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Abstract (approx. 250 words) 

We use steady-state and nanosecond time-resolved photoluminescence spectroscopy 

to investigate the evolution of packing interactions in dilute solutions of a sulfonated 

poly(diphenylenevinylene) lithium salt and its cyclodextrin-threaded polyrotaxanes as a 

function of the threading ratio (TR) when increasing the temperature from 10 to 40 °C. 

Contrary to the expectation of a temperature-induced increase of packing and aggregation, 

supported by previous Raman studies identifying a temperature-induced reduction in the 

inter-phenyl torsion angles, we find clear spectral (photoluminescence blue-shift and 

narrowing) and dynamic (shorter lifetimes and reduced weight of the long-lived components) 

signatures of a reduction of interchain interactions for the polyelectrolytes at higher 

temperatures with TR up to 1.3. 
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Luminescent conjugated polyelectrolytes (CPEs) constitute an intriguing class of 

conjugated semiconductors with significant potential for a variety of applications spanning 

from biosensing to organic electronics and photonics.1-3 Crucial to fulfilling their potential is 

however control of their optical properties, which in turn requires accurate knowledge of the 

dependence of these properties on the details of the intramolecular (covalent) connectivity 

and side-chain functionalization, and of the inter- and supra-molecular organisation.4 

Formation of weakly-emissive aggregates and/or weakly-bound excimers leads to a reduction 

of the photoluminescence quantum yield (PLQY), accompanied by a red-shift and linewidth 

broadening of the emission spectrum, which may affect performance and colour purity of 

light-emitting diodes (LEDs) incorporating these materials. In addition to these spectroscopic 

changes, weakly-emissive aggregates and excimers/weakly-bound charge-transfer states are 

also characterised by longer lifetimes, from a few ns to over 10-20 ns depending on the extent 

of the interaction. Conversely, such a combination of spectroscopic and dynamic 

photoluminescence (PL) features has been taken as a powerful indicator of the 

presence/suppression of interchain interactions in much recent literature.5-8 Various strategies 

have been demonstrated to suppress formation of interchain states, thus enhancing the 

photoluminescence efficiency and blue-shifting the emission: from side-chain engineering,9, 10 

to encapsulation of the active polymer chains into "inert" macrocycles (e.g. cyclodextrins),11, 

12 to use of co-solvent water/alcohol systems.13, 14  

Interestingly, variations in temperature can sensitively trigger changes in the intra- 

and inter-chain interactions between the conjugated backbones that can be probed by 

monitoring their impact on the optical properties, making these properties very responsive to 

heat stimuli for a variety of conjugated polymers.15-19 Previously, Raman and resonant Raman 

spectroscopies have been used to study thermochromism of sulfonated diphenylenevinylene 

derivatives and it was concluded that these polymers undergo a conformational change into a 

more planar geometry when the temperature is increased to 40 °C, apparently favouring 

intermolecular interactions.20 However, the occurrence of such interactions and related states 
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must be confirmed by analyses of the thermally-induced alterations to spectra and excited-

state dynamics. 

To this end, we investigated the optical properties of sulfonated poly(diphenylene-

vinylene) lithium salt (PDV.Li, see Figure 1a) and cyclodextrin polyrotaxane analogues 

(PDV.Li-CD, with different threading ratio, TR = 0.5, 1.3, 1.8, 2.0) when increasing the 

temperature from 10 to 40 °C. We chose to work with solutions at a concentration of 10–

4 g L−1 concentration, which is dilute enough to minimise, albeit not eliminate, interchain 

interactions across the whole range of TRs.  We found that the PL and absorption spectra are 

blue-shifted, and that there is a clear reduction of the weight of the long-lived component of 

the PL decay upon heating for the polyelectrolytes with TR up to 1.3, thereby pointing to a 

clear reduction of interchain interactions even for such mild temperature variations. The most 

threaded rotaxanes (TR = 2) are virtually insensitive to temperature variations, confirming the 

success of this supramolecular approach for the minimization of the interchain interactions. 

 

Experimental details 

The synthesis of sulfonate substituted poly(diphenylene-vinylene) lithium salt 

(PDV.Li) and its cyclodextrin polyrotaxane derivative (PDV.Li-CD) used in this work is 

described elsewhere.21 All data shown were taken for PDV.Li (also indicated with TR = 0) 

and PDV.Li-CD (TR = 0.5, 1.3, 1.8, and 2.0) in buffer solutions (11.6 mM NaOH/20 mM 

KH2PO4) at polymer concentration of 10–2 g L−1. The threading ratio (TR) is defined as the 

cyclodextrin macrocycles per repeat unit. The buffer solution is used to keep the pH at 7 and 

to provide a constant ionic strength.  Higher ionic strengths tend to enhance the hydrophobic 

effect, with increased salt concentration thereby resulting in increased aggregation of non-

polar organic molecules. An absorption coefficient of ε  = 15 (g L−1)−1 mm–1, or 9 × 105 M–

1 cm–1, at 404 nm was previously estimated measuring the absorption of PDV.Li solution at 

various polymer concentrations.20 Such a coefficient allows the determination of the 

concentration of the solutions investigated in this work by using UV–Vis absorption 
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spectroscopy (Agilent 8543 UV–Visible spectrophotometer). To reduce interchain 

interactions between polymer chains with a view to studying conformational changes, the 

solutions were then further diluted to 10–4 g L−1. At this concentration, the interchain species 

are nearly completely suppressed also in the case of the unthreaded polymer.22 The steady-

state PL spectra were recorded after exciting at 405 nm with a diode laser by means of an 

ANDOR-Shamrock spectrograph coupled with an ANDOR-Newton charge-coupled device 

(CCD) unit. Decay dynamics were studied with a time-correlated single-photon counting 

(TCSPC) spectrometer using a ps-pulsed diode laser at 371 nm (Edinburgh Instruments EPL-

375) and a F-900 TCSPC unit (temporal resolution ~150 ps) with a photomultiplier tube 

coupled to a monochromator. The temperature-dependent study was conducted by using a 

resistive heater and a Peltier cooler and the temperature was constantly monitored with a Pt 

(Pt100) thermistor. 

 

Results and discussion 

The room-temperature absorption spectra of a solution of 10–2 g L-1 of PDV.Li and 

PDV.Liβ-CD with various threading ratios are reported in Figure 1b. As previously 

reported,23 the polyrotaxanes absorption is blue-shifted (Eabs,TR=0 = 3.07 eV, Eabs,TR=2 = 3.13 

eV) and slightly narrower compared to that of the unthreaded polymer 

(FWHMTR=0 = 0.57 eV, FWHMTR=2 = 0.52 eV). A similar trend is also observable as a 

function of the threading ratio, as expected for a progressively more effective suppression of 

intermolecular interactions with TR. Besides the blue-shift we also note that rotaxination of 

the polymers does not affect the overall shape of the spectrum, thus confirming that the 

cyclodextrins are optically inert and preserve the spectroscopic characteristics of the isolated 

chain. 

Turning now to the temperature-dependent data, in Figure 2a-f we report both the 

parameters extracted from the photoluminescence spectra of 10–4 g L-1 solutions of the 

PDV.Li and related polyrotaxanes with various threading ratios (Figure 2a-c), and 
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representative full spectra (Figure 2d-f) for TR= 0, 0.5, 2.0 respectively. More specifically, 

Figure 2a shows the energy of the 0-0 transition and the change of its position upon 

temperature variation (inset), whereas in Figure 2b we report the full-width at half maximum 

(FWHM) of the emission, and (c) the evolution of the I0-n/I0-0 ratio (where the 0-n is the most 

intense transition excluding the 0-0).  

Both unthreaded and "poorly-threaded" (TR ≤ 1.3) polymers exhibit a marked blue 

shift, an increase of the I0-n/I0-0 ratio and a decrease of the FWHM (Figure 2a-c) when the 

temperature increases from 10 °C to 40 °C that clearly point to a reduction of interchain 

species.24 We note that the thermochromic effect is stronger for these rotaxanes compared to 

those with higher TR (~1.1 meV/K for TR ≤ 1.3 and ~0.6 meV/K for TR ≥ 1.8 respectively, 

see inset in Figure 2a). This is in agreement with previous findings where thermally-induced 

modification of the dihedral torsion angles along the chains were evident in analogous 

polymers with low threading ratios.20 However, we cannot exclude that even though the 0-0-

transition energy is least affected by packing and aggregation, the reduction of interchain 

interactions in unthreaded and "poorly-threaded" polymers may also contribute to the blue-

shift of the 0-0 peak. The thermochromic effect of rotaxanes with TR ≥ 1.8 is surprisingly 

similar to that of unsubstituted poly(p-phenylene vinylene) (~0.4-0.5 meV/K for PPV).25 Even 

though PDV.Liβ-CD characterised by such threading ratios have been suggested to be 

resistant to conformational alterations with temperature,20 thermochromic effects in these 

systems are not unexpected and have been reported for other PPV derivatives.16, 26  

Blue-shifted and narrower PL spectra and a decreased I0-n/I0-0 ratio are also 

observable upon progressive encapsulation of PDV.Li into cyclodextrin macrocycles due to a 

reduced tendency to aggregate of the conjugated backbones.27 Even if at a concentration of 

10–4 g L-1 the polymers are considered highly diluted, we can still detect signs of aggregation, 

albeit minimal, in line with previously reported data.22 The reduction of interchain 

interactions upon temperature increase is strongest for the unthreaded polymer and its 

rotaxinated counterpart with the lowest TR (TR = 0.5), and the effect is comparable in nature 
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to that obtained by forcing a higher degree of encapsulation of the polymers into 

cyclodextrins. In fact, at 40 °C PDV.Li exhibits a relatively narrow spectrum (0.40 eV) and a 

recovery of the 0-0 intensity (I0-n/I0-0 = 0.80) quantitatively analogous to that of rotaxinated 

polymers with high threading ratio (FWHM = 0.40 eV and I0-n/I0-0 = 0.71) as reported in 

Figure 2 d and f respectively. 

Interestingly, Kasiouli and co-workers reported that solution of 10–4 g L-1 of the 

PDV.Li and its rotaxinated counterpart with low TR (0.5) also show changes in the Raman 

spectra when the temperature is increased from 25 °C to 40 °C that are different with respect 

to the polyrotaxane with TR > 0.5.20 They found a decrease of the relative intensity of the 

Raman band associated to the C–C inter-ring stretch with respect to that of the ring C–H 

interplane symmetric bend. Such a change in the Raman spectrum suggests a conformational 

rearrangement involving the dihedral angle between the adjacent phenyl rings and leading to 

a planarization of the polymer that would favour aggregation. This is contrary to our results 

reported in Figure 2, clearly pointing to a reduction of interchain interactions at temperatures 

of 40 C or so. This trend is particularly evident for PDV.Li with TR = 0 and 0.5. Incidentally 

the slight increase of the 0-0 transition energy with temperature (Figure 2a) also suggests 

reduction rather than increase of planarization (larger average torsional angles along the 

chains). We nevertheless expect that reduction or suppression of packing interactions in these 

systems far outweighs any torsional or vibrational "direct" effects on the chromophores 

photophysics. 

Time-resolved spectroscopy is a more sensitive probe of aggregation than steady-

state PL, and can unequivocally detect the presence or enhancement of interchain effects. We 

have therefore investigated the PL lifetime decays of PDV.Li and its rotaxinated counterparts 

recorded at 25 °C to 40 °C and compare then in Figure 3 and Table 1. The lifetime of the 

unthreaded polymer and that of the polyrotaxane with TR = 0.5 at 25 °C are clearly multi-

exponential (and fitted with 3 exponentials, see Table 1) with a long-lived component that 

could be ascribed to interchain states. When the temperature is increased to 40 °C, the decays 

become bi-exponential with a fast component (~0.8 ns) that could be attributed to intrachain 
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species and a long-lived component (~2.9 ns) typical of interchain species whose relative 

weight is reduced compared to that of the decay at 25 °C.7, 22 Such long-lived component is 

still present in the polyrotaxane with TR = 1.3 recorded at 25 °C. We note that the weight of 

the PL decay for the interchain species decreases as the temperature (and the threading ratio) 

increase, until it is not detectable any longer at 40 °C for PDV.Liβ-CD with TR = 1.3. This 

indicates that interchain interactions that would lead to the formation of weakly-emissive 

aggregates and/or weakly-bound excimers are systematically disfavoured as the temperature 

increases. For rotaxanes with threading ratios higher than 1.3, we observe a mono-exponential 

decay both at 25 °C and 40 °C with a time constant of ~0.85 ns, typical of intrachain excitons. 

For such rotaxanes, interchain interactions are effectively minimised by the supramolecular 

encapsulation. We can therefore rule out that interchain species play a major role on the 

thermochromic behaviour reported in Figure 2a for these “highly-threaded” polyrotaxanes. 

 

Conclusions 

In this study, we have shown that the increase of the temperature from 10 °C to 40 °C 

affects the optical properties of PDV.Li and its polyrotaxanes in water solution. The 0-0 peak 

blue-shifts concomitantly to the decrease of the I0-n/I0-0 ratio and the reduction of the FWHM 

of the PL emission as the temperature increases. This trend, that is particularly evident for the 

unthreaded polymer and the rotaxane with low TR (TR = 0.5 and partly for TR = 1.3), 

suggests a reduction of the interchain interactions between the polymer backbones. This is 

supported by time-resolved spectroscopy data for PDV.Li and its polyrotaxanes counterpart 

with TR ≤ 1.3 that clearly shows that the long-lived component in the PL decay, related to the 

interchain species, consistently diminishes as the temperature increases. For the most 

threaded rotaxanes (TR ≥ 1.8) the formation of interchain species are effectively minimized 

by cyclodextrin encapsulation. 
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Table 1 PL lifetime decay for PDV.Li and PDV.Li-CD aqueous solutions (10-4 g L-1) at 25 °C and 40 °C. The 

samples were excited at 3.34 eV and the emission was collected at 2.53 eV. 

TR Temperature (°C) τ1 (ns)  τ2 (ns) τ3 (ns) A1:A2:A3 

0 
25 2.95 0.87 0.26 18:63:19 

40 2.91 0.82  6:94:0 

0.5 
25 2.94 0.88 0.37 10:71:19 

40 2.96 0.84  7:93:0 

1.3 
25 2.91 0.85  1:99:0 

40  0.85   

1.8 
25  0.85   

40  0.85   

2.0 
25  0.85   

40  0.85   
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Figure 1 

 

Figure 1 a, Chemical structures of the sulfonate-substituted poly(diphenylene-vinylene) lithium salt rotaxane 

(PDV.Li⊂β-CD) and cyclodextrin (β-CD) macrocycle. PDV.Li is the same as PDV.Li⊂β-CD except without the 

threaded cyclodextrin rings. b, Normalised absorption spectra of 10-2 g L-1 solution of PDV.Li (TR = 0, black 

squares) and PDV.Li⊂β-CD with different threading ratio, TR = 0.5 (red triangles), 1.3 (blue circles), 1.8 (orange 

stars), and 2.0 (green diamonds). The spectra were recorded at 25 °C. 
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Figure 2 

 
 

 

Figure 1 Evolution of the parameters extracted from the PL spectra of PDV.Li and related polyrotaxanes with 

various threading ratios (TR = 0 (black squares), 0.5 (red triangles), 1.3 (blue circles), 1.8 (orange stars), and 2.0 

(green diamonds)) as a function of temperature: the energy of the 0-0 transition (a) and the change of its position 

upon temperature variation (inset, pink half circles), I0-n/I0-0 ratio, where 0-n transition is that with the highest 

intensity excluding the 0-0 transition (b), and the full-width half-maximum (FWHM) of the emission (c). Stacked 

normalised PL spectra of 10-4 g L-1 solution of PDV.Li (TR = 0, d) and PDV.Li⊂β-CD with different threading 

ratios, TR = 0.5 (e) and 2.0 (f), at 10 °C (blue circles), 25 °C (black squares), and 40 °C (red triangles).  
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Figure 3 

 

Figure 1 PL lifetime taken at 2.53 eV of 10-4 g L-1 solution of PDV.Li (TR = 0, a) and PDV.Li⊂β-CD with 

different threading ratio, TR = 0.5 (b), 1.3 (c), 1.8 (d), and 2.0 (e) at 25 °C (black squares), and 40 °C (red 

triangles). 
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