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Highlights 

- We used for the first time combined repetitive peripheral magnetic stimulation and transcranial 

magnetic stimulation (magnetic-paired associated stimulation, magnetic-PAS). 

- Magnetic-PAS modulates corticospinal excitability and cortical inhibition in the stimulated 

muscle.  

- Application of magnetic-PAS may be a therapeutic option for motor rehabilitation.  
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ABSTRACT  

Objective: Repetitive application of peripheral electrical stimuli paired with transcranial magnetic 

stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), 

is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects 

of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS 

(‘magnetic-PAS’) on intracortical and corticospinal excitability.  

Methods: Eleven healthy subjects underwent three 10 minutes stimulation sessions: 10 Hz rPMS 

alone, applied in trains of 5 stimuli every 10 second (60 trains) on the extensor carpi radialis (ECR) 

muscle; rTMS alone at an intensity 120% of ECR threshold, applied at a frequency of 0.1 Hz (60 

stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials 

(MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor 

threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition 

(SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms 

before and immediately after each intervention.  

Results: Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and 

reduced SICI in ECR but not in FDI muscle.  

Conclusion: Magnetic-PAS can increase corticospinal excitability and reduce cortical inhibition in 

the specific area of cortical representation of the stimulated muscle.  

Significance: Application of magnetic-PAS might be relevant for motor rehabilitation.  

 

Key words: magnetic paired associative stimulation, repetitive peripheral magnetic stimulation, 

motor cortex plasticity, motor cortex excitability. 
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INTRODUCCION 

Peripheral electrical stimulation (PES) over muscles or nerves is commonly used as an intervention 

to facilitate plastic changes in the motor cortex and spinal cord, enhancing recovery of motor 

functions (Chipchase et al 2011). Stefan et al (2000) first reported that paired 

associative stimulation (PAS), which consists of repetitive low-frequency PES of the median nerve 

followed by TMS of the contralateral M1 cortex, induced a transient increase in MEP amplitude at 

rest and in the duration of the cortical silent period (CSP) during contraction. These changes were 

consistently dependent on the timing of magnetic stimulation after the afferent input (Stefan et al 

2000). Because PAS did not alter the excitability of spinal motor neurons or the MEP evoked by 

brainstem stimulation, associative long-term potentiation (LTP)-like phenomena in the M1 cortex 

were proposed as the underlying mechanism of PAS (Stefan et al 2000). The majority of PAS 

studies applied PES at suprathreshold intensities, inducing a muscle response (Kennedy and Carson 

2008, Tecchio et al 2008, Litvak et al 2007, Sale et al 2007, Wolters et al 2003, Ridding and Uy 

2003, Stefan et al 2000). This creates a secondary sensory influx, arising from muscle contraction, 

which could contribute to modulate M1 excitability (Shitara et al 2013). In fact, enhanced M1 

excitability has been observed when peripheral stimuli preferentially activated proprioceptive 

afferents, carrying information from mechanoreceptors, muscle spindles and deep connective tissue 

sensors, but not when cutaneous afferents were preferentially stimulated (Kujirai et al 2006, Litvak 

et al 2007). Therefore, using peripheral magnetic (PMS) instead of electrical stimulation for 

activation of the afferent fibers would seem not to imply any difference. However, high frequency 

repetitive peripheral magnetic stimulation (rPMS) may itself alter corticospinal and intracortical 

excitability (Krause et al 2005, Krause and Straube 2008). Here, we hypothesized that the non-

electrical peripheral muscle stimulation such as rPMS which is non-painful stimulation followed by 

TMS could alter corticospinal excitability. The current study will investigate changes in 

corticospinal and intracortical excitability related to the combined application of rPMS and 

magnetic stimulation of the motor cortex (magnetic-PAS), in comparison to peripheral and central 

magnetic stimulation protocols applied alone.  

 

METHODS  

The study protocol was approved by the Research Ethics Committee of the Institute Guttmann and 

was conducted in accordance with the Declaration of Helsinki (World Medical 2013).  

Participants 

Eleven healthy subjects (5men, 6 women; mean age=36.18 ± 10.27 years, age range: 26-64 years; 

right-handed, according to the Edinburgh handedness inventory) were included in the study after 
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signing written informed consent for participation in research.  

Experimental design and protocol 

All participants underwent 3 non-invasive stimulation protocols (rPMS, rTMS and magnetic-

PAS25), fully described below. Protocols were applied in separate visits, each spaced one-week 

apart. Corticospinal and intracortical excitability were assessed before and immediately after each 

stimulation session. 

Motor cortex excitability evaluation 

Changes in corticospinal and intracortical excitability were evaluated using TMS protocols. 

Peripheral magnetic stimulation was performed with the MagPro® (Medtronic Inc., Minneapolis, 

MN, USA) and delivered through a figure-of-eight coil (outer diameter of each wing 9.5cm). 

Subjects were seated in a comfortable chair, resting their forearms in a pronation posture on a desk 

in front of them and were asked to stay relaxed but awake throughout experiments. Silver/silver 

chloride (Ag/AgCl) disc electrodes (outer diameter of 0.9cm) were attached over the belly of the 

extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles of the dominant limb, with 

the cathode proximal and the anode approximately 2 cm distally. A figure-of-eight coil was held 

tangentially to the scalp over the motor area of the dominant hand in the optimal position for 

activating the ECR, with the handle pointing backward and laterally at an angle of 45° to the 

sagittal plane to generate a posterior-to-anterior current flow in the brain. MEPs were recorded with 

a conventional EMG machine (Medelec Synergy, Oxford Instruments; Surrey, England). The EMG 

signal was amplified using a band-pass of 3 Hz–10kHz, amplitude sensitivity of 0.1-0.5mV and 

epochs of 100 ms sweep duration. They were stored in a Synergy computer for offline analysis.  

The following parameters were measured before and after the neuromodulation intervention: 

1. Resting motor threshold (RMT), which was defined as the lowest intensity of TMS that evoked 

an MEP greater than 50μV peak-to-peak amplitude in the resting target muscle in at least 5 of 10 

consecutive trials, 2. Mean amplitude of MEPs using single pulse TMS at 120% of RMT. During 

recordings, we marked the hot point over scalp for the biggest MEP of ECR and we also marked the 

localization of superficial electrodes on the belly of ECR. We used those points for stimulation and 

recording of MEP in ECR, 3. Short intracortical inhibition (SICI) and intracortical facilitation (ICF) 

using paired-pulse TMS with a subthreshold conditioning stimulus (80% of RMT) and a 

suprathreshold test stimulus (120% of RMT) at interstimulus interval (ISI) of 2ms for SICI and 

15ms for ICF (Kujirai et al 1993). For consistency 15 trials per test have been recorded.  

The order of recordings was kept consistent for all subjects and experimental conditions as 

follows: RMT, MEP, SICI, and ICF. 
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Experiment conditions  

1) Repetitive peripheral magnetic stimulation (rPMS) was applied over the dominant ECR with the 

forearm placed in a neutral posture at rest on the desk, using the Magstim stimulator (Magstim, 

Whitland, Dyfed, UK) and a figure-of-eight-shaped coil (outer diameter of each wing: 9.5 cm) 

centered over the muscle belly. The protocol consisted of application of trains of 5 stimuli delivered 

at intensity 70% (to produce dorsiflexion of the wrist). Bursts were at 10 Hz every 10 seconds for 

10 minutes (60 trains-total 300stimuli).  

2) Low frequency transcranial magnetic stimulation (rTMS) of the M1 cortex with the coil in the 

postero-anterior direction over the scalp site from which we recorded biggest MEP in the ECR 

muscle. Stimuli were of low frequency (0.1 Hz) suprathreshold intensity (120% of RMT), for a total 

of 10 minutes, using a MagPro® (Medtronic Inc., Minneapolis, MN, USA). 

3) Magnetic-PAS25 employed paired rPMS and rTMS, as described above, in such a way that rTMS 

was delivered 25ms after the end of each peripheral magnetic train to coincide with the arrival of 

the afferent volley at the motor cortex (Ridding and Taylor 2001). A specific script that allowed 

combining rPMS and rTMS was designed using Spike2 software (Cambridge Electronic Design 

Limited, Cambridge)   

All volunteers were studied in the morning, between 09:00 and 12:00. Subjects were requested to 

stay awake and, in order to maintain their attention, they were asked to count the number of stimuli 

they received.  

 

Data and Statistical analysis 

We measured the peak-to-peak amplitude of MEP (μV) of the ECR and FDI muscles in each 

recording then we calculated the mean amplitude of MEPs for each individual before and after each 

intervention. The SICI and ICF were calculated as percentage changes in the mean amplitude of 

MEP evoked by paired-pulse TMS from MEP evoked by single-pulse TMS at rest. 

The two-way repeated measures ANOVAs with the factors “time” (pre- and post-intervention) and 

“protocol” (magnetic-PAS, rPMS and rTMS) was used to assess the effects of different 

interventions on RMT and MEP, and a Bonferroni adjustment was applied for multiple 

comparisons. The Greenhouse–Geisser correction was used when the sphericity assumption was 

violated. A repeated measures multivariate ANCOVA was employed to evaluate the effects of 

neurostimulation protocols on SICI and ICF controlling for individual differences of baselines 

MEP. A Student's paired t test was conducted for post hoc analysis.   

Data are expressed as mean and standard deviation and the level of significance was set at p < 0.05 

for all tests. 
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RESULTS 

All subjects tolerated well the study. None refereed pain or unpleasant sensation related to central or 

peripheral stimuli. 

Modulation of Corticospinal Excitability  

There were no significant differences between RMT (F(2.0, 20.0) = 0.91, p =0.42) or MEP 

amplitude (F(2.0, 20.0) = 0.01, p =0.99) at baseline (Table 1). The stimulation protocols increased 

the corticospinal excitability as shown by significant protocol x time interaction (F(2.0, 20.0) = 

6.82, p =0.006). Specifically, ECR MEP amplitude significantly increased after magnetic-PAS 

(p=0.006), but not after rPMS (p=0.84) or rTMS (p=0.40) applied alone. The neurostimulation 

protocols did not induce changes in RMT as indicated by non-significant effect of protocol (F(2.0, 

20.0) = 0.30, p =0.42) and time (F(1.0, 10.0)=1.40, p =0.26) or protocol x time interaction (F(2.0, 

20.0) = 0.91, p =0.42) (Table 1, figure 1).  

Modulation of Short Intracortical Inhibition and Facilitation 

Baseline measure of intracortical excitability were not different between experimental conditions 

[F(2.0, 20.0) = 0.30, p =0.07 for SICI and F(2.0, 20.0) = 0.79, p =0.47) for ICF]. The application of 

magnetic-PAS led to a decrease in cortical inhibition as revealed by significant protocol x time 

interaction (F(2.0, 14.0) = 5.30, p =0.02) with reduction of SICI (p=0.03) after magnetic-PAS but 

not after rPMS (p=0.56)  or rTMS (p=0.18). Furthermore, there were no statistically significant 

changes of ICF (F(2.0, 14.0) = 0.73, p =0.50) when comparing between different experimental 

conditions (Table 1, figure 2).  

In the FDI, no significant changes of RMT (F(2.0, 20.0) = 0.91, p =0.42), MEP amplitude (F(2.0, 

20.0) = 0.80, p =0.46), SICI (F(2.0, 14.0) = 0.72, p =0.50) or SCIF (F(2.0, 14.0) = 0.56, p =0.59) 

were observed (Table 1).   

 

DISCUSSION 

To our knowledge, this is the first study to examine changes in corticospinal and intracortical 

excitability following magnetic-PAS. We have demonstrated that these changes were specifically 

related to synchronous stimulation of M1 and the muscle receiving rPMS. The results indicate that 

the enhancement of M1 cortex excitability induced by magnetic-PAS may be somatotopically 

specific, as shown by augmented corticospinal excitability and reduced intracortical inhibition 

limited to the stimulated muscle. The effects were not present when the peripheral and 

central nervous system stimulation protocols were applied separately.  

 

Modulation of Corticospinal Excitability -MEP amplitude increases     
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Our findings are consistent with previous reports of increased M1 cortex excitability when either 

conventional (Sale et al 2007, Stefan et al 2000, Wolters et al 2003) or magnetic-PAS was employed 

(Ridding and Taylor 2001). MEP amplitude results from corticospinal and spinal-segmental 

contributions to spinal cord motorneurons. Evidence from individuals who had an electrode 

implanted in the cervical epidural space indicate that PAS25 might induce LTP-like synaptic 

plasticity of the M1 cortex output neurons as the associative stimulation enhanced late but not early 

corticospinal volleys (Di Lazzaro et al 2011). Although local modulation of spinal and supraspinal 

circuitry induced by TMS and PES may play a role in corticospinal facilitation (Meunier et al 2007, 

Taylor and Martin 2009), this form of heterotopic neuroplasticity is considered to occur in the M1 

cortex because PES and rTMS synchronized at the spinal cord failed to modulate corticospinal 

function (McGie et al 2014). However, other factors such as baseline cortical inhibitory states 

(Murase et al 2015), surround motor cortex inhibition (Belvisi et al 2014) and the quality of the 

sensory afferents (Kennedy and Carson 2008, Litvak et al 2007, Sale et al 2007, Stefan et al 2000, 

Tecchio et al 2008) could also interfere in PAS-related facilitatory mechanism.  

In this context, the rPMS could present some advantages over PES. Compared to the PES, which 

provides a strong cutaneous inflow (including afferents to lemniscal and spino-thalamic pathways), 

rPMS generates a significant proprioceptive inflow (directly via recruitment of 1a-afferents or 

indirectly via muscle contraction and joint angular displacement). Another advantage is that rPMS 

is painless and well tolerated (Beaulieu and Schneider 2015). To our knowledge there is only one 

study that showed successful M1 cortex facilitation in healthy subjects after 30 minutes of paired 

central suprathreshold magnetic stimuli and peripheral nerve or muscle (FDI) stimulation (Ridding 

and Taylor 2001), but no control conditions were included in the study.  

 

Intracortical inhibition  

The effects of PAS on intracortical inhibition and facilitation have been investigated previously. In 

the current study, we found that the combination of peripheral and central magnetic stimulation 

induced an enhancement of M1 cortex excitability associated with reduction of SICI with no 

changes in ICF. SICI reflects GABA-A mediated intracortical inhibition (Ziemann et al., 1996). 

Modulation of intracortical inhibitory mechanisms play a determining role in PAS-related plasticity 

as suggested by suppression of MEP modulation when a conditioning subthreshold magnetic 

stimulus was delivered 2ms (with inhibitory effect on cortical excitability) before the test stimuli 

(Elahi et al 2012). In addition, a strong baseline SICI predicted good neuromodulatory response to 

PAS (Murase et al 2015, Russmann et al 2009). With the acute deafferentation or ischaemic block, 

intracortical inhibition is reduced if low frequency TMS is used to enhance the cortical changes 

(Ziemann et al. 1998a). It is thought that the reduction in inhibition may have a role to play in MEP 
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facilitation (Ziemann et al. 1998). However, low-frequency TMS alone did not cause changes in 

SICI, but magnetic-PAS did. We think that changes in SICI could be due to the combination of 

specific effects from rPMS-generated inputs on cortical excitability, possibly mediated by weaker 

GABA-ergic inhibition (Carson and Kennedy 2013).  

Intracortical facilitation  

Relatively little is known about the mechanism underlying ICF. ICF reflects mainly Glutamatergic 

N-methyl- D-asparate (NMDA) –mediated intracortical facilitation (Schwenkreis et al 1999, 

Ziemann et al 1996-1998) that engages neuronal circuits independent from those mediating SICI. In 

our study, magnetic-PAS did not cause changes in intracortical facilitation, which means that 

magnetic-PAS did not induce changes in NMDA level and  which is in agreement with previous 

reports (Murase et al 2015, Roy et al 2007).  

 

Role of peripheral magnetic stimulation  

The neuromodulatory effects of the peripheral electric stimulation depend on the intensity and 

frequency of stimulation. High-frequency subthreshold (Tinazzi et al 2005) and low frequency 

suprathreshold but not low frequency subthreshold electrical stimulation (Golaszewski et al 2012) 

induced facilitatory effects on the motor cortex with no effects on spinal excitability (Golaszewski 

et al 2012, Tinazzi et al 2005). Commonly, the intensity of peripheral stimulation employed in PAS 

protocols (Kennedy and Carson 2008, Litvak et al 2007, Sale et al 2007, Stefan et al 2000, Tecchio 

et al 2008, Wolters et al 2003) was defined in relation to the elicitation of visible muscle twitches, 

which requires delivery of suprathreshold electrical stimuli. Therefore, in addition to activation of 

direct cutaneous ascending afferents by electrical stimulation, a secondary volley arising from 

muscle can have neuromodulatory effect on the spinal and supraspinal circuits (Shitara et al 2013). 

Compared to electrical nerve stimulation, rPMS generates a greater proprioceptive inflow through 

recruitment of muscle and joint afferents (Beaulieu and Schneider 2015). High frequency rPMS is 

known to induce robust neuroplastic changes at cortical level. Suprathreshold, 20 Hz rPMS (2000 

pulses in a single session) applied over cervical roots (C7/C8) led to prolongation of the CSP 

(Krause et al 2005, Krause and Straube 2008), increase amplitude of MEP and raised SICI (Krause 

and Straube 2008). However, the facilitation of corticospinal and intracortical excitability induced 

by rPMS is sensitive to the frequency and the total number of applied magnetic impulses with 

higher frequency and greater number of stimuli inducing more robust effects (Gallasch et al 2015).  

 

Limitations and future directions  

The rPMS protocol used in the current study included only 300 magnetic pulses at 10Hz and 

applied over the muscle, which had no effect on corticospinal or intracortical excitability. Applying 
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rPMS over the nerve root could be an alternative to induce more effective changes in MEP and 

SICI. Our research was conducted in healthy individuals and therefore cannot be extrapolated to 

patients with damage in the central nervous system. However, intracortical inhibitory activity is 

known to contribute to persistent abnormal motor behavior in the paretic limb (Hummel et al 2009) 

being a determining factor of the reorganization pattern and motor cortex plasticity after stroke 

(Hummel et al 2009, Liepert et al 2006). Magnetic-PAS could present some advantages over 

conventional PAS protocols for motor rehabilitation being non-invasive, non-painful peripheral 

stimulation and as suggested by our finding of decreased intracortical inhibition. Because the 

baseline SICI seems to be a determining factor of the modulatory effects of PAS (Murase et al 2015, 

Russmann et al 2009) future studies should evaluate the effects of GABA-ergic medication on 

motor cortex plasticity related with magnetic-PAS. The neuromodulatory effects of rPMS are 

sensitive to the frequency and the total number of applied stimuli (Gallasch et al 2015, Krause et al 

2005, Krause and Straube 2008) therefore future research studies should also investigate whether 

employing higher frequencies and larger durations of rPMS in magnetic-PAS protocols could 

enhance M1 cortex facilitation.  

 

SIGNIFICANCE 

Short sessions of magnetic-PAS can modulate the excitability of the M1 cortex, leading to increased 

corticospinal excitability and decreased cortical inhibition in the stimulated muscle. This new 

paradigm may offer a useful therapeutic option for motor rehabilitation.  
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Figure legends: 

 

Figure 1. Modulation of MEP at ECR muscle. The thin lines represent individual MEP amplitude, 

and the thick line represent the average MEP amplitude in each experimental group. 

 

Figure 2. Modulation of SICI at ECR muscle.  The thin line represents individual SICI, and the 

thick line represents the average SICI in each experimental group. 

 


