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The Chemical Form of Metal 
Species Released from Corroded 
Taper Junctions of Hip Implants: 
Synchrotron Analysis of Patient 
Tissue
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The mechanisms of metal release from the articulation at the head cup bearing and the tapered 
junctions of orthopaedic hip implants are known to differ and the debris generated varies in size, 
shape and volume. Significantly less metal is lost from the taper junction between Cobalt-Chromium-
Molybdenum (CoCrMo) and Titanium (Ti) components (fretting-corrosion dominant mechanism), 
when compared to the CoCrMo bearing surfaces (wear-corrosion dominant mechanism). Corrosion 
particles from the taper junction can lead to Adverse Reactions to Metal Debris (ARMD) similar to 
those seen with CoCrMo bearings. We used synchrotron methods to understand the modes underlying 
clinically significant tissue reactions to Co, Cr and Ti by analysing viable peri-prosthetic tissue. Cr was 
present as Cr2O3 in the corroded group in addition to CrPO4 found in the metal-on-metal (MoM) group. 
Interestingly, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form. The 
metal species were co-localized in the same micron-scale particles as result of corrosion processes and 
in one cell type, the phagocytes. This work gives new insights into the degradation products from metal 
devices as well as guidance for toxicological studies in humans.

In total hip arthroplasty, a stem is inserted in the medullary canal of the femur and connected to a spherical head 
via a Morse taper (a cone on a cone)1 designed to prevent motion between the trunnion and the bore and avoid 
fluid ingress into the metal junction. However poor surgical assembly, cyclic loads, different material combina-
tions and the composition of the surrounding fluid may induce micro motions at the taper resulting in disruption 
of the passive protective oxide layer leaving the underlying metal exposed and susceptible to corrosion.

The products of metal degradation released into the periprosthetic tissue can evoke a series of inflam-
matory responses termed adverse reactions to metal debris (ARMD). This has widely been associated with 
metal-on-metal (MoM) hip resurfacing (HR) implants with Cobalt-Chromium-Molybdenum (CoCrMo) bearing 
surfaces (and no taper junctions2–4) that primarily mechanically wear at the articulating surfaces. Over the last 
few years, an increasing number of failures secondary to ARMD from the taper junction between CoCrMo and 
Titanium (Ti) components, have been reported5–7.

Modularity or the availability of various implant sizes at the head/neck junction is well established in 
modern total hip arthroplasty providing the orthopaedic surgeon a more patient-tailored solution and 
component-targeted revision surgery8, 9, more recent is the introduction of dual-taper implants10.

In dual-taper designs there is an additional interface which connects neck and stem via a Morse taper, 
designed to provide surgeons a bespoke solution to match the patient’s anatomy, Fig. 1.
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This second junction (neck/stem) can be subjected to an increased lever arm moment when compared to the 
head/neck taper and therefore higher bending and torsional stresses that may explain the greater damage that is 
frequently reported11–13. For this reason, dual-taper hips with non-MoM bearings provide a unique insight into 
corrosion products from implants for they are known to corrode heavily at their neck-stem taper junction with 
negligible metal debris from the bearing14–17.

Synchrotron analysis of in-vivo intracellular wear particles is key to the understanding of clinically significant 
tissue reactions of different classes of implants associated with ARMD. Technological advancements have made 
it possible to image metals in mammalian tissue with submicron resolution without damaging the sample. This is 
of particular significance as it allows the amount and oxidation state of trace elements in intra-cellular compart-
ments to be determined.

Previous work has shown that the exact chemical makeup of metals in tissue surrounding metal on metal 
(MoM) hip resurfacing (HR) implants is Cr (III) phosphate, Co metal and Co (II) attached to organic ligands18. 
Although it is well established that the quantity of metal released from the bearing is significantly higher than that 
from the taper junctions and that the debris differs in size and shape19, 20, little is known about the form of metal 
products from corroded tapered interfaces. Recently, there have been reports looking at the corrosion products 
from taper junctions20, 21, their histopathological characterisation22, 23 however there is no study that has used 
synchrotron methods to accurately evaluate their oxidation state.

In this study, we aimed to better understand the speciation of the metal released from corroded CoCrMo/Ti 
taper junctions by determining: (1) the exact chemical form (valency and molecular composition) of the metal 
particles in the tissues surrounding corroded dual-taper hips, (2) which cells contain the metal species and (3) 
how these results compare with those from MoM HRs.

Materials and Methods
Study design and patient selection.  We prospectively collected and analysed periprosthetic soft tis-
sue taken during revision surgeries of dual-taper hip replacements of a single design retrieved secondary to 
ARMD. Our work was approved by the institutional review boards of the Riverside Research Ethics Committee 
and all experiments were performed in accordance with relevant guidelines and regulations. Informed consent 
was obtained from all subjects or their authorized representatives prior to any study procedures. The hip pros-
theses consisted of Metal-on-Polyethylene (MoP) bearings with 28 mm CoCrMo alloy heads. All were paired 
with Rejuvenate stems (Stryker, Howmedica Osteonics Corp., NJ, USA), which consisted of a Ti-based alloy 
(TiMoZrFe) stem featuring an exchangeable CoCrMo neck. The Food and Drug Administration (FDA) approved 
this design in November 2009 and in June 2012 the manufacturer initiated a voluntary recall due to high early 
failure rates24. For this specific design, survivorships of 69.3% at two years12 and of 40% at four years25 have been 
reported. It has been shown that mechanically assisted corrosion is the predominant mechanism for metal release 
from junction between the stem and neck.

The same methodologies used in the investigation of metal species derived from MoM HRs were applied in 
this study and the results compared18. For the first time here, the slices scanned with X-rays were then stained 
with H-E to performed superimposition with metal maps. This enabled us to combine both metal analysis and 
cell features in one image. Study details are presented in the experimental flow diagram, Fig. 2.

On visual inspection at the time of revision, all implants demonstrated severe corrosion at the neck-stem 
junction, Fig. 3.

None of the implants showed signs of corrosion at the head-neck taper junction or bearing surfaces. This 
finding has been reported in other studies16, 17, 26–28.

The median (range) age of the subjects at primary implantation was 61 (47–74) years and the median period 
of implantation was 42 (23–53) months. Clinical data are reported in Table 1.

Figure 1.  Schematic cross-sectional images of (A) a MoM hip resurfacing implant with both bearing surfaces 
made of CoCrMo alloy; no taper junction or mixed alloy coupling is present; and (B) a Metal-on-Polyethylene 
(MoP) dual-taper implant with a CoCrMo/Ti interface between neck and stem junction; no MoM bearing 
surfaces are present.
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Preparation of periprosthetic tissue and histological examination.  Multiple tissue samples were 
collected from the hip capsules and bursal synovium of patients undergone revision surgery due to ARMD con-
firmed by magnetic resonance imaging modality. The number of surgical specimens per patient, usually between 
3 and 6, varied depending on the case and surgeon. Specimens were fixed in 10% neutral buffered formalin 
after being subjected to extensive sampling at macroscopic examination. A number of histological sections were 
unsuitable for metal analysis due to presence of significant amounts of necrotic tissue and no identifiable particle 
content in the deep-seated band of the macrophagic/lymphocytic infiltrate.

Formalin fixed paraffin embedded tissue were sectioned at 3–4 µm slices. As in previous experiments18, 29, a 
metal contamination avoidance (MCA) procedure was performed30 to minimize chances of tissue contamination 
and/or of alteration in the distribution and chemistry of implant-related debris. For each sample, two adjacent 

Figure 2.  Flow chart summarising the study design.
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sides of the same tissue were cut and dewaxed by immersion into xylene and alcohol solutions29. Histological 
sections were stained with haematoxylin-eosin (H-E) for cellularity and particle content. This procedure allowed 
a better view of the architecture of the section and aided better selection of areas of interest for the synchrotron 
beam mapping. The unstained section was used for the actual synchrotron analysis.

All sections were mounted on high purity silica slides. In some cases, the corrosion products were present 
focally or in only one fragment of the tissue in the block, a careful screening of the entire section was made.

Synchrotron methods.  The synchrotron work was conducted in the microfocus spectroscopy beamline 
(I18) at the Diamond Light Source, Harwell Science and Innovation Campus (Didcot, UK)31. The study design 
included two types of experiments; µX-ray Fluorescence (XRF) mapping of the tissue samples and µX-ray absorp-
tion spectroscopy (XAS) with a typical beam profile of 3 × 3 μm providing a resolution at a length scale similar 
to that of individual cells.

Synchrotron µ-XRF (metal mapping of the tissues) and co-registration.  µX-ray Fluorescence mapping of the tis-
sue samples is based on the intrinsic fluorescent properties of each element and is therefore element specific. 
Approximately a 500 × 500 μm region was mapped using an incident X-ray energy of 10.5 keV and a 6 element 

Figure 3.  Image of a retrieved hip implant investigated in the study featuring metal-on-polyethylene 
bearing type (A). Both stem bore (B) and neck male (C) taper surfaces showed gross signs of corrosion in the 
engagement segment, characteristic representative of the whole cohort. Elemental analysis (D) confirmed 
corrosion as chromium rich deposits were found composing the black debris; traces of Ti were also present as a 
consequence of metal transfer from the stem to the neck.

Patient ref. 
number Gender Age at Primary

Months 
to failure

Co 
[μg/L]

Cr 
[μg/L]

#1* Female 55 23 19 3

#2 Female 47 42 7 1

#3 Male 63 40 9 2

#4 Female 61 40 6 1

#5 Male 58 50 2 1.9

#6 Male 67 53 NA NA

#7 Female 74 45 1.5 1.3

Table 1.  Patient demographic and clinical data of tissue analysed. NA: not available; *Bilateral.
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Si drift detector (SGX Sensortech) with Xspress-3 processing electronics. More than one region per each tissue 
examined was scanned to in order to confirm the elemental findings. The map data were analysed for various 
metal elements including Co, Cr and Ti in the program PyMCA32. The mean and median values for these ele-
ments were not normalised to beam intensity but displayed as raw counts. For each map point, Ti, Co and Cr 
intensities were plotted against each other to identify any patterns in the data, such as isolated high intensity spots 
or correlations in the element distribution.

In order to identify which cells and cellular compartment were involved with the processing of the host par-
ticles, we co-registered the sections scanned by the beam with the resultant metal maps. H-E staining is ideal for 
identifying cell features in tissues and localizing the areas of interest for scanning, but it can interfere with the 
synchrotron analysis. In fact, the stain contains a wide range of metal contaminants that would affect the metal 
mapping. For this reason, unstained adjacent slices were used for the synchrotron analysis. The beam does not 
severely damage the tissue but it leaves behind traces seen as horizontal lines visible on high magnification light 
microscopy. The slices scanned with X-rays were then stained with H-E to perform superimposition with metal 
maps. This enabled us to combine both metal analysis and cell features in one image, to obtain a visual picture of 
the elemental composition in the specific investigated tissue sample.

Synchrotron micro X-ray absorption near edge structure µXANES.  µXANES was used to determine the form 
of the metals in the tissues. Around 50 spectra at the Cr K-edge, 20 spectra each at the Co and Ti K-edges were 
recorded at various points identified from the µXRF maps. At some points two or more spectra were recorded 
to look for evidence of beam damage. Data reduction and XANES analysis were performed using the program 
Athena in the Demeter suite33.

Ti, Co and Cr standards for synchrotron micro-XAS.  Data for the Co and Cr spectral standards for the elements 
under in investigation have previously been published along with details of their preparation18, 34. Transmission 
data for the anatase and rutile, polymorphs, of TiO2 was provided by Professor G Sankar (UCL). All the spectra 
collected during different experiments were aligned using Ti, Cr and Co foil spectra recorded in transmission, 
setting the edge position of these foils as 4966, 5989 and 7709 eV, respectively.

Data availability.  The datasets generated during and/or analysed during the study are available from the 
corresponding author on reasonable request.

Results
Histological analysis.  Histological examination of the seven periprosthetic tissues samples recovered from 
patients with dual-taper implants showed corrosion products present within macrophages and in the extracellular 
connective tissue. The corrosion particles with a unique greenish appearance distinctively differentiate from the 
conventional black metallic debris22, 35.

The reaction to the particles was predominantly composed of macrophages with numerous scattered multinu-
cleate foreign body-type giant cells seen around large particles of corrosion material. In addition, most cases had 
a predominantly perivascular lymphoplasmacytic inflammatory infiltrate. No acute inflammatory component to 
suggest infection was seen in the cohort. Cases are presented in Fig. 4.

Metal mapping of the tissues (micro-XRF) and co-registration.  The predominant metal species in 
the XRF maps was Cr, followed by Co and Ti. Sections exposed to the beam, H-E stained, showed that the loca-
tion of metal was both extra and intra cellular. Cr, Co and Ti were co-localized in one cell type, the phagocytes: 
macrophages and giant cells but not seen in the fibroblasts and lymphocytes present in the tissue sections studied. 
Representative XRF maps with relative sections are shown for patients #7, #2 and #4 in Figs 5, 6 and 7 respectively.

Synchrotron micro X-ray absorption spectroscopy (XAS) and X-ray absorption near edge struc-
ture (XANES).  Cr XAS/XANES.  Unlike previous Cr XANES studies of tissue from around failed MoM 
CoCrMo hip implants18, we observed two types of oxidised Cr spectral types in approximately equal number. 
One of these types of spectra corresponds to the XANES of CrPO4 previously observed, while the other to the 
XANES of Cr2O3, Fig. 8.

There was a correlation between significant Ti concentration in the tissue and the Cr XANES spectrum being 
similar to Cr2O3. The Cr2O3-like spectra were from points of significant Ti concentration while there was no sig-
nificant Ti where the “Cr (PO4)” XANES points were. No XANES indicating metallic Cr was observed.

Co XAS/XANES.  Almost all the Co XANES spectra obtained demonstrated a similar pattern, Fig. 9. These 
spectra were similar to XANES of Co (II) with organic ligands in an octahedral environment e.g. the cobalt 
N-(2-mercaptopropionyl) glycine complex (a Co-peptide mimetic, Co:MPG). There were two exceptions from 
sample #7 with Co spectra being similar to spectra from Co in Cochrome, hence in a metallic state as seen in 
MoM HRs18.

Ti XAS/XANES.  The Titanium XANES spectra were all representative of oxidised titanium species. The major-
ity of the Ti spectra (n = 15) from different patient tissues were similar (Fig. 10A) however a few from #6 and #7 
were somewhat different but similar to each other, Fig. 10B.

Unlike in previous reports on Ti in tissue studies36, neither type of spectra was similar to the XANES of either 
of the common polymorphs of TiO2, anatase or rutile. The small pre-edge peaks, which represent transitions to 
d orbitals, in the spectra of anatase and rutile are very different to the pre-edge of Ti in the tissue. This higher 
pre-edge peak in spectra of type #Ti1 indicates much of the titanium may be a disordered oxide species37; it bears 
a resemblance to the spectra of amorphous TiO2

38.
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Discussion
This is the first study to use synchrotron radiation to chemically characterise the implant-derived metal spe-
cies in human tissue surrounding corroded taper junctions. This is important for toxicology studies that will 
hopefully result in a better understanding of why some patients have devastating adverse responses to metal 
debris. Comparison between these results and those found for MoM HRs synchrotron analysis are summarised 
in Fig. 11.

Figure 4.  Microphotographs of the seven cases showing: (1) large corrosion aggregate deposits of greenish 
appearance surrounded by macrophages (arrow), (H-E × 200); (2) corrosion particulate material within 
macrophages (arrows), a lymphocytic inflammatory component is focally present, (H-E × 400); (3) corrosion 
particulate aggregate surrounded by macrophages (arrow), (H-E × 200); (4) particulate material engulfed 
by foreign body-type giant cells (arrows), (H-E × 400); (5) foreign body-type macrophagic reaction (arrow 
showing corrosion particle in giant cell) (H-E × 200); (6) large particles (arrow) within fibrous tissue 
(H-E × 400); (7) foreign body-type macrophagic reaction showing large and small particles (arrows) engulfed 
by giant cells; (H-E × 400).
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The novel findings from this study are: (1) the speciation of chromium into chromium oxide (Cr2O3-like spe-
cies) which has not been seen previously in MoM studies; (2) the correlation between significant titanium con-
centrations in the tissue and Cr2O3, with no such correlation between titanium and CrPO4, possibly explained 

Figure 5.  Light microscopy image of a section (A) from patient #7 with viable macrophages, giant cells, and 
cuffing of lymphocytes. Image (B) is the adjacent section, stained with H-E, after exposure to the Diamond 
Light Source. The complete chemical distribution map (C), showed that Cr (in red), Co (in green) and Ti (in 
blue), were co-localized.

Figure 6.  Light microscopy image of an H-E stained section from patient #2 after (A) exposure to the Diamond 
Light Source showing the cellular scanned area (yellow box) and corresponding complete chemical distribution 
map (B) revealing Cr (C), Co (D) and Ti (E) co-localized in the same particles.
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Figure 7.  Light microscopy image (A) of the H-E stained sections from patient #4 after exposure to the 
Diamond Light Source and corresponding chemical map (B) containing all the elements. (C) Shows the 
Cr map, (D) the Co map and (E) the Ti map. Co-registration of metal maps with histology revealed that 
particulate material was lodged in the connective tissue of the capsule and/or neo-synovium with lining by giant 
cells whereas smaller particles were engulfed by the giant cells and further break-up into smaller fragments 
phagocytized by the macrophages.

Figure 8.  Cr XANES of representative points for patients identified as #4, #2 and #7 and from Cr2O3 and CrPO4 
standards.
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by the electrochemical interaction between CoCrMo and Ti alloys secondary to mechanically assisted fretting 
and crevice corrosion; (3) the speciation of titanium, into an amorphous Ti dioxide, showing a dissimilar spec-
trum to the common anatase or rutile reported in previous human tissue studies36. Due to its perceived bio-
compatibility, it is estimated that more than 1000 tonnes of Ti is implanted in patients every year in the form of 
medical devices36. However, it has been showed that when corrosion takes place on the surfaces of such alloy, the 
products of degradation can cause adverse tissue response39 via production of pro-inflammatory cytokines40. 
Effects of Ti dioxide on human tissue are not clearly understood. Our data supports the evidence that it could 
have an active role in eliciting a pathologic response in periprosthetic tissue. Moreover, it is noteworthy (4) the 
particle composition complexity; in other words, the co-localisation of the elements, with chromium showing 
greater affinity with titanium than cobalt. These differences suggest a causal relationship between failure rates 
and modes of failure.

The substantial variations between the present investigated implants and the previous MoM hip resurfacings18 
reside in the material combination and the type of junction and this is crucial to relate cause (implant design) and 
effects (tissue reaction).

The dual-taper hips had MoP bearings and CoCrMo/Ti taper junctions (neck-stem). Mixed metal alloy com-
binations have been shown to increase fretting corrosion. The potential difference between two metals in a con-
ductive solution results in an electron flow between the metals usually resulting in accelerated corrosion of the 

Figure 9.  Representative Co XANES spectra for patients #4 and #7 and for CoCr and a Co:MPG complex 
standards. Hence most of the Cobalt was found to be in oxidation state (II) in a complex organic coordination 
environment (Co:MPG).

Figure 10.  Ti K-edge XANES of standards Ti foil, Ti rutile and anatase and representative XANES for patients 
#4 and #7.
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more susceptible alloy, in this case the CoCr alloy over the Ti alloy41. Whereas the resurfacing hips predominantly 
release metal through wear-corrosion at the bearing surfaces sliding across each other and they are made of the 
same alloy.

It is documented that MoM bearings wear substantially more than Morse taper junctions and the material 
released differs in terms of size, shape and therefore cellular responses to them22. Tribocorrosion at the bearing 
surfaces produces debris in the range of nanometres42, 43 that are predominantly round in shape20. We found 
micro-sized aggregates of corrosion particles with plate-like structure in tissue surrounding dual-taper hips with 
agglomeration of the metal species as result of mechanically assisted fretting corrosion not seen in tissue sur-
rounding failed MoM HR implants and in agreement with previous reports20.

Comparison of large studies reveals that patients with non-MoM dual taper hips with CoCrMo alloy necks 
and Ti alloy stems have lower whole blood metal ion levels compared to patients with resurfacing or large diam-
eter head MoM implants6, 44. However, the release of species from taper junctions, is associated with elevation 
of cobalt in excess of chromium in the blood stream rather than the bearing surfaces45. This is thought to be the 
result of the precipitation from solution of Cr which, due to the taper design, tends to be retained in the black 
corrosive surface debris whilst the more soluble Co is readily excreted46. Cobalt solubility is also confirmed by the 
rate at which Co and Cr levels decrease in patients after removal of the implants47. Metal ions tend to bind to pro-
teins and are transported into the body via the circulatory system, whereas particles build into the periprosthetic 
tissue, inducing a local tissue response. In this study the most abundant metal species found in the soft tissues 
surrounding the dual-taper implants was Cr, despite the composition of CoCrMo alloy, supporting that corrosion 
at the junctions is the dominant mechanism of metal release in these hips; in agreement with retrieval studies 
comparing metal ion levels between MoM resurfacing and taperd THAs46.

Our results indicate that the metal species and their complex configurations may have a significant role in 
eliciting a pathologic response in tissue, hence the early failure of metal devices. The findings provide guidance 
for toxicological studies on wear/corrosion particles both in-vitro and in-vivo, mechanisms that stimulate the host 
response as well as the cellular processes involved in the pathogenesis of ARMD and set the basis for future work 
on the interaction between the species found and proteins, known to initiate the inflammatory cascade. They also 
provide useful information regarding future pre-marketing tests of orthopaedic implants, generally focussed on 
wear debris generated during tribocorrosion in hip simulators which, in light of these findings, may be an over-
simplification of the actual configuration of the particles generated into the body.

Recent studies have reported on the finding of Cr oxide in metal particles surrounding tapered implants20, 21, 
however this is the first to use synchrotron radiation to confirm it. Synchrotron µXRF is more accurate in interro-
gating metal in human tissues compared to electron micro-probing. The typical detection limit of electron probe 
microanalysis is 100 parts per million (ppm) and this can be improved to 10 ppm in optimal specimen samples48. 
For transition metal in tissue samples XRF has a detection limit of hundreds of parts per billion49. The methods 
used enabled mapping of large areas of many tissue samples followed by repeated chemical analysis of element, 
valency and nearest atomic neighbours that is widely accepted as precise and accurate. Additionally, synchrotron 
X-ray analysis causes minimal “beam damage” and allows subsequent staining to establish the cell types and tis-
sue architecture in relation to the location of the metal species found.

Figure 11.  Summary of the differences in the metal speciation into tissues surrounding dual-taper hips (current 
study) and MoM hip resurfacings (comparison group [18]). The dual-taper hip has a metal-on-polyethylene 
bearing type, head and neck made from ASTM F75 CoCrMo alloy and stem made from ASTM F1813: 01 
wrought Ti-12 Molybdenum-6 Zirconium-2 Iron alloy. The CoCrMo neck/TMZF stem junction resulted to be 
heavily corroded at the time of revision. The MoM hip resurfacing implant has both bearing surfaces made from 
ASTM F75 CoCrMo alloy with a ratio of Co to Cr of 2:1, no taper junction or alloy coupling is present.
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Around 50 spectra at the Cr K-edge, 20 spectra each at the Co and Ti K-edges were recorded at various points 
identified from the µXRF maps. Our findings are robust as they are consistent within the sample set and fitted well 
to the spectroscopic curves generated by the standards.

We acknowledge limitations with the current study. Firstly, elements such as Mo and Z were excluded from the 
analysis as they require a different X-ray energy than that set for Co, Cr and Ti to be studied, iron (Fe) instead was 
selectively excluded because it would have been impossible to distinguish between Fe deriving from the implant 
and that naturally present in tissue. Chemical interactions between Mo, Z and the remaining elements cannot be 
excluded and could play a role in the formation of the metal species found50. Secondly, it was not possible to dis-
cern if the elements clustered in the same particles were bound together forming a “metal entity” in-vivo. Thirdly, 
patient specificity within the sample set such as local tissue pH as well as pre and post-operative physical activity 
known to affect the in-vivo performance of metal implants, could not be taken into account.

“Metal poisoning” was thought to be a problem limited to the 1.5 million people implanted with 
metal-on-metal hips, which release CrPO4, as shown in our synchrotron study of human tissue29. Although suc-
cessfully used for many decades, over the last few years hip implants that have a Ti-CoCrMo junction have been 
advocated to be responsible for the development of adverse tissue reactions from metal debris, probably a result 
of modern designs and materials that have increased the release of metals / changed their species, to a level / form 
that causes human tissue reactions.

The stems investigated in the current study were composed of a beta titanium alloy known as TMZF 
(Ti-12Mo-6Zr-2Fe). It is proprietary alloy from a single manufacturer (Stryker) implanted in over 30,000 patients. 
This is of a different composition to the alpha-beta titanium alloys Ti-6Al-4V (which are used in the majority of 
orthopaedic implants), albeit both featuring more than 80% Ti content. Further work is required to understand 
the similarities or differences in the interactions between the two alloys and CoCr. However it is of note that the 
retrieval evidence of severe corrosion seen in the current study, using TMZF, is similar to that previously reported 
when Ti-6Al-4V alloys have been used.

Conclusions
3 million people have hip implants every year. Understanding corrosion at taper junctions and the pathogenesis 
of the biological response leading to implant failure is of significant clinical importance. This is the first study 
to co-register histology and metal distribution maps, to explore the potential synergistic effect of CoCrMo with 
Ti alloy and the speciation of Ti; a crucial step in the process of understanding the toxicological effects of metal 
degradation.

We demonstrated for the first time the presence of Cr in the Cr2O3 species in soft tissue surrounding corroded 
taper junctions in addition to CrPO4 found when metal bearing surfaces sliding across each other. Interestingly, 
unlike in previous reports, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form.

This work is of relevance to the understanding of the science of metal-metal interactions in the human body 
and its clinical significance. The findings are not only applicable to the field of orthopaedics, but potentially more 
broadly to the medical fields including metal devices.
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