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Abstract

Background: Human influenza represents a major public health concern, especially in south-east Asia where the
risk of emergence and spread of novel influenza viruses is particularly high. The BaliMEl study aims to conduct a
five year active surveillance and characterisation of influenza viruses in Bali using an extensive network of

participating healthcare facilities.

Methods: Samples were collected during routine diagnostic treatment in healthcare facilities. In addition to
standard clinical and molecular methods for influenza typing, next generation sequencing and subsequent de novo
genome assembly were performed to investigate the phylogeny of the collected patient samples.

Results: The samples collected are characteristic of the seasonally circulating influenza viruses with indications of
phylogenetic links to other samples characterised in neighbouring countries during the same time period.

Conclusions: There were some strong phylogenetic links with sequences from samples collected in geographically
proximal regions, with some of the samples from the same time-period resulting to small clusters at the tree-end
points. However this work, which is the first of its kind completely performed within Indonesia, supports the view
that the circulating seasonal influenza in Bali reflects the strains circulating in geographically neighbouring areas as
would be expected to occur within a busy regional transit centre.
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Background

Virus gene sequencing and phylogenetics can be used to
study the epidemiological dynamics of rapidly evolving
viruses. With complete genome data, it becomes possible
to identify and trace individual transmission chains of
circulating viruses such as influenza virus within a de-
fined spatiotemporal context. Next generation sequen-
cing (NGS) has been employed in the high-throughput
production of complete viral genome data and offers sig-
nificant opportunities for increasing our understanding
of influenza distribution and transmission. To date, NGS
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has been used on influenza samples as the basis for
identification [1-4] and comparison [5, 6] of full influ-
enza genomic data as well as for applications such as
profiling quasi-species and lineage [7, 8] and characteris-
ing interactions with the host-cell. [9, 10] The Molecular
Epidemiology of Influenza A in Bali project (“BaliMEI”)
[11] aims to conduct five years of active surveillance and
characterisation of influenza viruses in Bali (2010-2015).
The project utilises a network of 21 health facilities
across all nine regencies of Bali to collect nasopharyn-
geal swabs from patients presenting with influenza-like
illness. Here we report the whole genome sequencing re-
sults and phylogenetic analysis of the first 95 influenza
samples from the BaliMEI project.
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Indonesia is of key strategic importance for influenza
surveillance and research, as it continues to report
highly pathogenic avian influenza (H5N1) outbreaks in
poultry, along with sporadic cases in humans. [12] How-
ever, research on the ecology and evolution of influenza
viruses in Indonesia has been severely limited. Within
Indonesia, the island province of Bali might be a particu-
lar hotspot for the mixing of influenza viruses from dif-
ferent geographic regions and host species and potential
genomic reassortment thereof, due to high densities and
close proximity of humans, poultry and pigs, along with
its status as a popular tourist destination with continu-
ous, high numbers of a transient population. [13, 14] Im-
portantly the preliminary results from the BaliMEI study
allow us to assess the degree of agreement between epi-
demiologically and genetically inferred information,
understand the extent of mutation observed between
genetically clustered cases and to improve estimates of
the extent of diversity within the circulating, clinically
presented influenza.

Methods

Sample collection

The samples were taken during routine diagnostic treat-
ment by hospital physicians between July 2010 and July
2013. All laboratory-confirmed (PCR-positive) samples
containing influenza virus from 95 patients were collected
through the BaliMEI project protocol under ethics ap-
proval number: 41/H2.F10/PPM.00/2010 (University of
Indonesia) and 441/Skrt/VI/2010 (Udayana University).
These included samples submitted from 21 sentinel health
facilities (10 government hospitals and 11 urban health
centres) across 8 regencies and one provincial capital city
of Denpasar. The 64 samples were obtained from the pa-
tients concurrently with epidemiological information
through a questionnaire containing sample dates, admis-
sion and discharge dates, age, sex, timing of hospital ad-
mission and discharge. Patient identifiers were removed
prior to the transfer of information to a dedicated, secure
Data repository. Laboratory specimen numbers (identify-
ing unique specimens) were retained as these were not in-
terpretable outside the laboratory environment.

Sample sequencing

RNA was extracted from collected specimens that had
been stored at -70 °C temp using the QIAamp Viral RNA
Mini Kit. RNA extracts were amplified using a modified
eight-segment method [5, 15] and library prepared using
the Illumina library preparation Kit Nexterra XT at the
biomolecular laboratory at Udayana University. The se-
quencing used the Ilumina MiSeq platform at Pandu Bio-
sains Laboratory. The average read depth and average
genome coverage were recorded across all segments.
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Sequence de novo assembly

Genome assembly and construction of consensus se-
quences was performed at Indonesia using the Infection
response through virus genomics (ICONIC) bioinfor-
matics pipeline for de novo viral sequence assembly [16]
developed at University College London (UCL) with
phylogenetic analyses to infer transmission performed at
the Farr institute of Health Informatics Research. In
short, NGS data were subjected to quality control using
Trimmomatic 0.33 to remove any primer sequences and
trim reads, then reads mapped with SMALT version
0.7.6 (http://www.sanger.ac.uk/science/tools/smalt-0) to
the human genome were removed. Quality controlled
and filtered read sets were de novo assembled using IVA
version 1.0.0 [17]; SAMtools 1.2 [18] and custom scripts
were used to create a consensus genome from the as-
sembled fragments (“contigs”). In particular, these scripts
utilise BLAST to find the closest matching sequences to
the draft segments and use them as templates on which
to map unassembled reads with SMALT.

Phylogenetic analysis

The influenza virus sequences were combined with exist-
ing sequences retrieved from the NCBI Influenza Virus
Resource [19] that represented the range of genetic diver-
sity worldwide during the same period (Additional file 1).
Each genome segment was aligned separately using the
MUSCLE aligner [20] provided in MEGA version 6.06.
[21] Separate alignments were made for HIN1 and H3N2
sequences. Alignments were then trimmed to coding
regions, and sequences covering less than 50% of the cod-
ing region were removed. Phylogenetic trees were then in-
ferred under a maximum-likelihood (ML) criterion using
RAXML version 7.2.8. [22] Maximum likelihood (ML)
trees were estimated for all the eight gene segments using
the best-fit general time reversible (GTR) model of nu-
cleotide substitution with a gamma distribution of among-
site rate variation (with four rate categories, [4) and an
SPR branch-swapping search procedure implemented in
PhyML [23]. Tree robustness was determined through
bootstrap analysis of 1000 sequence pseudoreplicates.
Trees were visualized using FigTree version 1.4.2 (http://
tree.bio.ed.ac.uk/software/figtree/).

Results

Among the 95 PCR-positive, patient samples with influ-
enza A, the mean age was 14.65 + 15.56 years old (range
0.5-40 yo), 60% were male, and 27.4% were submitted
from hospital. There were a total of 7 samples collected in
2010, 36 samples in 2011, 25 samples in 2012, and 27
samples in 2013. Influenza due to influenza A viruses
mostly occurred in children age 0—4 yo (35.8%), following
in children age 5-14 yo (27.4%) and 15-24 yo (12.6%). A
summary of these results is shown in Table 1. From the 95
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Table 1 Summary of influenza samples collected among
patients presenting with influenza-like illness, categorised by
sex, age group and facility type, BaliMEl (2010-2013)

Influenza A virus Pt
A/HINT-pdm09  A/H3N2 A/sSHINT
All patients 95 68 (71.6) 260 274 1 (1)
Sex
Female 38 28 (41.2) 10 (385) 0 (00 0.69
Male 57 40 (58.8) 16 (615 1 (100.0)
Age group (y)
0-4 34 24 (35.3) 10 (385) 0 (00 0.36
5-14 26 16 (235) 10 (385 0 (00)
15-24 1210 (14.7) 2 (77) 0 (00
25-34 1 8 (11.8) 2 (77 1 (100.0)
35-44 6 5 (74) T 38 0 (00
45-64 6 5 (74) 1 (380 0 (00
Facility type
Hospital 26 21 (30.9) 5 (192 0 (00 044
Health centre 69 47 (69.1) 21 (80.8) 1 (100.0)

samples, 68 (71.6%) were subtyped as A/HIN1-pdm09, 26
(27.4%) as A/H3N2, and 1 (1.1%) as seasonal A/HIN1
(Fig. 1a). The highest number of samples were collected
from Denpasar (32.6%), followed by Badung and Buleleng
(14.5% and 14.5% respectively) (Fig. 1b) correlating to
their relative population density. There was no correlation
observed between the calendar time of sample collection
108 and relative numbers of samples, as all influenza types
analysed in the present paper were collected throughout
the 2010-2013 period.

Of the 95 collected, PCR-positive influenza A samples, 62
were of sufficient concentration (Ct < 30) to be further
processed through an NGS platform in an attempt to
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generate more extensive viral genomes with high read-
depth coverage (17 samples A/H3N2, 45 samples A/HIN1-
pdm09). As a result of the NGS sequencing and the subse-
quent de novo assembly, 31 complete influenza A genomes
were assembled with all 8 genomic segments, while for the
remaining samples, there was an average recovery of 5 out
of the genomic 8 segments. There was complete corres-
pondence of the influenza A typing between the PCR- and
NGS-based methods across all of the samples. Across the
samples in which it was possible to build segments, the
average read depth was 2443 and the average genome
coverage was 80%. In particular, segment 3 had the lowest
average depth, 559 reads, and segment 1 the lowest average
coverage with 56%; while segment 7 had the highest depth,
6073 reads, and segment 8 the highest coverage with 97%.
The genome coverage was calculated against the reference
found for each sample segment.

According to the phylogenetic analyses all samples
analysed were of the influenza type circulating globally
at the time of collection and in particular in proximal
countries, such as Singapore, Thailand, Australia and
Cambodia. Some samples formed small clusters at the
phylogenetic tree end-points indicative of a small-scale
localised circulation within Bali, and lack of subsequent
transmission to other neighbouring countries or local-
ities (Fig. 2 showing HIN1 samples; all H3N2 samples
gave identical distribution — data not shown). However
the sample number is small to support any further ob-
servations based on the phylogeny alone.

Discussion

The Influenza patient samples analysed above and col-
lected at Bali, Indonesia, are considered typical of the
background seasonal influenza incidence that is ever
present in the area. There were no statistically significant
differences in the distribution of the samples across the
sexes, months of the years or localities. There was a slight
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Fig. 1 Relative distribution of the influenza A types collected in Bali (2010-2013) shown on the pie chart (left). Relative distribution of the
influenza A samples collected in Bali, broken down by geographical origin shown in the bar chart (right)
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Fig. 2 a Maximum-likelihood (ML) tree inferred from the nucleotide sequence of the HA gene for the pandemic HIN1 lineage. The tree is rooted on the
A/California/07/2009 strain. Reference isolates for each subclade are shown in grey, with isolates from BaliMEI shown as circles, with colours indicating the
year of isolation. Subclades containing BaliMEi isolates are highlighted with a black bar and labelled with the corresponding clade name. The scale bar
is given in units of substitution per site. b Magnification of the Balinese cluster within clade 6a, taken from a higher-resolution ML tree containing globally-
collected isolates. BaliMEI isolates are labelled in red. The scale bar is in units of substitutions per site. The details of the samples included in this analysis
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tendency towards younger age-groups (0 — 14yo, 46% of
samples), where the need for hospitalisation is perhaps
more acute than in older age groups, while more densely
populated areas and built up areas provided larger num-
bers of samples in the collection. However a larger sample
size would be needed to confirm this observation. The in-
fluenza patient samples were typed independently by PCR
under routine hospital protocols and by NGS methods;
the resulting absolute correlation of the typing is support-
ive of the NGS-based results. The sequence depth from
the influenza samples is adequate for the de novo genomic
assembly; however the depth variability across the frag-
ments does not allow the identification of minority vari-
ants in a genome-wide approach. The variable depth of

the obtained sequences is most likely a reflection of the
collection approach where PCR-positive samples were col-
lected during routine diagnostic treatment without a pre-
selection on the Ct value of the viral sample. Quantitative
sample pre-selection might result in better NGS output
with regards to sequence read-depth but also introduce
potential sample bias in the collection. There were no
complex reassortant viruses nor any oseltamivir-resistance
markers amongst the 62 NGS samples analysed.

The phylogenetic analysis supports the view of these
samples being representative of seasonal, circulating Influ-
enza amongst the population in Bali. There were, as ex-
pected, strong phylogenetic links with sequences from
samples collected in geographically proximal regions, with
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some of the samples from the same time-period resulting
to small clusters at the tree-end points. However more
samples would need to be analysed before further claims
can be made regarding the influenza transmission in
Indonesia from either a local or international perspective.
The current paper represents the first ever attempt to util-
ise NGS technology to characterise clinically relevant sam-
ples from Bali, Indonesia as part of the Bali-MEI project.
Importantly the current first report reflects work that has
been almost entirely taken place within the country as tes-
tament to current capacity building efforts and future
prospects for even further and more detailed influenza
surveillance within Indonesia.

Conclusion

We describe the preliminary results from a five year pro-
ject on the surveillance and characterization of seasonal
influenza samples from healthcare facilities in Bali,
Indonesia. This work is the first of its kind completely
performed within Indonesia, and can be used as the
blueprint for future national molecular surveillance pro-
jects. The results support the view that the circulating
seasonal influenza in Bali reflects the strains circulating
in geographically neighbouring areas as would be ex-
pected to occur within a busy regional transit centre.
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