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Abstract—An accurate,closed-form expression to evaluate the
nonlinear interference (NLI) noise power in Nyquist-spaced, co-
herent optical communication systems using backward-pumped
Raman amplification is presented. This enables rapid estimation
of the signal-to-noise ratio (SNR) and avoids the need of integral
evaluations and split-step simulations.The accuracy of the pro-
posed formula is compared to numerical integration of the Gaus-
sian noise (GN) model and split-step simulations over a wide range
of parameters, including three different fiber types. Additionally,
the impact of pump depletion on the NLI noise power is studied
and the formula is applied to a second-order Raman-amplified sys-
tem. In the case of first-order amplification and negligible pump
depletion, a maximum deviation of 0.34 dB in NLI coefficient be-
tween the GN model and the closed-form formula is found, which
corresponds to a maximum deviation of ∼0.1 dB in optimal SNR
or similar figures of merit (e.g., maximum reach). When pump de-
pletion is considered,it is shown that the NLI coefficient becomes
a function of launch power and as a result the cubic power depen-
dence of the NLI noise power is no longer valid in such regimes.
Finally, for the second-order Raman-amplified system, a maximum
deviation of 0.39 dB in NLI coefficient is reported.

Index Terms—Channel model, Gaussian noise model, nonlinear
distortion, nonlinear interference, optical fiber communications,
Raman amplification.

I. INTRODUCTION

RAMAN amplification has become a key technology to
continue the development of long-haul, high-capacity

systems due to the possibility of expanding the amplifier band-
width beyond the conventional erbium-doped fiber amplifier
(EDFA) gain window [1], and the potential to reduce amplified
spontaneous emission (ASE) noise accumulation by using the
distributed amplification configuration [2]. However, nonlinear
interference (NLI), induced by the Kerr effect, remains a major
limitation of system performance.

Analytical models to estimate this nonlinear interference are
key for rapid and efficient system design [3], achievable rate
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estimations of point-to-point links [4]–[6] and physical layer
aware network optimization. The latter is essential for opti-
cal network abstraction and virtualization leading to optimal
and intelligent techniques to maximize optical network capac-
ity [7]. In the literature nonlinear interference is also referred
to as nonlinear distortions [8] or nonlinear interference noise
[9]. A variety of models have been proposed in the past with
a trade-off between complexity and accuracy [8]–[12]. Such
analytical models enable a significant reduction in computa-
tional complexity with relatively small inaccuracies compared
to split-step simulations and experiments [13]–[17], and enable
actual-time network capacity optimization. The Gaussian noise
(GN) model has been used as a basis for this approach as it
provides low computational complexity as well as good accu-
racy [18], [19]. However, other than for lumped amplification
schemes, the GN model requires numerical integration which is
increasingly time-consuming with increasing bandwidth.

To date, approximate closed-form solutions only exist for
lumped amplification or ideal distributed Raman amplification
[17], [18]. These closed-form formulas are the basis of a variety
of studies and are extensively used in the literature [3], [6],
[8], [20]–[26]. In the case of (non-ideal) distributed Raman
amplification, closed-form solutions are difficult to obtain. This
is because the power profile is described by a system of coupled
differential equations which generally does not admit simple,
closed-form solutions.

In this paper, for the first time, a closed-form expression is pre-
sented that predicts the NLI for distributed, backward-pumped
Raman-amplified optical fiber communication systems. A for-
mula for the NLI coefficient and for the coherence factor are
derived for an approximated signal power profile, obtained by
a standard least-mean-squares method from the actual profile,
following the approach in [27], [28]. This enables the solution
to be applied in regimes where no analytical description of the
power profile is known, e.g., cases that include pump depletion
and second-order Raman amplification. The result was com-
pared to numerical integration and split-step simulations over a
wide range of parameters and excellent agreement is found for
standard single mode fiber (SSMF), non-zero dispersion-shifted
fiber (NZDSF) and ultra low-loss (ULL) fiber based spans. Ad-
ditionally, the effect of pump depletion on the NLI was studied.
It was found that the NLI coefficient becomes a function of
launch power and the cubic power dependence of the NLI noise
power is no longer valid. It is further shown that the closed-form
expression is able to account for pump depletion. The formula
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is applied to systems using second-order Raman amplification
and good agreement is reported. Finally, the closed-form predic-
tions are compared to quadrature amplitude modulated (QAM)
signals.

II. APPROXIMATION OF THE POWER PROFILE

The aim is to obtain a closed-form formula for the NLI coeffi-
cient, which requires an analytical description of the power pro-
file along a span in backward-pumped Raman-amplified links.
The nonlinear interference induced by the Kerr effect depends
on the instantaneous power along the fiber span. This nonlinear
interference imposes a limitation on the maximum achievable
signal-to-noise ratio (SNR). The SNR after electronic dispersion
compensation is given by

SNR ≈ P

nPASE + ηnP 3 , (1)

where P is the channel launch power, PASE is the ASE noise
within the channel bandwidth per span and ηn is the nonlinear
interference coefficient at span n. It is assumed that the signal
is Nyquist-spaced and described by a Gaussian process. The
assumption of signal Gaussianity, being the main assumption of
the GN model [18], and its connection to quadrature amplitude
modulation (QAM) formats is well studied in the literature [9],
[12], [16], [17], [29]. For these assumptions, the NLI coefficient
for the central channel can be obtained by [19, Eq. (6)]
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256
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where B is the total optical bandwidth, Rb is the symbol rate,
L is the span length, γ is the nonlinear coefficient and β2 is
the group velocity dispersion (GVD) parameter. ρ (f) is the
four-wave mixing (FWM) efficiency factor which is given by
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However, closed-form solutions are not reported in the litera-
ture for the case of (non-ideal) distributed Raman amplification.
In general, a system of coupled differential equations must be
solved in order to obtain the signal power profile P (z) for a
generic Raman pumping scheme which accounts for pump de-
pletion and higher-order Raman pumping [30, Eqs. (1) and (2)].
Only in the simplest case of first-order Raman amplification and
negligible pump depletion, these coupled differential equations
can be solved analytically with the result [19, Eq. (11)]

P (z) = e−az exp
[
CRPp (eapz − 1)

ap

]
, (4)

where Pp is the pump power, ap is the attenuation coefficient at
the pump wavelength λp, a is the fiber attenuation at the signal
wavelength and CR is the Raman gain coefficient. In this paper
all attenuation coefficients describe the power attenuation and
are considered in SI units (i.e. α [Np/m]). Although, closed-form
and approximate closed-form expressions exist for the FWM
efficiency ρ(f) in [31, Eq. (3)] and [28, Eq. (1)], a closed-form
solution for the NLI coefficient (2) is yet to be reported.

Fig. 1. Actual power profile and approximation for first-order Raman am-
plification and negligible pump depletion with (a) 60 km span length yielding
a2 = 7.811 · 10−5 Np/m, b2 = 0.937 and (b) 100 km span length yielding
a2 = 1.568 · 10−4 Np/m and b2 = 0.99.

In this work, the actual power profile P (z) is approximated
by two exponential functions, as originally proposed in [27,
Sec. V], written as

Pa(z) = e−az + b2e
−a2 Lea2 z , (5)

where b2 is connected to the lumped gain at the end of the span
to compensate for its loss (b2 = 1 − exp (−aL) for transpar-
ent spans) and a parameter a2 that is obtained via a standard
least-mean-squares method. The authors in [28] use a similar
approach to give a closed-form approximation of the four-wave
mixing efficiency factor ρ(f). In this work, we significantly
extend this result by deriving a closed-form for the nonlinear
interference factor ηn in (2).

As an example, the actual power profile P (z) and its ap-
proximation Pa(z) for first-order Raman amplification, negligi-
ble pump depletion and attenuation coefficients a = 0.2 dB/km
at the signal wavelength and ap = 0.24 dB/km at the pump
wavelength are shown in Fig. 1. The attenuation coeffi-
cients can be converted to a linear scale using α [Np/m] =
α [dB/km] / log10 (e) /10000. The pump powers are 27.2 dBm
and 29.3 dBm for 60 km and 100 km span lengths, respectively.
We define a root relative squared error (RRSE) as

RRSE =

√√√√
∫ L

0 [P (z) − Pa(z)]2 dz∫ L

0 P 2(z)dz
. (6)

The RRSE amounts to 7.8% for the 60 km span in Fig. 1(a) and
8.2% for the 100 km span in Fig. 1(b). The deviation of the cor-
responding ηn between the actual profile and its approximation
is typically smaller due to two reasons. First, the approxima-
tion might slightly overestimate the nonlinear process over a
particular distance within the span length and underestimate the
nonlinear process at a different location within the same span
(cf. Fig. 1(a)), which leads to an error cancellation. Second,
the deviation is often in the region of relatively low power (cf.
Fig. 1(b)) where the nonlinear process is weak. Comparing the
area under the curve for the actual profile and the approxima-
tion takes cancellation partly into account. For this measure, the
difference is 1.8% for the 60 km span and 6.7% for the 100 km
span. However, both error estimates are only rough indicators
on the accuracy of the NLI coefficient, as the exact location of
the power deviation and the corresponding frequency walk-off
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is crucial for the nonlinear process. Overall, (5) appears as a vi-
able candidate for approximating the signal power profile and its
effectiveness with respect to the NLI coefficient will be studied
in the following sections.

III. CLOSED-FORM FORMULA

In this section the closed-form expression to calculate the
nonlinear interference coefficient ηn are presented. The nonlin-
ear interference coefficient is first rewritten as [18, Sec. IX]

ηn = η1 · n1+ε , (7)

where η1 is the nonlinear interference factor for one span and
ε is the so-called coherence factor. The integral expression (2)
is then approximately solved for both quantities assuming a
profile as in (5). For a detailed derivation, the reader is referred
to appendices A and B. The result for the NLI coefficient at one
span is

η1 =
8
27

γ2η′

π |β2 |R2
b

, (8)
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and the resulting coherence factor is
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with e1 = e−aL , e2 = e−a2 L , ẽ1 = 1 − e−aL , ẽ2 = 1 − e−a2 L ,
Leff =

(
1 − e−aL

)
/a and φ = B2π |β2 |. All quantities must be

inserted in SI units and the power attenuation coefficients are
considered in Neper per meter.

As the power profile approximation is the main approxima-
tion, the proposed closed-form expression was first validated as
a function of span length for three different fiber types, with
parameters shown in Table I. The validation is performed for
a standard single mode fiber (SSMF), as well as, a non-zero
dispersion-shifted fiber (NZDSF) and an ultra low-loss fiber
(ULL). The latter two were chosen to explore the impact of
low dispersion and low loss on the accuracy of the closed-form
expression. The dispersion parameter can be converted to the
group velocity dispersion parameter using β2 = −Dλ2/ (2πc)
with c = 3 · 108 .

The nonlinear interference coefficient as a function of span
length at one span and at 20 spans is plotted in Fig. 2. The NLI
coefficient of the actual power profile was obtained by numeri-
cally integrating (2). In order to validate the integral evaluations,
the transmission systems were simulated by numerically solving
the Manakov equation with the split-step algorithm using Gaus-
sian modulated signals. The Gaussian modulation was used to

TABLE I
SIMULATION PARAMETERS

emulate signal Gaussianity. The Manakov equation is well estab-
lished in the literature for simulating dual polarization signals.
At the receiver, electronic dispersion compensation and matched
filtering was performed. The SNR was ideally estimated as the
ratio between the variance of the transmitted symbols E[|X|2 ]
and the variance of the noise σ2 , where σ2 = E[|X − Y |2 ] and
Y represents the received symbols after digital signal process-
ing as detailed in [32]. The NLI coefficient was extracted from
the SNR using (1). It can be seen in Fig. 2 that the simulation
results are in excellent agreement with numerical integration
of the actual profile. The NLI coefficient of the approximated
profile, obtained by numerically integrating (2), and the pro-
posed closed-form expression are also plotted in Fig. 2, with
an excellent agreement between the two. The NZDSF exhibits
the largest nonlinearity and coherence due to its low dispersion.
The ULL fiber exhibits a higher nonlinearity than the SSMF due
to its higher average (normalized) power along the span. The
discrepancy between numerically integrating the actual profile
and the closed-form arises from the power profile approxima-
tion. The maximum discrepancy for all three fibers stays below
0.33 dB for the NLI coefficient at one span and below 0.34 dB
for the NLI coefficient at 20 spans. Overall it can be seen that
the proposed formula provides an excellent alternative to time
consuming numerical integration and split-step simulations.

Although the NLI coefficient η20 already includes the co-
herence factor via (7), ε is validated separately as a function
of optical bandwidth. The coherence factor can be calculated,
similar to [18, Eq. (21)], as

ε =
ln

(
η20
η1

)

ln(20)
− 1. (11)

Equation (2) is used in order to compute η1 and η20 which
are then inserted in (11) to get ε. The result as a function of
optical bandwidth is shown in Fig. 3 for 80 km spans. The
coherence factor rapidly decays with increasing bandwidth due
to the faster walk-off between widely spaced channels. The
closed-form formula exhibits remarkable accuracy compared to
numerically integrating the actual power profile. For instance,
at a bandwidth of 3 THz the deviation is 1.4% for the NZDSF,
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Fig. 2. The nonlinear interference coefficient as a function of span length at (a) 1 span and (b) 20 spans for an optical bandwidth of ∼ 1 THz. Blue solid lines
represent numerical integration of the actual profile, blue markers split step simulations, green solid lines the approximated profile with numerical integration and
dashed red lines represent the closed-form solution.

Fig. 3. The coherence factor as a function of optical bandwidth for 80 km
spans. Blue solid lines represent numerical integration of the actual profile and
dashed red lines represent the closed-form solution.

1.7% for the ULL fiber and 2% for the SSMF. The accumulation
of nonlinear interference can be separated into an incoherent and
a coherent contribution by rewriting (7) in decibel scale

η1 [dB] + n1+ε [dB] = η1 [dB] + n[dB]︸ ︷︷ ︸
inc.

+ ε · n[dB]︸ ︷︷ ︸
coh.

. (12)

For a bandwidth of 1 THz and ε = 0.093 the incoherent
accumulation amounts to an increase of n[dB] = 13.01 dB and
the coherent accumulation to an increase of ε · n[dB] = 1.21 dB
in NLI coefficient at n = 20 spans. The coherence factor for
Raman amplified systems is generally higher than for their

lumped-amplified counterparts, due to the lower effective loss
along the span.

The NLI coefficient as a function of the span number using
60 km spans is shown in Fig. 4(a). The proposed closed-form
formula exhibits very good accuracy compared to numerically
integrating the actual profile and split-step simulations. The
coherence factors, obtained in closed-form, are 0.11 for the
NZDSF, 0.096 for the ULL fiber and 0.093 for the SSMF.
Fig. 4(a) also shows that the NLI coefficient grows according to
(7) and that the coherence factor is virtually independent of the
span number.

The SNR as a function of channel launch power at 20 spans,
corresponding to a total distance of 1200 km, is shown in
Fig. 4(b) with a PASE of −42.68 dBm. At optimum launch
power the deviation between the numerical integration of the
actual profile and the closed-form is 0.04 dB at −6.83 dBm/ch
launch power and 0.13 dB in the highly nonlinear regime at
0 dBm/ch launch power. As expected, this shows that the dif-
ference in optimal SNR (or other figures of merit e.g., maximal
reach, mutual information) is even smaller than the difference
in NLI coefficient. Similar to [18, Eq. (32)], the inaccuracy in
NLI coefficient Δη translates to the inaccuracy in optimal SNR
ΔSNR according to the rule

ΔSNR [dB] ≈ −1
3
Δη [dB] . (13)

To aid comparison with systems that use QAM modulation,
a 16-QAM signal was simulated and its performance shown
in Fig. 4(b). Gaussian modulation always underestimates the
performance (e.g., SNR, maximal reach) compared to QAM
constellations. The optimum SNR for 16-QAM is 21.84 dB at
−6 dBm/ch launch power while the optimum SNR for Gaussian
modulation is 21.35 dB at −6.7 dBm/ch launch power. This
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Fig. 4. (a) The NLI coefficient as a function of span number and (b) the SNR as a function of launch power. Blue solid lines represent numerical integration of
the actual profile, blue markers split step simulations, yellow markers split step simulations with 16-QAM modulation format and dashed red lines represent the
closed-form solution.

results in a difference in SNR of 0.51 dB between Gaussian
modulation and 16-QAM modulation.

IV. PUMP DEPLETION

In the previous sections the results were obtained assuming
that pump depletion is negligible. In this section, this assump-
tion is dropped and the effect of pump depletion on the power
profile and the nonlinear interference coefficient is investigated.
If the total signal power is comparable to the pump power, then
the effect of pump to signal power depletion must be considered.
This effect becomes more significant as optical bandwidth is in-
creased since the overall signal power, at optimum launch power,
is monotonically increasing with bandwidth. Additionally, the
possibility of using nonlinear compensation schemes will lead
to the use of higher signal powers. When pump depletion is non-
negligible, a system of nonlinear differential equations must be
solved numerically, as there is no analytical solution. The system
of differential equations is given by [27, Eqs. (1) and (2)]

∂P

∂z
= aP − CRP Pp,

∂Pp

∂z
= −apPp − λ

λp
CRP Pp, (14)

where λ is the signal wavelength and λp is the pump wavelength.
The power profiles, obtained by numerically integrating (14) for
no pump depletion, −8 dBm per channel, −2 dBm per chan-
nel and 8 dBm per channel are shown in Fig. 5(a). The pump
power required to compensate for the span loss was 27.2 dBm
for the case of no pump depletion and 28.96 dBm for the case of
pump depletion (8 dBm/ch). No significant change in the power
profile, as a result of pump depletion, occurs in the range of
−8 dBm/ch to −2 dBm/ch, which shows that pump depletion is
negligible for the systems studied in the previous section. How-
ever, the situation is different for higher launch powers or larger

optical bandwidths which both increase the total signal power.
For instance, a launch power of 8 dBm/ch for a 1 THz (31 chan-
nels) signal has the same total signal power as a 5 THz (C-band)
signal with 1 dBm per channel. At these powers substantial
pump depletion is observed. Fig. 5(b) shows the NLI coefficient
as a function of the channel launch power when pump depletion
is included. The actual power profiles are again approximated
by two exponential functions and then the closed-form formula
is applied. The NLI coefficient becomes a function of launch
power when pump depletion is no longer negligible; starting
at approximately −4 dBm/ch. As pump depletion reduces the
average power along a span the NLI coefficient reduces accord-
ingly. The reduction in NLI coefficient at 8 dBm/ch is 0.98 dB
for the NZDSF, 1.2 dB for the ULL fiber and 0.97 dB for the
SSMF. The ULL shows the highest decrease in NLI due to its
higher average (normalized) signal power along a span. The re-
sult of pump depletion is that the cubic law of NLI noise power
in (1) is no longer valid for Raman-amplified systems where
pump depletion is significant and the NLI coefficient must be
evaluated at each launch power individually. Nonlinear com-
pensation techniques (e.g., optical phase conjugation or digital
back-propagation) increase the channel launch power [33]. In
systems utilizing NLC, special attention should be given to the
effect of pump depletion and the resulting changes in nonlin-
ear interference. The closed-form expression correctly follows
the dependency of the launch power with error of 0.21 dB for the
NZDSF, 0.13 dB for the ULL fiber and 0.2 dB for the SSMF. The
proposed formula eliminates the necessity to perform time con-
suming numerical integrations over each channel launch power.

V. SECOND-ORDER RAMAN AMPLIFICATION

Second-order amplification involves adding a second pump
which alters the power profile of the first pump and hence the
signal power profile. This scheme is of relevance due to the
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Fig. 5. (a) The power profile for different channel launch powers including pump depletion for SSMF and NZDSF. (b) The NLI coefficient as a function of
launch power including pump depletion. Black dashed lines represent numerical integration of the actual profile without pump depletion, blue solid lines represent
numerical integration of the actual profile including pump depletion and dashed red lines represents the closed-form solution including pump depletion.

improved ASE noise performance they offer compared to first-
order Raman amplification. Recently, it has been shown that
second-order Raman amplification allows for the extension of
the optical system reach [34]. Additionally, it offers the possibil-
ity of a symmetrical power profile which is key to optical phase
conjugation techniques [35]. In this section, it is shown that
the proposed closed-form expression can be applied to second-
order Raman amplification. In order to obtain the signal power
profile, an additional equation must be added to the system of
differential equations. The system is given by [36, Eqs. (1), (2),
and (3)]

∂P

∂z
= aP − CRP Pp,

∂Pp

∂z
= −apPp − λ

λp
CRP Pp + CRPpPp2,

∂Pp2

∂z
= −ap2Pp2 − λp

λp2
CRPpPp2, (15)

where Pp2 is the power profile of the second-order pump at
wavelength λp2 . Second-order Raman amplification generally
exhibits a higher average (normalized) power along the span
than first-order Raman amplification, making it more suscep-
tible to pump depletion (at same launch power). Fig. 6(a)
shows the power profile of the signal for a = 0.165 dB/km,
ap = 0.2 dB/km, ap2 = 0.22 dB/km and Pp2(0) = 28.6 dBm.
The actual power profile is obtained by numerically solving
(15) with a fixed first-order pump power of 20 dBm at 1455 nm
and the second-order pump at 1366 nm. This power was chosen
such that the fiber loss is compensated for. The second-order
pump results in a peak at the end of the fiber span leading to a
stronger deviation between the actual and approximated power
profile.

The variation of the NLI coefficient as a function of span
length is shown in Fig. 6(b). The coefficients were obtained
from split-step simulations and numerical integration of (2) with
the actual profile obtained from (15) shown in blue and the ap-
proximation in green. The NLI coefficients are generally larger
compared to first-order Raman amplification due to the higher
average (normalized) power along the span. The main difference
of second-order amplification compared to first-order amplifi-
cation is that at long span lengths a discrepancy remains due to
the peak in the actual power profile that cannot be approximated
by the two exponentials. At a 120 km span length, a maximum
deviation of 0.37 dB, 0.38 dB and 0.39 dB is observed for the
NZDSF, for the ULL fiber and SSMF, respectively. Overall,
Fig. 6(b) shows that the proposed closed-form can predict the
nonlinear interference in the case of second-order Raman am-
plification, when the second-order pump does not dominate the
signal power profile.

VI. PERFORMANCE PREDICTION OF REALISTIC SYSTEMS

In this section the proposed closed-form expression is used to
compute signal-to-noise ratios for practical systems and is com-
pared to QAM-modulated signals obtained by split-step simu-
lations. Two scenarios are studied. One hybrid Raman/EDFA
system where the first-order Raman gain is held well under the
span loss. This is typically done to ensure operation without
pump-depletion and yields better noise performance than an
EDFA only system. In the second case, an all-Raman configura-
tion is analyzed where the Raman gain is several dB higher than
the span loss to offset passive devices such as pump coupling
devices, power monitoring equipment and gain equalizing filter.
The factor b2 can be calculated for arbitrary configurations as

b2 = 10
G
1 0 − e−aL (16)
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Fig. 6. (a) The power profile for second-order Raman amplification and approximation for ULL yielding a2 = 3.754 · 10−5 Np/m and b2 = 0.952. The blue
line represent the actual profile and the green line represents the approximate profile. (b) NLI coefficient as a function of span length for second order Raman
pumping. Blue solid lines represent numerical integration of the actual profile, blue markers split step simulations, green solid lines the approximated profile with
numerical integration and dashed red lines represent the closed-form solution.

Fig. 7. The SNR at optimum launch power as a function of span number for 2 different power profiles. The closed-form expression as well as QPSK, 16-QAM,
and Gaussian modulation obtained from simulations are shown. The all-Raman system yields a2 = 1.346 · 10−4 Np/m, b2 = 1.970 and the hybrid Raman/EDFA
system yields a2 = 5.964 · 10−5 Np/m and b2 = 0.373.

where G is the excess Raman gain in decibels with respect
to the span loss (i.e., the additional gain which is beyond the
gain required to exactly overcome span loss). 80 km spans of
SSMF are chosen for both configurations yielding a span loss
of 16 dB. In the first case, the Raman gain is chosen to be 12 dB
(G = −4 dB) and in the second case 19 dB (G = 3 dB). The
hybrid amplified transmission system exhibits a pump power
of 27.47 dBm and a PASE of −42.4 dBm and the all-Raman
system exhibits a pump power of 29.12 dBm and a PASE of
−39.93 dBm.

The result is shown in Fig. 7, where the red dashed line rep-
resents the SNR obtained in closed-form using (1) and the blue

line represents Gaussian modulation obtained from simulations.
The green and yellow line represent simulations using QPSK
and 16-QAM modulated signals, respectively. The closed-form
predictions are in excellent agreement with the Gaussian mod-
ulated signal with a maximum deviation of 0.13 dB in SNR
throughout Fig. 7. After one span, where the Gaussianity as-
sumption is known to be less accurate, the difference between the
closed-form and QPSK is 1.63 dB for the hybrid Raman/EDFA
system and 1.07 dB for the all-Raman system. These differ-
ences decrease with increasing distance to 0.91 dB and 0.77 dB
at 20 spans for the hybrid Raman/EDFA and the all-Raman
case, respectively. With higher QAM-order the 4th and 6th
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order moments of the signal constellation increase, resulting
in more Gaussian-like statistics. Therefore, QAM modulated
signals higher than QPSK are expected to be closer to the
predictions of the presented closed-form. The difference be-
tween the closed-form and 16-QAM at 20 spans are 0.53 dB
and 0.43 dB for the hybrid and the all-Raman system, respec-
tively. The gap between QAM signals and Gaussian modulation
in Raman-amplified systems is typically larger compared to its
lumped counterpart [37]. Its physical sources and implications
has been studied in [38]. The modulation format dependence in
closed-form for Raman-amplified links is left for future work.
However, (8) is a sum of three contributions, namely a “lumped”
contribution, a contribution arising from the gain at the end of
the span and its cross term. The lumped contribution can be
corrected in closed-form with the result in [17]. As an exam-
ple, correcting only the lumped contribution, this reduces the
difference between QPSK and the closed-form from 0.77 dB to
0.58 dB and from 0.43 dB to 0.3 dB for 16-QAM at 20 spans
for the all-Raman amplified case.

It has been shown that a fraction of the NLI, particularly in
the case of Raman amplification, is phase-noise characterized
by long temporal correlations [37]–[39]. It has been suggested
that those correlations can be partially mitigated by adaptive
equalizers or carrier phase recovery algorithms. However, the
work in [40] experimentally compares a variety of NLI miti-
gation schemes for an Raman-amplified system and concludes
that the NLI mitigation by simple receivers are rather modest for
long distances, even in the context of strong temporal/spectral
correlations. The closed-form expression in this paper therefore
remains of practical interests for current receivers that almost
always assume Gaussian channel statistics.

VII. CONCLUSION

A closed-form formula was presented to compute the non-
linear interference for multi-span, Nyquist-spaced, coherent
optical communication systems that use first or second-order
distributed Raman amplification including pump depletion.
The presented formula significantly reduces the computational
complexity required for the design and modeling of Raman-
amplified WDM links. It was verified using split-step sim-
ulations and numerical integration with excellent agreement
throughout. The deviation between the closed-form and sim-
ulations were within 0.34 dB in terms of NLI coefficient for
first-order Raman amplification and 0.39 dB for second-order
Raman amplification. This deviation was found to be linked to
the deviation between the actual power profile and approxima-
tion by two exponential functions. It has been shown that pump
depletion imposes a power dependence and the cubic power
dependence of the NLI noise power becomes invalid in such
regimes. The proposed formula predicts the nonlinear interfer-
ence with minor inaccuracies, making it an excellent alternative
to time-consuming numerical integrations or split-step simula-
tions. This approach allows for rapid evaluation of performance
(e.g., SNR, maximum reach) in Raman-amplified systems, an
essential step towards dynamic optical network capacity opti-
mization and intelligent information infrastructure design.

APPENDIX A
DERIVATION OF THE NONLINEAR INTERFERENCE

COEFFICIENT η1

In this section the closed-form expression for the nonlinear
interference coefficient η1 is derived. A prefactor of 16γ 2

27R2
b

is not
shown throughout the derivation for notational convenience.
With a change of variables f 2 = ν, setting n = 1 and extending
the integration limit to infinity in (2) we obtain

η1 ∝ 8
∫ ∞

0
ln
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2
√
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)
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∣∣∣∣∣
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+ b2
ejΦνL − e−a2 L

a2 + jΦν︸ ︷︷ ︸
Y

∣∣∣∣∣
2

dν, (17)

with Φ = 4π2 |β2 |. Extending the integration limit to infin-
ity yields a negligible error for typical bandwidths in optical
communications (B > 100 GHz), due to the decay of the four-
wave mixing efficiency. For the SSMF, the approximation er-
ror by setting B to infinity is 0.02 dB in NLI coefficient for
B = 100 GHz and < 0.01 dB for B = 300 GHz. We apply the
identity

|X + Y |2 = |X|2 + |Y |2 + 2�(X)�(Y ) + 2	(X)	(Y ),
(18)

and solve the resulting terms individually. The integral cor-
responding to the first term |X|2 can be solved by assuming
e−aL 
 1 and using (42) and (43)
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)
. (19)

The integral corresponding to the second term |Y |2 can be solved
similarly by assuming ea2 L � 1 yielding

8
∫ ∞
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Fig. 8. Illustration of the approximation in (22) approximation using 2 differ-
ent span length, SSMF and 1 THz optical bandwidth.

The integral corresponding to the cross-term can be rewritten as

16
∫ ∞

0
ln

(
B

2
√

ν

)
[�(X)�(Y ) + 	(X)	(Y )] dν

= 16b2

∫ ∞

0
ln

(
B

2
√

ν

) [
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+
−aa2(e−aL + e−a2 L ) + aa2 cos (ΦνL)

(a2 + Φ2ν2)(a2
2 + Φ2ν2)

]
dν. (21)

In the following, we individually solve each of the five integrals
resulting from (21). As each of these integrals does not seem to
have an analytical solution, we propose to solve it approximately

by replacing ln
(

B
2
√

ν

)
by a suitable constant ln

(
B

2
√

ν0

)
with

ν0 = π
2ΦL . The constant is chosen such that the sine in (21)

reaches its first maximum. The first term in (21) can then be
solved using (44)
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To illustrate the approximation Fig. 8 shows the integrand of (22)
with and without the logarithm for two different span lengths
and the parameters of the SSMF. It can be seen that this approach
is fairly accurate as the logarithm varies little over the domain
where the contribution to the integral is substantial for typical
parameters in optical communications.

The second term in expression (21) is solved using (45)

16b2 ln
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The third term in (21) is solved using (46)

16b2 ln
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and the fourth term in (21) is solved using (47)
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In order to solve the fifth term in (21) the integration domain
is split into two domains to improve the accuracy of the ap-
proximation as the cosine does not vanish for small ν, where
the logarithm varies more rapidly. In the integration domain
ν ∈ [0, B0 ] the integral is approximated by
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where B0 is chosen such that cos(ΦLν) ≈ 1, a2 >> Φ2ν2 and
a2

2 >> Φ2ν2 for ν ∈ [0, B0 ]. B0 = π
8ΦL yields cos(ΦLB0) ≈

0.92 and a2 >> π 2

64L2 . Even with pessimistic values the inequal-
ity gives 212 >> 6.2 for a = 0.2 dB/km and L = 50 km. For
ν > B0 the logarithm is again replaced by a constant and the
whole term is solved as
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Finally, using (48) and (49) yields
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All 5 terms are summed up to obtain the cross-term as
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∫ ∞
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(29)

The nonlinear interference coefficient η1 is then obtained by
summing up the solution of (19), (20) and the solution of the
cross-term (29).

APPENDIX B
DERIVATION OF THE COHERENCE FACTOR ε

In this section the closed-form expression for the coherence
factor ε is derived. A general formula for the coherence factor
is given as [18, Eq. (21)]

ε =
1

ln(20)
ln
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1 +

1
20

ηcoh,20

η1

]
, (30)

where the enumerator ηcoh in the logarithm stands for the co-
herent accumulation of nonlinear interference and the denom-
inator 20η1 for the incoherent accumulation of the nonlinear
interference coefficient at 20 spans. The coherence factor is
approximately independent of the number of spans for typical
values in optical communications. As in [18], coherence factor
is calculated for 20 spans. The coherent part of the nonlinear
interference coefficient at span n is given by [18, Appendix H]
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where a prefactor of 16γ 2

27R2
b

is not shown throughout the deriva-
tion for notational convenience. Similar to the derivation of η1 ,
(31) is rewritten using (18) and the resulting terms are solved
individually. For the first two terms we make use of the result in
[18, Appendix H] and obtain

16
n−1∑
k=1

∫ ∞

0
ln

(
B

2
√

ν

)
(n − k) cos (kΦLν) |X|2 dν

≈
n−1∑
k=1

n − k

k

L2
eff

β2πL
, (32)

and
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The cross-term is rewritten as
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and solved term by term with replacing the logarithm by a con-
stant. The first term of (34) can be approximately solved using
sin (x) cos (kx) = 1
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2 sin[(k + 1)x] and (44)
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with ν3 = 5π
ΦL . We observe that the sums in (35) converge

quickly for typical values of the argument in the expo-
nent. A negligible error is introduced when the sum is ex-
tended to infinity and the sum can be written in closed-
form as
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assumed that 2 cosh(aL) ≈ eaL and exp(aL) � 1. Expression
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(35) then yields
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The second term of expression (21) is approximately solved
using (46) as
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with ν2 = π
4ΦL . The third term of expression (21) is approxi-

mately solved using (46)
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The fourth term of expression (21) is approximately solved using
(48)
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The fifth term of expression (21) is approximately solved using
(48) and cos(x) cos(kx) = 1

2 cos[(k − 1)x] + 1
2 cos[(k + 1)x]

and (48). Similar to the derivation of η1 , the integration domain
is split into two domains in order to improve the accuracy of the
approximation (replacing the logarithm with a constant) as this
term does not vanish for small ν.
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≈ 8b2π (n − 1)
Φ (a2 − a2

2)
ln

(
B

2
√

ν2

)[
a exp (a2L)
ea2 L − 1

− a2 exp (aL)
eaL − 1

]

+
8b2B0

aa2

n−1∑
k=1

n − k

k
[ln (4k) + 1] , (40)

with Bk = B0
2k = π

16kΦL , where we divide by 2 due to the mul-
tiplication of two cosines and by k due to presence of k within
the argument of the cosine.

Summing up the terms in (32), (33), all cross-terms, multi-
plying by 16γ 2
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Applying (30) yields the coherence factor ε in (10).

APPENDIX C
INTEGRALS

This section contains the integrals that were used during the
derivation of the closed-form expression.∫ ∞
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c2 − b2 , (44)

∫ ∞

0

x2

(b2 + x2)(c2 + x2)
dx =

π

2
1

b + c
, (45)

∫ ∞

0

x2 cos(ax)
(b2 + x2)(c2 + x2)

dx =
π

2
be−ab − ce−ac

b2 − c2 , (46)

∫ ∞

0

1
(b2 + x2)(c2 + x2)

dx =
π

2
1

b2c + bc2 , (47)

∫ ∞

0

cos(ax)
(b2 + x2)(c2 + x2)

dx =
π

2bc

be−ac − ce−ab

b2 − c2 , (48)

∫ x0

0
ln

(a

x

)
dx = x0 ln

(
a

x0

)
+ x0 , (49)
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