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Summary Statement 
 
Retinal microcystoid spaces are a novel phenotype of Macular Telangiectasia 

(MacTel) type 2 on optical coherence tomography. It presents a distinct form of 

cystoid macular oedema with the pathobiology suggesting possible Müller cell 

involvement in this disorder. 
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Abstract 
 
 
Purpose 
 
To investigate retinal microcystoid spaces in macular telangiectasia (MacTel) type 2 
with spectral-domain optical coherence tomography. 
 
Methods 
 
Retrospective review of 135 patients enrolled in the MacTel Natural History 
Observation and Registry Study at Moorfields Eye Hospital, United Kingdom.  
172 eyes from 86 patients who had a comparable scan protocol of at least 30 µm 
interval were included for analysis. Retinal microcystoid spaces were identified, 
segmented and metrics analyzed.  
 
Results 
 
From 172 eyes of 86 patients, microcystoid spaces were found in 11 eyes (6.4%) from 
8 patients (9.3%). The mean number of microcystoid spaces per eye was 12.9 ± 18.2. 
The majority were located in the inner nuclear layer. The inferonasal quadrant of the 
macula was the least commonly affected region. Microcystoid spaces were distributed 
entirely within the assumed MacTel area on blue light reflectance imaging in all but 
two eyes (4 of 142 microcysts). Median diameter of the microcystoid spaces was 31 
µm (range 15 to 80 µm). 
 
Conclusion 
 
Microcystoid spaces as a phenotype of MacTel should be considered in the 
differentials for microcystic oedema. Understanding the pathogenesis of these lesions 
may provide further insight into the role of Müller cell dysfunction in this disorder. 
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Introduction 
 

Macular telangiectasia type 2 (MacTel) is a rare degenerative disorder of the central 

retina. The disease causes progressive central vision loss and is typically diagnosed in 

patients between the age of fifty to sixty, who describe problems with reading vision 

often for years prior to measurable visual acuity changes.1–3  

 

The exact cause of the disease remains unclear. Although the early description of the 

disease by Gass and Oyakawa suggested an underlying vascular aetiology,4 it is now 

thought to be more consistent with a neurodegenerative process. Recent 

histopathological studies have demonstrated a striking depletion of Müller cells in the 

central retina in the same distribution as macular pigment reduction, pointing towards 

neuroglial loss as critical in this disorder, leading to structural and functional 

impairment in cone and rod photoreceptors.5–8  

 

In recent years, optical coherence tomography imaging (OCT) has become an 

increasingly valuable diagnostic tool, providing further phenotyping of the disease. 

Characteristic findings include hyporeflective spaces of the inner and outer 

neurosensory retina, ellipsoid zone (EZ) disruption, hyperreflective lesions from 

pigment migration, as well as foveal atrophy in late stage disease.9–13 Typically the 

central macular retinal thickness remains normal or may be reduced despite presence 

of angiographic leakage.14 

 

In addition to these imaging findings, optical coherence tomography angiography 

(OCTA) has also recently identified the presence of small retinal hyporeflective 

spaces in MacTel patients. Termed ‘microcavitations’, these spaces were defined as 
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an optically empty space less than 250 µm in dimension and were frequently 

distributed around right-angle venules but were also present in areas without obvious 

vascular changes on OCTA.15 The microcavitations were mainly located in the inner 

retina, predominantly in the ganglion cell layer (GCL), inner nuclear layer (INL) as 

well as Henle’s fibre layer. Similar microcavitations, described with varying 

terminology by others, have also been identified in a case report using light 

microscopy 16, as well as on adaptive optics scanning laser ophthalmoscopy (AOSLO) 

(meeting abstract).17 

 

Aside from MacTel, microcystoid changes of the macula have been described in a 

variety of hereditary or acquired optic neuropathies and predominantly occur in the 

INL on OCT.18–21 These lesions are not observed in normal eyes and might correspond 

to the microcystoid spaces seen in MacTel. The presence of microcystoid spaces in 

patients with MacTel type 2 may further provide clues to the pathogenesis of the 

disorder. In this study, we present a quantitative analysis of the metrics and 

distribution of microcystoid spaces with spectral-domain OCT (SD-OCT).  
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Methods 

Study Design 

This was a retrospective review of the OCT images of 135 patients diagnosed with 

MacTel type 2 at Moorfields Eye Hospital, London UK and who were enrolled in the 

MacTel Natural History Observation and Registry study. All patients had fundoscopy, 

SD-OCT, blue light reflectance (BLR) imaging, dual wavelength autofluorescence for 

macular pigment optical density (MPOD) mapping and fluorescein angiography as 

part of the study protocol.22 Only patients who had SD-OCT volume scans with a 

minimum of 30 µm interslice distance were included for analysis. Exclusion criteria 

were any clinical or electrodiagnostic evidence of concomitant optic nerve disease, 

diabetic retinopathy, and poor imaging quality. Retrospective OCT data from eight 

eyes of four healthy controls were also included for comparative purposes. Two 

graders (PM and MO), masked to patient identifying details and disease status, graded 

all scans meeting eligibility criteria for the presence of visible retinal microcystoid 

spaces. Macular microcystoid spaces were defined in this study as small 

hyporeflective spaces that were non-contiguous with typical larger inner or outer 

retinal cavitations. The terminology ‘microcystoid space’ is preferred here as it 

applies to cystoid-like changes seen on imaging. The study was approved by the local 

institutional review board and conducted according to the tenets of the Declaration of 

Helsinki. Informed consent was obtained from all study participants.  

 

OCT and BLR Imaging and Image Analysis 

OCT imaging was acquired using Heidelberg Spectralis® HRA2 system (Heidelberg 

Engineering, Heidelberg, Germany). The scan pattern for patients was between 3.8 x 

2.5 x 1.9 mm to 4.4 x 2.9 x 1.9 mm. B-scans ranged from 49 to 261 scans per volume, 
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with imaging averaging for 8 – 12 scans and an interslice distance of 11-30 µm. The 

scan pattern for all healthy controls was raster lines 4.5 × 3.0 × 1.9 mm, 261 B-Scans, 

interslice distance of 11 µm, averaging 20 scans using the automatic averaging and 

tracking feature.  

In patients where microcystoid spaces were visually identified, segmentation of all 

hyporeflective cystoid spaces present in that scan was performed using image-

processing software AMIRA 6.1 (Materials & Structural Analysis, Merignac, France). 

Microcystoid spaces were segmented through thresholding of pixel intensity. A 

threshold from 0 to 50 grey-scale units (scale 0 to 255) showed reasonably well- 

separated lesions, further identifying smaller microcystoid spaces that were not visible 

initially on manual identification. Image artifact from vessel shadowing was 

excluded. Microcystoid volumes were also measured. Based on a presumed sphere 

model, data for diameter and surface area were calculated. Average central foveal 

thickness was recorded using the central area on the Early Treatment Diabetic 

Retinopathy Study grid area on Heidelberg Eye Explorer viewing module software.  

 

In patients with microcystoid lesions, the location of each lesion in relation to 

individual retinal layers was recorded on the B-scans according to the International 

Nomenclature for OCT consensus.23 The spatial distribution of the microcystoid 

spaces was also compared to the theoretical MacTel area as seen on BLR imaging, 

which has been shown to correspond to the area of macular pigment loss as measured 

by dual wavelength autofluorescence24 and on histology.6 For this purpose, open 

source imaging software ImageJ (v1.467 (ref - Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2016) 

was used to overlay the patient’s scanning laser ophthalmoscopy image (SLO) using 
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the metric of the SLO image and transferred onto the aligned BLR image with Adobe 

Photoshop CC 2017 (Adobe Systems, San José, United States). Finally, identified 

microcystoid spaces were exported and overlaid on the patient’s BLR images with 

AMIRA software to analyse the distribution with respect to the MacTel area and the 

distribution in quadrants centred on the fovea.  

 

Results 

 

One hundred and thirty-five patients were enrolled at Moorfields Eye Hospital in the 

MacTel Natural History Observation and Registry study. Of these, 86 (64%) patients 

or 172 eyes had at least one volume scan meeting the 30 µm minimum interslice 

inclusion criteria. In total, 11 eyes (6.4% of eligible eyes) from 8 patients were 

identified as having microcystoid spaces as assessed by two masked graders. The 

demographic and clinical details of the patients are described in Table 1. Mean age of 

the patients was 53.1 years (range 37 – 71 years) and mean visual acuity was 0.16 

LogMAR units (range 0.0 – 0.78 LogMAR units; equivalent to 20/28 Snellen acuity). 

Average central foveal thickness using the ETDRS grid was normal in all eyes (mean 

249 ± 22 µm). None of the patients had pigment plaques or evidence of subretinal 

neovascularisation. One of the patients had highly asymmetric disease with typical 

BLR and macular pigment changes in the affected eye but no clinical or imaging 

features of MacTel in the fellow eye. 

 

When present, the mean number of microcystoid spaces per eye was 12.9 ± 18.2 

(range 1 to 61 microcystoid spaces) with a total 142 microcystoid spaces across all 11 

eyes. None of the control eyes (n = 8) had microcystoid spaces on OCT imaging 
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either by manual grading with two masked graders or with image processing 

segmentation using the same threshold criteria. Median volume of the microcystoid 

spaces was 15,146 µm3 (range 1,829 to 27,0724 µm3) (Figure 1), median surface area 

was 2,960 µm3 (range 723 to 20,238 µm2) and median diameter was 31 µm (range 15 

to 80 µm). Eighty-three percent of the assessed lesions had a volume between 16,000 

and 44,000 µm3. 

 

Location of the Microcystoid Spaces within Retinal Layers  

Each microcystoid space was assessed according to the predominant retinal layer or 

zone it was located within on B-scan segmentation. The majority were located within 

the INL (42%, n = 59) followed by the outer plexiform layer (OPL) and GCL (Figure 

2 and 3). No microcystoid spaces were found posterior to the external limiting 

membrane.  

 

Distribution of Microcystoid Spaces 

Microcystoid spaces were seen in all quadrants of the macula however the infero-

nasal quadrant was the least common quadrant (inferonasal: 15% versus superonasal: 

35%). There was no difference across the vertical meridian with an equal number of 

microcystoid spaces in the temporal (50%, n = 71) as compared to the nasal half of 

the macula. There was no direct correlation between the location of microcystoid 

spaces and the areas of early hyperfluorescence on fundus fluorescein angiogram.  

 

The microcystoid spaces were distributed within the parafoveal region of the macula 

(Figures 3 and 4). The spatial location of the microcystoid spaces was analysed and 

compared to the assumed MacTel area for each patient as defined by the area of 
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increased reflectance on BLR imaging. In 9 of 11 eyes (82 %) the microcystoid 

spaces were all entirely contained within the MacTel area. In one eye, the peripheral 

microcystoid spaces (2 of 61 lesions in that eye) were located temporally, slightly 

outside the MacTel area (Figure 4). In the second eye, the peripheral lesions (2 of 7 

microcystoid spaces in that eye) were in the inferonasal area of the perifoveal region 

where there was no increased BLR. 

 

Discussion 

This paper confirms and extends previously published reports15,16 of the presence of 

macular microcystoid spaces in a separate patient cohort with MacTel type 2 and the 

findings are using a different imaging modality (SD-OCT rather than OCTA). 

Furthermore, this study provides a novel quantitative analysis and a detailed 

examination of the distribution of the microcystoid spaces with respect to the so-

called MacTel area, defined here as the area of increased parafoveal BLR. We 

demonstrate that the microcystoid spaces were concentrated in the INL and OPL, 

occurring in an oval parafoveal region that largely correlated with the MacTel area. 

Interestingly, a small number of the lesions extended slightly beyond this hypothetical 

MacTel area boundary. This might point towards MacTel as a more extensive macular 

disease than previously thought. It may also suggest that these microcystoid spaces 

can show up earlier than macular pigment changes as seen in the patient with 

microcystoid spaces in the inferonasal area where there was sparing on BLR and 

macular pigment optical density mapping. However, it is also possible that these more 

peripheral microcystoid spaces are different from the ones within the MacTel area and 

may even be present in normal aged eyes. We did not see them however in our normal 



	   11	  

healthy controls or in the fellow unaffected eye of the patient with asymmetric 

disease.  

 

Microcystic cavities in MacTel type 2 were first described in a histopathological case 

report in 1980, when the disease was still described as ‘parafoveal retinal 

telangiectasis’.16 Using light and electron microscopy, the authors examined an eye 

with features of MacTel type 2 which had undergone exenteration, and found 

‘microcystic changes’ in the temporal macula. Microcystic cavities were 

predominantly noted in the INL and OPL, and were associated with thickening of the 

temporal macula up to 3mm distance from the fovea. Although histology and OCT 

are difficult to compare, the retinal layer location and distribution of these 

‘microcystic cavities’ are similar to the microcystoid spaces described on retinal 

imaging in our study and also reported by Spaide and colleagues.15 

 

On microscopy the microcystic cavities reported by Green et al. were not empty 

spaces but rather contained lightly-staining fibrillar material.16 Microcystic cavities 

however were not evident in more recent histological studies.5,6 This may be due to 

differences in disease stage of the patients, which were more advanced in these latter 

reports. Larger cystoid cavities have been identified but were structurally empty on 

haematoxylin-eosin staining.  

 

It is also possible that the microcystoid spaces seen here on OCT correspond to the 

inner retinal ‘spherical microcysts’ in MacTel type 2 on AOSLO (ARVO abstract).17 

The microcysts described ranged from 30 to 100 µm in size and were all located 

within the inner retina, although detail of specific retinal layer involvement was not 



	   12	  

provided. Interestingly, the authors found spherical microcysts in 7 of 14 patients, 

also with early stage disease. Assuming these are similar entities, they found a much 

higher prevalence. This may be due to differences in the resolution of the imaging 

method, with our cohort including patients with minimum 30 µm interval scans, and 

smaller microcystoid spaces may have been missed. This is also possible given the 

median diameter of microcystoid spaces in this present study was 31µm size only. 

Interestingly, the patient with 11 µm interval scans did not have a higher rate of 

microcystoid spaces so other factors may be relevant in addition to resolution scan 

interval. 

 

 

The microcystoid spaces in MacTel may also be similar in mechanism to the ‘macular 

microcysts’ involving the INL in a variety of optic neuropathies.18,21,25,26 The 

mechanism for this is still unclear, as conventional teaching would suggest that optic 

neuropathy should result in GCL thinning alone due to axonal injury. One proposed 

theory to explain the INL involvement in optic neuropathy entails retrograde synaptic 

degeneration of optic nerve axons with secondary degeneration of Müller neuroglial 

cells.18,20,26 Vitreomacular adhesion with or without traction may also contribute to 

inward exerting forces on the INL.26–28 Given the key finding of central Müller cell 

depletion in MacTel on histopathology,5,6 it is possible that Müller cell dysfunction 

may also be responsible for the microcystoid disease phenotype presented here. 

Müller cells span the entire neuroretina and are important not only as a scaffold but 

also in the osmotic regulation of the retina.29 Further evidence of this is suggested by 

the presence of INL microcystic changes in 20% of patients with neuromyelitis optica 

(NMO) who had a history of previous optic neuritis.21 Interestingly, retinal Müller 
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cells are rich in aquaporin-4 water channels, with antibodies against these channels 

implicated in the immunopathogenesis of NMO-spectrum disorder. 

 

Microcystoid spaces in this present study were distributed in the parafoveal region 

with the inferior-nasal quadrant of the macular being the least common quadrant to be 

affected. Although most eyes showed increased reflectance infero-nasally on BLR 

imaging, there is a predilection for sparing of that area in MacTel.30 Analysis of the 

location of the microcystoid spaces in relation to the theoretical MacTel area revealed 

most were contained within the area of parafoveal increased reflectance or within the 

surrounding band of decreased reflectance (corresponding to the outer halo of macular 

pigment accumulation on MPOD mapping). However in 2 eyes, a few microcystoid 

spaces extended more peripherally. This is the first demonstration of pathology in 

MacTel that appears beyond this confined oval area, which is thought to have a 

boundary of approximately ≤ 5 – 7° horizontally and ≤ 5° vertically on imaging and 

histologic analysis.6,24,31,32 This is in contrast to the findings of Spaide et al. where 

microcavitations were all reportedly located within the MacTel area.15 This difference 

may be due to the imaging modality used to estimate the MacTel area (MPOD versus 

BLR) or the use of different scan protocols (OCTA versus OCT). 

 

There are several limitations to this study. This was a retrospective study and 

although we only included images with less than 30 µm interslice distance, scanning 

protocols varied between patients. It is possible that smaller microcystoid spaces may 

have been missed and this could explain the difference in frequency of lesions found 

in this series compared to the Spaide et al cohort.15 The findings here are also at a 

single time point in the disease and microcystoid spaces may not necessarily be seen 
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at every scan date. Further confirmation of these findings in a larger cohort and 

analysis of variability with time would be interesting. It is also unclear at this stage 

why this microcystoid phenotype is seen more commonly in early disease and 

whether it represents a distinct phenotype. Examination of the relationship between 

microcystoid spaces and retinal function would be valuable. There are also very few 

normative datasets available to examine whether microcystoid spaces may be present 

in normal eyes. We attempted to address this by performing the same thresholding 

and segmentation in our control eyes. The control group had an even more robust 

scanning protocol with interslice distance of only 11 µm and no microcystoid spaces 

were seen in any normal eyes or in the fellow eye of the patient with asymmetric 

disease.  

 

In summary, we present quantification and analysis of microcystoid spaces in MacTel 

type 2 using SD-OCT imaging. Awareness of microcystoid spaces as part of the 

disease phenotype of MacTel type 2 is important when assessing differentials for 

microcystoid changes in macular diseases. In this study, microcystoid spaces were 

present often in early stage disease and were not associated with any retinal 

thickening as would be expected in traditional vascular causes of microcystic oedema.  

 

We also demonstrate that although the majority of microcystoid spaces are contained 

within the MacTel area, small numbers can extend slightly beyond this region. Our 

findings add weight to the evidence suggesting Müller cell involvement in the 

pathogenesis of this disease. If confirmed, presence and volume of microcystoid 

spaces may also be a useful biomarker of disease activity. The use of a quantitative 

imaging method may have value as an endpoint in treatment trials or have prognostic 
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implications for MacTel and other disorders associated with presumed Muller cell 

degeneration.  
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Figures 

Figure 1.  
 
Volume of the microcystoid spaces in MacTel type 2. Eighty-three percent of the 
assessed lesions had a volume between 16,000 and 44,000 µm3.  
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Figure 2.  
Location of microcystoid spaces within the retinal layers, showing a predilection for 
the INL, OPL and GCL. NFL: nerve fibre layer; GCL: ganglion cell layer; IPL: inner 
plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer 
nuclear layer; HFL: Henle’s fibre layer; ELM: external limiting membrane; MZ: 
myoid zone; EZ: ellipsoid zone; IZ: interdigitation zone; RPE: retinal pigment 
epithelium 
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Figure 3. Macular microcystoid spaces on spectral-domain optical coherence 
tomography imaging in two patients with MacTel 2. Left: overlay of microcystoid 
spaces (white dots) on the patient’s blue light reflectance imaging. Right: 
Corresponding B-scan with microcystoid spaces in inner nuclear layer (arrows) and 
ganglion cell layer (arrow head).  
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Figure 4.  Multimodal imaging of the right eye of a 37 year old man with MacTel 
type 2 (Patient 1 in Table). (A) Macula pigment optical density map showing 
characterstic central depletion as a darker area surrounded by a brighter ring of 
persisting macular pigment. (B) Late phase fluorescein angiography demonstrating 
parafoveal hyperfluorescence. (C) Spectral-domain optical coherence tomography 
scan through fovea with visible microcystoid spaces (arrow) in inner nuclear layer 
and outer plexiform layer. (D) Overlay of all segmented microcystoid spaces (white 
dots) against the area of increased parafoveal reflectance on blue light reflectance 
image.  Note the two temporal microcytoid spaces that are present beyond the area of 
increased reflectance (arrows).  
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Table.	  Summary	  of	  the	  clinical	  and	  demographic	  features	  of	  identified	  patients.	  
	  
	  
ID	   Age	   Gender	   Eye	   Diabetic	  

Retinopathy	  
Number	  of	  
Microcystoid	  
Spaces	  

CFT	  
(µm)	  

Other	  OCT	  lesions	  

1	   37	   M	   Right	  
Left	  

No	  
No	  

61	  
30	  

270	  
256	  

Irregular	  reflectivity	  but	  no	  break	  of	  
EZ	  	  
Irregular	  reflectivity	  but	  no	  break	  of	  
EZ	  

2	   45	   F	   Right	  
Left	  

No	  
No	  

7	  
2	  

244	  
234	  

Small	  parafoveal	  flat	  inner	  retinal	  HC	  
Irregular	  reflectivity	  of	  ONL	  

3	   52	   M	   Right	   No	   8	   258	   Irregular	  reflectivity	  but	  no	  break	  of	  
EZ	  	  

4	   66	   F	   Right	  
Left	  

No	  
No	  

1	  
2	  

241	  
241	  

Small	  EZ	  break	  temporally	  	  
Small	  parafoveol	  flat	  inner	  retinal	  HC	  
temporally	  

5	   49	   M	   Right	  	   No	   1	   292	   Large	  inner	  retinal	  HC	  
6	   53	   F	   Left	   No	   17	   240	   Large	  inner	  retinal	  HC;	  EZ	  disruption	  	  
7	   52	   F	   Right	   No	   2	   204	   Large	  inner	  retinal	  HC;	  Irregular	  EZ	  

but	  no	  break	  
8	   71	   M	   Left	   No	   11	   264	   Small	  flat	  inner	  retinal	  HC	  in	  the	  

foveola,	  small	  EZ	  break	  temporally	  
	  
ID:	  Patient	  identification	  number;	  CFT:	  Average	  central	  foveal	  thickness	  on	  
ETDRS	  grid	  with	  Heidelberg	  Explorer;	  OCT:	  Optical	  coherence	  tomography;	  HC:	  
Hyporeflective	  cavities;	  EZ:	  ellipsoid	  zone;	  ONL:	  outer	  nuclear	  layer.	  
	  
	  
	  
 


