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Abstract 

Background and Purpose: In vivo identification of white matter lesions plays a key-role in 

evaluation of patients with multiple sclerosis (MS). Automated lesion segmentation methods have 

been developed to substitute manual outlining, but evidence of their performance in multi-center 

investigations is lacking. In this work, five research-domain automated segmentation methods were 

evaluated using a multi-center MS dataset. 

Methods: 70 MS patients (median EDSS of 2.0 [range 0.0-6.5] ) were included from a six-center 

dataset of the MAGNIMS Study Group (www.magnims.eu) which included 2D FLAIR and 3D T1 

images with manual lesion segmentation as a reference. Automated lesion segmentations were 

produced using five algorithms: Cascade; Lesion Segmentation Toolbox (LST) with both the Lesion 

growth algorithm (LGA) and the Lesion prediction algorithm (LPA); Lesion-Topology preserving 

Anatomical Segmentation (Lesion-TOADS); and k-Nearest Neighbor with Tissue Type Priors (kNN-

TTP). Main software parameters were optimized using a training set (N=18), and formal testing was 

performed on the remaining patients (N=52). To evaluate volumetric agreement with the reference 

segmentations, intraclass correlation coefficient (ICC) as well as mean difference in lesion volumes 

between the automated and reference segmentations were calculated. The Similarity Index (SI), False 

Positive (FP) volumes and False Negative (FN) volumes were used to examine spatial agreement. All 

analyses were repeated using a leave-one-center-out design to exclude the center of interest from the 

training phase to evaluate the performance of the method on ‘unseen’ center. 

Results: Compared to the reference mean lesion volume (4.85±7.29 mL), the methods displayed a 

mean difference of 1.60±4.83 (Cascade), 2.31±7.66 (LGA), 0.44±4.68 (LPA), 1.76±4.17 (Lesion-

TOADS) and -1.39±4.10 mL (kNN-TTP). The ICCs were 0.755, 0.713, 0.851, 0.806 and 0.723, 

respectively. Spatial agreement with reference segmentations was higher for LPA (SI=0.37±0.23), 

http://www.magnims.eu/
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Lesion-TOADS (SI=0.35±0.18) and kNN-TTP (SI=0.44±0.14) than for Cascade (SI=0.26±0.17) or 

LGA (SI=0.31±0.23). All methods showed highly similar results when used on data from a center not 

used in software parameter optimization.  

Conclusion: The performance of the methods in this multi-center MS dataset was moderate, but 

appeared to be robust even with new datasets from centers not included in training the automated 

methods. 
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1. Introduction 

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous 

system, with inflammatory white matter (WM) lesions as prominent pathological hallmark.1,2 In vivo 

visualization of lesions by means of MRI plays a crucial role in the diagnosis and study of MS. 

Moreover, several clinical trials have used WM lesion volume as a (secondary) study outcome.3-6 

For clinical and research purposes, delineation of WM lesions in MS is either performed 

manually or with a semiautomatic tool. These approaches, however, are labor-intensive and suffer 

from considerable inter- and intra-rater variability.7,8 To overcome these problems, automated WM 

lesion segmentation methods have been developed in the last decade.9 However, these methods are 

not routinely applied in research, clinical trials or individual patient care. One important hurdle is the 

lack of comparative data reporting the accuracy and robustness of these methods when using data 

obtained from different centers.  Evidence of their performance in multi-center investigations is 

lacking. 

The aim of this study was, firstly, to evaluate the performance of research-domain automated 

WM lesion segmentation methods in a multi-center MS dataset with diverging scanners and 

protocols. And secondly, to investigate how these methods perform on data from a new center (using 

other centers for training). We selected five algorithms for automated segmentation: Cascade10,11; 

Lesion growth algorithm (LGA)12 and Lesion prediction algorithm (LPA)13 both from the Lesion 

Segmentation Toolbox (LST)12; Lesion-Topology-preserving Anatomical Segmentation (Lesion-

TOADS)14; and k-Nearest Neighbor with Tissue Type Priors (kNN-TTP)15.  
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2. Methods and materials  

2.1. Subjects 

The data for this study were drawn from a multi-center MS dataset that was collected by the 

MAGNIMS Study Group (www.magnims.eu) as described previously.16 For the analyses described 

in the current paper, we selected the patients with a 2D FLAIR acquisition, and we excluded three 

patients with co-morbidity (vascular disease, glioblastoma, surgical removal of part of the brain) that 

could interfere with the automated lesion segmentation and one patients whose data were acquired 

after contrast agent administration. 

This resulted in a dataset of 70 patients (67% female) that were scanned in six different 

MAGNIMS centers. Of the 70 patients, 1 was diagnosed with clinically isolated syndrome, 65 had 

relapsing-remitting MS, and 4 had secondary-progressive MS. The average age was 34.9±8.5 years 

and mean disease duration was 7.6±6.0 years from onset. The disease severity was measured using 

the Expanded Disability Status Scale (EDSS)17 on the day of scanning and scores a median of 2 

(range 0.0-6.5), see Table 1. We additionally collected data of 12 healthy controls (2 per center) from 

the larger sample (58% females; age: 31.2±7.2 years) for kNN-TTP training (see 2.4.4). Written 

informed consent had been obtained from all subjects and the institutional review boards of each 

participating center approved the study. 

 

2.2. MR imaging 

MR imaging was performed on 3.0 Tesla whole-body MR systems. Each protocol contained a 3D 

T1-weighted sequence with a (near) isotropic voxel size of approximately 1mm3 and a 2D FLAIR 

sequence with a 3.0-mm slice thickness and an in plane resolution of 0.75-1.0 mm. More details are 

listed in Table 2. 

http://www.magnims.eu/
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2.3. Manual segmentations 

The manual reference segmentations were constructed as follows: an experienced neuro-radiologist 

(YL) manually marked the lesions, after which a trained rater outlined the lesions. To assess intra-

observer variability, the rater constructed a second set of segmentations for five subjects based on the 

same markings. Furthermore, for these same five patients, the neuro-radiologist marked the lesions a 

second time after which the rater created segmentations based on these new markings, resulting in a 

third set of segmentations used for quantification of inter-rater variability.  

 

2.4. Automated WM lesion segmentation methods 

Methods were included if: the method 1) is able to segment WM lesions in a fully automated manner 

from FLAIR (and T1-weighted) images; 2) is freely available for academic research work; and 3) can 

be installed on the NCA grid cluster (www.amsterdamresearch.org/web/neuroscience). Based on 

these criteria, we selected Cascade; LGA and LPA, both from the LST; Lesion-TOADS; and kNN-

TTP. More information on the inclusion is listed in Table 9 of supplementary data. The post-

processing used is listed in Table 3 and a short description of each method is listed below. A short 

introduction on each of the methods is provided below. 

 

2.4.1. Cascade 

Cascade10,11 is an unsupervised method based on a proposed statistical definition of WML which was 

not specifically developed for MS WM lesions. The method applies a single node support vector 

machine (SVM) to preselect tissues that shows WM changes (areas with low and high intensities on 

respectively, T1 and T2 weighted images) compared to normal grey matter (GM) and WM. The WM 
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changes are tested against a statistical definition of WM lesions, and by applying a threshold (α), a 

selection of lesions is made. From this selection, a WM lesion p-value (LPV) map is created by 

applying a morphological filter and removing small lesions (lesion size < 27 mm3). Then the LPV 

map is converted to a binary mask by applying a threshold (LPV threshold). 

 

2.4.2. LGA 

LGA12, implemented in the LST, is based on a lesion growth algorithm. For pre-processing, FLAIR 

images are linearly registered to T1-weighted images, as well as the generated partial volume 

estimated (PVE) label and inverse warping of the WM tissue probability map (TPMWM). Next, WM, 

GM and cerebrospinal fluid (CSF) lesion belief maps (BWM, BGM, BCSF) are calculated and a liberal 

lesion map is created as the sum of the belief maps. By binarizing BGM with a threshold (κ) the initial 

lesion map is constructed. Lesion growing is then performed on the initial lesion map toward the 

liberal lesion map, and stopped when no more voxels are added to the lesions. Finally, the lesion-

probability (LP) map is converted to a binary lesion mask by applying an user specified lesion 

probability threshold (LPT). 

 

2.4.3. LPA 

LPA13, implemented in the Lesion Segmentation Toolbox (LST), is based on a lesion prediction 

algorithm. For pre-processing, FLAIR images are linearly registered to T1-weighted images and are 

normalized to MNI space. WM, GM and CSF are segmented and the FLAIR intensities are 

standardized by dividing each voxel by the mean of the GM segmentation followed with a 

subtraction on each voxel with the mean of the standardized GM intensities. The remaining positive 

voxels on the FLAIR images are multiplied with a WM tissue probability map and negative voxels 
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set to zero to create the LP map. Lastly, the LP map is converted to a binary lesion mask by applying 

a LPT. 

 

2.4.4. Lesion-TOADS 

Lesion-TOADS14 is a topology preserving atlas-based segmentation method. In short, Lesion-

TOADS performs fuzzy segmentation and defines topologically consistent regions with an additional 

lesion class. A relationship function is used for reducing the false positive (FP) lesions in areas where 

they commonly occur, and an intensity-weighting scheme is incorporated for optimizing the effect of 

each channel of the multichannel inputs.  

 

2.4.5. kNN-TTP 

kNN-TTP15 segments WM lesions using kNN classification extended with anatomical TTP derived 

from healthy controls. The segmentation is done by comparing the voxels of new data with a training 

set of labelled examples, which means that, in contrast to the three other methods, kNN-TTP needs a 

labelled reference data set. A leave-one-out procedure was used to correct for the use of labelled 

examples to make the method not biased. Finally, the LP map is converted to a binary lesion mask by 

applying a LPT. 

 

2.5. Training 

The patients were divided into a separate training and test set. For each center, patients were ranked 

according to reference lesion volume and three patients were then selected for the training set: the 

patient with the median lesion volume, the patient with the second lowest volume and the patient 
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with the second highest lesion volume. This resulted in a training set of 18 patients, while the 

remaining 52 patients formed the test set.  

 

2.6. Pre- and post-processing 

For LGA, LPA and kNN-TTP the data was pre-processed as based on the reports in the 

literature12,13,15 The publications on Cascade and Lesion-TOADS do not prescribe specific pre-

processing steps; therefore, the same pre-processing steps as in kNN-TTP were applied.  

Because LGA and LPA  produced the LP-maps in T1-space, the LP maps found by LGA and 

LPA were first co-registered to FLAIR space before thresholding was applied (FSL-FLIRT, 6 DOF 

and trilinear interpolation) to create the binary lesions maps. Cascade and kNN-TTP needed post-

processing to construct binary lesion maps by applying a threshold, which was optimized during the 

training phase. See Table 3 for an overview. 

 

2.7. Parameter tuning 

The performance of Cascade, LGA, LPA and kNN-TTP can be improved by optimizing method-

specific configuration parameters. For Cascade, optimal performance was assured by running the 

segmentation algorithm on the training data while sweeping the two main parameters (α={0.05, 0.10, 

…, 1.00} and LPV threshold={α, α-0.05, …, 0}).10,11 The parameter combination that provided the 

group-wise highest average spatial overlap was considered as the optimal configuration. A similar 

approach was used to derive the optimal configuration for LPA, sweeping κ={0.05, 0.10, …, 1.00} 

and LPT={0, 0.05, …, 1.00}.12 LGA and kNN-TTP were optimized by sweeping LPT={0, 0.05, …, 

1.00}. Because in kNN-TTP, the reference data are actively used in every run of the algorithm, a 

leave-one-out cross-validation was used to optimize kNN-TTP parameters to ensure independence of 
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the evaluation.15 The optimal parameter settings were selected on the highest mean spatial overlap 

(similarity coefficient (SI), see section Evaluation) compared with the manual references. 

 

2.8. Experiments 

The parameter tuning was performed several times in the following experiments, see Figure 1. 

Experiment 1) To evaluate the performance of the automated methods while tuning the 

parameters on the data of all centers. In this experiment, all parameter tuning was done using 

the full training set and subsequently tested using the full test set.  

Experiment 2) To evaluate the performance of the automated methods on new (unseen) data, 

six partial experiments were performed, treating each of the six centers in turn as the (unseen) 

center-of-interest. Each time, the data from the center-of-interest was excluded during the 

parameter tuning, and the optimized methods were then tested on the center-of-interest data.  

 

Three additional analyses were performed with the data of Experiment 1.  

1) Impact of lesion volume:  

the data was re-analyzed for subject groups with low (<5 mL), intermediate (5-15 mL) and high 

(>15 mL) lesion volume.  

2) Impact of the training set selection: 

the data was re-analyzed with use of two different training sets, selecting for training from each 

center first the three patients with lowest lesion volumes, and second the three patients with the 

highest lesion volumes. The impact of the training set composition was subsequently evaluated 

by comparing the subset of patients that were not part of any of the three training sets (N = 28). 

The agreement of the segmentations with the manual references was evaluated using SI.  
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3) Comparison of automated methods against data-driven reference: 

we assessed the performance of the algorithm against a data driven reference using the STAPLE 

algorithm.19 The STAPLE algorithm estimates the sensitivity and specificity for each automated 

segmentation compared to an estimated true segmentation derived by STAPLE. 

 

2.9. Evaluation 

The method-wise performance was evaluated by examining volumetric and spatial agreement of the 

automated methods with the manual reference segmentation. The segmentations of Experiment 2 

were evaluated as one group, despite differences in optimized parameters depending on the centers 

included in the parameter tuning in order to provide a complete assessment of the performance on 

unseen data that can be directly compared with the results of Experiment 1.  

 For volumetric agreement, the mean difference in lesion volume between the automated 

segmentation and the manual reference segmentation was evaluated. Furthermore, the intra-class 

correlation coefficient (ICC, two-way mixed model with absolute agreement)20 was calculated. 

Spatial agreement between the methods and the manual reference was evaluated using the Dice 

similarity index21: 

𝑆𝐼 = (2 × 𝑇𝑃) (2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁⁄ ), 

where TP, FP and FN are, respectively, true positive, false positive and false negative volume. To 

determine the origin of  spatial disagreement, we also computed the detection error rate (DER; the 

detection error volume divided by mean total volume) to quantify the effect of missed and false 

positive lesions on spatial disagreement, and the outline error rate (OER; the outline error volume 

divided by mean total volume) to quantify the effect of altered boundaries of correctly detected 
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lesions (see supplementary data for equations of DER and OER).15,22 Finally, FP and FN volumes 

were determined for the results of Experiment 1.  

 

3. Results 

An overview of the optimal configurations derived in the training phase of both experiments is 

provided in Table 4. Figure 2 displays a typical example of FLAIR image, the corresponding manual 

reference segmentation and the corresponding automated segmentation results.  

The voxelwise intra-rater variability was SI=0.73±0.11 (mean±SD) when comparing the first and 

second segmentations and 0.75±0.11 when comparing the segmentations on the first and second 

marking of the lesions.  

 

3.1. Volumetric agreement  

The average lesion volume measured by the manual rater was 4.85±7.29 mL, which is in the 

expected range for an MS cohort with the given demographic and clinical features (see also Table 1). 

Scatterplots of the lesion volumes with correlation coefficients found by the automated methods 

versus the volumes of the manual outlined lesions are shown in Figure 3. The mean volumetric 

difference and ICC between the automated segmentation results and the manual reference 

segmentations are presented in Table 5.  

In Experiment 1, Cascade, LPA and kNN-TTP showed the smallest deviation from the 

manual reference in terms of lesion volume (mean difference: 0.60±4.83, 0.44±4.68 and-1.39±4.10 

mL, respectively), compared to LGA and Lesion-TOADS (mean difference: 2.31±7.66 mL and 

1.76±4.17, respectively). Figure 4 shows boxplots of this volume differences for both experiments 

and each center.  
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In Experiment 2, with testing on new centers, LPA showed on average the largest differences: 

larger deviations and lower ICC were observed (see Table 5) compared to Experiment 1. The 

volumetric performance of Cascade, LGA and kNN-TTP was less affected by the different training. 

Because Lesion-TOADS does not use training or optimization, results for Experiment 2 were 

identical to those for Experiment 1. 

 

3.2. Spatial agreement   

The average SI, DER, OER and FN and FP volumes of the automated segmentation methods 

compared to the manual reference are presented in Table 5. Figure 5 displays boxplots of the SI for 

each experiment and center.  

In Experiment 1, higher average SIs were found for LPA (0.37±0.23), Lesion-TOADS 

(0.35±0.189) and kNN-TTP (0.44±0.14) than for Cascade (0.26±0.17) and LGA (0.31±0.23). The 

OER was relatively constant between the methods, whereas the DER showed more variation (see 

Table 5).  

Compared to Experiment 1, Experiment 2 did –on average– not reveal differences in spatial 

performance of any method. The small overall reduction in average spatial performance of Cascade, 

LGA, LPA and kNN-TTP in Experiment 2 does not imply that the performance always degrades 

when segmenting ‘unseen’ data. As can be seen from Figure 5, depending on the method, the 

performance on data from individual centers may actually also improve when using only data from 

other centers in the training set, see also Figure 4.  

 

3.3. Additional analyses 
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Table 6 displays the SI for each method for different ranges of the reference lesion volume. In 

general, independently of the method, an increase in average SI can be observed with increasing 

lesion volume.  

The spatial agreement for the different training set selection schemes is shown in Table 7. 

Independently of the training set selection scheme, all methods showed comparable performance. 

Table 8 presents the estimated sensitivity and specificity of the methods relative to the hidden 

truth computed by the STAPLE algorithm. On average, LPA, Lesion-TOADS and kNN-TTP showed 

higher estimated sensitivities and specificities than the two other methods.  

 

4. Discussion 

In this study we directly compared five research-domain automated WM lesion segmentation 

methods in a multi-center MS dataset, to obtain quantitative results on their volumetric and spatial 

performance in a multi-center dataset. Accurate and robust segmentation of WM lesions would be 

beneficial for clinical trials in which lesion volumes are used as a (secondary) study outcome and 

studies on accurately measuring the GM atrophy.23,24 Our results show performance differences 

between methods, with LPA, Lesion-TOADS and kNN-TTP overall exhibiting best performance, 

followed by Cascade and LGA. However, all methods were robust when applied to data of a new 

(‘unseen’) center, exhibiting very similar performance with and without inclusion of that center in the 

training and only using data of other centers. An interesting follow up study to improve the 

applications of the automated WM lesion segmentation methods in clinical setting, could be finding 

the optimal amount of centers or number of patients per center that should be used for the training.  

The systematic comparison in this study showed a good performance of LPA, Lesion-TOADS 

and kNN-TTP in terms of both volumetric and spatial performance. Cascade was comparable to these 
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for volumetric but not spatial agreement, while LGA showed lower volumetric and spatial agreement 

compared to LPA, Lesion-TOADS and kNN-TTP. Nevertheless, the spatial agreement of the 

methods with the manual reference segmentation in the current study (mean SI range [0.27-0.45]) 

was lower than commonly reported by earlier studies.15,25-27  To be able to compare the results of 

those study to the data of our study, we also report means and standard deviations. Because our data 

were mostly not normally distributed, the median, 1st and 3rd quartile are reported as Supplementary 

Table 10. As the boxplots do show that the performance of the methods stays comparable when 

reporting the median instead of the mean, we decided for better comparison of this study to other 

studies to report the mean. 

The lower spatial agreement found in the current work could result firstly reside from the fact 

that this study used a multi-center data set, which is by definition more heterogeneous than data from 

a single center and acquisition protocol. This is confirmed by another recent study on lesion 

segmentation in a multi-center data set, reporting similar (low) performances (range of SI=0.11-0.45) 

compared to the current study.28 The use of a multi-center data set is a strength of this study, 

providing a better approximation of the clinical setting, and moreover allowing us to show that the 

automated segmentation methods are robust to new data of an ‘unseen’ center. Summarizing, the four 

methods are robust, however, not accurate enough on spatial agreement. The relatively low spatial 

agreement may secondly be explained by the use of 2D FLAIR images instead of 3D FLAIR, 

because other studies that reported a higher SI used 3D FLAIR. 15,29 A higher SI with 3D FLAIR is 

probably due to the (normally) better resolution of the 3D images compared to 2D sequences, which 

results in more precise distinction of lesion boundaries and can also improve image co-registration. 

The use of 2D sequences may be considered a limitation of this study, because of the recent expert 

opinion guidelines and recommendation 30-32 and also because it is not possible to investigate cortical 
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lesions from this type of sequence. However, given our research question, aiming to accommodate 

the lack of multi-center validations of automated MS WM lesion segmentation techniques, this study 

was performed with data that is representative for the clinical practice. A follow up study could 

benefit from using data that is even more representative for the current clinical practice, so not only 

use 2D and 3D FLAIR images, 2 scanners and one field strength, but also include more different 

scanner or even scanners with both 1.5T and 3T field strengths.  

Another explanation for the relatively low spatial agreement in our study may be sought in the 

composition of the data set. The patients participating in the current study had on average a relatively 

low lesion burden (according to the manual rater: 4.85±7.29 mL), with even a few patients with 

extremely low burden. In two of those cases, none of the automated methods agreed with the manual 

reference on the location of the lesions, leading to zero overlap. Moreover, especially LGA produced 

more segmentations without agreement with the manual reference, resulting in a lower average SI 

and varying results for specific centers (i.e., center F).  

In addition, the training set selection scheme still can play a crucial role in the low spatial 

agreement. In this study we constructed the training set by selecting the subjects with the median, 

second lowest and second highest lesion loads for each center reasoning that these subjects properly 

reflect the data contributed by each center. This also ensured that each center was equally represented 

in the parameter tuning irrespective of the total number of subjects per center. However, this 

selection scheme may have had consequences for the final segmentation depending on the classifier 

within each method. To rule out that this had an effect we did an additional experiment using the 

patients with the three lowest and three highest lesion volumes for parameter tuning. This did not 

reveal large differences in performance for the methods evaluated in this study, but future studies 

should investigate the influence of training dataset composition more exhaustively. For example. 
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future studies could have a larger test set, because in our additional experiment the test set had only 

25 subjects. Such future work could also study optimum numbers and compositions for the training 

set, whether or not this should depend on the number of subjects for each center. Moreover, the 

lesion volumes could have more variation . 

The generally low spatial agreement was driven by both high DER and high OER, so both 

error in the detections of lesions as in outlining of the lesions, although the substantially lower 

performance of Cascade and LGA can be attributed in particular to a higher DER. Cascade and LGA 

had higher FP volumes than the other two methods. 

Concerning false negative voxels, all automated methods had around 2 mL average FN lesion 

volume. This may derive from the limitation that this study only used one single expert rater to 

construct the manual reference dataset, the rater possibly being too conservative in detecting and 

outlining the WM lesions. To address this issue, we took an alternative approach and compared the 

performance of the automated segmentations with the data-driven STAPLE algorithm. This 

algorithm does not require manual data, but estimates the sensitivity and specificity of the different 

methods by comparing to the ‘hidden true segmentation’ that is constructed by the STAPLE 

algorithm using the four automated segmentations. This analysis showed similar results as when 

comparing to the manual reference, with LPA, Lesion-TOADS and kNN-TTP showing better 

performance than Cascade and LGA. This confirms the observation from the manual reference 

comparison that Lesion-TOADS and kNN-TTP had best performance in terms of spatial agreement. 

Future studies should try to improve construction of the manual segmentations, possibly by using 

intelligent data-driven approaches or a larger number of manual raters, of which the agreement in 

terms of lesion detection and outline error can be quantified. 
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The results of this study also shows that improvements in terms of volumetric agreement are 

necessary, as the average volumetric difference between the manual reference and automated 

methods ranged from 0.44±4.68 (kNN-TTP) to 2.31±7.66 mL (LGA). When visualily inspecting the 

outlines and MR images of these outliers we concluded that this was mainly due to GM atrophy in 

these subjects. By comparison, the average lesion load changes occurring in MS patients over a 1-

year period in clinical studies are in ranges of 0.38±1.81,3 0.11±2.55,5 and 0.08±0.97 mL.6 The large 

inter-subject variability of the volumetric differences within each method indirectly suggests that the 

errors are not entirely systematic, and therefore these errors are a concern for detecting the lesion 

volume changes over time. Future studies should investigate performance at quantifying lesion 

volume change over time using suitable datasets and with high-quality reference measurements. 

Further studies could help optimize performance by investigating the dependence of performance on 

lesion location and on total lesion load. Moreover, a follow up study could look with more detail to 

different lesions types and locations. 

In conclusion, the five research-domain automated WM lesion segmentation methods 

exhibited moderate accuracy in this multi-center dataset consisting of MS patients with moderate 

lesion burden. All methods exhibited relatively low performance compared to other studies. LPA, 

Lesion-TOADS and kNN-TTP outperformed Cascade and LGA in terms of both volumetric and 

spatial agreement. The performance of the method was not affected by using ‘unseen’ data for 

training, which is important for the acceptance of automated methods in a clinical setting. However, 

the methods should perform better before their use in a clinical setting can be realistically considered. 

Furthermore, better understanding of which parameters influence the performance of the 

segmentation methods is required for better interpreting their performance. 
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Tables 

 

Table 1 Demographics of MS patientsa 

Center 

 

Nb 

 

Age 

years 

Disease types 

 

DD 

years 

EDSSc 

 

A 14 [86%] 37.6±7.2 1 CIS, 13 RR 11.5±8.6 2.5 (0.0-6.5) 

B 11 [73%] 28.1±8.6 11 RR 7.6±4.8 2.5 (1.0-4.0) 

C 10 [80%] 35.2±10.5 10 RR 3.6±1.3 2.0 (0.0-6.5) 

D 14 [64%] 35.6±10.0 14 RR 5.3±3.3 1.5 (0.0-3.0) 

E 11 [80%] 34.2±3.6 11 RR 7.5±4.4 2.5 (1.0-3.5) 

F 10 [10%] 38.4±9.4 6 RR, 4 SP 9.2±7.2 4.0 (1.5-6.5) 

Total 70 [67%] 34.9±8.5 1 CIS, 65 RR, 4 SP 7.6±6.0 2.0 (0.0-6.5) 
aMean±standard deviation 
bNumber of subjects [%female] 
cMedian (range)  

Abbreviations: DD=disease duration, EDSS=expanded disability status scale, CIS = clinically 

isolated syndrome RR=relapsing-remitting, SP=secondary-progressive 
 

Table 2 An overview of the acquisition parameters for each center 

  
 Sequence parameters 2D 

FLAIR/3DT1 

 

Center 

 

Scanner brand,  

scanner type 

 TR  

(ms) 

TE  

(ms) 

TI 

(ms) 

FA  

(⁰) 
Voxel size (mm3) 

A Siemens, Trio 
2D FLAIR 

3DT1 

9000 

2300 

93 

2.98 

2500 

900 

- 

9 

256x256 (0.94x0.94x3) 

182x240 (1x1x1) 

B Siemens, Trio 
2D FLAIR 

3DT1 

9000 

1570 

136 

2.76 

2500 

900 

- 

9 

320x320 (0.75x0.75x3) 

160x256 (1x1x1) 

C Philips, Achieva 
2D FLAIR 

3DT1 

11000 

6.9 

125 

2.78. 

2600 

831 

- 

9 

256x256(0.94x0.94x3) 

160x240(1x1x1) 

D Siemens, Trio 
2D FLAIR 

3DT1 

10000 

1900 

69 

2.19 

2500 

900 

- 

9 

256x256 (0.94x0.94x3) 

176x448 (1x1x1) 

E Philips, Achieva 
2D FLAIR 

3DT1 

8000 

6.9 

125 

3.1 

2400 

831 

- 

8 

240x180 (1x1x3) 

256x256 (1x1x1) 

F Philips, Achieva 
2D FLAIR 

3DT1 

11000 

8.3 

120 

3.7 

2800 

815 

- 

8 

256x256 (0.94x0.94x3) 

182x240 (1x1x1) 

Abbreviations: FLAIR=fluid-attenuated inversion recovery, TR=repetition time, TE=echo time, 

TI=inversion time, FA=flip angle;  
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Table 3 Description of the methods, parameter tuning and pre- and post-processing steps of automated segmentation methods 

Method Reference Underlying method Parameter tuning Pre-processing Post-processing 

Cascade Damangir, 2012 SVM;  

Statistical definition 

of WML 

Yes; α and  

LPV threshold 

Brain extraction on 3DT1 

3DT1 to FLAIR registration 

Brain mask applied on FLAIR  

Not needed 

LGA Schmidt, 2012 Algorithm based  Yes; κ and LPT Generate PVE label image 

coregistration FLAIR to 3DT1 

registration TPMWM to 3DT1 

Needed; 

LP maps to FLAIR 

registration 

LPA Schmidt; 2017 Algorithm based  Yes; LPT Generate PVE label image 

coregistration FLAIR to 3DT1 

registration TPMWM to 3DT1 

Needed; see LGA 

Lesion-

TOADS 

Shiee, 2010 Topological and 

Statistical atlas based 

None Brain extraction on 3DT1 

3DT1 to FLAIR registration 

Brain mask applied on FLAIR  

Not needed 

kNN-TTP Steenwijk, 2013 kNN classification Yes; LPT Brain extraction on 3DT1 

3DT1 to FLAIR registration 

Brain mask applied on FLAIR  

Not needed 

Abbreviations: SVM=support vector machine, PVE=partial volume estimate, TPMWM=white matter tissue probability map, 

FLAIR=fluid-attenuated inversions recovery, LPV=lesion pvalue, LPT=lesion probability threshold, LP=lesion probability  
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Table 4 Optimal setting for threshold  

 

    Training on  Center excluded from training 

Method Parameter all centers A B C D E F 

Cascade α 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

 Lesion-pvalue 0.05 0.05 0.05 0.05 0.05 0.15 0.05 

LGA  κ 0.15 0.20 0.20 0.15 0.15 0.20 0.20 

 
Lesion-

probability 
0.85 0.75 0.65 0.85 0.75 0.75 0.75 

LPA 
Lesion-

probability 
0.55 0.55 0.55 0.60 0.55 0.55 0.55 

Lesion-TOADS None        

kNN-TTP 

 

Lesion-

probability 
0.55 0.55 0.50 0.55 0.65 0.55 0.55 
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Table 5 Volumetric and Spatial agreement of the automated methods with the manual referencea 

  
Test 

set  

Method 

 

Volumeb 

 

Volume 

differenceb 

ICC 

 

SI 

 

DER 

 

OER 

 

FN 

Volumeb 

FP 

Volumeb 

  
Manual 

reference 

4.85±7.29 

 
       

Experiment 1c N=52 Cascade 5.45±6.47 0.60±4.83 0.755 0.26±0.17 0.98±0.55 0.50±0.35 2.28±3.04 3.64±3.44 

   LGA 7.16±12.70 2.31±7.66 0.713 0.31±0.23 0.83±0.70 0.56±0.34 2.70±4.73 2.93±10.03 

  LPA 5.30±9.63 0.44±4.68 0.851 0.37±0.23 0.59±0.45 0.68±0.27 1.71±2.44 2.92±1.82 

   
Lesion-

TOADS  

7.45±7.97 

 

1.76±4.17 

 

0.806 

 

0.35±0.18 

 

0.65±0.50 

 

0.64±0.34 

 

1.36±1.75 

 

4.73±4.11 

 

    
kNN-

TTP 

5.92 ±6.42 

 

-1.39±4.10 

 

0.723 

 

0.44±0.14 

 

0.49±0.38 

 

0.62±0.24 

 

2.30±4.01 

 

1.51±1.79 

 

Experiment 2c N=52 Cascade 5.44±6.48 0.75±4.56 0.774 0.23±0.18 0.96±0.57 0.58±0.47 2.26±3.05 4.11±8.32 

  LGA 8.15±17.06 3.45±12.12 0.550 0.32±0.23 0.82±0.70 0.55±0.33 2.41±3.56 5.67±14.21 

  LPA 5.16±9.65 0.46±5.25 0.809 0.36±0.17 0.59±0.45 0.68±0.32 1.72±2.51 2.89±4.83 

  
Lesion-

TOADS 

7.45±7.97 

 

2.60±4.18 

 

0.806 

 

0.35±0.18 

 

0.66±0.50 

 

0.64±0.34 

 

1.36±1.75 

 

4.73±4.11 

 

  
kNN-

TTP 

3.32±4.17 

 

-1.53±4.26 

 

0.738 

 

0.43±0.14 

 

0.49±0.38 

 

0.62±0.24 

 

2.28±4.00 

 

1.15±1.68 

 
aMean±standard deviation 
bVolume in mL 
cCenters were combined in experiment 2 

Abbreviations: N=number of subjects, ICC=intra-class correlation coefficient, SI=similarity index, DER=detection error rate, 

OER=outline error rate, FN =false negative, FP=false positive 
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Table 6: SI for different lesion volumesa 

Volume Test set  Method  SI 

<5mL  N=34 Cascade 0.21±0.14 

  LGA 0.28±0.22 

  LPA 0.32±0.16 

  
Lesion-

TOADS 

0.29±0.15 

 

  kNN-TTP 0.42±0.14 

5-15mL N=12 Cascade 0.36±0.17 

  LGA 0.33±0.27 

  LPA 0.49±0.07 

  
Lesion-

TOADS 

0.48±0.13 

 

  kNN-TTP 0.49±0.11 

>15mL N=6 Cascade 0.50±0.14 

  LGA 0.45±0.23 

  LPA 0.46±0.19 

  
Lesion-

TOADS 

0.63±0.08 

 

  kNN-TTP 0.50±0.18 
aMean±standard deviation 

Abbreviations: N=number of subjects, 

SI=similarity index. 

 

Table 7: SI of the original test set and obtained in only the patients present in the test sets for 

different used training setsa 

Training 

set  

Original 

(N=52) 

A 

(N=28) 

B 

(N=28) 

C 

(N=28) 

Method     

Cascade 0.26±0.17 0.33±0.12 0.32±0.15 0.31±0.16 

LGA 0.31±0.23 0.36±0.22 0.35±0.22 0.35±0.22 

LPA 0.37±0.17 0.44±0.13 0.44±0.14 0.43±0.13 

Lesion-

TOADS 

0.35±0.18 0.44±0.16 

 

0.44±0.16 

 

0.44±0.16 

 

kNN-TTP 0.42±0.17 0.50±0.11 0.51±0.11 0.49±0.13 
aMean±standard deviation 

Abbreviations: N=number of subjects, SI=similarity 

index. 

Training sets: for each center for original and A the 

patients with the median, second minimum and second 

maximum lesion volumes, for B the three patients with 

lowest lesion volume and for C the three patients with 

highest lesion leas. 
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Table 8: Estimated sensitivity and specificity compared to data-driven reference 

Method 

 

Test set  

(N=52) 

Estimated  

sensitivity 

Estimated 

specificity  

Cascade  0.55±0.27 0.38±0.31 

LGA   0.69±0.22 0.56±0.37 

LPA  0.81±0.13 0.78±0.23 

Lesion-

TOADS  
  

0.81±0.24 

 

0.61±0.25 

 

KNN-TTP   0.75±0.13 0.72±0.24 
aMean±standard deviation 

Abbreviations: N=number of subjects 
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Figures 

 

 

Figure 1: Flowchart of selection method for training and test set. The number of patients in test 

set when select center Xi, depends on the selected centers. Abbreviations: N=number of 

subjects.  
 

 

Figure 2: A FLAIR images is shown (first from left) with the lesion masks of the manual 

reference (second from left) and the 4 segmentation methods (images 3 to 6 from left). 

Abbreviations: FLAIR=FLuid-Attenuated Inversion Recovery 

 



32 
 

 

 

Figure 3: Lesion volume between automated segmentations (left to right, up to down; Cascade, LGA, LPA, Lesion-TOADS and kNN-

TTP) against the lesion volume of the manual reference. 
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Figure 4: Boxplot of difference in lesion volume between automated segmentations (left to right; Cascade trained on all centers and 

Cascade trained on other centers, LGA trained on all centers and LGA trained on other centers, LPA trained on all centers and LPA 

trained on other centers, Lesion-TOADS trained on all centers and Lesion-TOADS trained on other centers and kNN-TTP trained on 

all centers and kNN-TTP trained on other centers) and the manual reference for the total group and separate centers (left to right: 

all, center A, B .. F), with star = outliner, diamond = mean of difference, green line is zero. 
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Figure 5: Boxplot of the Similarity Index (left to right; Cascade trained on all centers and Cascade trained on other centers, LGA 

trained on all centers and LGA trained on other centers, LPA trained on all centers and LPA trained on other centers, Lesion-

TOADS trained on all centers and Lesion-TOADS trained on other centers and kNN-TTP trained on all centers and kNN-TTP 

trained on other centers) and the manual reference for the total group and separate centers (left to right: all, center A, B .. F), with 

star=outliner, diamond=mean. 

 

 


