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ABSTRACT 

Ternary GaAsP nanowires (NWs) have gained great attention due to their structure-induced novel properties and band 

gap that can cover the working wavelength from green to infrared. However, the growth and hence applications of self-

catalyzed GaAsP NWs are troubled by the difficulties in controlling P and the complexities in growing ternary NWs. In 

this work, self-catalyzed core-shell GaAsP NWs were successfully grown and demonstrated almost stacking-fault-free 

zinc blend crystal structure. By using these core-shell GaAsP NWs, single NW solar cells have been fabricated and a 

single NW world record efficiency of 10.2% has been achieved. Those NWs also demonstrated their potential 

application in water splitting. A wafer-scale solar-to-hydrogen conversion efficiency of 0.5% has been achieved despite 

the low surface coverage. These results open up new perspectives for integrating III−V nanowire photovoltaics on a 

silicon platform by using self-catalyzed GaAsP core−shell nanowires. 
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1. INTRODUCTION

Nanowires (NWs) with a one-dimensional (1D) columnar shape have better functionality, superior performance, higher 

integration ability and lower cost.1-4 Recently, they have gained great attention and been envisioned as a next-generation 

technology to solve limitations in traditional thin film epitaxial technique. For example, the requirement of lattice and 

thermal expansion coefficient can be greatly alleviated, giving more freedom in the material combination and the 

substrate choice. 5-11 III−Vs and Si can thus be monolithically integrated, which is a goal pursued for more than 40 years. 

In addition, the NW geometry can give new theories for the band structure engineering and hence the device structure 

design.12 For example, strain-free quantum dots (QDs) can be grown by stacking the material axially.13 Therefore, QDs 

can be fabricated with a wider range of materials as compared with the traditional Stranski–Krastanow QDs.14-17  

Among all the III−V compound semiconductors, GaAsP is one of the most promising choices for photovoltaics, because 

its band gap can cover wavelengths ranging from green (550 nm) to near infrared (860 nm) at room temperature. It has 

been predicted that a two-junction tandem solar cell(SC), consisting of a 1.7 eV GaAsP NW junction and a 1.1 eV Si 

junction, has a theoretical efficiency of 33.8% at 1 sun AM1.5G and 42.3% under 500 suns AM1.5D concentration.18 If 

this 1.7/1.1 eV two-junction device is used in water splitting, it is potential to achieve an efficiency of 27.0%.19  

Despite all these advantages, the development of GaAsP NWs remains stagnant, due to the great challenges in 

controlling P and the difference in the properties of As and P. For quite a long time, GaAsP research was carried out via 

vapour-liquid-solid (VLS) growth mode with the help of Au catalyst that could cause serious contamination and hence 

degrade the performance of devices. In this work, we developed the self-catalyzed GaAsP NW growth technique and 

achieved high-quality core-shell NWs on both un-patterned and patterned Si substrates. The application of those NWs 

were demonstrated by making single NW solar cells and large-area water splitting cells.   

2. EXPERIMENT

The GaAsP NWs were grown on 380-μm-thick p-doped silicon (111) substrates by a solid-source molecular beam 

epitaxy. The core NWs were grown by Ga-catalyzed vapor-liquid-solid (VLS) growth mode.20  If not specially noted, for 

the growth on un-patterned substrates, the beam equivalent pressures of Ga, III/V ratio, P percentage in GaAsP NWs in 
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the flux were 8.72×10-8 Torr, 40~50 and 12%, respectively. The substrate temperature was kept at ~640°C as measured 

by a pyrometer for the growth of core GaAsP nanowires. After the growth of the nanowire cores, the Ga droplets were 

crystallized into GaAsP by closing the Ga shutter and keeping As and P fluxes. Subsequently, the shell growth was 

carried out by reopening the Ga flux at the substrate temperatures ~500°C for 1 hour with As and P fluxes at 2.83×10−6 

and 1.53×10−6 Torr, respectively. The patterned growth was on Si(111) substrates with the SiO2 patterned prepared using 

nanoimprint lithography. The NWs were grown at a temperature ∼630 °C for 45 min with a Ga flux of 1.6 × 10−7 Torr, 

V/III flux ratios between 3 and 20, and a P/(P + As) flux ratio of 12%. Further details can be found elsewhere.21-23 The 

NW morphology was measured by a Zeiss XB 1540 focus ion beam/scanning electron microscopes (FIB/SEM) system. 

The transmission electron microscope (TEM) analysis was performed on JEOL 2100 and JEOL ARM200F microscopes 

operating at 200 kV. Compositional analysis using energy-dispersive X-ray spectrometry (EDX) was performed using 

Oxford Instruments 40 mm2 SDD EDX detectors. 

3. RESULTS AND DISCUSSION 

Fig.1 shows the NW tile view and side view of the core-only NWs grown on unpatterned Si substrates. As can be seen, 

GaAsP NWs are highly uniform in length and diameter. As confirmed in Fig.1c, the length and diameter histogram over 

400 NWs show the narrow distribution. The average NW length (X̅), root-mean-square deviation (RMSD) and 

uniformity index (UI) are used to describe the NW length information and are defined by the following equations: 

                                                                                    (1) 

                                                             (2) 

                                                             (3) 
where the n is the number of NWs that were used in the summation. According to the calculation, this sample has an X̅, 

RMSD and UI of 3.879um, 256nm and 93.4%, respectively. This good NW length uniformity is highly favorable for 

NW device fabrication.  

  

 
Figure 1. (a) 35° tilted view and (b) length and diameter summation histogram (c) diameter summation histogram of GaAsP NWs. 

 

The incorporation feature of the P was investigated by comparing it with that of the As. The P/(P+As) in the NW as a 

function of that in the flux was shown in Figure 2a. As can be seen, by adjusting the P/As flux ratio, the GaAsP NWs 

with a P content ranging from 10% to 75% can be achieved. Moreover, the incorporation coefficient of P was found to 

be about three times as big as that of the As. This is in stark contrast to the thin film planar epitaxial growth by gas-

source or solid-source MBE,24,25 in which the As has much higher incorporation coefficient compared with that of P. 

This is because that the incorporation ratio of P/As in the thin film growth is governed by the physical properties; while 

that of the NW growth is controlled by the chemical properties. As illustrated in Figure 2b, in the VS epitaxial growth 

mode, the growth is under group V rich conditions and the growth rate is controlled by group III, such as Ga. If the 

group V adatoms are unable to meet the group III adatoms, they cannot incorporate into the lattice and will desorb from 

the substrate surface back into the vapor. As adatoms have a larger sticking coefficient and hence longer surface lifetime 

and migration length than those of P adatoms, which increase the As adatoms’ chance of meeting Ga adatoms and 

incorporating into the lattice. Thus, As incorporation coefficient is higher.  By contrast, NWs are grown via the VLS 

growth mode, which is under a group III rich environment (Figure 2c). The growth is group V element limited, and the 
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incorporation ratio of P/As is nucleation determined. P has much stronger chemical potential, which endows it higher 

incorporation efficiency. 

Figure 2. (a) P content as a function of P/(P + As) beam flux ratio during GaAsP growth.  Red dots are P content in NWs as a function 

of P/(P + As) beam flux ratio. The blue and pink dots show the planar GaAsP film growth by solid-source24
 and gas-source MBE,25

 

respectively. Schematic illustration of the MBE growth model for (b) the thin film via vapor−solid epitaxial growth mode and (c) the 

NW via vapor−liquid−solid mode.

Figure. 3. TEM images of a GaAsP NW. the inset is the electron diffraction pattern 

The crystal quality of the NWs was checked by TEM measurement. As can be seen in Figure 3, those NWs are uniform 

in diameter along the NW length. At the tip of the NW, there is a droplet, which shows that those NWs were grown by 

Ga-catalyzed VLS mode. For the VLS growth mode, the droplet size decides the NW diameter if there is no VS lateral 

sidewall growth. Therefore, the homogeneous diameter along the NW length reflects that the Ga droplet size was 

constant during the growth. This further reveals the well-balanced replenishment and consumption of the Ga in the 

droplets under this V/III ratio. The body of the NW is almost defect-free with only some occasional twin planes. Those 

NWs have a ZB crystal structure, as confirmed by the electron diffraction pattern shown in the insets. Defects are present 

at the very tip and very bottom parts. The bottom defects could be due to the slight fluctuation of growth environment at 

the initial stage. The defects at the tip should be due to the change of growth parameters during the termination of the 

NW growth. 

With these high-quality GaAsP core NWs, GaAs QDs was inserted (Fig. 4a and b). By carefully control the chemical 

potential of the droplet, pure-ZB GaAs dots with abrupt interfaces have been achieved (Fig. 4c). Without any surface 

protection layer, an exciton emission line width as narrow as 130 μeV has been observed (Fig. 4d), which demonstrated 

great potential in the field of quantum information and nano-photonics. 
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Figure 4. (a) Low-magnification TEM image of a GaAs QD imbedded in a GaAsP nanowire. (b) EDX mapping of the QD region 

of the nanowire, which shows a higher content of As and negligible content of P compared with the rest of the nanowire. (c) False-

colored high-magnification angular dark-field image and (d) the μ-PL spectra of a GaAs QD. 

Figure 5. (a) 25° tilted SEM image, (b) Conventional ADF-TEM image and (c) High-magnification annular dark field image of core-

shell GaAsP NWs. The inset in (a) is zoom in SEM image of a NW tip and the inset in (b) is electron diffraction pattern. 

On the core NW, a layer of shell with the same composition was grown. As can be seen in Figure 5a, the NWs have very 

smooth on side facets and highly regular tip. The same as the core NW, the defects are mainly concentrated at the very 

tip and bottom part, leaving the body part almost defect free. As confirmed by the TEM measurement shown in Figure 

5b and c, the segment presented is completely defect-free. The shell has the zinc blend crystal structure which is copied 

from the core NW. 

In the cross section of the core-shell GaAsP NWs shown in Figure 6a, we observed the compositional phase segregation, 

shown as P-rich bands along the six <112> directions in the cross-section. They initiate at the outer corners of the core 

and extend radially to reach the outer vertices of the shell (Figure 6b). This phenomenon can be explained by the 

curvature-induced high surface chemical potential at the small {112} facets, which drives away the longer diffusion 

length element (As) more efficiently (Figure 6c). Moreover, the six P-rich bands can be divided into two groups with 

different P content. Due to the alternating arrangement of the two types of bands about the NW axis, they are found to 

have a quasi-3-fold symmetry. The three bands with higher P content are along <112>A directions and those with a 

lower P content are along <112>B. This polarity-driven symmetry is proposed to be due to the stronger (weaker) 

bonding energy of {112}B ({112}A) facets with the group-V adatoms, which can reduce (increase) the diffusion length 

difference between As and P (Figure 6d). These results can help understanding the underlining mechanism of the 

compositional phase segregation in the multicomponent shell growth, which is beneficial for the growth condition 

optimization. Moreover, it can also provide valuable information in developing novel NW structure by using the 

compositional phase segregation, such as growing nanosheets into the NW. 
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Figure 6. (a) ADF-STEM image of the GaAsP core-shell NW cross-section. (b) ADF-STEM image at the centre of the NW cross-

section. (c) and (d) Illustrations of the phase segregation mechanism happened in the shell made of III-V-V materials. 

Figure 7. SEM image of the (a) core and (b) core-shell GaAsP NW arrays (tilt angle = 25°), (c) room-temperature photoluminescence 

of the core-shell GaAsP NW arrays. 

To achieve better position control of the NWs, patterned Si substrates were used. However, the growth on patterned Si 

substrates are challenging. We found that the oxide inside the patterned holes is the key factor that causing the long-term 

low-repeatability issue. Even with HF solution clean, the hole is still not clean enough. To remove the oxide inside the 

holes, an in-situ thermal cleaning is needed prior to the NW growth by heating the substrates up to ~900 oC for 20 

minutes. With this step, holes can be fully open by the effective oxide removal. However, the too large oxide-free area 

inside the holes can cause fast Ga nucleation and hence hinder the formation of Ga droplets. To initiate the NW growth 

after the hole cleaning, a Ga pre-deposition step was demonstrated to be critical to form Ga droplet. As can be seen in 

Figure 7a, with the hole cleaning step and Ga pre-deposition technique, the VLS growth of NWs with uniform 

morphology has been achieved. The core-shell GaAsP NWs on patterned Si substrates (Figure 7b) have good room-

temperature emission with peak intensity at ~740 nm, which exhibits their good crystal quality and demonstrates their 

potential application in photovoltaics, visible emitters, and photonic crystals. These results open up new perspectives for 

integrating position-controlled III−V NW photonic and electronic structures on a Si platform. 

Single-NW Solar cells (SNSCs) were made by fabricating p–i–n core-shell GaAsP nanowires. The surface of the SNSC 

was covered by a shell of ~10nm highly n-doped InGaP to passivate the surface states. The SNSCs were characterized 

individually by measuring current-voltage curves in the dark and under AM1.5G illumination. The key parameters of the 

performance are show in Fig.8 and table 1. A new world record efficiency of 10.2% [2] has been achieved for single NW 

solar cells, which demonstrates the feasibility of making high-efficiency GaAsP NW solar cells. 
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Figure. 8  (a) I-V characteristics under dark (blue dots) and AM1.5G illuminated conditions (red dots), (b) P–V Characterization, 

(c) External quantum efficiency (EQE) versus photon energy  (d) A scanning electron microscope image of the single NW solar cell  

Table I. Key performance parameters of single NW solar cells 

Efficiency (%) I
SC

 (mA cm
−2

) V
OC

 (V) FF Ideality factor 

10.2 14.7 0.9 0.77 2.0 

Figure 9. (a) PEC water splitting device structure for GaAsP nanowires grown on Si substrates. (b) Current density potential 

characteristics of GaAsP homojunction nanowires photocathode. 

The application of the GaAsP NWs in the water splitting has also been investigated and results are shown in Figure 9. A 

wafer-scale solar-to-hydrogen conversion efficiency of 0.5% has been achieved for the GaAsP NW photocathode with a 

low surface coverage of ~1.8 × 108 cm−2. This STH conversion efficiency is higher than the values previously published 

for III−V nanowire photoelectrodes fabricated through self-catalyzed approach on a large-scale and could be significantly 

increased by further improving the density and material quality of GaAsP nanowires. This study paves the way for the 

development of low-cost and high-efficiency 1.7 eV/1.1 eV GaAsP/silicon tandem PEC cells. 

4. CONCLUSION

The growth of self-catalyzed high-quality core-shell GaAsP NWs have been achieved on both patterned and un-

patterned Si substrates. NWs are highly uniform in morphology with almost stacking-fault-free zinc-blend crystal 
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structure. The ternary III-V-V NW growth mechanism and a special polarity-driven quasi-3-fold composition symmetry 

phenomenon were also investigated in detail. Their potential application on photovoltaic has been demonstrated by 

single NW solar cells with a world record efficiency exceeding 10% and water splitting devices with a wafer-scale solar-

to-hydrogen conversion efficiency of 0.5%. Those results provide valuable information in NW growth mechanism and 

show the good perspective for photovoltaic devices. 
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