclerosis and 

inborn errors of glutathione metabolism. The findings of elevated plasma total beta-

hexosaminidase in plasma from GD patients demonstrated here may be secondary 

to lysosomal dysfunction but requires further work 

In contrast to the above enzymes, beta galactosidase was unaffected by any of the 

inhibitor treatments, despite being involved in sphingolipid metabolism.  This result 

therefore suggests that the observed effects are not general to all lysosomal 
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enzymes.  However, the response to H202 is not specific to the sphingolipid pathway 

as alpha glucosidase activity was also affected.  The effect was comparable to that 

for GBA1. It is of note that both enzymes are glucosidases and that their activities 

were particularly increased, following H202 exposure and when GBA2 activity was 

impaired.  Alpha glucosidase is involved in lysosomal glycogen catabolism and 

hence liberation of glucose [4, 279]. Although present in much higher amounts in 

glial cells, it has been demonstrated that neurons have an active glycogen 

metabolism that protects cultured neurons from hypoxia-induced stress [280]. 

Increased oxidative stress, as studied here, may result in an increased need for 

glycogen derived glucose.  The interaction between GBA2 and this glucosidase also 

requires further investigation. 

Importantly, when studying the effects of CBE and NBDNJ, alpha glucosidase activity 

was found to be inhibited.  This is perhaps not surprising as both inhibitors target 

glucosidases [281-283].  However, it is important in view of the results reported 

here, that the relatively non-specific nature of these two inhibitors are considered, 

particularly as, in the case of CBE, they are used to model disease conditions [228, 

284-286]. 

Loss of mitochondrial respiratory chain enzyme activities, particularly at the level of 

complex I, is well reported in PD.  The consequences of this will include impaired 

energy metabolism and oxidative stress [287].   Rotenone is an established complex 

I inhibitor and was used here under conditions previously documented by our 

laboratory to inhibit complex I and increase reactive oxygen species generation 

[288]. Using this protocol, treatment of the neuronal cells did not result in any loss 

of GBA1 activity.  These data may suggest that loss of complex I does not contribute 

to the impaired GBA1 activity reported in idiopathic PD. 

To further evaluate any potential interactions between lysosomal and 

mitochondrial function, the effects of GBA1 inhibition on parameters related to 

mitochondrial metabolism and content were studied.   CoQ10 levels were 

unaffected by the treatment suggesting that diminished GBA1 activity does not 

contribute to loss of CoQ10 availability reported in PD.   Similarly, assessment of 
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mitochondrial content, as judged by citrate synthase activity, was not altered by the 

CBE treatment.  For these parameters at least there appears to be no interaction 

between the lysosome and mitochondrion. 

5.7 Conclusions 

Oxidative stress is a cause of loss neuronal viability, a situation that does not appear 

to be affected by GBA1 or GBA2 activity.   Furthermore, oxidative stress itself does 

not have any discernible negative effect on GBA1 activity and so does not provide 

an explanation for the loss of GBA1 activity associated in idiopathic PD.  Lysosomal 

glucosidases however increase their activity in response to oxidative stress and this 

is particularly marked when GBA2 is inhibited.  An interaction between glucosidases 

in response to cellular stress is therefore indicated and warrants further evaluation. 

Beta hexosaminidase also increased in response to oxidative stress and again may 

point to a stress response.  Oxidative stress may provide a mechanism for the 

increased activity of this enzyme reported in the CSF of patients with PD.   With 

regards to the effect of impaired GBA1 activity on mitochondrial status, no effect 

upon CoQ10 and mitochondrial enrichment was observed.  Further work is still 

required to ascertain the mechanism for the loss of GBA1 activity and protein 

reported in idiopathic PD. 
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Chapter 6 Western blots of GBA1 and GBA2 

 

6.1 Introduction 

The interplay between GBA1 and GBA2 has so far in this thesis, been evaluated by 

assessment of enzyme activity.  In Chapter 4, decreased brain GBA1 activity, in a 

mouse model of GD, was reported to be associated with an increase in GBA2 

activity.  Furthermore, for patients with GD, a proportion of individuals were found 

to display increased leucocyte GBA2 activity.  These data may therefore imply an 

interaction between these two enzymes and raises the possibility that when activity 

of one of one of these enzymes is compromised, the cellular response is to divert 

substrate to the other. 

In order to explore this possibility further at the protein level, western blotting was 

developed and reported in this chapter for GBA1 and GBA2.  Initial data are also 

reported with regards to the effects of pharmacological inhibition, with CBE, on 

expression of GBA1 and GBA2. 

The western blotting method was based on published methods for GBA1 [192] and 

GBA2 [228] and departmental experience of western blotting for the alpha-

glucosidase enzyme in Pompe disease. Optimisation for the thesis included checking 

the protein loading required, the dilution of antibodies required and the time of 

exposure required for visualisation of the various bands.  

 

6.2 Methods 

Human fibroblasts (controls and patients with GD) or SH-SY5Y cells were cultured as 

described in section 2.12. SH-SY5Y cells had been exposed to 100M of CBE for 11 

days prior to harvest.  Harvested fibroblasts or SH-SY5Y cells were washed three 

times in PBS. After the last wash all PBS was removed and 50 L of inhibitor solution 

(5 L Halt Protease Inhibitor (PI) Cocktail and 5 L EDTA added to 0.5 mL DD H20) 

was added. If not being assayed immediately the sample was snap frozen until 

required. When required, the sample was thawed and the cells sonicated at 
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amplitude 6 for 10 seconds. The protein levels were determined using the BCA 

assay described in section 2.11, and the samples were then diluted down to 2.0 

g/L in inhibitor solution. The samples were prepared for assay adding 4X LDS 

(lithium dodecyl sulphate) equivalent to 25 % of the final volume and 10X DTT 

(dithiothreitol) equivalent to 10 % of the final volume. The samples were then 

heated for 10 minutes at 70 o C.  

Samples (25L) were separated under denaturing conditions on a 4-12% Bis-Tris Gel 

in MOPS (3-(N-morpholino)propanesulfonic acid) running buffer at a constant 

voltage of 120V on ice for approximately 2 hours. Protein was then transferred to a 

PVDF membrane by electro transfer using the iBlot™ Dry Blotting System. After 

transfer the gel was rehydrated in water before staining in SimplyBlue SafeStain to 

confirm that the bands had run straight. The membrane was cut into three pieces as 

shown in Figure 6.1  using the molecular marker as a guide so that the top piece 

contained GBA2, the middle piece GBA1 and the bottom piece GAPDH, before 

incubation of the three pieces of membrane in blocking buffer (5% non-fat dry milk 

in TBST (Tris-buffered saline tween-20)) for 1 hour. 
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Figure 6.1 –Diagram showing the positions of the bands of interest on the membrane. 

Positions based on their reported molecular weights i.e. GBA2  - Predicted band size : 98- 
104 kDa [289], GBA1- Predicted band size : 60 kDa [290] and GAPDH  - Predicted band size : 
37 kDa [291] and where the membrane was cut prior to blocking and probing.  

 

Cutting the membrane allowed for simultaneous blocking and probing of the 

different proteins and produced cleaner final images.  

Following blocking the appropriate piece of membrane was probed with the 

respective antibody overnight at 4 o C. All antibodies were diluted in blocking buffer. 

The top part of the membrane was probed with anti-GBA2 at 1:500 dilution, the 

middle part of the membrane with anti-GBA1 at 1:500 and the bottom part of the 

membrane with anti-GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) at 

1:1200. GAPDH was used as the reference protein band to check that samples were 

evenly loaded, and to confirm the transfer of proteins at the blotting stage. The 

membranes were then washed 4 x 15 minutes in TBST before incubation with the 

secondary antibody; goat anti-mouse IgG-HRP (horseradish peroxidase) at 1:2000 

for GBA1 mouse monoclonal antibody and donkey anti-rabbit IgG-HRP at 1:4000 for 

the GBA2 and GAPDH polyclonal antibodies. The membranes were then washed 4 x 
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15 minutes in TBST before visualisation of the bands. The membranes were 

incubated with ECL (Enhanced chemiluminescence) substrate according to the 

manufacturer’s instructions and visualised by exposure to x-ray film. GAPDH was 

visualised in 3-5 minutes, GBA1 in 30 and GBA2 required 60 minutes. 

6.3 Results 

As an initial control experiment, Western blotting was performed on control and GD 

fibroblasts, i.e. to provide further validation of the assay with regards to identifying 

changes in GBA protein expression.   For all control samples a clear GBA1 band was 

identified running at approximately 60 kDa.  For the samples derived from GD 

patients, a faint band was only apparent for 1 individual (GD1).   For the remaining 

two patients no GBA1 band could be observed. The molecular marker (Blue Pre-

stained Protein Standard, Broad Range (11-190 kDa) ladder) is not visible on the 

membrane. 

 

Assessment of enzyme activity revealed very low results for the GD samples (results 

displayed in Figure 6.2.  It is noted that the patient with the highest residual enzyme 

activity was the sample in which a faint GBA1 protein band could be observed. 
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Figure 6.2 - Western blot of fibroblast GBA1. 

 

 

Table 6.1 - GBA1 and beta-galactosidase (B-GAL) activities of fibroblast samples shown in 
western blot (Figure 6.2). 

Sample 
GBA1 

(nmol/mg/ptn) 

B-GAL 

(nmol/mg/ptn) 

Control 1 857 1720 

Control 2 710 1313 

Control 3 853 1596 

Control 4 1077 2560 

Patient 1 157 1878 

Patient 2 42 1696 

Patient 3 44 1437 

Control 5 520 1061 
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Concerning SH-SY5Y cells, GBA1, GBA2 and GAPDH protein bands could be 

identified following Western blotting (Figure 6.3).  Inhibition of GBA1, by CBE 11 

days, had no apparent effect on the expression of GBA2 (Figure 6.3).  However, 

under such conditions, expression of GBA1 appeared to increase (Figure 6.3).    

 

Figure 6.3 - Western blot of SH-SY5Y GBA2, GBA1 and GAPDH. 

 

The effectiveness of CBE to create GBA1 deficiency was confirmed with the findings 

of significantly decreased GBA1 activity in the inhibited cells compared to control 

cells, while the control enzyme, beta-galactosidase was comparable between the 

two groups (Table 6.2). 

Table 6.2- GBA1 and beta-galactosidase (B-GAL) activities of SH-SY5Y samples shown in 
western blot (Figure 6.3). 

Sample 
GBA1 

(nmol/mg/ptn) 

B-GAL 

(nmol/mg/ptn) 

Controls 

(n=7) 
106.1 ± 4.8 381± 18 

CBE inhibited 

cells (n=8) 
0.6 ± 0.2 390 ± 22 

Significance <0.0001 NS 
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6.4 Discussion 

Conditions have been described here to permit western blotting for GBA1 and GBA2 

in both human cultured fibroblasts and the neuronal, SH-SY5Y cell line.  The 

procedure described here was able to demonstrate absence of a GBA1 band in two 

patients with GD and an apparently very faint band in another GD patient.  Such 

results give a degree of validation of the assay.  Whilst the patient with the faint 

band had the highest residual enzyme activity, further studies will be required to 

ascertain the relationship between individual patient genotype and protein 

expression. With further refinement to include quantification (densitometry and 

relationship to GAPDH loading), western blotting may also have a role in the 

diagnostic laboratory e.g. when genetic variants of unknown significance are 

reported or recording the potential efficacy of novel treatment strategies such as 

chaperone type molecules. 

Concerning the SH-SY5Y cells, the presence of GBA1 and GBA2 bands could clearly 

been seen. It was noted that two bands were apparent with regards to GBA1 

staining.  Whilst the reason for this is not yet clear, this phenomenon has been 

reported before in brain and SH-SY5Y cells [192].  

Exposure of SH-SY5Y cells to CBE resulted, as expected, in a marked loss of GBA1 

activity.  Inspection of the western blots, after such treatment did not appear to 

result in any marked difference in the intensity of GBA2 staining.  Visualising GAPDH 

did not point to any marked discrepancies between control and CBE treated cells.   

These preliminary data, therefore do not point to any marked up-regulation in 

GBA2 as a consequence of the block of GBA1 activity.  This result is consistent with 

the lack of effect upon GBA2 enzymatic activity reported in section 4.4.7. 

In contrast to GBA2, CBE treatment appeared to increase the intensity of the GBA1 

band in all treated cells, i.e. suggesting GBA1 up-regulation when activity is 

inhibited by CBE for 11 days.  CBE is a very widely used and accepted inhibitor to 

model GD in cellular and animal models [228, 284-286].  The cellular consequences 

of this apparent up-regulation, if confirmed, should be considered in such models. 

Concerning the mechanism for this observation, it remains to be demonstrated 
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whether this effect is in response to substrate (GlcCer) accumulation or a cellular 

deficiency of the GBA1 product, ceramide.  
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Chapter 7 Analysis of ceramides by UPLC-MS/MS to examine the effects 

of GBA1 and/or GBA2 inhibition. 

7.1 Introduction 

7.1.1 Glucosylceramide and ceramide  

Glucosylceramide (GlcCer) was first identified as the accumulating lipid in GD in 

1934 and is now known to accumulate in every tissue where its levels have been 

measured [26]. GlcCer is deacylated by lysosomal acid ceramidase to form 

glucosylsphingosine (GlcSph) [225]. GlcSph is usually not detectable in tissue from 

unaffected individuals, but significantly accumulates in GD but to lower levels than 

GlcCer. The levels of GlcSph have been found to be higher in the brains of type 2 

and 3 patients with GD suggesting a potential pathological role for this lipid in types 

2 and 3 GD [26]. GlcSph is broken down into glucose and sphingosine in the 

lysosome by GBA1 and by GBA2 outside the lysosome [26, 225]. In unaffected 

individuals, GlcCer is broken down into glucose and ceramide in the lysosome by 

GBA1 and by GBA2 outside the lysosome [110, 178]. The simplest sphingolipid is 

ceramide which consists of a fatty acid residue attached to a sphingosine backbone 

at C-2 by an amide link [12]. Ceramide functions as a precursor for more complex 

glycosphingolipids such as sphingomyelin or cerebrosides such as GlcCer [13]. 

Ceramide and sphingosine are catalyzed to ceramide-1-phosphate and sphingosine-

1-phosphate respectively by their specific kinases [225]. See Figure 7.1 for a 

summary of ceramide metabolism. Ceramide can induce apoptosis, but its 

conversion to sphingosine 1-phosphate or glycosphingolipids induce cell 

proliferation [292]. The control of cell fate by these two inter-convertible lipids has 

been called the sphingolipid rheostat or sphingolipid biostat [293]. Ceramide can 

also induce necroptosis [294] which is a feature of both GD and Krabbe 

leucodystrophy [19]. 

 Ceramide has multiple isoforms with variable acyl chain length comprised of 14 to 

26 carbons found in most cells [295] although acyl chain length of up to 36 carbons 

form a major portion of ceramide compounds in the epidermis [296]. There are six 
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different human ceramide synthases identified with different specificities, 

producing ceramides/dihydroceramides with differing chain lengths [295]. However 

the salvage pathway, whereby GBA1 produces ceramide from GlcCer is the most 

energy efficient method of synthesising ceramide in post-mitotic cells [27].   

 

 

Figure 7.1 Summary of ceramide metabolism. 

Ceramide is the centrepiece of the sphingolipid metabolic pathway and can be 

produced through hydrolysis of GlcCer by GBA1 and GBA2, through hydrolysis of 

galactosylceramide by galactocerebrosidase and through hydrolysis of 

sphingomyelin by sphingomyelinase. Ceramide can also be synthesized from 

ceramide-1-phosphate through the action of ceramide-1-phosphate phosphatase. 

Finally, ceramide can be catabolised to sphingosine and further to sphingosine-1-

phosphate. Ceramide can also be synthesized de novo from l-serine and palmitoyl-

CoA (adapted from [297] and [298]. 
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Different isoforms of ceramide have different functions and are present in different 

amounts throughout the body. C22:0 ceramide is the major isoforms in 

hepatocytes, lungs and intestine [299]. C18:0 and C24:0 ceramide are the dominant 

species in the central nervous system. C18:0 ceramide is vital for the normal 

development of neurons while C24:0 ceramide is crucial for myelin production in 

oligodendrocytes [295]. 

 

Figure 7.2 Examples of ceramides: 

(a) C18:0 ceramide; (b) C18:0-OH ceramide; (c) C20:0 ceramide: (d) C24:0 ceramide; (e) 
C24:1 ceramide [300].  
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There is evidence that ceramide plays a role in both GD and Lewy body diseases. 

Regarding ceramide metabolism in GD, plasma levels have been determined with 

reports of no changes compared to matched controls [301], or increases that 

decline after ERT [302]. In a study of non-GBA1 carrying PD patients, plasma 

ceramide levels were reported to be higher in patients compared to controls with 

the highest levels in those with cognitive impairment compared to those without 

[303]. In sporadic Parkinson’s disease, GBA1 activity and protein levels are reduced 

in brain areas that accumulate α-synuclein and this appears to be associated with a 

reduction in ceramide levels [270]. In a LRRK2 mouse model, brain ceramide levels 

are significantly higher in knockouts (Lrrk2−/−) compared to wildtype (Lrrk2+/+) mice, 

suggesting that the absence of LRRK2 has an impact on ceramide metabolism. While 

the total ceramide levels are elevated in the knock-outs, the intra-class ceramide 

distribution i.e. the relative amounts of different acyl chains was not different 

compared to wildtype [304]. Genes involved in Neurodegeneration with Brain Iron 

Accumulation (NBIA), have roles in ceramide metabolism.  The pantothenate kinase 

gene (PANK2) is a regulatory enzyme for co-enzyme A biosynthesis which is 

essential for the de novo pathway for ceramide production.  While, PLA2G6 

(phospholipase A2 group VI) is a phospholipase that promotes ceramide generation 

via hydrolysis of sphingomyelin [297]. It is not only the overall amount of ceramide 

that is important but also the relative amounts of the different ceramide species as 

defined by their fatty acyl chain length [305]. It has been shown that the middle 

frontal gyrus in patients with Alzheimer’s disease (AD), a brain region with extensive 

β-amyloid plaques and tangles, accumulates more C24:0 ceramide in addition to 

cholesterol relative to age-matched control samples [295]. Elevated ceramide levels 

have been shown to significantly enhance the level of free radicals and decrease the 

viability of SH-SY5Y cells [306]. Metabolism of ceramide and GlcCer been proposed 

to play an important role in the control of energy homeostasis [232].  

It is uncertain if GlcCer mediates it pathological effects in GD entirely from within 

the lysosome or whether some can escape and mediate effects in the cytosol or 

with other organelles [26]. If excess GlcCer does egress the lysosome, its 

metabolism by GBA2 would release ceramide which may have deleterious effects. 



192 
 

Thus, extra-lysosomal metabolism, via GBA2, could lead to maintenance or 

elevation of total cellular ceramide content in a GBA1 deficiency.  In contrast, loss of 

GBA2 activity could lead to even higher GlcCer levels but lower or normal ceramide 

levels. 

7.1.2 Ultra Performance Liquid Chromatography (UP)LC-MS/MS 

Mass spectrometers (MS) function by converting the analyte molecules in the 

sample of interest to a charged or ionised state, followed by the analysis of the ions 

and any fragment ions that are produced during the ionisation process, based on 

their mass to charge ratio (m/z). Ultra Performance Liquid Chromatography (UP)LC-

MS/MS is a technique which combines the physical separation abilities of liquid 

chromatography often used in combination with the mass analysis power of mass 

spectrometry. This technique possesses particularly high sensitivity and specificity 

for quantitation of analytes in complex mixtures [307].  

There are many types of mass analysers, but the work described in this thesis was 

conducted using a triple quadrupole mass spectrometer. A quadrupole analyser 

consists of a set of four parallel metal rods. Using a combination of alternating and 

varying radio frequency (RF)/direct current (DC) voltages allows the transmission of 

a narrow band of m/z values along the axis of the rods. By varying the DC voltages 

with time it is possible to scan across a range of m/z values, resulting in a mass 

spectrum. A triple quadrupole mass spectrometer is a tandem MS method which 

consists of three quadrupoles. The first and third quadrupoles act as mass filters 

which separate ions based on their m/z ratios. The second quadrupole causes 

analyte fragmentation via interaction with a collision gas. Altering the voltage of the 

first quadrupole enables the process to be manipulated in a way such that only ions 

of particular m/z can traverse the quadrupole. The method can be used to obtain 

structural information or for quantitation of analytes. Triple-quadrupole mass 

spectrometry techniques coupled with UPLC, offers improved selectivity, improved 

signal-to-noise ratio, lower quantitation limits and increased accuracy over other 

methods [307, 308].  
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Figure 7.3 - Schematic diagram of a Ultra Performance Liquid Chromatography (UP)LC-
MS/MS system 

Internal standard is added to the samples prior to UPLC-MS/MS analysis. An internal 

standard chemically mimics a metabolite of interest, having similar chemical 

structure but usually containing heavier isotopes such as deuterium (2H) or 13C 

labels. The stable isotope internal standards have the same extraction recovery, 

ionization response and the same chromatographic retention time as the 

compound to be quantified but can only be distinguished from the endogenous 

compound of interest due to the difference in their masses. Using this principle the 

mass spectrometer was used to quantify different ceramide isoforms in what is 

termed multiple reaction monitoring (MRM). MRM provides increased specificity by 

monitoring a parent and one or more of its product ions simultaneously after 

fragmentation. The concentration of the analytes are determined through the use 

of calibrator curves and relating the analyte/IS peak ratios [307, 308].  

7.1.3 AIMS 

In view of the potential role of perturbation of ceramide metabolism in GD, and 

possibly PD, the aim of this chapter was to begin to document the effects of 

inhibition of neuronal (SH-SY5Y) GBA1, GBA2, or both, on ceramide species.  In 

order to achieve this, a targeted UPLC-MS/MS method was developed to 

quantitative different ceramides.  
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7.2 Experimental protocol 

SH-SY5Y cells were cultured as described in section 2.12.1 but with the addition of 

100 M CBE, 10 M NBDNJ or both 100 M CBE and 10M NBDNJ added to the 

medium. Control cells had no inhibitor added to the medium. Cells were harvested 

and washed as described in section 2.12.1 after 17 days exposure to the inhibitors. 

7.2.1 Sample preparation 

Cell pellets were disrupted by sonication at amplitude 6 for 10 seconds and protein 

levels were determined using the BCA method as described in section 2.11. Samples 

were then diluted in deionised water where necessary so that all were normalised 

to the same  protein concentration. Lipids were extracted from the samples using 

the method of Bligh and Dyer [309]. Extraction solvent was prepared by adding 

internal standard (N-Octadecanoyl-D3-D-erythro-sphingosine) to a 1:2 (v/v) 

chloroform/methanol mixture. For each sample, 0.75 mL of extraction solvent was 

added to 0.2 mL of sample in an Eppendorf tube and vortexed vigorously. Then 0.25 

mL of chloroform was added and vortexed vigorously before the addition of a 

further aliquot of 0.25 mL of deionised water and a final vortex. Samples were then 

centrifuged at 3000g for 5 minutes at room temperature which resulted in a 

biphasic solution of an upper methanolic phase and a lower organic phase. The 

lower organic phase (chloroform) containing the ceramides was recovered into a 

glass autosampler vial and evaporated to dryness under nitrogen. The samples were 

reconstituted in 50µl of methanol, and the vials capped, prior to analysis by MS. 

7.2.2 UPLC-MS/MS analysis 

Mass spectrometry was carried out in the UCL Great Ormond Street Institute of 

Child Health. Previous work had been performed to test the extraction method and 

identify the required parameters required for the analysis of ceramides. 

UPLC-MS/MS analysis was performed on a Waters XevoTM TQ-S MS system 

operated in negative ion mode coupled to a Waters ACQUITY UPLC (Manchester, 

UK). The column temperature was kept at 40 °C.  



195 
 

A 10 L injection of sample was passed through a using an ACQUITY UPLC BEH C8 

VanGuard pre column (130Å, 1.7 µm, 2.1 mm X 5 mm) and C8 column (130Å, 1.7 

µm, 2.1 mm X 50 mm) using mobile phase (A) 0.01% formic acid in ddH2O and (B) 

0.01% formic acid in methanol. Initial conditions were 90% A and 10% B for 5 

minutes. At 5.01 minutes mobile phase B was increased to 100% over 1 minute and 

maintained at 100% for a further 2 minutes followed by a return to initial conditions 

(90% A, 10% B) for the final 3 minutes of the eleven minute method. An injection of 

10 L of blank methanol was run after every two samples to ensure minimised 

carryover between samples. 

The transitions or MRMs used for identifying the peaks including the internal 

standard (C18:0-D3 ceramide (N-Octadecanoyl-D3-D-erythro-sphingosine)), are 

listed in Table 7.1. 

 
Table 7.1 List of the multiple reaction monitoring (MRM) transitions used. 

Isoforms Formula Parent ion 

m/z 

Daughter ion 

m/z 

C16:0-OH ceramide C34H66NO4 552.4997 296.2997 

C18:0 ceramide C36H71NO3 564.6391 308.4265 

C18:0-D3 ceramide C36H69D3NO6 567.5519 311.2905 

C18:0-OH ceramide C36H71NO4 580.5702 253.3707 

C20:1 ceramide C38H73NO3 590.5518 334.3518 

C20:0 ceramide C38H75NO3 592.5674 336.3674 

C20:0-OH ceramide C38H75NO4 608.5623 281.3623 

C24:1 ceramide C42H81NO3 646.6536 390.4832 

C24:0 ceramide C42H83NO3 648.733 349.4593 

 
 

Automated UPLC profiles and MRM transitions were created and samples analysed 

using an auto sampler. Data was acquired from the UPLC/MS-MS using Masslynx™ 

4.1 Software (Waters). Automated analysis was performed using Integrated 
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chromatogram traces using TargetLynx™ software as shown in Figure 7.4. These 

were provided with peak information, such as response and signal-to-noise (S/N) 

ratio. Quality control was maintained by random selection of various 

chromatograms and manual processing. This included checking the peak area in 

chromatograms and manually adjusting the area under a peak to fit the area under 

a peak if needed. 

7.3 RESULTS 

Using the conditions described above it was possible to identify ceramide species in 

the SH-SY5Y cell preparations. An example of a chromatogram is displayed in Figure 

7.4 and graphs of the results are displayed In Figure 7.5 and Figure 7.6. The actual 

amount of any specific ceramide was not quantified. The results presented are the 

peak area of the analyte of interest in a sample divided by the peak area of the 

internal standard for that sample. This allowed for comparison of the relative 

amounts of ceramides between different samples in the four conditions. Only the 

eight ceramide isoforms with a signal to noise ratio of 3:1 were included in the 

analysis.  

SH-SY5Y cells had been cultured with no inhibitors (controls), with 100 M CBE to 

inhibit GBA1, with 10 M NBDNJ to inhibit GBA2 and with both 100 M CBE and 

10 M NBDNJ to inhibit both GBA1 and GBA2.  

C24:1 ceramide was the predominant isoform detected in all cells with C24:0 

ceramide the next most abundant and all other isoforms detected were present at 

much lower relative levels. Concerning the levels of ceramide and its isoforms 

following inhibition of GBA1, GBA2 or both, no significant difference in levels was 

apparent. However, apart from C20:0-OH ceramide, there was a trend for all 

isoforms to be higher in the inhibited cells (Table 7.2). 
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Table 7.2 - Summary of ceramide results in SH-SY5Y cells. 

Control = uninhibited cells, CBE = GBA1 inhibited cells, NBDNJ = GBA2 inhibited cells and 
CBE & NBDNJ = GBA1 and GBA2 inhibited cells. Values displayed are the peak area of the 
ceramide of interest divided by the peak area of the internal standard for that sample. 

 

Ceramide Controls CBE 

 

NBDNJ CBE & 

NBDNJ 

C16:0-OH 0.37 ± 0.06 0.47 ± 0.03 0.53 ± 0.04 0.50 ± 0.10 

C18:0 0.44 ± 0.02 0.51 ± 0.03 0.58 ± 0.02 0.70 ± 0.12 

C18:0-OH 0.55 ± 0.04 0.66 ± 0.01 0.63 ± 0.05 0.75 ± 0.13 

C20:0  0.34 ± 0.03 0.37 ± 0.02 0.40 ± 0.01 0.48 ± 0.06 

C20:0-OH 0.89 ± 0.06 0.87 ± 0.08 0.70 ± 0.01 0.71 ± 0.17 

C20:1 0.006 ± 0.001 0.009 ± 0.002 0.012 ± 0.001 0.013 ± 0.003 

C24:0 46.7 ± 1.4 54.7 ± 2.2 55.8 ± 3.1 65.2 ± 9.1 

C24:1 82.2 ± 6.2 109.1 ± 2.7 109.1 ± 6.7 119.7 ± 16.9 

Total  131.5 ± 7.0 166.7 ± 3.9 167.8 ± 9.7 187.8 ± 26.5 
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Figure 7.4 - Example of a typical chromatogram of various ceramide species detected in 
the SH-SY5Y cells. 
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Figure 7.5 - Results of (a) C16:0-OH, (b) C18:0, (c) C18:0-OH, (d) C20:0, (e) C20:1 and (f) 
C20:0-OH ceramide analysis in SH-SY5Y cells.  

Control = uninhibited cells, CBE = GBA1 inhibited cells, NBDNJ = GBA2 inhibited cells and 
CBE & NBDNJ = GBA1 and GBA2 inhibited cells. Values displayed are the peak area of the 
ceramide of interest divided by the peak area of the internal standard for that sample. 
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Figure 7.6 - Results of (a) C24:0, (b) C24:1 and (c) total measured ceramide analysis in SH-
SY5Y cells.  

Control = uninhibited cells, CBE = GBA1 inhibited cells, NBDNJ = GBA2 inhibited cells and 
CBE & NBDNJ = GBA1 and GBA2 inhibited cells. Values displayed are the peak area of the 
ceramide of interest divided by the peak area of the internal standard for that sample. 

 

7.4 CONCLUSION 

In this chapter a (UP)LC-MS/MS method for the analysis of ceramide isoforms has 

been described.  Whilst clearly able to identify the individual species, further work is 

required to fully validate the method, i.e. to permit full quantification of the 

ceramide species of interest.  However, the approach applied here has permitted 

the evaluation of the relative amounts of various ceramide isoforms in SH-SY5Y cells 

as displayed in Figure 7.7.  

C24:0 and C24:1 ceramides are the predominant isoforms present in SH-SY5Y cells. 

Inhibition of GBA1 and/or GBA2 had no significant effect on the levels of any of the 

measureable ceramide isoforms. C24:0 and C24:1 are known to predominate in CNS 

and both have been shown to be pro-proliferative and have roles in autophagy and 

membrane fluidity [295].  
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Figure 7.7- The comparative levels of the ceramides detected in SH-SY5Y cells.  

The data includes all samples assayed i.e. GBA1 1 and/or GBA2 inhibited and uninhibited 
cells. C24 ceramides are the predominant isoform detected. 

 

Inhibition of neuronal GBA1, GBA2 or both had no statistically significant effect on 

the relative abundance of the ceramide isoforms studied.  However, the apparent 

trend for the relative amounts of some of the ceramides to increase in response to 

GBA1/GBA2 inhibition warrants further investigation.  Further refinement of the 

method with regards to quantification of the individual isoforms and increasing the 

sample size should allow more detailed evaluation of this apparent trend.  

Alternatively, In view of the number of metabolic pathways that are known to be 

involved in ceramide as illustrated in Figure 7.1, it is possible that inhibition of one 

enzyme, i.e. GBA1, results in an increase in flux through another enzyme thereby 

maintaining ceramide homeostasis. Whilst it remains to be documented as to 

whether perturbation of ceramide metabolism plays a pivotal role in the 

pathogenesis of GBA1 deficient states, consideration of the role of the accumulating 

substrate, GlcCer also deserves attention.   With this in mind, evaluation of the 

GlcCer to ceramide ratio has been suggested to be informative with regards to 

evaluating disease severity and treatment responsiveness in GD [301].  Further 

work will therefore include quantification of this GBA1 (and GBA2) substrate.   
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Chapter 8 General discussion 

8.1 Discussion 

Gaucher disease is the most common of the LSDs with an overall incidence of 

approximately 1:40,000 individuals, but it is much more common amongst 

individuals of Ashkenazi Jewish origin [29]. It is usually delineated into three types 

with the majority of patients having the “non-neuropathic” type I disease with 

fewer patients having the neuronopathic type II and type III forms [22]. However, 

neurological disease has been diagnosed in GD type I patients but with different 

signs, symptoms and severity compared to those associated with types II and III GD 

disease [31].  GD is an autosomal recessive disorder caused by mutations in the 

GBA1 gene located on the long arm of chromosome 1 (1q21). So far, more than 400 

mutations have been described in the GBA1 gene. [35]. Mutations lead to low or 

deficient levels of the lysosomal enzyme GBA1 (-glucocerebrosidase/-

glucosidase/glucosylceramidase (EC 3.2.1.45)). GBA1 is responsible for the 

penultimate step of the lysosomal degradation of glycosphingolipids i.e. the 

degradation of glucosylceramide to ceramide and glucose. The ceramide is further 

degraded by ceramidase to sphingosine and fatty acid. An alternative substrate, 

glucosylsphingosine, is also degraded by GBA1 into glucose and sphingosine [23]. 

GD displays vast phenotypic variations among patients including those with the 

same genotype and the discordant GD phenotypes observed in some monozygotic 

twins demonstrate the complexity of the disorder and supports a role for genetic 

modifiers [23, 90-93, 95-97].  

Although GD was first described in 1882 [22] and Parkinson’s disease in 1817 [138] 

it was only in 1996 that it was recognised that there was a relationship between the 

two [153]. GBA mutations are found in 5–10% of PD patients, making them 

numerically the most important risk factor for the disease identified to date [165] 

and GBA1 mutations are found at a higher frequency than any other known 

Parkinson's disease gene in the UK [166]. However, the phenotypic variations 

observed in GD also  applies to the situation where, although they have a 

significantly higher risk of doing so than the general population, the majority of GD 
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patients and carriers do not develop Parkinson’s disease [87, 170].  This therefore 

raises the possibility that other disease modifying factors, such as GBA2 activity, 

influence the ultimate clinical picture. 

The initial aim of this thesis was to establish enzyme assays for GBA1 and GBA2 and 

to record relative activities in a range of tissue types.  Subsequently these assays 

were used to document enzyme activities in GD and PD patient samples and a 

mouse model of GD.  Building on the findings, cellular models (GBA1/GBA2 

inhibition, oxidative stress, mitochondrial dysfunction) pertinent to studying GD/PD 

were used to further study the interplay between GBA1 and GBA2.   To begin to 

further evaluate the effects on enzyme expression, western blotting was performed 

whilst mass spectrometry was utilised to generate data relating to the downstream 

effects on ceramide levels of GBA1 or GBA2 inhibition.           

GBA1 and GBA2 Activities 

Maximal GBA1 activity was determined here by performing incubations with 

sodium taurocholate.  This well established approach is used in highly specialised 

diagnostic and research laboratories and exploits the fact that sodium taurocholate 

activates GBA1 and inhibits GBA2 [213].  For assessment of GBA2, NBDNJ was used 

as specific inhibitor of GBA2 [228].  Initially CBE was considered as an inhibitor of 

GBA1, thereby leaving only GBA2 activity.  However, it was found that it also had 

the capacity at high doses to inhibit GBA2, an observation that has now also been 

reported by others [113, 228].  This finding means that careful use of CBE is 

required to ensure only inhibition of GBA1 occurs in experimental situations.  

However, NBDNJ permitted calculation of GBA2 activity by performing two 

incubations, i.e. one in the absence of NBDNJ (total GBA activity) and one in the 

presence (activity minus GBA2); the difference therefore representing GBA2 

activity. 

Using this approach, marked tissue differences in GBA1 and GBA2 activities and 

their relative proportions were found.  GBA1 activity in fibroblasts was almost 

exclusively GBA1 whereas in brain GBA2 accounted for the majority of GBA activity.  

This predominance of GBA2 identified is supported by other studies that report 
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markedly increased gene expression of GBA2 in brain when compared to other 

tissue [112].  Taken together these findings may point to a particular role for GBA2 

within the CNS.   Expanding the study to cultured neural cells revealed that GBA1 

and GBA2 activities were greater in the neuronal (SH-SY5Y) cell line when compared 

to the astrocytoma (1321N1) cells. Such data might point to the suggestion that 

within the brain, it is the neuronal cells that account for the majority of detectable 

GBA activity.  However, further studies are now clearly required, including the use 

of primary cultures, to substantiate this suggestion.   

GBA1 in PD and dystonia 

Loss of brain GBA1 (activity and protein) has been reported in the post mortem 

brain of patients with idiopathic PD [192].  Since no GBA1 mutations could be 

detected, this raises the suggestion that the disease process itself might be 

responsible for the loss of enzyme.   To build on this observation, leucocyte GBA1 

activity was assessed here in patients with a diagnosis of PD or dystonia.  Almost 

13% of patients tested were found to have activities below the reference range.  

None of these patients were found to have GBA1 mutations.  Furthermore, neither 

L-dopa nor its major metabolite, 3-methyl-dopa were found to influence GBA1 

activity. Likewise, there was no evidence of an age-related decrease in GBA1 

activities. Taken together, these findings again point to the disease process 

somehow influencing GBA1 activity.  The finding of low activity peripheral to the 

brain might point to a mechanism, in a subset of patients, which, if identified, could 

provide further insight into the pathogenic mechanisms responsible for PD and 

dystonia. The findings reported in this study in leucocytes is substantiated by a 

finding, using dried blood spots, that also reports decreased GBA1 activity in iPD 

patients [246]. 

GBA1 and GBA2 Interactions 

Determination of GBA2 in GD leucocytes revealed a wide spectrum of activities.  

Further inspection revealed two distinct groups.  Thus, 54% of newly diagnosed GD 

patients had activities that were markedly elevated, the reminder having activities 

comparable to the control group.  To evaluate these observations further, GBA2 
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activity was assessed in the brain of a GBA1 deficient mouse model and was found 

to be significantly elevated. This increase in activity is also consistent with a report 

of a strong increase of GBA2 protein and mRNA expression in GBA1 deficient mice 

fibroblasts [310].   

Whilst there appears to be interplay between GBA1 and GBA2 in GBA1 knockout 

mice, GD patients appear to be a more heterogeneous group.  Clearly, further work 

now has to be undertaken as to whether GBA2 status is in any way correlated with 

GD disease severity and the risk of developing PD.   

How then might alterations in GBA2 influence the clinical picture when GBA1 

activity is compromised? GBA2 is a non-lysosomal beta-glucosidase capable of 

hydrolysing the same substrates as GBA1  [134]. Mutations in GBA2 have been 

identified in patients with ataxia [122, 123], hereditary spastic paraplegia [120, 121] 

and Marinesco-Sjögren syndrome [116].  While a number of disease states have 

now been attributed to mutations in GBA2, the biochemical roles for GBA2 are yet 

to be fully defined.  It has been proposed that ceramide formed via GBA1 is 

degraded to sphingosine and that generated by GBA2 utilised for sphingomyelin 

formation [108]. However, in view of the overlapping substrate specificity of GBA1 

and GBA2, it is possible that GBA2 may contribute to glucosylceramide clearance as 

illustrated in Figure 8.1 and therefore, GBA2 could be a modifying factor in GD and 

also in PD-GBA1. Under normal conditions GlcCer is metabolised in the lysosome by 

GBA1 and extra-lysosomally by GBA2 as shown in Figure 8.1(a). In GD (Figure 8.1 b) 

the accumulating GlcCer could be metabolised outside the lysosome which could 

lead to excessive or unwanted ceramide levels associated with increased GBA2 

activity or protein expression. In GD patients with naturally low or pharmaceutically 

inhibited GBA2 (Figure 8.1 C), GlcCer would accumulate not just in the lysosome but 

also in the cytosol. This would lead to even greater GlcCer levels and could 

potentially lead to lower than normal or required levels of ceramide. Supporting 

this, it has been reported that GBA2 knockout mice exhibit accumulation of brain 

glucosylceramide [109]. Concerning disease pathogenesis and the influence of 

GBA2,   GBA2 gene deletion has been reported to rescue the clinical phenotype in a 

GD mouse model [225].  However, the effects on the CNS, where GBA2 
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predominates, were not considered. Concerning this point, it is of note that one of 

the GD/PD patients studied here had undetectable GBA2 in his leucocytes (section 

4.4.2).  His clinical phenotype was of mild GD, consistent with the suggestion that 

loss of GBA2 activity may be beneficial in dictating GD severity [193].   However, he 

had marked early onset Parkinsonism.  This is only one case, but given the 

predominance of GBA2 in brain, further work is perhaps required to ascertain 

whether loss of GBA2 has a differential effect in the periphery when compared to 

the CNS. 

To study the interplay between GBA1 and GBA2 further, SH-SY5Y cells were used.  

Blockade of GBA1 was not found to be associated with an increase in GBA2 activity 

or protein expression.  Similarly, inhibition of GBA2 was not found to be associated 

with changes in GBA1.  Whilst these findings may not immediately lend support to a 

strong interaction between these two enzyme systems, this was a relatively acute 

study and hence factors such as significant substrate accumulation may not have 

occurred. Whilst substrate (GlcCer) was not studied here, levels of the product 

(ceramide) were assessed.  Despite not being a fully quantitative study, relative 

comparisons do not point to any significant differences following inhibition of GBA1, 

GBA2 or both.  This finding, if confirmed, could reflect the relatively acute nature of 

the study or point to involvement of alternative pathways to ensure ceramide levels 

are maintained. 
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Figure 8.1 - Different potential fates for GlcCer and its metabolite ceramide. 

(a) In unaffected cells GlcCer is metabolised in the lysosome by GBA 1 and the 
cytosol by GBA2. (b) In GD, GlcCer accumulates in the lysosome and is metabolised 
in the cytosol by GBA2 potentially leading to high levels of ceramides. (c) In GD cells, 
where GBA2 is naturally low or inhibited, GlcCer continues to accumulate. 
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Oxidative stress and Mitochondrial Function 

Oxidative stress and loss of mitochondrial function, particularly at the level of 

complex I, is associated with PD [252, 311].  Since, oxidative stress has been shown 

to modify and inhibit some enzymes [312, 313], and energy is required for protein 

(enzyme) synthesis and processing, cellular models of oxidative stress or complex I 

deficiency were created, i.e. with the aim of documenting effects upon GBA1 and 

GBA2 activities.  Whilst oxidative stress was associated with loss in cell viability, 

there were no apparent effects upon GBA1 or GBA2 activities.  Similarly inhibition 

of complex I was not associated with any effect upon GBA1 or GBA2 activities.  

Thus, these enzymes appear relatively robust, at least under the conditions 

employed, and this may point away from oxidative stress, or loss of mitochondrial 

function, being responsible for the decrease of GBA1 associated with idiopathic PD.   

Intriguingly, another lysosomal enzyme, total beta-hexosaminidase, was found to 

be significantly increased in activity in the neuronal cells exposed to H202.  Whilst 

the mechanism for this apparent up-regulation in activity is not known, It is of 

interest to note that total beta-hexosaminidase has been found to be significantly 

increased in CSF from PD patients [276].  Furthermore, it is has been proposed that 

this enzyme might be biomarker for PD [278].   

The findings also reported here that inhibition of GBA1, GBA2 or both enzymes does 

not influence cellular susceptibility to oxidative stress or mitochondrial content 

suggests that these enzymes may not directly contribute to these phenomena in PD. 

8.2 Conclusion 

Data presented here points to a particular role for GBA2 in the brain and suggests 

an interplay between this enzyme and GBA1.  This interaction appears variable in 

GD patients and raises the possibility that GBA2 activity could be a factor with 

regards to clinical phenotype.   

When considering idiopathic PD or dystonia, loss of GBA1 activity can be 

demonstrated in the leucocytes of some patients. These relatively accessible cells 
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could therefore be useful for future studies into disease mechanisms and for 

monitoring treatment efficacy. 

Loss of mitochondrial function or oxidative stress may not be a contributing factor 

to the loss of GBA1 activity associated with idiopathic PD. 

Inhibition of GBA1 or GBA2 activity does not appear to markedly influence ceramide 

status raising the possibility that alternative pathways are utilised to maintain 

cellular levels. 

8.3 Further Work 

Use differentiated SH-SY5Y cells and primary neuronal cultures to further evaluate 

the interaction between GBA1 and GBA2.  In addition, to account for glial-neuronal 

interactions, establish a co-culture system of astrocytes and neurons.  Use this 

system to consider in more detail the interplay between GBA1 and GBA2. 

Use of gene silencing techniques to further evaluate the effects of loss of GBA1 

and/or GBA2 activity in both neuronal and glial cells. 

Apply western blotting of GBA1 and GBA2 to GD/PD patient leucocytes and relate 

to enzyme activities. 

To fully develop a mass spectrometry method for the quantification of GlcCer and 

ceramides.  Use this methodology to document GlcCer and ceramides in leucocytes, 

plasma and, where possible, CSF of patients with GD and PD. 

Evaluate further the potential of total b-hexosaminidase to act as a biomarker for 

PD.  Activity of this enzyme to be determined in CSF, plasma and leucocytes from 

PD patients in addition in other neurodegenerative conditions and disease states 

associated with oxidative stress, e.g. involving immune response activation. 

Identify the effects in more detail of inhibition of GBA1 (+/- GBA2) on cellular 

dopamine metabolism.  Dopamine availability is ultimately compromised in PD and 

consequently identification of mechanistic link between lysosomal metabolism and 

dopamine could provide new insights into disease pathogenesis and novel 
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therapeutic targets.  Preliminary collaborative work has so far identified that in CBE 

treated SH-SY5Y cells, increased breakdown of dopamine may occur [314].   
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