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Abstract
Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB) are
relentlessly progressive neurodegenerative disorders that are likely to
represent two ends of a disease spectrum. It is well established that both are
characterised pathologically by widespread cortical Lewy body deposition.
However, until recently, the pathophysiological mechanisms leading to
neuronal damage were not known. It was also not understood why some cells
are particularly vulnerable in PDD/DLB, nor why some individuals show more
aggressive and rapid dementia than others. Recent studies using animal and
cell models as well as human post-mortem analyses have provided important
insights into these questions. Here, we review recent developments in the
pathophysiology in PDD/DLB. Specifically, we examine the role of pathological
proteins other than α-synuclein, consider particular morphological and
physiological features that confer vulnerabilities on some neurons rather than
others, and finally examine genetic factors that may explain some of the
heterogeneity between individuals with PDD/DLB.
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Introduction
Parkinson’s disease (PD) is one of the most common neurode-
generative diseases, characterised clinically by bradykinesia,  
rigidity and tremor. Pathologically, the cardinal features are of 
degeneration of dopaminergic cells in the nigrostriatal system, 
and by widespread intracytoplasmic Lewy bodies (LBs) and Lewy 
neurites (LNs)1, the main component of which is α-synuclein2.  
How Lewy pathology relates to dopaminergic degeneration  
and later to more widespread cell death has remained  
contentious3,4.

Whilst for many years PD was considered a movement disorder, 
in recent years a wide range of non-motor features, including cog-
nitive impairment, have increasingly been recognised. Although 
subtle cognitive impairment is relatively common even at the 
point of diagnosis, after ten years of symptoms the population 
prevalence of frank dementia (so-called Parkinson’s disease demen-
tia, or PDD) may be as high as 70%5. Conversely, patients with 
dementia with Lewy bodies (DLB) have cognitive impairment that 
precedes or coincides with the development of parkinsonian signs 
by a (arbitrary) year or more6. While the precise pathophysiological 
mechanisms that lead to PDD and DLB are not fully understood7, 
neuropathologically they are difficult to differentiate8–10, apart from 
a higher prevalence of Alzheimer’s-like pathology in DLB than 
PDD11,12. In many ways, PDD and DLB are widely considered to 
be either end of a spectrum of one disease9,13. Considering the two 
diseases together as a joint entity of PDD/DLB provides a means of 
determining common mechanisms leading to the same end-point, 
and any differences potentially provide additional insights into phe-
notypic diversity (Table 1).

Although pathological markers of PDD/DLB are now well  
established, several key areas have until recently remained rela-
tively less well explored. These include the pathophysiological  
processes that underpin PDD/DLB; mechanisms of cellular tox-
icity; and how the disease progresses within the brains of people  
affected by PDD/DLB. In addition, robust models to explain  
why specific brain regions or even certain neurons are more 
prone to involvement in PDD/DLB have been lacking, as has an  
understanding of the mechanisms underlying heterogeneity  
between individuals with PDD/DLB, including the timing of onset 
of cognitive decline.

Here, we review recent advances that offer new insights into  
these questions and shed light on the pathogenesis of PDD/DLB 
under five headings: (1) We review evidence that other macro-
molecular structures, and not just LBs, have a role in the neuro-
degeneration of PDD/DLB; (2) we consider recent challenges to  
the primacy of LBs themselves in causing cell death and  
dementia; (3) we consider theories for progression of pathology 
within individuals with PDD/DLB; (4) we examine aspects of  
cellular morphology and physiology that confer vulnerability to 
Parkinson’s pathology; and (5) we consider the role of genetic  
factors in the pathogenesis of sporadic PDD/DLB and what  
insights these provide in furthering our understanding of these  
diseases.

Not just Lewy bodies
The neuropathological signatures of PD, PDD and DLB were  
first described by Friedrich Heinrich Lewy1. He observed large 
eosinophilic spherical or kidney-shaped inclusions in neuronal  
cell bodies that were later termed Lewy bodies (LBs) (Figure 1). 
He also described structures that stained less easily with acido-
philic dyes and varied in morphology between short and thick or  
long and thread-like which were subsequently termed Lewy  
neurites (LNs). Immunohistochemical techniques that stained 
for ubiquitin14 and later the use of anti-α-synuclein antibodies2  
revealed the extent of α-synuclein deposition in the LBs and  
LNs in PDD/DLB. Lewy described their occurrence in patients  
with paralysis agitans in various brain structures, including,  
but not primarily, in the substantia nigra (SN), with a diffuse and 
cortical distribution15. Little clinical detail was given in his first 
descriptions, and only later was the association with dementia 
fully recognised and described as DLB or “diffuse Lewy body  
disease”16,17.

Since then, evidence has been accumulating that other patholo-
gies are also present in patients with PD and dementia and that it 
is the combination of pathologies that is important for determin-
ing cognitive impairment in the face of Parkinson’s pathology.  
Thus, the combination of Lewy pathology and Alzheimer’s  
disease (AD) pathology (fibrillary β-amyloid and intraneuronal  
tangles consisting of hyperhosphorylated tau) predicts dementia 
in PD better than the severity of any single pathology18; and in  
clinical studies in patients with newly diagnosed PD, cerebros-
pinal fluid (CSF) biomarker evidence for β-amyloid pathology  
(for example, low concentrations of Aβ1-42) is a significant  
predictor of subsequent cognitive impairment19.

Large-scale studies comparing patterns of CSF biomarkers  
between patients with DLB and PDD show that lower levels of 
Aβ1-42 (combined with higher tau levels) are associated with 
DLB rather than PDD and are seen particularly in patients with 
more rapid dementia20–22. CSF Aβ1-42 is inversely related to  
brain density of amyloid plaques23 and therefore lower CSF Aβ1-42  
concentration is supportive of higher brain amyloid in these 
patients. Similarly, in positron emission tomography imaging  
studies using amyloid radioligands, higher levels of amyloid are 
seen in patients with DLB than PDD and in PD patients with  
more rapid cognitive progression24–26. Patients with the combina-
tion of Lewy-related pathology and evidence for brain β-amyloid 
accumulation have a more aggressive disease course and have  
shorter survival times and higher incidence of cognitive dysfunc-
tion even compared with pure AD27–31, and these proteins may  
mutually promote each other’s aggregation32. Thus, in a large  
retrospective study, Irwin and colleagues8 showed a strong cor-
relation between the extent of neurofibrillary tangles, neuritic 
plaques and α-synuclein, suggesting synergistic effects of AD 
and α-synuclein pathology. Patients with PDD/DLB with more 
cortical β-amyloid plaques also have more cortical α-synuclein 
aggregates33,34. Conversely, even in “pure” young-onset familial 
(autosomal dominant) AD, a high proportion of patients have LB 
pathology at autopsy (although in these cases it tends to localise 
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Table 1. Summary of diagnostic criteria for Parkinson’s disease dementia and dementia with Lewy bodies.

Probable Parkinson’s disease dementia (PDD)a 

Core features Diagnosis of Parkinson’s disease (PD)

Progressive cognitive decline in 
context of established PD

Impairments in more than one domain 

Interferes with daily life

Associated features Cognitive features Attention/visuo-spatial/memory/language

Behavioural features Hallucinations

Delusions

Daytime sleepiness

Apathy

Mood and personality change

Absence of other abnormalities causing cognitive impairment

Probable dementia with Lewy bodies (DLB)b 

Essential features Progressive cognitive decline May have prominent attention/visuo-spatial/frontal-subcortical 
deficits 

Memory involvement more prominent in later stages 

Interferes with daily life

Core features 
(two required for 
diagnosis of probable 
DLB)

Fluctuating cognition May have prominent attention/visuo-spatial/frontal-subcortical 
deficits 

Memory involvement more prominent in later stages

REM sleep behaviour disorder 

Recurrent visual hallucinations 

Parkinsonism

Supportive clinical 
features

Neuroleptic sensitivity 

Falls/syncope/loss of consciousness 

Severe autonomic dysfunction 

Hyposmia 

Hallucinations in other modalities 

Delusions 

Depression/apathy/anxiety

Supportive biomarkers Relatively preserved medial temporal lobe (magnetic resonance imaging/computed tomography) 

Low dopamine transporter uptake on single-photon emission computed tomography or positron emission 
tomography (PET) imaging 

Reduced occipital uptake on fludeoxyglucose-PET 

Prominent slow-wave on electroencephalogram

DLB less likely In the presence of other illnesses that could account for the clinical picture 

If Parkinsonian features are the only core feature or appear for the first time at a late stage of the dementia

Temporal sequence Dementia occurs concurrently or before onset of parkinsonism. (In research studies, the existing 1-year 
rule between onset of dementia and parkinsonism is still recommended.)

aAdapted from 129; badapted from 6.
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to the amygdala)35,36 and α-synuclein accumulates within amy-
loid plaques of dystrophic neurites37. This synergy is also seen in  
mouse models of PDD/DLB: transgenic mice overexpressing 
both human β-amyloid and α-synuclein have higher levels of LB 
pathology and greater memory deficits than mice expressing just  
α-synuclein38; and double transgenic mice overexpressing two  
AD-related genes (amyloid precursor protein and presenilin  
1) have greater amounts of α-synuclein as well as β-amyloid  
than mice transgenic for one mutation alone39.

A potential mechanism for this synergy is through phosphoryla-
tion. α-synuclein can induce tau hyperphosphorylation40,41, thereby 
promoting neurofibrillary tau tangle formation41,42. Similarly, 
in PDD/DLB, the main modification of α-synuclein is Ser129  
phosphorylation43. An estimated 90% of α-synuclein in LBs and 
LNs is phosphorylated at Ser129, compared with only 4% in 
unaffected brains44. This changes its solubility and enhances the  
tendency for α-synuclein aggregation. Higher levels of phospho-
rylated α-synuclein are seen at earlier stages of PDD/DLB than LB  
pathology45, and phosphorylated α-synuclein levels correlate with 
disease severity46,47. Recently, Swirski and colleagues48 shed light 
on the synergistic relationship between β-amyloid and α-synuclein,  
demonstrating correlations between phosphorylated Ser129  
α-synuclein and the amount of β-amyloid and between the pro-
portion of α-synuclein phosphorylated at Ser129 and antemortem 
cognitive function. Importantly, by taking cells that overexpressed 
α-synuclein, exposing them to toxic forms of β-amyloid (Aβ1-42)  
and showing that this led to a higher proportion of α-synuclein  
phosphorylated at Ser129, they were able to show a causative 
role for β-amyloid in pathological synuclein phosphorylation. 
Taken together, these studies show that the synergistic relationship  
between AD pathology and α-synuclein is bidirectional and  
that each protein synergises the other.

Not even Lewy bodies
Although Lewy bodies are considered the neuropathological  
signature of PD, the severity of clinical symptoms, disease dura-
tion, and presence of cognitive decline or visual hallucinations (core  

features of PDD/DLB) do not correlate with LB density3,49–51; and in 
some patients with PDD, no LBs are seen in cortical regions or even 
outside the brainstem52. A recent neuropathological study showed 
that cell loss can precede LB accumulation53, calling into ques-
tion the hypothesis that LBs are the toxic agents in PD that drive  
neurodegeneration54. One proposed explanation is that it is the 
precursors of LBs (which cannot be seen by light microscope), 
rather than the LBs themselves, that precipitate neurodegeneration55.  
Although there is no correlation between LB and nigral neu-
ronal loss, there is a correlation between neuronal loss and total  
α-synuclein aggregate burden56,57; and evidence suggests that ini-
tial amorphous α-synuclein deposits known as pale bodies and  
pale neurites may mediate cell damage and later evolve into more 
aggregated LBs55.

A related theory proposes that neurodegeneration and cell death  
are not caused by LBs but that instead LBs provide protection  
from α-synuclein aggregates58,59. In this way, LBs and LNs  
may be an indirect indicator of disease but do not reflect the full 
extent of neurodegenerative pathology60, similar to that proposed 
for β-amyloid plaques in AD61,62.

The recent discovery of different strains of α-synuclein is an 
intriguing potential explanation for the heterogeneity of synuclei-
opathies between individuals63. Bousset and colleagues generated 
two distinct high-molecular-weight assemblies of α-synuclein: 
one with a cylindrical and fibrillar structure and one with a more 
flat and ribbon-like structure, as shown by transmission electron  
microscopy and x-ray diffraction63. Crucially, the fibrillar confor-
mation was more toxic to cells, inducing caspase-3 activation and 
reactive oxygen species and showing a higher propensity to bind 
and penetrate cells. Moreover, the two strains showed differential  
abilities to induce tau aggregation both in cultured neurons and  
in vivo64 (and see review65). Thus, and again in line with proposed 
models for AD, pathological processes upstream of the Lewy  
bodies may be more influential in disease progression, and  
more aggressive disease may relate to distinct strains of  
α-synuclein.

Figure 1. Alpha-synuclein pathology. (a) Lewy body found in the dopaminergic cells of the substantia nigra (double arrow) along with Lewy 
neurites (arrows). (b) Lewy bodies observed in the cingulate gyrus (arrows). (c) A dense network of Lewy neurites in the CA2 subregion of 
the hippocampus. Bar = 50 µm (a) and 100 µm (b, c).

Page 5 of 12

F1000Research 2017, 6(F1000 Faculty Rev):1604 Last updated: 30 AUG 2017



Not “prion-like” spread?
Braak and colleagues proposed that Lewy pathology could spread 
from cell to cell in a manner similar to the proposed spread of prion 
proteins. This followed detailed observations that patients who had 
died at earlier clinical stages of PD had Lewy pathology confined 
to the lower brainstem but that those patients who succumbed at 
later stages of disease had more abundant Lewy pathology in the 
upper brainstem and then cortex66,67. The authors hypothesised 
that the disease started in the brainstem before spreading into the 
striatum and then the cortex68; and more recent work has suggested 
disease originating in the gut and nose69–71. This model gathered 
support when foetal tissue grafts transplanted into human stria-
tum were found to show Lewy-like inclusions within decades of  
transplantation72. A series of investigations followed, aimed at 
showing transmission of α-synuclein between cells. In cellular 
models, transfection of α-synuclein precursors into cells express-
ing α-synuclein induced Lewy body–like inclusions73,74. In mice, 
synthetic α-synuclein fibrils were shown to spread from the site of 
injection to synaptically connected structures, creating Lewy-like 
pathology75,76. Similar observations were made when young mice 
were injected in various brain regions with extracts from the brains 
of older motor-impaired mice77.

However, these and other studies do not yet provide incontrovert-
ible evidence that α-synuclein induces pathology or even spreads 
between cells. Not all cases find Lewy-like inclusions in trans-
planted tissue78 and some find them in only a minority of grafted 
cells79. The concentrations of α-synuclein precursors in cellular 
models are typically above physiological levels of α-synuclein80; 
and in animal models, factors other than α-synuclein itself could 
be promoting α-synuclein aggregation, including damage from  
injection sites or local inflammation80. Indeed, more detailed 
analysis of one animal model revealed that the α-synuclein  
inclusions appeared randomly without any evidence of spread 
between cells81.

For a mechanism involving trans-synaptic spread, it would be 
expected that cells with the greatest synaptic connectivity to regions 
affected in early PD would be at greatest risk of developing Lewy 
pathology. However, this is not the case; mouse studies show that 
regions with strong connectivity to the SN do not show the most 
abundant Lewy pathology82 (see also 83).

Instead, theories are emerging to suggest that Braak and  
colleagues’ observations of a stereotypical pattern of involve-
ment of particular brain regions with disease severity (inevitably 
based on extrapolation from cross-sectional pathological obser-
vations) reflect selective vulnerabilities of specific cells that tend 
to be affected first in PD80,83,84, rather than the physical transmis-
sion of a pathological agent. It is also possible that the pattern of  
“spread” reflects a combination of processes: with cell-to- 
cell propagation starting in response to injury or inflammation, 
at particular sites and affecting particular neuronal populations,  
before spreading through networks of similar cells that are similarly 
vulnerable85.

Indeed, it is these selective vulnerabilities and the pattern of 
involvement that may reflect the heterogeneity across the spectrum 
of PDD/DLB. Many of the cells affected in PD are key neurons in 

the neuromodulatory control networks. These share several nota-
ble traits: they are all characterised by long and highly branched 
axons and a large number of transmitter release sites. New models 
propose that it is these common features that predispose particular 
neurons to be affected early in PD: we next examine the evidence 
for each of these in turn.

Cell vulnerabilities
Long axons
The importance of axons and striatal terminals in the pathogen-
esis of PD has been known for some time. Loss of dopamine is 
more profound at the axon terminals in the caudate and putamen  
than is loss of nigral neurons86–89 (reviewed in 90), suggesting that 
degeneration is greatest in distal parts of the cell. Early studies 
showed that vesicles accumulate along cell processes and axons 
and close to α-synuclein inclusions in Parkinson’s91,92. Others  
demonstrated the presence of pathological α-synuclein aggre-
gates in axon terminals of the hippocampus in the brains of people 
with PD93. Together, these studies suggest that blocked axons or  
impairment of traffic within axons may be important in PD.

Orimo and colleagues examined cardiac sympathetic axons to study 
the chronological sequence of events at the cellular level in PD. 
They showed that α-synuclein aggregates accumulate in the distal 
axons of the cardiac sympathetic nerves and that this axonal accu-
mulation occurs prior to degeneration of the cardiac sympathetic 
nerve itself94,95.

More recent neuro-histological studies support the theory that 
axonal involvement is a critical, early feature in PD and that  
α-synuclein aggregation starts in the axonal compartment and 
progresses back towards the cell body. Chung and colleagues96 
demonstrated that α-synuclein overexpression in rats leads to 
axons becoming dystrophic, with alterations in axonal transport.  
Importantly, all of these changes preceded neuronal loss. Another 
study showed that, at the point of diagnosis, there is a far higher 
number of nigral neurons with axon degeneration than neuronal 
loss90.

This central role of the axon in PD pathogenesis is supported by 
studies of transgenic mice carrying mutations in human LRRK297, 
one of the most common genetic causes of familial PD98. These  
mice show pathology in dopaminergic axons but no loss of dopamin-
ergic neurons themselves. Moreover, at the level of the single  
axon, staining for tyroxine hydroxylase reveals fragmentation of 
the axons as well as axonal spheroids and dystrophic neurites.

A recent detailed study examining critical axonal transport motor 
proteins99 found that levels of a major microtubule-based motor 
protein, known as conventional kinesin, are depleted in nigral 
neurons in PD at the earliest stages of disease. These reductions 
preceded changes in dopaminergic phenotypic markers and were 
more pronounced in the presence of α-synuclein. Similar findings 
of reduced axonal transport motor proteins were observed in a rat 
model of PD with overexpression of α-synuclein. One potential 
mechanism is that α-synuclein inclusions do not simply occlude the 
axon, but damage the cell by affecting specific aspects of organelle 
transport100,101. This may have greater impact in cells with particu-
larly long axons.
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The importance of long thin axons in conferring vulnerability to 
Lewy-related pathology is supported by the observation that other 
neurones that are preferentially affected in PDD/DLB also dis-
play this anatomical configuration. For example, cholinergic cells 
of the nucleus basalis of Meynert are strongly implicated in the 
pathogenesis of dementia in PD102,103. In mice, these show extreme 
length and a complex branching structure, and it is estimated that in 
humans, these cells may have an average length of approximately  
100 metres104. Serotonergic cells of the raphe nucleus also show 
extensive axon projections105, and the long unmyelinated axons of 
the peripheral autonomic nervous system may provide an expla-
nation for the early and prominent involvement of autonomic  
symptoms in both DLB and PDD. Thus, the anatomical configu-
ration of neurons may reflect their specific vulnerability to PD  
progression and also to the development of dementia in patients 
with PD pathology.

Hyperbranching axons
A further morphological feature common to dopaminergic, 
noradrenergic, cholinergic and serotonergic systems is the hyper-
branching of long axons that project widely to innervate multiple 
brain regions106. In a recent study, Kanazawa and colleagues55 
examined how α-synuclein is aggregated and extends into neu-
rites. They used a combination of fluorescent and haematoxylin-
and-eosin staining and both light and electron microscopy that  
allowed them to quantify LNs. They found that LNs are frequently 
clustered around branch points, at the point where a collateral  
leaves the main axon, and that the α-synuclein then spreads  
contiguously along the neuronal axon. This finding that axonal  
α-synuclein deposition is preferentially seen around branch-
ing points could explain why axons that are highly divergent are 
more susceptible to α-synuclein deposition and why axons distal 
to the branching will be more vulnerable55. This is indeed the case.  
Axons originating in the ventrolateral part of the SN, one of the 
most vulnerable systems in PD, are highly collateralised and 
branching, on single-cell labelling studies107,108, and cholinergic 
and serotonergic neurons show similarly long and hyperbranching  
configurations104,105.

Synapses
The synapse is another potential location for early involvement 
in PD. α-synuclein in its physiological form localises to the 
presynaptic terminal, and evidence is emerging that loss of syn-
aptic connectivity may produce neurodegeneration prior to nerve 
cell loss. Kramer and colleagues109 used a technique involving  
paraffin-embedded tissue blotting that can more sensitively 
detect the topographic location of protein aggregates. In this way, 
they localised dense aggregates of α-synuclein in the synapses  
throughout the cortex of patients with DLB. A similar pattern of  
α-synuclein deposition was found in patients with PD110. A far  
higher proportion of α-synuclein localises to presynaptic termi-
nals as aggregates than can be found within LBs when measured 
using a highly sensitive protein aggregate filtration assay109,111. This  
presynaptic predilection of α-synuclein has been replicated in  
mouse models. Presynaptic microaggregates of α-synuclein  
have been detected in mice overexpressing different forms of  
α-synuclein112–114, often in the absence of cell death, suggesting 
that presynaptic involvement is an event that precedes neuronal  

death. These presynaptic α-synuclein microaggregates can then 
impact on post-synaptic dendritic spines. When the dendritic tree 
of individual cells is visualised by using a silver impregnation 
technique, almost complete loss of the dendritic spines in fron-
tal cortical neurons can be found in patients with DLB compared 
with age-matched controls109. Similar loss of dendritic spines is  
seen in the striatum and SN in PD115,116. The precise pathophysi-
ological cascade is not yet clear but may involve aggregation of 
α-synuclein starting at either the synapse or axon branching  
points that then influence vesicle trafficking and impair neuro-
transmitter release. This causes post-synaptic dendritic spines to  
degenerate, with loss of synaptic connections60.

Common physiological phenotype
Instead of considering only cellular morphology, a recent influen-
tial model proposes that it is the shared physiology of vulnerable 
cells83,106 that is critical in the pathogenesis of PD. Neurons that 
are most vulnerable in PD (SN, locus coeruleus, and pedunculo-
pontine nucleus) all share the propensity to autonomous spiking, 
in the absence of synaptic input. They all show large fluctuations 
in calcium concentrations and low intrinsic calcium buffering117. 
Together, these traits generate heavy metabolic demands on the 
cells that are particularly carried by the mitochondria83. As mito-
chondrial and proteosomal function degrades with age, these 
neurons are less able to handle the burden of α-synuclein aggre-
gation. This may explain why mutations affecting mitochondrial  
function are highly represented in PD118,119. Which of these  
vulnerabilities—long hyperbranching axons, synapses, or autono-
mous cell spiking—is most critical in the pathophysiology of PD 
will need to be specifically tested. Ultimately, it is likely that some 
or all of these features combine to make these cells more vulner-
able in PD. It is also possible that some degree of spreading of  
α-synuclein does occur but is limited to cells that show particu-
lar vulnerability to handling excessive misfolded α-synuclein.  
Alternatively, the apparent spread of disease instead may reflect  
the relative propensity of α-synuclein to form in these structures.

Genetics
The genetic underpinnings of PDD/DLB have been vastly under-
studied. Two main reasons may have contributed to this: first, the 
fact that large, homogeneous cohorts of PDD/DLB cases have 
been difficult to assemble and thus large-scale genetic studies have 
not been possible; second, because we do not tend to see familial  
aggregation of DLB, as we do in some instances in PD or AD, the 
general reasoning has been that there is no genetic basis for this  
disorder. However, the last few years have started to shift this  
notion, much like the early ’90s did for PD and the early ’70s  
for AD.

One of the first hints that genetics played a role in DLB came from 
the study of GBA. Homozygous mutations in GBA are known to 
cause a lysosomal storage disorder (Gaucher disease), whereas 
the same mutations when heterozygous increase risk for PD120. 
In DLB, a similar effect of these mutations was identified121. The  
immediate suggestion from these data is that there is an identi-
cal underlying lysosomal dysfunction occurring in both diseases.  
More recently, an association study showed that common vari-
ability is also involved in DLB. Variants at the APOE and SNCA  
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loci were shown to be associated with DLB in a cohort of  
approximately 800 cases122. Interestingly, whereas the APOE  
association was identical to the one seen in AD, the association at 
SNCA was completely independent of the one seen in PD. These 
results suggest that, although the same locus is involved in both 
diseases, the way in which this involvement occurs is different. It 
is tempting to speculate that perhaps the differential association 
underlies differential gene expression of SNCA, potentially in a  
tissue-specific manner.

It was also shown that, in addition to sharing two loci of asso-
ciation with PD and AD, there is a substantial amount of genetic  
correlation between DLB and both PD and AD123 and that the  
heritability of DLB can be estimated to be approximately 30%, 
similar to estimates for PD124.

Taken together, these data strongly suggest not only that DLB  
has a genetic component but also that this component has a unique 
architecture when compared with PD and AD leading to the  
specific phenotype of DLB. The genetic differences between 
PDD and DLB have, so far, not been studied in detail. In PDD, 
factors that predispose to earlier dementia may have some genetic  
underpinnings. For example, REM sleep behaviour disorder,  
which is predictive of cognitive involvement when it occurs in 
patients with PD19, is more common in patients carrying GBA125  
and SNCA mutations126,127 and less common in patients carrying 
LRRK2 mutations128.

However, the recent genetic data described above suggest that  
categorising diseases in a binary fashion might not be adequate  
and that it is the varying polygenic characteristics between  
individuals that underpin heterogeneity in patients with PDD/
DLB.

As our understanding of these factors increases, these concepts  
will increasingly be included in our thinking of disease pathobiol-
ogy; and as we move to an era of personalised medicine, genetic 
risk is likely to be used diagnostically and to predict which  
patients with PD pathology are at risk of developing cognitive 
impairment, perhaps replacing the arbitrary clinical criteria that  
are currently used to distinguish DLB from PDD.

Summary
Recent cellular, animal, post-mortem and genetic studies are  
beginning to shed light on key and previously unknown aspects 
of the pathophysiological mechanisms that underlie PDD/DLB. 
These include insights into which aspects of PD pathology are 
most closely linked to cognitive decline, the interaction between  
AD and PD pathology, and the cellular and morphological  
features that may explain disease spread and selective neuronal 
vulnerability. Although genetic studies of DLB/PDD are in their 
infancy, results to date show commonalities with both PD and  

AD but also notable differences. As our understanding of the  
basic pathophysiology of these conditions expands and as links 
between genotype, pathological mechanisms and phenotype are 
established, prospects for personalised medicine will increase: 
these include prediction of not only which patients will develop 
cognitive impairment but when. Importantly, these observa-
tions may also provide important insights into the mechanisms  
underlying neurodegenerative diseases more generally as well 
as new targets for novel disease-modifying therapy to prevent  
dementia in PD and DLB.
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