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Inflammatory cells play key roles in restenosis upon vascular surgical procedures such as
bypass grafts, angioplasty and stent deployment but the molecular mechanisms by which
these cells affect restenosis remain unclear. The p110δ isoform of phosphoinositide 3-kinase
(PI3K) is mainly expressed in white blood cells. Here, we have investigated whether p110δ
PI3K is involved in the pathogenesis of restenosis in a mouse model of carotid injury, which
mimics the damage following arterial grafts. We used mice in which p110δ kinase activity
has been disabled by a knockin (KI) point mutation in its ATP-binding site (p110δD910A/D910A

PI3K mice). Wild-type (WT) and p110δD910A/D910A mice were subjected to longitudinal carotid
injury. At 14 and 30 days after carotid injury, mice with inactive p110δ showed strongly
decreased infiltration of inflammatory cells (including T lymphocytes and macrophages)
and vascular smooth muscle cells (VSMCs), compared with WT mice. Likewise, PI-3065,
a p110δ-selective PI3K inhibitor, almost completely prevented restenosis after artery injury.
Our data showed that p110δ PI3K plays a main role in promoting neointimal thickening and
inflammatory processes during vascular stenosis, with its inhibition providing significant re-
duction in restenosis following carotid injury. p110δ-selective inhibitors, recently approved
for the treatment of human B-cell malignancies, therefore, present a new therapeutic oppor-
tunity to prevent the restenosis upon artery injury.

Introduction
Restenosis is the pathophysiological process leading to the failure of revascularization procedures such as
angioplasty and stenting in 10–15% of patients [1-4]. Accumulating evidence has shown that recruitment
of inflammatory cells to the site of arterial endothelial injury plays a critical role in the pathogenesis of
restenosis [5-8]. Vascular injury causes endothelial denudation and adhesion of activated platelets, which
induce recruitment of inflammatory cells such as neutrophils, lymphocytes, monocytes and mast cells,
promoting vascular smooth muscle cells (VSMCs) proliferation, migration and neointimal growth [5-12].

Several approaches such as artery stent placement, balloon angioplasty, drug-eluting coronary stents
and gene therapy have been attempted to prevent the restenosis upon artery injury [13-17]. However,
restenosis after vascular intervention remains an unresolved problem.

Vascular injury activates various cell signalling pathways including phosphoinositide 3-kinase (PI3K)
[18-23]. Mammals have eight isoforms of PI3K, which have been divided into three classes [18]. Class
I PI3Ks phosphorylate the 3-OH of phosphatidylinositol(4,5)bisphosphate (PIP2) to generate the lipid
second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3). Class I PI3Ks comprise the IA and IB
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subclasses. The class IA PI3Ks comprise three catalytic subunits (p110α, p110β, p110δ) and five regulatory subunits,
collectively known as p85s. The latter bind to p-tyrosine in membrane-bound receptors and/or adaptor proteins, in-
ducing the translocation of the cytosolic p110/p85 complex to the plasma membrane to generate PIP3. This lipid is a
docking site for several signalling proteins, most notably Akt/PKB, which regulates multiple biologic processes such as
migration, growth and proliferation. The single Class IB catalytic subunit (p110γ) is bound to a p101/p84 regulatory
subunit and signals downstream of G-protein-coupled receptors. p110γ is expressed in inflammatory cells and in vas-
cular systems such as endothelial cells and VSMCs, and modulates intimal hyperplasia after vascular injury through
Th1 response [19]. p110δ is mainly expressed in leucocytes whereas p110α and p110β are ubiquitously expressed.
The use of PI3K isoform specific inhibitors and PI3K gene targeted mice have revealed non-redundant functions
of the Class I PI3K isoforms [24] and PI3K isoforms are considered therapeutic targets in different diseases, mainly
cancer and inflammation [25 ]; p110δ regulates B- and T-cell functions, mast cells activation and macrophages pro-
liferation and migration [26-28]. A p110δ inhibitor has recently been approved for use in human B-cell malignancies
[29].

To address the role of p110δ activity in leucocytes in the pathogenesis of restenosis, we have used gene-targeted
mice in which the p110δPI3K has been inactivated by a knockin (KI) mutation (p110δD910A/D910A) in the ATP-binding
site, leading to the production of a catalytically inactive p110δ protein [26] in a model of restenosis. We have also used
PI-3065, a recently reported pharmacological inhibitor of p110δ PI3K [30].

Here, we report that inhibition of p110δ PI3K in a mouse model of vascular injury leads to a striking reduction in
inflammatory cells recruitment and intimal hyperplasia in injured carotid arteries, resulting in strong reduction in
restenosis. Therefore, by targeting the inflammatory responses after artery injury using small molecule inhibitors of
p110δ PI3K may be a potential therapeutic strategy to prevent and/or reduce restenosis.

Materials and methods
Animals
Homozygous p110δD910A/D910A mice were generated as described [26] and maintained on the C57/BL6 background.
Wild-type (WT) littermates generated from heterozygous p110δWT/D910A intercrosses were used as controls. All ex-
perimental procedures were performed according to the GLP guidelines (Italian Law Decree 116/92 issued by the
Italian Ministry of Health, as well as EC laws) and to the guidelines from Directive 2010/63/EU of the European Par-
liament on the protection of animals used for scientific purposes. Protocols relating to the research described were
reviewed and approved by the Animal Care and Use Committee of the University of Campania “L. Vanvitelli”, Naples,
Italy. All animals were acclimatized and quarantined for at least 1 week before undergoing surgical injury and were
housed in individually ventilated cages under controlled conditions (12–12 h light-dark cycle; room temperature: 20
+− 2◦C; humidity: 55–60%) with chow and tap water available ad libitum. All efforts were made to minimize animal
suffering and to reduce the number of animals used.

Mouse model of carotid artery injury
Mice were anaesthetized with an intraperitoneal injection of ketamine hydrochloride (100 mg/kg), supplemented
with xylazine (2.5 mg/kg) as needed. Vital signs were monitored under anaesthesia and sterile techniques were used
throughout the procedure. A median incision of 2-cm length was made in the anterior neck region and the carotid
injury performed as previously described in rats [31,32]. In brief, neck muscles were shifted laterally and the trachea
was identified. To perform the arterial injury, the left carotid artery was visualized and isolated downstream the bi-
furcation until 1 cm, which was encircled by two 6.0 silk sutures. In the middle of this carotid area, a plastic scanlom
clamp for coronary artery bypass grafting was placed for 5 s on the carotid artery to cause a crushing lesion to the
vessel. At the same location, equidistant from the extremities of the carotid, a 0.3-mm longitudinal incision was made
into the full thickness of the artery. The incision did not emerge from the other side of the vessel. Haemostasis was
obtained with a single adventitial 9.0-gauge polypropylene stick, used as a point of suture and by compression with
cotton swabs and 2-mm oxyl-methyl-cellulose. The polypropylene stick was used afterwards as a reference frame for
experimental investigations. The blood pulsation of the injured carotid was checked by distally to the incision; the
skin was then reapproximated by reabsorbable suture. checked by distally to the incision and the skin was stitched
by reabsorbable suture. Antibiotic ticarcillin was administered with an intraperitoneal injection (5 mg/kg) to all the
mice at the end of surgical procedure and as analgesic mice were treated with ketoprofen (5–10 mg/kg i.p.) for at least
48 h. At different time points (0, 14 and 30 days; n=10 for each time) after vascular injury, the injured and unin-
jured carotid arteries were removed from all the mice under anaesthesia with ketamine hydrochloride (100 mg/kg)
and xylazine (2.5 mg/kg), and processed as described below. In the present study, we have reproduced the model of
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carotid injury for the first time, previously described in rats [4,31,32], in a mouse model by reducing the diameter
of the incision, the time and the width of the carotid injury. The experimental model described herein is a validated
arteriotomy model of surgical injury in the mouse that mimics the damage occurring, for example during arterial
graft or endarterectomy interventions. This model of carotid injury is an alternative to balloon angioplasty and is
more invasive than angioplasty as it affects all the three layers of carotid artery [4].

In vivo PI3K-inhibitor studies
PI-3065 (provided by Genentech) was prepared for in vivo assays in 0.5% methylcellulose with 0.2% Tween 80 as
described [30]. Twenty-four male WT C57/BL6 mice (20–25 g; Envigo, Italy) were treated by oral gavage with PI-3065
(75 mg/kg, once daily) or vehicle (0.5% methylcellulose with 0.2% Tween 80), from 2 days before until 30 days after
carotid injury. Six mice treated with the PI3K inhibitor and six mice treated with vehicle were killed at 0 h after
surgical procedure while the other mice (six for each group) treated with the inhibitor or vehicle were killed 30 days
after carotid injury. The injured and uninjured carotids from all the mice were fixed in 10% formalin for subsequent
histological analysis.

Histomorphometric analysis and immunohistochemical staining
Carotid arteries were harvested, fixed in 4% formalin and processed for paraffin embedding and Haematoxylin and
Eosin (H&E) staining. Serial clusters of carotid arteries were obtained from the distal branch point for morphometry
and immunohistochemical analyses. In brief, the location of the sections analysed was identified using the point of
suture marked by the 9.0 polypropylene stick. A 2-mm part of the injured carotids up and down from the point of
suture was used to perform the histological and immunohistochemical analyses. Sections (ten for each carotid) were
stained with Weigert-Van Gieson (W-VG) method (Diapath) for elastic fibres and connective tissue [33]. The extent
of the injury was quantified by evaluating the thickening of the neointima: the areas surrounded by the external elastic
lamina (EEL area), the internal elastic lamina (IEL area) and by measuring the lumen area. Other areas were calculated
as follows:

medial area = EEL area − IEL area

neointimal area = IEL area − lumen area

neointima-to-media ratio (I/M) = neointimal area
medial area

The circumferential length of the EEL and IEL was also measured to determine negative remodelling. Morphome-
tric analysis was performed using a Nikon Eclipse 1000 microscope and the software NISElements 3 (Nikon Instru-
ments, Tokyo, Japan) [34].

Immunohistochemistry
Deparaffinized slides were treated with the following monoclonal antibodies: Ventana-prediluted monoclonal
anti-CD45 (Ventana), anti-CD68 (Ventana), anti-α-smooth muscle actin (Ventana), anti-CD3 (Roche), anti-CD4
(Roche), anti-CD8 (Dako). Antibody incubations and staining were performed on the automated Ventana Bench-
Mark(R) XT slide stainer. Sections were counterstained with H&E. As negative controls, the same procedures were
performed without the primary antibodies. All slides were read independently by two investigators. The percentage
of immunopositive cells per total number of cells, for each antibody, was determined under a microscope at 400×
magnification, and averaged on three sections for carotid artery.

Isolation and culture of VSMCs
Mouse VSMCs were isolated as reported [35]. Briefly, in mice under anaesthesia with ketamine hydrochloride (100
mg/kg) and xylazine (2.5 mg/kg) aortae were dissected from six WT mice from their origin at the left ventricle to
the iliac bifurcation, perfused with PBS and removed. Aortae were placed in a Petri dish with Fungizone solution
and the adventitia was removed using a dissection microscope. Aortae were cut into pieces and then digested with
0.3% collagenase solution in a tissue-culture incubator for 5 h. DMEM culture medium with 10% FBS was added to
stop collagenase digestion. The cells were washed twice with the culture medium and seeded in culture dishes coated
with 10 μg/ml human fibronectin (BD). Primary cultures were trypsinized (0.1% trypsin, Lonza) when confluent,
followed by incubation of cells in DMEM with 10% FBS at 37◦C in 5% CO2 for 5–7 days.
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Measurement of VSMCs proliferation
Primary mouse VSMCs (2.5 × 104) were seeded in 96-well plates coated with 10 μg/ml human fibronectin (BD).
Primary VSMCs were washed twice with PBS and placed in serum-free culture medium or 10% FBS in the absence
or in presence of increased concentrations of IC87114 (Merck Serono, Geneva, CH), followed by measurement of
proliferation assay using the WST-1 cell proliferation kit (Roche) according to the manufacturer’s instructions. Stocks
of IC87114 for in vitro assays were prepared in DMSO.

Statistical analysis
All data are presented as mean +− S.E.M. unless otherwise stated. The Mann–Whitney two-tailed U test was used to
calculate the statistical significance of animal experiments. Results were considered significant at a value of P<0.05.
All authors have read and agreed to the manuscript as written.

Results
Effect of p110δ PI3K inactivation on neontimal hyperplasia in injured
carotid arteries
Given that neointimal appearance is a hallmark of endothelial damage, we first investigated the impact of p110δ in-
activation on neointimal formation using an established in vivo carotid injured model [31], analysing tissues at 0,
14 or 30 days after injury in carotid arteries of WT and p110δD910A/D910A mice. This was accomplished by morpho-
metric analysis of cross-sections of carotid artery lesions by H&E staining to assess the whole carotid thickness and
lumen/wall ratio (Figure 1A,B) and by W-VG staining to analyse specifically the elastic lamina (Figure 1C).

Morphometric analysis revealed a clear time-dependent increase in lumen stenosis in injured carotid arteries in
WT mice, compared with a much reduced lumen stenosis in p110δD910A/D910A mice. For example, WT mice showed a
53% stenosis 14 days after injury, compared with 11% in injured carotid arteries from p110δD910A/D910A mice (Figure
1A, left panel). Thirty days after injury, the lumen stenosis increased up to 82% in WT mice compared with 45% in
p110δD910A/D910A mice (Figure 1A, left panel). Representative images of injured H&E-stained arteries from WT and
p110δD910A/D910A mice, 0, 14 and 30 days after injury, are shown in Figure 1B.

Morphometric analysis by W-VG staining revealed that in WT mice, the neointimal lesion completely occluded
the vessel lumen 30 days after carotid injury, while this was significantly lower in p110δD910A/D910A mice (Figure 1C).
Neointimal area formation and I/M ratio were also significantly reduced in p110δD910A/D910A mice compared with WT
mice, both at 14 and 30 days after carotid injury (Figure 1A). Specifically, 14 days after carotid injury, the neointimal
area was 13.2 × 103 μm2 in WT mice compared with 3.5 × 103 μm2 in p110δD910A/D910A mice (Figure 1A, middle
panel). The findings were even more impressive 30 days after injury when neointimal area was 55 × 103 μm2 in WT
compared with 7.8 × 103 μm2 in p110δD910A/D910A mice (Figure 1A, middle panel). The I/M ratio, i.e. the ratio between
the thickness of arterial intima compared with the thickness of media layer of carotid artery, is used as an index of
the intimal hyperplasia; this value was 0.8 and 0.13 (after 14 days) and 2.1 and 0.3 (at 30 days after carotid injury)
in WT and p110δD910A/D910A mice respectively (Figure 1A, right panel). Representative images of injured carotid
arteries at all experimental time points are shown in Figure 1B,C. Importantly, there was no increase in medial area
in injured carotid arteries in WT mice compared with p110δD910A/D910A mice at all time points analysed, with no
changes in intima, medial area, I/M ratio and thickness of elastic lamina in uninjured carotids of WT compared with
p110δD910A/D910A (results not shown).

Taken together, these results demonstrate that p110δ PI3K plays a significant role during vascular lesion formation
in restenosis.

p110δ PI3K inactivation reduces VSMCs content of neointimal formation
It is well established that VSMCs migration and proliferation are responsible for neointima formation [11,36-38]. We
therefore assessed the cellular components of neointimal lesions in WT and in p110δD910A/D910A mice after carotid
artery injury. Immunohistochemical staining with α-smooth muscle actin (α-SMA) of carotid artery cross-sections
confirmed that VSMCs were the major cellular component of neointimal formation in carotid arteries in WT
mice after injury at 14 and 30 days, whereas the presence of these cells was almost undetectable in sections from
p110δD910A/D910A mice (Figure 2A).

We next investigated whether p110δ was expressed in the different cellular components of the carotid artery wall.
Analysis of immunohistochemistry (IHC) staining with an antibody directed against p110δ PI3K reveals that this
PI3K is not expressed in the carotid wall, in contrast with its clear presence in lymph nodes (Figure 2B). Moreover,
IC87114, a p110δ PI3K-selective inhibitor [28], did not affect VSMCs proliferation (Figure 2C), even at saturating
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Figure 1. Effect of p110δ PI3K inactivation in injured carotid arteries after surgery

(A) Left panel: percentage of arterial stenosis; middle panel: quantificative morphometric analysis of neointimal area expressed

in square pixels; right panel: I/M ratio index in control (WT) and p110δD910A/D910A mice. Data are expressed as mean +− S.E.M.

(n=10 per genotype); *P<0.01 compared with WT. (B) Representative H&E staining of cross-sections from injured carotid arteries

of WT and p110δD910A/D910A mice, 0, 14 and 30 days after injury (n=10 per genotype). Scale bar =50 μm. (C) Representative W-VG

staining of cross-sections from injured carotid arteries of WT and p110δD910A/D910A mice, 0, 14 and 30 days after injury. Scale bar

=50 μm.

doses of this compound. Furthermore, VSMCs did not show detectable changes in number or shape throughout a
7-day culture (Figure 2D). Taken together, these data show that p110δ PI3K is likely to play a pivotal role in VSMCs
migration after vascular injury by a primary action on the immune cell compartment.
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Figure 2. Effect of p110δ PI3K inactivation on VSMCs in neointimal formation

(A) Representative α-smooth muscle actin (α-SMA) staining of cross-sections from injured carotid arteries of WT and

p110δD910A/D910A mice, 0, 14 and 30 days after injury (n=10 per genotype), indicating that the major cellular component in the

neointimal area consists of VSMCs. Scale bar =50 μm. (B) Representative anti-p110δ staining of cross-sections from lymph nodes

and injured carotid arteries in WT and p110δD910A/D910A mice, 0 days after injury. Scale bar =50 μm. (C) Effect of p110δ inhibition

on primary VSMCs proliferation. Cells were unstimulated or stimulated with 10% FBS in the presence or absence of the indi-

cated doses of IC87114. Proliferation rate is expressed as fold increase over unstimulated cells. Data are expressed as mean +−
S.E.M. of three independent experiments; *P<0.05; ns, non-significant statistical differences. (D) Phase-contrast microscopy of

representative images of primary VSMCs seeded on Petri dishes treated with fibronectin after 1 or 7 days of culture.

Effect of genetic inactivation of p110δ PI3K on inflammatory cells
recruitment and effect of pharmacological inactivation of p110δ PI3K in
injured carotid arteries
Vascular injury involves immune cells recruitment to the site of vascular lesions [5-8]. Since we have previously shown
that p110δ PI3K plays a key role in modulating immune cells and inflammatory responses in B and T lymphocytes,
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macrophages and mast cells [26-28], we therefore investigated the impact of p110δ inactivation on the recruitment
of immune cells after carotid artery injury. We performed IHC with anti-CD45 to quantify leucocytes accumulation
(Figure 3A) and with anti-CD68 to quantify macrophages (Figure 3C). Uninjured carotid arteries did not reveal CD45
and CD68 staining in WT and p110δD910A/D910A mice at all time points analysed. Control IgG also showed no signal
(results not shown). In WT mice, the number of total leucocytes, identified by anti-CD45 immunostaining (Figure
3A), almost undetectable immediately after injury, rose to 28 and 126 cells/mm2, 14 and 30 days after carotid injury
respectively, whereas no leucocyte infiltration was observed in p110δD910A/D910A mice (Figure 3A).

We next characterized the T-cell subpopulations at the site of the carotid injury. Analysis of total T cells by staining
for the CD3 marker, T-helper cells by staining for CD4 and cytotoxic T cells by staining for CD8, revealed that T-helper
cells represent the majority of T cells present in WT carotid 30 days after injury, whereas no T-cell presence was
observed in injured carotid arteries from p110δD910A/D910A mice (Figure 3B).

The behaviour of macrophages, identified by antibodies to CD68, mirrored that of total leucocytes (Figure 3C),
with a dramatic increase in macrophages infiltration at 14 and 30 days after injury in WT mice (64 and 122 cells/mm2

respectively), whereas no detectable infiltration was observed in p110δD910A/D910A mice (Figure 3C).
We next tested the impact of PI-3065, a small molecule, selective inhibitor of p110δPI3K, on carotid restenosis after

injury in WT mice. Daily administration of PI-3065 2 days before the carotid injury until 30 days after induction in
the lesions, strongly inhibited the neointimal formation after injury compared with vehicle-treated WT mice (Figure
4).

Taken together, these data support the role for p110δ PI3K in the inflammatory cells recruitment for the pathogen-
esis of vascular injury. Pharmacological interference with this kinase is possible in the clinic, opening a therapeutic
opportunity to interfere with restenosis.

Discussion
In the present study, we investigated whether p110δ PI3K inactivation protects against restenosis. We provide the first
direct in vivo evidence, using both genetic and pharmacological approaches, that p110δ kinase activity contributes
to immune cells migration to neointimal hyperplasia after carotid injury. p110δ PI3K belongs to a lipid kinase fam-
ily which regulates multiple biological functions such as proliferation, migration, survival and growth [18,24,39,40].
While p110α and p110β are ubiquitously expressed, p110δ PI3K is mainly expressed in white blood cells [18,24,39].
To address the specific role of p110δ PI3K, p110δD910A/D910A mice have been generated in which the lipid kinase has
been inactivated [26]. p110δD910A/D910A mice show defects in proliferation and differentiation of B and T lympho-
cytes [26,28,41]. In addition, p110δ PI3K regulates colony stimulating factor-1-induced migration of macrophages
[42] and in LPS signalling in dendritic cells [43]. Recent studies using a p110δ-selective inhibitor in a mouse model
of rheumatoid arthritis showed that p110δ plays an anti-inflammatory role in synoviocytes through inhibition of
Akt/PKB activation, induced by platelet-derived growth factor and tumour necrosis factor α (TNFα) [44]. Analysis
of p110δD910A/D910A mice in a cerebral stroke model has shown that the p110δ inhibition reduces the production of
proinflammatory cytokines such as TNFα, with reduction in the infiltration of inflammatory cells and related neu-
roinflammatory processes, leading to a considerable improvement in brain functionality [45]. Furthermore, p110δ
PI3K regulates Ca2+ current and vascular contractility in a mouse model of type I diabetes [22]. p110α PI3K has been
recently reported to have a key role in neointima formation after balloon injury of the carotid artery whereas p110β
and p110δ PI3K appeared to have no role on VMSCs proliferation and chemotaxis [23]. In addition, p110γ PI3K
inhibition has been shown to reduce the vascular restenosis after artery injury with no significant effect on VSMCs
proliferation [19]. Consistent with these findings, our results show that p110δ PI3K has a negligible effect on VM-
SCs proliferation but, on the other hand, has an impressive impact on the inflammatory response, which is likely to
precede the arterial lumen narrowing as it is highly enriched in immune cells.

Hence, p110δ PI3K inhibition does not affect VSMCs proliferation in an in vitro assay but it is most likely to be
involved in immune response, although, it cannot be excluded that p110δ PI3K, even at very low expression, may
also contribute to VSMCs proliferation in an in vivo context. In the present study, we used a full thickness injury
model of carotid wall in p110δD910A/D910A and WT mice. We observed a significant lumen reduction in the carotid
vessels 30 days after carotid injury in almost all the cases analysed in WT mice, while the neointimal thickness was
consistently reduced in p110δD910A/D910A mice at all time points analysed. It is well established that the artery damage
induces release of cytokines and growth factors by endothelial cells, VSMCs and blood cells, which are responsible
for the chemoattraction of leucocytes, macrophages and dendritic cells and for the proliferation and migration of
VSMCs [5-12]. In fact, in injured arteries of WT mice, we observed a dramatically enhanced neointimal formation,
mainly composed of VSMCs and a strong inflammatory cellular components but, impressively, these were completely
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Figure 3. Impact of p110δ PI3K inactivation on lymphocyte and macrophage infiltration into injured carotids

(A) Representative staining with anti-CD45 (lymphocytes) of cross-sections from injured carotid arteries of WT and p110δD910A/D910A

mice, 0, 14 and 30 days after injury. Scale bar =50 μm. Bar graphs show the number of CD45-positive cells. Data are expressed as

mean +− S.E.M. (n=10 per genotype); *P<0.05 compared with WT. (B) Impact of p110δ PI3K inactivation on T-lymphocyte infiltration

of lesions of p110δD910A/D910A mice, 30 days after carotid artery injury. Representative staining with antibodies to CD3 (T cells), CD4

(T helper) or CD8 (cytotoxic T cells) of cross-sections from injured carotid arteries from WT and p110δD910A/D910A mice, 30 days after

injury. Scale bar =50 μm. Bar graphs show the number of CD3-, CD4-, CD8-positive cells. Data are expressed as mean +− S.E.M.

(n=5 per genotype); *P<0.05 compared with WT. (C) Representative staining with anti-CD68 (macrophages) of cross-sections from

injured carotid arteries of WT and p110δD910A/D910A mice, 0, 14 and 30 days after injury. Scale bar =50 μm. Bar graphs show the

number of CD68-positive cells. Data are expressed as mean +− S.E.M. (n=10 per genotype); *P<0.05 compared with WT.
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Figure 4. Impact of pharmacological inactivation of p110δ PI3K in injured carotid arteries

Top: schematic representation of the procedure used for pharmacological inhibition of p110δ PI3K in WT mice. (A) Upper and middle

panels: representative H&E staining of cross-sections from two different injured carotid arteries of WT mice, 30 days after injury (n=5

per genotype), treated with vehicle (control; left panel) or PI-3065 (right panel). Scale bar =50 μm. Lower panels: representative

W-VG staining of cross-sections from injured carotid arteries of WT mice, 30 days after injury (n=5 per genotype), treated with

vehicle (control; left panel) or PI-3065 (right panel). Scale bar =50 μm. (B) Quantificative analysis of stenosis, I/M ratio, neointimal

area in indicated mice. Data are expressed as mean +− S.E.M. (n=5 per genotype); *P<0.01 compared with untreated.

absent from arteries of injured p110δD910A/D910A mice. In WT mice, the inflammatory cellular components in injured
carotid arteries were almost exclusively made up of macrophages and T lymphocytes. Accumulating evidence in-
dicates that the T cells play a key role in the neointimal lesion [19,46-49]. In our model, we found that CD4+ T
lymphocytes represent the majority of all leucocytes in the neointimal lesion. Nevertheless, we cannot rule out that
other cell/tissue components, which express lower level of p110δ PI3K, might contribute to restenosis since previous
findings reported that this kinase was also expressed in non-leucocyte cells [50]. In addition, proinflammatory cy-
tokines such as TNFα leads to an increased expression of p110δ PI3K in endothelial cells and in synovial fibroblasts
[50]. Independent of where in the organism p110δ is expressed and is functional, the data presented here indicate
that p110δ PI3K plays a major role in the inflammatory response to endothelial damage artery. In fact, it is important
to keep in mind that systemic pharmacological blockade of p110δ activity is expected to target this kinase every-
where it is expressed in the organism. Prevention of restenosis, essentially due to neointimal formation, is one of
the major issues of the treatment of vascular injury caused by different therapeutic manoeuvres such as angioplasty
and stent introduction [13]. To control the neointimal formation leading to potential vessel obstruction, metal stents
are available coated with immunosuppressive drugs (so-called drug-eluting systems) that have a cytostatic action,
including rapamycin derivatives such as sirolimus, everolimus or zotarolimus [14,15]. These drugs are most likely
to prevent neointimal hyperplasia by inhibiting inflammatory responses. Alternatively, the use of antimitotic agents
like paclitaxel has been proposed to reduce restenosis risk [16], although neointimal formation seems mostly due to
monocytes-macrophages infiltration rather than active ‘in situ’ proliferation [1]. Among the inflammatory effectors
specifically involved in neointimal regeneration, a role of interleukin (IL)-18 [51] and inflammatory mediators such
C5a [38] has emerged. Consistent with this finding, an inflammosome adaptor molecule, the apoptosis-associated
speck-like protein promotes the development of restenosis and atherosclerosis by increasing IL-18 and IL1-β levels
[12]. Here, we show that a selective small molecule inhibitor of p110δ PI3K could be used to prevent restenosis after
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carotid injury. Indeed, WT mice treated with PI-3065, a p110δ-selective PI3K inhibitor [30], 2 days before the carotid
injury until 30 days after carotid injury, greatly reduces restenosis after carotid injury compared with mice treated
with vehicle.

Taken together, our data show that inhibition of p110δPI3K almost completely abolishes the series of events leading
to arterial occlusion following carotid damage. Therefore, specific inhibitors of p110δ PI3K, already approved for the
human B-cell malignancies and currently under examination in phase III of clinical trials for several pathologies, may
have potential for use not only in oncological diseases of white blood cells [29] and immunotherapy of solid tumours
[30], but could provide the possibility of using a single-drug approach for the prevention and treatment of stenosis of
blood vessels.

However, further work is required to validate the use of p110δPI3K inhibitors in human disease since recent clinical
observations have revealed some unexpected side effects of the p110δ PI3K inhibitor idelalisib, raising a hot debate
[52]. It will be of interest to explore if lower doses of p110δ PI3K inhibitors than the currently high doses used in
oncology will have anti-inflammatory impact, without the severe side effects reported.

Acknowledgements
We thank Klaus Okkenhaug (The Babraham Institute, Cambridge, U.K.) for providing p110δD910A/D910A mice, Carlo della Ragione
and Nunzio Mitilini for technical assistance, and Merck-Serono for providing the PI3K inhibitor IC87114.

Author contribution
Antonio Bilancio and Barbara Rinaldi conceived and designed the entire study, analysed and interpreted the data. Maria Antoni-
etta Oliviero, Maria Donniacuo , Maria Gaia Monti and Irene Marino performed the experimemts and interpreted the data with
input from Antonio Bilancio and Barbara Rinaldi. Amedeo Boscaino interpreted the data. Lori Friedman contributed reagents,
helped design and interpret pharmacological data. Francesco Rossi, Bart Vanhaesebroeck and Antimo Migliaccio analysed and
interpreted the data. Antonio Bilancio, Barbara Rinaldi, Bart Vanhaesebroeck and Antimo Migliaccio contributed to discussion
and reviewed/edited manuscript. Antonio Bilancio wrote the manuscript. All the authors read and approved the final version of this
manuscript.

Funding
This work was supported by the Italian Association for Cancer Research [grant number IG11520 (to A.M. and A.B.)].

Competing interests
B.V. is a consultant to Karus Therapeutics (Oxford, U.K.). L.F. is an employee of Genentech, Inc. The other authors declare that
they have no competing interests associated with the manuscript.

Abbreviations
Akt, serine/threonine-specific protein kinase; DMEM, Dulbecco’s Modified Eagle Medium; EC, European Community; EEL, ex-
ternal elastic lamina; GLP, Good Laboratory Practice; H&E, haematoxylin and eosin; IEL, internal elastic lamina; IHC, immuno-
histochemistry; IL, interleukin; I/M, neointima-to-media ratio; i.p., intraperitoneal; LPS, lipopolysaccharide; PIP3, phosphatidyli-
nositol(3,4,5)trisphosphate; PI3K, phosphoinositide 3-kinase; PKB, protein kinase B; Th1, T helper-1; TNFα, tumour necrosis
factor α; VSMC, vascular smooth muscle cell; WT, wild-type; W-VG, Weigert-Van Gieson.

References
1 Welt, F.G. and Rogers, C. (2002) Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776
2 Moussavian, M., Casterella, P.J. and Teirstein, P.S. (2001) Restenosis after angioplasty. Curr. Treat. Options Cardiovasc. Med. 3, 103–113
3 Stefanini, G.G. and Holmes, Jr, D.R. (2013) Drug-eluting coronary-artery stents. N. Engl. J. Med. 368, 254–265
4 Forte, A., Rinaldi, B., Berrino, L., Rossi, F., Galderisi, U. and Cipollaro, M. (2014) Novel potential targets for prevention of arterial restenosis: insights

from the pre-clinical research. Clin. Sci. (Lond.) 127, 615–634
5 Schober, A. and Weber, C. (2005) Mechanisms of monocyte recruitment in vascular repair after injury. Antioxid. Redox Signal. 7, 1249–1257
6 Hutter, R., Carrick, F.E., Valdiviezo, C., Wolinsky, C., Rudge, J.S., Wiegand, S.J. et al. (2004) Vascular endothelial growth factor regulates

reendothelialization and neointima formation in a mouse model of arterial injury. Circulation 110, 2430–2435
7 Ohtani, K., Egashira, K., Hiasa, K., Zhao, Q., Kitamoto, S., Ishibashi, M. et al. (2004) Blockade of vascular endothelial growth factor suppresses

experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 110, 2444–2452
8 Hay, C., Micko, C., Prescott, M.F., Liau, G., Robinson, K. and De Leon, H. (2001) Differential cell cycle progression patterns of infiltrating leukocytes and

resident cells after balloon injury of the rat carotid artery. Arterioscler. Thromb. Vasc. Biol. 21, 1948–1954
9 Xing, D., Li, P., Gong, K., Yang, Z., Yu, H., Hage, F.G. et al. (2012) Endothelial cells overexpressing interleukin-8 receptors reduce inflammatory and

neointimal responses to arterial injury. Circulation 125, 1533–1541

10 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Bioscience Reports (2017) 37 BSR20171112
DOI: 10.1042/BSR20171112

10 Pate, M., Damarla, V., Chi, D.S., Negi, S. and Krishnaswamy, G. (2010) Endothelial cell biology: role in the inflammatory response. Adv. Clin. Chem. 52,
109–130

11 Satoh, K., Matoba, T., Suzuki, J., O’Dell, M.R., Nigro, P., Cui, Z. et al. (2008) Cyclophilin A mediates vascular remodeling by promoting inflammation and
vascular smooth muscle cell proliferation. Circulation 117, 3088–3098

12 Yajima, N., Takahashi, M., Morimoto, H., Shiba, Y., Takahashi, Y., Masumoto, J. et al. (2008) Critical role of bone marrow apoptosis-associated
speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 117, 3079–3087

13 Rastan, A., Krankenberg, H., Baumgartner, I., Blessing, E., Muller-Hulsbeck, S., Pilger, E. et al. (2013) Stent placement versus balloon angioplasty for
the treatment of obstructive lesions of the popliteal artery: a prospective, multicenter, randomized trial. Circulation 127, 2535–2541

14 Raber, L., Magro, M., Stefanini, G.G., Kalesan, B., van Domburg, R.T., Onuma, Y. et al. (2012) Very late coronary stent thrombosis of a newer-generation
everolimus-eluting stent compared with early-generation drug-eluting stents: a prospective cohort study. Circulation 125, 1110–1121

15 Massberg, S., Byrne, R.A., Kastrati, A., Schulz, S., Pache, J., Hausleiter, J. et al. (2011) Polymer-free sirolimus- and probucol-eluting versus new
generation zotarolimus-eluting stents in coronary artery disease: the Intracoronary Stenting and Angiographic Results: Test Efficacy of Sirolimus- and
Probucol-Eluting versus Zotarolimus-eluting Stents (ISAR-TEST 5) trial. Circulation 124, 624–632

16 Stone, G.W., Kedhi, E., Kereiakes, D.J., Parise, H., Fahy, M., Serruys, P.W. et al. (2011) Differential clinical responses to everolimus-eluting and
Paclitaxel-eluting coronary stents in patients with and without diabetes mellitus. Circulation 124, 893–900

17 Appleby, C.E. and Kingston, P.A. (2004) Gene therapy for restenosis–what now, what next? Curr. Gene Ther. 4, 153–182
18 Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C. et al. (2001) Synthesis and function of 3-phosphorylated inositol

lipids. Annu. Rev. Biochem. 70, 535–602
19 Smirnova, N.F., Gayral, S., Pedros, C., Loirand, G., Vaillant, N., Malet, N. et al. (2014) Targeting PI3Kgamma activity decreases vascular trauma-induced

intimal hyperplasia through modulation of the Th1 response. J. Exp. Med. 211, 1779–1792
20 Vanhaesebroeck, B., Vogt, P.K. and Rommel, C. (2010) PI3K: from the bench to the clinic and back. Curr. Top. Microbiol. Immunol. 347, 1–19
21 Doukas, J., Wrasidlo, W., Noronha, G., Dneprovskaia, E., Fine, R., Weis, S. et al. (2006) Phosphoinositide 3-kinase gamma/delta inhibition limits infarct

size after myocardial ischemia/reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 103, 19866–19871
22 Pinho, J.F., Medeiros, M.A., Capettini, L.S., Rezende, B.A., Campos, P.P., Andrade, S.P. et al. (2010) Phosphatidylinositol 3-kinase-delta up-regulates

L-type Ca2+ currents and increases vascular contractility in a mouse model of type 1 diabetes. Br. J. Pharmacol. 161, 1458–1471
23 Vantler, M., Jesus, J., Leppanen, O., Scherner, M., Berghausen, E.M., Mustafov, L. et al. (2015) Class IA phosphatidylinositol 3-kinase isoform p110α

mediates vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 35, 1434–1444
24 Vanhaesebroeck, B., Ali, K., Bilancio, A., Geering, B. and Foukas, L.C. (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends

Biochem. Sci. 30, 194–204
25 Vanhaesebroeck, B., Whitehead, M.A. and Pineiro, R. (2016) Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J. Mol. Med.

(Berl.) 94, 5–11
26 Okkenhaug, K., Bilancio, A., Farjot, G., Priddle, H., Sancho, S., Peskett, E. et al. (2002) Impaired B and T cell antigen receptor signaling in p110delta PI

3-kinase mutant mice. Science 297, 1031–1034
27 Ali, K., Bilancio, A., Thomas, M., Pearce, W., Gilfillan, A.M., Tkaczyk, C. et al. (2004) Essential role for the p110delta phosphoinositide 3-kinase in the

allergic response. Nature 431, 1007–1011
28 Bilancio, A., Okkenhaug, K., Camps, M., Emery, J.L., Ruckle, T., Rommel, C. et al. (2006) Key role of the p110delta isoform of PI3K in B-cell antigen and

IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107, 642–650
29 Vanhaesebroeck, B. and Khwaja, A. (2014) PI3Kdelta inhibition hits a sensitive spot in B cell malignancies. Cancer Cell 25, 269–271
30 Ali, K., Soond, D.R., Pineiro, R., Hagemann, T., Pearce, W., Lim, E.L. et al. (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated

immune tolerance to cancer. Nature 509, 407–411
31 Rinaldi, B., Romagnoli, P., Bacci, S., Carnuccio, R., Maiuri, M.C., Donniacuo, M. et al. (2006) Inflammatory events in a vascular remodeling model

induced by surgical injury to the rat carotid artery. Br. J. Pharmacol. 147, 175–182
32 Rinaldi, B., Pieri, L., Donniacuo, M., Cappetta, D., Capuano, A., Domenici, L. et al. (2009) Rosiglitazone reduces the inflammatory response in a model

of vascular injury in rats. Shock 32, 638–644
33 Tulis, D.A. (2007) Histological and morphometric analyses for rat carotid balloon injury model. Methods Mol. Med. 139, 31–66
34 Cittadini, A., Monti, M.G., Castiello, M.C., D’Arco, E., Galasso, G., Sorriento, D. et al. (2009) Insulin-like growth factor-1 protects from vascular stenosis

and accelerates re-endothelialization in a rat model of carotid artery injury. J. Thromb. Haemost. 7, 1920–1928
35 Ray, J.L., Leach, R., Herbert, J.M. and Benson, M. (2001) Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23,

185–188
36 Doran, A.C., Meller, N. and McNamara, C.A. (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler.

Thromb. Vasc. Biol. 28, 812–819
37 Zeiffer, U., Schober, A., Lietz, M., Liehn, E.A., Erl, W., Emans, N. et al. (2004) Neointimal smooth muscle cells display a proinflammatory phenotype

resulting in increased leukocyte recruitment mediated by P-selectin and chemokines. Circ. Res. 94, 776–784
38 Shagdarsuren, E., Bidzhekov, K., Mause, S.F., Simsekyilmaz, S., Polakowski, T., Hawlisch, H. et al. (2010) C5a receptor targeting in neointima formation

after arterial injury in atherosclerosis-prone mice. Circulation 122, 1026–1036
39 Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat.

Rev. Mol. Cell Biol. 11, 329–341
40 Bilancio, A. and Migliaccio, A. (2014) Phosphoinositide 3-kinase assay in breast cancer cell extracts. Methods Mol. Biol. 1204, 145–153
41 Okkenhaug, K., Patton, D.T., Bilancio, A., Garcon, F., Rowan, W.C. and Vanhaesebroeck, B. (2006) The p110delta isoform of phosphoinositide 3-kinase

controls clonal expansion and differentiation of Th cells. J. Immunol. 177, 5122–5128

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

11



Bioscience Reports (2017) 37 BSR20171112
DOI: 10.1042/BSR20171112

42 Papakonstanti, E.A., Zwaenepoel, O., Bilancio, A., Burns, E., Nock, G.E., Houseman, B. et al. (2008) Distinct roles of class IA PI3K isoforms in primary
and immortalised macrophages. J. Cell Sci. 121, 4124–4133

43 Aksoy, E., Taboubi, S., Torres, D., Delbauve, S., Hachani, A., Whitehead, M.A. et al. (2012) The p110delta isoform of the kinase PI(3)K controls the
subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat. Immunol. 13, 1045–1054

44 Bartok, B., Boyle, D.L., Liu, Y., Ren, P., Ball, S.T., Bugbee, W.D. et al. (2012) PI3 kinase delta is a key regulator of synoviocyte function in rheumatoid
arthritis. Am. J. Pathol. 180, 1906–1916

45 Low, P.C., Manzanero, S., Mohannak, N., Narayana, V.K., Nguyen, T.H., Kvaskoff, D. et al. (2014) PI3Kdelta inhibition reduces TNF secretion and
neuroinflammation in a mouse cerebral stroke model. Nat. Commun. 5, 3450

46 Zhou, J., Dimayuga, P.C., Zhao, X., Yano, J., Lio, W.M., Trinidad, P. et al. (2014) CD8(+)CD25(+) T cells reduce atherosclerosis in apoE(-/-) mice.
Biochem. Biophys. Res. Commun. 443, 864–870

47 Dimayuga, P.C., Chyu, K.Y., Lio, W.M., Zhao, X., Yano, J., Zhou, J. et al. (2013) Reduced neointima formation after arterial injury in CD4-/- mice is
mediated by CD8+CD28hi T cells. J. Am. Heart Assoc. 2, e000155

48 Boehm, M., Olive, M., True, A.L., Crook, M.F., San, H., Qu, X. et al. (2004) Bone marrow-derived immune cells regulate vascular disease through a
p27(Kip1)-dependent mechanism. J. Clin. Invest. 114, 419–426

49 Kovacic, J.C., Gupta, R., Lee, A.C., Ma, M., Fang, F., Tolbert, C.N. et al. (2010) Stat3-dependent acute Rantes production in vascular smooth muscle
cells modulates inflammation following arterial injury in mice. J. Clin. Invest. 120, 303–314

50 Whitehead, M.A., Bombardieri, M., Pitzalis, C. and Vanhaesebroeck, B. (2012) Isoform-selective induction of human p110delta PI3K expression by
TNFalpha: identification of a new and inducible PIK3CD promoter. Biochem. J. 443, 857–867

51 Maffia, P., Grassia, G., Di Meglio, P., Carnuccio, R., Berrino, L., Garside, P. et al. (2006) Neutralization of interleukin-18 inhibits neointimal formation in a
rat model of vascular injury. Circulation 114, 430–437

52 Compagno, M., Wang, Q., Pighi, C., Cheong, T.C., Meng, F.L., Poggio, T. et al. (2017) Phosphatidylinositol 3-kinase delta blockade increases genomic
instability in B cells. Nature 542, 489–493

12 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).


