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ABSTRACT 
Background and aim: Thermal discomfort often affects prosthesis wearers and could be addressed by 

increasing liner thermal conductivity. This note explores a liner made from thermally conductive 

silicone and two additional alternative liner designs. 

Technique: Thermally conductive silicone was used to create a conductive liner and a hybrid liner. 

Additionally, one with open elements was made. These were compared with a plain silicone liner and a 

no liner scenario. Scaled down liner prototypes were used due to the high-cost of the thermally 

conductive silicone. Temperature decay profiles were collected by attaching thermistors to a heated liner 

phantom and used to evaluate scenarios. 

Discussion: No scenario performed much better than the plain silicone liner. Implementation of passive 

solutions may be easier, but alternative liner materials are unlikely to affect dissipation enough to 

address thermal discomfort. Based on this work, future research efforts may be better spent developing 

active thermal discomfort solutions. 

 

 



 

 

CLINICAL RELEVANCE 
Thermal discomfort can increase the probability of skin damage, reduce prosthesis satisfaction and, 

ultimately, the quality of life. The prosthesis-wearing experience could be improved if thermal discomfort can 

be addressed by technological improvements. 

KEYWORDS 

Prosthetic design, prosthetics, skin stress, skin, lower limb prosthetics, heat discomfort, 

hyperhidrosis. 

BACKGROUND AND AIM 
Lower limb prosthesis wearers often report a moderate level of satisfaction with their artificial limbs; 

listing excess sweating, foul odors, and sounds as their top 3 annoyances.1 Thermal discomfort is highly 

prevalent among prosthesis wearers, affecting more than 53% of all amputees.2 In lower limb prosthesis 

wearers, even light exercise causes an increase in temperature of the skin–prosthesis interface3–7 that 

dissipates away slowly.3,5,7 Prosthesis impermeability means sweat cannot evaporate, and when this hot 

and sweaty interface is subjected to ambulation forces, skin damage can rapidly occur.6,8–11 

Components that aim to minimize or delay heat and sweat discomfort are emerging,12,13 but more studies 

are required to comprehensively determine their efficacy.14,15 Klute et al.16 suggested that increasing the 

thermal conductivity of interface components could improve heat transport and suggested that the liner 

material has a greater effect on skin temperature, in comparison to the socket component as it is thinner. 



 

 

This note explores potential liner design solutions in response to lower limb thermal discomfort. To 

evaluate potential designs, an easy-to-implement experimental method is described. Most importantly, 

by investigating a liner material with a higher thermal conductivity, this article progresses prosthetic 

thermal discomfort research. 

TECHNIQUE 

Thermally conductive and plain silicone were used to create liner scenarios called the mini 

thermal liner (MTL) which was made using thermally conductive silicone, the mini open 

liner (MOL) which was made using plain silicone, and a mini hybrid liner (MHL) which 

was made using both plain and thermal silicone (Figure 1(a)). These were compared to a 

mini ‘plain’ silicone liner (MPL) and a no-liner scenario. Commercially available 

elastomeric materials with thermal conductivities above 0.266 W/m°C, and Shore 00 

hardness between 0 and 60 were sourced (Table 1). Existing liners have conductivities lower 

than this16 and similar hardness. Silcotherm materials (ACC Silicones, UK) were the only 

candidates near these criteria, with SE2010 meeting them exactly. Only liquid samples of 

SE2010 could be sourced at a cost of nearly £70/50 mL. The high cost meant that mini liner 

designs were preferred over full-sized prototypes, as this was not believed to significantly 

alter the underlying thermodynamics. The prototypes were designed to be a simplified 

anatomical shape, to enable a realistic liner donning procedure. Prototypes were digitally 



 

 

designed, three-dimensional (3D) printed, and cast in the appropriate material (Table 1). 

SE2010 was difficult to mold, which meant that the MTL required minor surface repairs 

that added up to 1 mm to the thickness in those locations (Figure 1(a)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: a) Scaled-down liners were used to test the mini plain liner (MPL) made from standard silicone, mini open liner (MOL) 
featuring 30% surface perforations, mini hybrid liner (MHL) featuring 30% conductive silicone and 70% plain silicone, and mini 
thermal liner (MTL) which was 100% thermally conductive silicone and (b) a silicone tissue phantom was instrumented with 
thermistors and sealed in an acrylic box during experiments for each liner scenario. 

 



 

 

Table 1: Silcotherm materials are potential liner material candidates as they feature a high thermal conductivity and could 
be moulded. Only SE2010 was purchasable. DragonSkin 10 was also used for any low-conductivity parts, though the 
thermal conductivity of this is unknown. It is likely to be between 0.14-0.35 W/m˚C however 20. Materials in bold were 
used in this note. 

 
 

 

 

 

 

Due to the early stage of this project, a controlled silicone limb phantom was used to test the effect of each 

liner scenario on heat decay, rather than an amputee’s residual limb. This removed physiologically related 

temperature variations16 which would have been difficult to control. This ensured a consistent base thermal 

decay profile for each experiment. Microwave heating was used as it quickly heated the phantom volume, not 

just the surface, and has been used previously to heat limb phantoms.18 The homogeneity of the silicone 

phantom meant surface temperature was approximately the same over the entire surface. This differs from 

residual limbs, which have locational temperature differences due to anatomical features.4 This extra layer of 

control meant that the average of surface temperature data could be used in the analysis. Data were collected 

with an Arduino Mega 2560 (Arduino, Italy), as it supported 16 analog inputs, which were connected to 

sixteen 10-kΩ B57863S103F40 negative temperature coefficient (NTC) thermistors (Epcos, Germany). The 

Arduino was interfaced and programmed using LabVIEW 2015 (National Instruments, USA) and the 

LabVIEW LINX interface. Data were acquired at 2 Hz and stored on a connected laptop. This acquisition rate 

is above the thermoregulatory response time, which is an order of multiple seconds19 and lies within the range 

of other prosthesis temperature studies (0.125–4 Hz3,5,6). Thermistors were each connected to a standard 

Material Thermal conductivity  
(W/m˚C)  Shore 00 Hardness 

Silcotherm SE2010 1.7 50 

Silcotherm SE2020 2.0 62 

Silcotherm SE2021 2.0 62 

DragonSkin 10 Not provided 55 



 

 

bridge circuit, supplied by a 5-V direct current (DC) laboratory power supply and calibrated using the 

Steinhart–Hart equation, resulting in an accuracy of ± 0.2°C between 0°C and 70°C. Once collected, data were 

analyzed using MATLAB 2016a (Mathworks, USA). 

The phantom was irradiated for 45 s in a category D 700-W microwave and eight thermistors were attached 

using Kapton tape (DuPont USA) and evenly spaced around the perimeter of the phantom, with four on the 

upper and lower halves respectively (Figure 1(b)). Room temperature liners were rolled over the thermistors 

and phantom, and then placed into an acrylic box (Figure 1(b)), and data were collected for 35 min. The time 

from removing the phantom, post-heating, to donning the liners was under 30 s. Thermal grease was not 

applied to maintain similarity with the natural prosthesis interface. Eight thermistors recorded ambient 

conditions inside the box, and each scenario was repeated seven times to enable easy recognition of 

anomalous data, though the number of repetitions is arbitrary. After microwaving, the phantom was much 

hotter (>50°C) than skin. Thus, when the phantom registered 33.0°C ± 0.1°C, the time was recoded as t = 0, to 

represent the highest temperature found post-exercise for transtibial amputees, in three studies3,5,6 to the 

nearest integer. The average of phantom surface and ambient data was calculated (one ambient thermistor 

broke and was excluded). Despite the airtight chamber, some coupling existed between ambient and phantom 

surface data. 

𝐾 = 	 (𝑇& − 𝑇&())
)+,

&-,

 

To remove this coupling, the difference between surface and ambient temperature data was 

calculated. Equation (1) was used to find the surface temperature decay, P, after a noise reducing 60-s moving 

average filter was applied (filter window = 120 samples at a collection rate of 2 Hz). This metric shows 

changes in phantom surface temperature in 1 min during the experiment. 



 

 

RESULTS AND DISCUSSION 

First-degree polynomial correlations were extracted from the data after applying equation 

(1). The combined data sets make it possible to see the effect of the liners on phantom 

surface temperature decay (Figure 2). The no-liner scenario demonstrated the greatest 

decay per minute, per °C of ambient-phantom temperature difference. 

 

With ambient coupling removed, the MHL had superior dissipation performance over the 

MPL; however, only the MOL had a gradient close to the no-liner scenario. To 

Figure 2: Data from all of the scenarios were plotted, and the gradient of each was subsequently extracted. 



 

 

contextualize the data in Table 2, if the MOL was used in an ambient temperature of 20°C, 

with a phantom surface temperature of 30°C, the phantom surface could decrease by 

0.6°C/min. Open elements were the most effective at increasing heat decay; however, an 

open liner design with large open elements, such as those on the MOL, may reduce 

suspension and durability.20,21 Additionally, although there are liners on the market with 

small perforations,13 large open elements may also introduce high shear stresses that could 

harm skin. 

Table 2: The dissipation gradient for each scenario’s correlation is presented. All fits possess a high coefficient of 
determination (R2) and evenly distributed residual plots. 
 

 
Increased thermal conductivity has been suggested as a way to improve heat dissipation in 

liners;16 this study indicates that it may not effectively minimize or prevent thermal 

discomfort for lower limb prosthesis wearers. There are caveats to this conclusion: surface 

repairs of the MTL may have affected heat dissipation, but as these were minor and 

isolated, this is unlikely to significantly affect this finding. The applied technique also did 

not include a simulated socket layer which is an interface layer with a low thermal 

conductivity. However, they are thinner than liner components and will, therefore, have a 

smaller impact on heat dissipation in comparison to liners.16The thermodynamic properties 

 No Liner MOL MPL MHL MTL 
Dissipation per minute, per ΔT -0.07 -0.06 -0.05 -0.05 -0.05 
R2 0.97 0.97 0.99 0.98 0.98 



 

 

of the phantom may also differ from human tissue, but it provided a consistent heat decay 

profile necessary for evaluation. Finally, as this experiment was informed by studies that 

only recruited transtibial amputees,3,5,6 an appropriate level of caution must be applied 

when extrapolating findings to other lower limb amputee populations. This highlights an 

important reminder that future thermal discomfort studies should actively seek to recruit 

participants with varying levels of amputations, including both unilateral and bilateral 

amputees to broaden understanding of the phenomenon. To conclude, this note suggests 

that in scaled-down liner scenarios, passive heat transport solutions are unlikely to improve 

heat decay at a simulated prosthesis interface. Unless the thermal conductivity of 

elastomers can be increased beyond the elastomers used here, or suspension liners are 

radically rethought, active solutions used in the study of Han et al.22 and Ghoseiri et 

al.23 may be a more promising avenue to mitigate and prevent thermal discomfort for 

prosthesis wearers. 

KEY POINTS 

• Increasing thermal conductivity of liners was suggested by Klute et al.16 as a 

potential solution to prosthesis heat and sweat discomfort. 

• The only viable commercially available material found had a thermal conductivity 

of 1.7 W/m°C and a Shore 00 hardness of 50. 



 

 

• Experiments revealed that of the four scaled-down liner scenarios proposed, only 

the open liner notably improved heat decay but may be impractical due to 

mechanical and durability issues. 

• Active cooling solutions may present a more promising research direction in the 

future, in favor of increasing the thermal conductivity of prosthetic components. 
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