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Abstract 

 

This paper presents the development of an autonomous maritime navigation system for unmanned 

surface vehicles (USVs). In the autonomous system various maritime navigational devices are 

connected to obtain necessary navigational information but with uncertainties. To improve signal 

accuracy as well as robustness, a novel multi-sensor data fusion algorithm is proposed and 

developed. Then, a new predictive path planning algorithm is employed to provide an advisory 

collision-free trajectory. Practical trials and computer based simulations are carried out to prove the 

effectiveness of the developed system. 

 

1. Introduction 

 

Unmanned surface vessels (USVs) are currently under development to benefit military operations, to 

provide maritime policing and a new means of cost effective cargo transport. Key to USVs is the 

development of a marine autonomous navigation system which is one of the essential elements to 

ensure safe operation for ocean and coastal navigation, and when berthing. An autonomous marine 

navigation system requires accurate position and attitude of Own Ship (OS), mapping of the 

environment including static and dynamic obstacles, a path planning capability and a collision 

avoidance system. Fig.1 illustrates a proposed autonomous navigation system structure with two 

different modules to meet such requirements. 

 

       

Fig. 1 System structure for an autonomous navigation system 

 

The data acquisition module acquires information about the own USV’s position, speed, attitude etc. 

using various sensors such as Global Positioning System (GPS) receivers, inertial sensors for dead 

reckoning (DR) and electronic compasses. This module is also required to perceive the surrounding 

environment and obtains moving obstacle positions from the Automatic Identification System (AIS) 

and marine radar. A large amount of sensor data is obtained by the data acquisition module so proper 

data merging and fusion must occur before generating a synthetic picture or map of the surrounding 

field. Based upon the map built up by the data acquisition module, the path planning algorithm has the 

responsibility to generate a safe path with desired waypoints and requested headings for the autopilot 

to control the USV so as to avoid both static and dynamic obstacles, e.g. coastline, target ships (TSs). 

 



 

Multi-sensor data fusion (MSDF) for vehicle’s navigation has advanced in recent years; normally a 

multi-sensor navigation system is hybrid that having both Global Navigation Satellite System (GNSS) 

and DR system. Most of these integrated systems employ a GPS receiver, several inertial sensors and 

usually an electronic compass. Some advanced systems would also include sensors like a speed log 

and perhaps a camera. Caron et al. (2007) proposed particle multi-data sensor fusion algorithms for 

land vehicle, and concentrated on observing sensors failure and integrated multiple sensors to improve 

unreliable GPS information. Jared and Gerard (2011) proposed several data fusion algorithms for a 

GPS receiver and several inertial measurement units (IMUs), which provide good performance when 

reducing GPS position error. Zhang et al (2005) implement a Kalman Filter to improve the reliability 

of GPS, IMU and electronic compass measurements. In terms of USV application, Liu et al. (2014) 

developed a Kalman filter based algorithm to obtain accurate positions, speeds and headings of an 

USV. However, it should be noted that sensor failure, which is another impact that affects the 

accuracy of USV’s navigational data, hasn’t been considered in such applications. If one of the 

sensors fails the consequences could be disastrous since the USV will lose its current situation. An 

effective method of detecting and disregarding the failed sensor should be considered. 

 

In this paper, an improved autonomous navigation system concept has been proposed. First, a fuzzy 

MSDF algorithm is developed for the event of a sensor failure and to provide robust navigational 

information. Based on obtained information, a new predictive path planning algorithm using the fast 

marching method (FMM) is designed to specifically address the dynamic path planning problems. 

Such a system integrates the planning and prediction modules in order to obtain an efficient 

navigation system. Its capability has been tested using both computer based simulations and a USV 

platform. 

 

2. Fuzzy multi-sensor data fusion algorithm 

 

The multi-sensors data fusion algorithm is designed to provide robust navigational information for the 

system. The system employs the Federated Filter Architecture, which was first proposed by Carlson 

(1988). It is a two-stage filter architecture, each sensor is fused with the reference sensor and 

constitutes a final optimal estimation by a master filter or a sensor management process. 

 

    

Fig. 2 Federated Filter Architecture for the Fuzzy MSDF Algorithm 

 

Compared to a land vehicle, ships at sea are normally operated at a constant speed and headings 

changes are the primary means of collision avoidance. Therefore the MSDF algorithm is dependant 

upon monitoring the correct working of electronic compasses. As Fig. 2 demonstrates, three 

independent electronic compasses represent local sensors to provide absolute headings of the USV; 

and a gyroscope is used as the reference for USV’s rotation rates. These sensors feed to the local filter 



 

which employs the Kalman filter as implemented by Liu et al. (2014). A fuzzy system acts as a master 

fusion process to cope with possible sensor failures by assigning a weight to each of the local KF state 

estimates. 

 

2.1. Fuzzy input and output sets  

 

The inputs of the fuzzy system are from the local Kalman filters and the outputs are different weights 

for each KF estimates, as illustrated in Fig.3. 

 

Fig. 3 Fuzzy system (input and output sets) 

 

The master fused state estimate is then computed by the weights as: 

 

𝑥(𝑘) = ∑𝑤𝑖(𝑘) 𝑥𝐾𝐹𝑖
(𝑘)

3

𝑖=1

 (1) 

  

The weightings are determined by observations of the innovations sequence of each KF, where the 

innovations sequence of a KF is defined as: 

 

𝑖𝑛𝑛(𝑘) = 𝑧(𝑘) − 𝐻 𝑥(𝑘) (2) 

 

i.e. the difference between the compass measurement and the predicted heading angle at each time-

step 𝑘. Under an ideal scenario, the innovations sequence should be comprised of a zero-mean, white 

noise sequence (Subramanian et al, 2009, Bijker et al, 2008). This sequence could be monitored to 

detect a failure in the correct estimation by one of the KFs and to monitor the innovations sequence, 

which in general is a random process where the individual value is meaningless, a simple moving 

average (SMA) of the innovations sequence of each KF is computed: 

 

𝑆𝑀𝐴(𝑘) =  
𝑖𝑛𝑛(𝑘) + 𝑖𝑛𝑛(𝑘 − 1) + ⋯+ 𝑖𝑛𝑛(𝑘 − 𝐾 + 1)

𝐾
 (3) 

  

where 𝐾 is the number of samples considered in the moving average. Since the SMA is, in the ideal 

case, a sum of zero-mean independent random variables, it is in itself a zero-mean random variable, 

and tends to be normally distributed by the Central Limit Theorem. However, its variance is 𝐾 times 

smaller than that of the innovations random variable. Thus, sporadic high values of the SMA are more 

improbable than for the innovations, and will almost only occur when the innovations stops being a 

white sequence. Hence it is chosen to indicate a compass fault in the KF estimate.  

 

2.2. Membership functions and if-then rules 

 

In order to obtain a smooth decision process, the following fuzzy membership functions are defined: 

 

Negative function:  𝜇𝑁 = {

1 𝑖𝑓 𝑆𝑀𝐴 <  𝑆𝑀𝐴𝑁
𝑆𝑀𝐴/𝑆𝑀𝐴𝑁 𝑖𝑓 𝑆𝑀𝐴𝑁 ≤  𝑆𝑀𝐴 < 0

0 𝑖𝑓 𝑆𝑀𝐴 ≥ 0
 (4) 

 

Zero function: 𝜇𝑧 = {
1 − 𝑆𝑀𝐴/𝑆𝑀𝐴𝑁 𝑖𝑓 𝑆𝑀𝐴𝑁 ≤ 𝑆𝑀𝐴 < 0
1 − 𝑆𝑀𝐴/𝑆𝑀𝐴𝑃 𝑖𝑓 0 ≤ 𝑆𝑀𝐴 ≤ 𝑆𝑀𝐴𝑃

 (5) 

 



 

Positive function: 𝜇𝑃 = {

0 𝑖𝑓 𝑆𝑀𝐴 <  0
𝑆𝑀𝐴/𝑆𝑀𝐴𝑃 𝑖𝑓 0 ≤  𝑆𝑀𝐴 < 𝑆𝑀𝐴𝑃

1 𝑖𝑓 𝑆𝑀𝐴 ≥ 𝑆𝑀𝐴𝑃
 (6) 

 

 

 

Fig. 4 Input & output membership functions 

 

As indicated by the output fuzzy membership functions (Fig. 4), the output to the fuzzy logic 

inference system is chosen to be a change in the weight of the filter, Δ𝑤, rather than the weight itself. 

This is to avoid brusque transitions in the overall estimate. The following fuzzy rules can now be 

established: 

 

Rule 1: If SMA negative then 𝛥𝑤 is negative 

Rule 2: If SMA is zero then 𝛥𝑤 is positive 

Rule 3: If SMA is positive then 𝛥𝑤 is negative 

 

2.3. Defuzzification 

 

Then, at each sampling time k, depending upon the value of the SMA, Δ𝑤 is defuzzified by applying 

Centroid method (Sameena et al., 2011) as follows: 

 

Δ𝑤⋇ = 
∫ 𝜇𝑖  𝛥𝑤 𝑑Δ𝑤

∫𝜇𝑖  𝑑𝛥𝑤
 (7) 

 

where 𝜇𝑖 represents the membership function (𝜇𝑁, 𝜇𝑍, or 𝜇𝑃), Δ𝑤⋇ is the defuzzified output and 𝛥𝑤 is 

the output variable.  

Once Δ𝑤  has been calculated at time step k for each KF (Δ𝑤𝑖(𝑘), 𝑖 = 1,2,3), these values are 

normalised so that their sum equals to zero to ensure that the sum of Δ𝑤𝑖 remains one, 

 

Δ𝑤𝑖,𝑛(𝑘) = Δ𝑤𝑖(𝑘) −
1

3
∑Δ𝑤𝑗(𝑘)

3

𝑗=1

, 𝑖 = 1,2,3 (8) 

 

The resultant updated weights of each filter is given by: 

 

𝑤𝑖(𝑘) = 𝑤𝑖(𝑘 − 1) + Δ𝑤𝑖,𝑛(𝑘) , 𝑖 = 1,2,3 (9) 

 

The initial weights are assumed to be equal (𝑤𝑖 =
1

3
, 𝑖 = 1,2,3) and they are not modified until time 

instant 𝐾 has been reached, which is the number of samples required to compute the SMA. This novel 

fuzzy system could also be applied to other applications as long as more sensors could be integrated, 

e.g. several GPS receivers. 



 

3. Target ships detection  

 

With the knowledge of OS’s navigational data and relative detecting sensors, the dynamic target ships 

surrounding the USV can be detected so as to allow the generation of the safe path. TSs navigational 

data fusion has analogous process as own USV. But the data are obtained from different sensors, and 

require different data conversion and decoding process. In this paper, an AIS receiver is simulated to 

determine surrounding dynamic obstacle positions as well as to predict their positions during the AIS 

data-transmitting intervals. 

 

3.1. AIS decoding procedure 

 

The AIS is an automatic tracking system that is employed by both mariners and the vessel traffic 

services (VTS) for identifying and locating surrounding vessels. The AIS data normally provides 

static information, dynamic information, voyage related information and short safety information. 

Static information, such as the ship’s call sign, name and its Maritime Mobile Service Identity 

(MMSI) is permanently stored in the mounted AIS transponder. Dynamic information that contains 

the ship’s position, speed and course, is collected from the ship’s own navigational sensors, e.g. GPS 

receivers, speed logs and electronic compasses, etc. Voyage related information that includes ship’s 

destination, hazardous cargo type, etc. is set up at the beginning of the voyage (Lin, et al. 2008). 

Unlike other sensors that provide measurements in human readable ASCII characters, the AIS 

messages use 6-bit binary encoding for the bulk of the sentences to reduce the amount of data. Fig. 5 

indicates the flow of decoding an AIS message. Firstly, the valid characters in the AIS message are 

analysed and converted to the 6-bit binary to form a long-bit binary sentence. Then the message type 

can be determined from the first 6-bit and all the binary is further converted to decimal values 

according to the data position distribution of each message type. Finally, some information like ships 

name, destination needs to be converted from the decimal values to the corresponding ASCII 

characters. 

 

 
Fig. 5 Flow chart of AIS data decoding 



 

3.2. TSs positions predictions 

 

The AIS transponder autonomously transmits messages at different update rates depending on 

message types. The speed and course alteration will cause different reporting intervals of the dynamic 

information; the bigger the change is, the faster the message transmits. The information updating 

intervals can be as short as 2 seconds for the course change of a high-speed ship, while a 3 minutes 

interval would be generated for the ship at anchor. Therefore TS positions predictions during the time 

intervals are valuable for the PPM to take actions of collision avoidance and a KF algorithm is applied 

to cope with this situation. Assume a TS is operating in a constant speed nearby the USV and may 

have a collision then the real time positions of this TS is required for the path planning algorithm to 

generate a safe path to avoid the collision. Hence, the system state vector can be defined as following: 

 

𝑥 = [𝑝𝑥    𝑝𝑦  𝑣𝑥    𝑣𝑦] 𝑇 (10) 

 

where 𝑝𝑥 and 𝑝𝑦 represent the positions, 𝑣𝑥 and 𝑣𝑦 are velocities in x and y direction. Then the state 

model of the TS positions determination can be determined below: 

 

𝑥(𝑘) =  

[
 
 
 
 

1   0    𝑇𝑠  0

0   1    𝑇𝑠  0

0   0     1    0

 0   0     0    1 ]
 
 
 
 

𝑥(𝑘 − 1) + 

[
 
 
 
 
 
 
𝑇𝑠

2

2
0

0
𝑇𝑠

2

2
𝑇𝑠 0
0 𝑇𝑠 ]

 
 
 
 
 
 

𝑢(𝑘) + 𝑤(𝑘 − 1) (11) 

 

where  𝑇𝑠 is the sampling period,  𝑤 is the random variables that represents AIS measurement noise, 

and the control input 𝑢(𝑘) is defined as: 

 

𝑢(𝑘) = [𝛼𝑥(𝑘) , 𝛼𝑦(𝑘)]𝑇 (12) 

 

where 𝛼𝑥  and 𝛼𝑦  are zero-mean white noise in 𝑥  and 𝑦  directions to model the uncertain 

accelerations, which only causes small deviation for the velocities in  𝑥 or  𝑦  directions. As 

aforementioned, the observations are provided by the decoded AIS messages, which give the absolute 

positions of the detected TS. Therefore, the system measurement model can be determined as: 

 

𝑧(𝑘) = [
1 0 0 0
0 1 0 0

] 𝑥(𝑘) +  𝜈(𝑘) (13) 

 

During each AIS information update interval, the KF algorithm only executes the Prediction process 

shown in Fig. 6 for each sampling time, which generates possible positions of the TS so that the PPM 

is able to investigate whether the distance between the TS and own USV is in the safe range. This 

method is highly effective as the time interval will be long only when the movement of the detecting 

TS is stable. After the updated AIS measurement inputs to the algorithm, the KF will carry out its 

two-step process and reduces measurement noises to improve AIS data accuracy.  

 



 

 

Fig. 6 Kalman Filter Process 

 

4. Path planning algorithm for dynamic obstacles avoidance 

 

This proposed algorithm consists of two functionalities, i.e. the collision risk assessment (CRA) 

function and the path planning function. It is assumed that the dynamic information of moving ships, 

such as velocities and instantaneous positions, can be obtained by using on-board sensors or 

navigation devices. Based on such information, the CRA first employs the Kalman Filter (KF) 

algorithm to detect and predict the movements of the moving TS in defined time steps, and assesses 

the collision risks. If it is required to avoid the TS, a safe area around the ship will be generated to 

improve collision avoidance. When planning the trajectory, a weighted FMS algorithm proposed in 

Liu et al. (2015) is used. 

 

4.1. Collision risk assessment 

 

Once the path of the moving ship in next time periods have been detected and predicted, to assess the 

collision risk the trajectory of USV itself should be estimated. Assume that USV is navigating in a 2D 

space and has access to its own travel information such as current position, velocity, heading angle 

and turning rate; according to the kinematic equations of USV, the nonlinear estimation model of 

USV itself is established as: 

 

 {
𝑥(𝑘 + 1) = 𝑥(𝑘) + ∆𝑡 ∗ 𝑣(𝑘) cos𝜑(𝑘)

𝑦(𝑘 + 1) = 𝑦(𝑘) + ∆𝑡 ∗ 𝑣(𝑘) sin𝜑(𝑘)
 (14) 

 𝜑(𝑘 + 1) = 𝜑(𝑘) + ∆𝑡 ∗ 𝛼(𝑘) (15) 

 

where 𝑥(𝑘) and 𝑦(𝑘) represent the position in x and y directions at time step k, 𝑣(𝑘) is the velocity 

magnitude at time step k with heading angle as 𝜑(𝑘) and 𝛼(𝑘) is the turning rate. Then, as shown in 

Fig. 7, based on these two predicted paths, the smallest distance between them can be calculated. If 

this distance is less than the predefined safety distance two ships will have the possibility of colliding, 

hence appropriate collision avoidance manoeuvres need to be taken.  

 

 



 

 
Fig. 7 Collision risk assessment 

 

 

4.2. Path planning algorithm  

 

Based on the weighted FMS method and the collision risk assessment algorithm, the predictive path 

planning algorithm for USV can be developed. 

 

Fig. 8 illustrates the flow chart of the path planning algorithm and the details are listed below. 

 The algorithm first takes in the navigation map, where static obstacles have been clearly 

represented and stored as an original binary map 𝑾𝑜 . Such a map can be obtained through 

commercial charts, such as marine navigation charts. Also, advanced sensor technology, such as 

the Simultaneous Localisation and Mapping (SLAM), can be used to construct the map of the 

unknown environment while the USV is navigating. 

 Based on the map received, the safety map 𝑾𝑠 will be first generated and combined with 𝑾𝑜 to 

have an initial map 𝑾𝑖𝑛𝑖. A collision free path 𝝉𝑖𝑛𝑖 in such environment will be sought by using 

the FMM and stored as the guidance route. By following 𝝉𝑖𝑛𝑖 , the USV will start to proceed 

towards the end point.  

 While following the path, the USV will simultaneously monitor the positions and velocities of 

itself and other moving ships. The prediction algorithm will now be called to estimate the 

trajectory of the USV and other ships in next few time steps, to determine if there will be a 

collision risk. 

 If the collision risk exits, a new path should be generated. The dynamic safety map 𝑾𝑑 will be 

constructed around each moving obstacle.  

 The 𝑾𝑑 will then be merged with the safety map 𝑾𝑠 as well as the original binary map 𝑾𝑜 to 

generate a new synthetic map W. Based on W, a new path 𝝉𝑛𝑒𝑤 will be sought by applying FMM 

again. 𝝉𝑛𝑒𝑤 is the optimised trajectory without colliding with both static and dynamic obstacles in 

time step t, and the USV will follow it until the next waypoint has been reached.  

 When the new waypoint is reached, the algorithm will determine if it is the final target point. If it 

is not, the algorithm will jump back to step 3 and move towards the next waypoint.  



 

 

Fig.8 Flow chart of path planning algorithm for dynamic obstacle avoidance 

 

5. Results 

 

The section has been divided into three parts. Section 5.1 presents a practical trial on avoiding sensor 

failure; then the next section demonstrates a simulation result in AIS signal filtering and TS positions 

prediction; finally, the simulation results of the path planning algorithm for dynamic obstacle 

avoidance are illustrated and discussed. 

 

5.1. Multi-sensor data fusion testing results 

 

Practical trials were launched on Springer USV at Roadford Lake, Devon. Three different electronic 

compasses and a low-cost IMU were set up on the Springer USV and provided measurements as the 

inputs of the designed fuzzy MSDF system. The USV was operated in approximately 1.5 m/s. The 

sampling time for sensors to take measurements was 1 second. Three buoys were set up as waypoints, 

constituting a waypoint-tracking path for the USV as shown in Fig. 9(a).  



 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Trial results for the fuzzy MSDF algorithm. (a) Testing area at the Roadford lake; (b) SMA of 

the innovations of each KF; (c) KF estimates of the headings and fuzzy data fusion estimates 

 

To accomplish the set trajectory, the Springer USV made three turnings and steadily maintained four 

different headings as illustrated in Fig. 9(c). From Fig. 9(b), the SMA values of the innovations of the 

KF2 start to deviate largely from zero at time step k = 180, which indicates a malfunction of Compass 

2. However, in Fig. 9(c), although the associated KF2 of Compass 2 gives incorrect estimations, the 

fuzzy master filter still gives a proper fused result in the presence of sensor failure. Due to the fact 

that in practical experiment, the actual headings of the USV are unpredictable, it is difficult to say 

whether the fuzzy master filter provides better results than the KFs. However, evidence does show 

that the fuzzy master filter can aggregate different fuzzy inputs and discard sensor malfunctions. 

 



 

5.2. AIS detection & prediction 

 

The simulation area is the Portsmouth Harbour. It has first been converted into a binary map, which 

has the dimension of 500 pixels * 500 pixels representing a 2.5 km * 2.5 km area (1 pixels = 5 m). 

The simulated TS is assumed to be operated in a constant speed and an invariable course via a straight 

line. AIS information update interval is simulated to be 1 minute and the total operational time is 10 

minutes. The sampling time for the position prediction is assumed to be 12 seconds. 

 
(a) 

 
(b) 

Fig. 10 Simulation results for target detection and predictions. (a) Simulation area around Portsmouth 

Harbour; (b) KF estimation errors in x and y axis 

 

As demonstrated in Fig. 10(a), 5 possible positions (green dots) are predicted by the KF during each 

AIS data update interval and all the predictions are along the simulated trajectory, which proves that 

the algorithm is able to provide effective estimated positions without AIS measurement in the certain 

time period. In the meantime, 10 KF estimated positions are obtained after each AIS data update. 

From the enlarged figure, it is evidently that the KF offers a good performance for improving AIS 

data accuracy since the estimated positions (blue star) are closer to the actual positions (black line). It 

is further verified from Fig. 10(b), the position errors in x and y directions are reduced from almost 

9m and start to fluctuate within a narrow range along the zero line. All the evidences indicates the KF 

algorithm for the AIS data is efficient for both detecting the TS and predicting its future positions. 

 

5.3. Dynamic obstacle avoidance path planning 

 

The area near Plymouth harbour shown in Fig. 11(a) is selected as the testing area, which has 

2.5km*2.5km dimension. The selected area is first converted into a binary map as shown in Fig. 11(b) 

with 500*500 pixels dimension. To validate the capability of the algorithm dealing with complex 

traffic situations, three moving ships are added into the environment. The simulation configurations of 

the USV and the TSs are listed in Table 1. Algorithm’s prediction time period is set as 10, which 

means that the USV is able to estimate its own the movements as well as the TS for the next 10 time 

steps. Also, it is assumed the AIS’s transmission interval is every 5 time steps, which makes the USV 

unable to continuously perceive the TS’s position information thereby requiring position estimation.  



 

Table 1 Simulation configurations for the USV and the moving TS 

 USV Target ship (TS) 

Start point (m) (26, 241) (478,123) 

End point (m) (476,241) (403,123) 

Speed (knots) 10 9 

Course  Depends on the path 180 degrees 

 

 

 

(a) 

 

 

(b) (c) 

  

(d) (e) 



 

  

(f) (g) 

  

(h) (i) 

 

 

 

 

(j) (k) 



 

 
 

(l) (m) 

Fig. 11 Simulation results for path planning algorithm. (a) The simulation area near Plymouth 

harbor; (b) - (m) The sequence of movements of USV and its synthetic map at according time step 

 

An initial guidance path is first generated by the algorithm and shown in Fig. 11(b) as the black line. 

At time step 18 (Fig. 11(d)), the collision risk with TS1 is identified by the USV; hence the dynamic 

safety area of TS1 is created and added into the synthetic map as 𝑾18 (Fig. 11(e)). The USV now re-

plans its path to avoid the MS1. At time step 43, collision risk with MS1 no longer exists, but there is 

now a new possible collision risk with TS2. Therefore, only the dynamic safety area of TS2 emerges 

in the map as 𝑾43  (shown in Fig. 11(g)). As the USV proceeds, the traffic becomes more 

complicated, and at time step 52, TS3 starts to present a collision threat to the USV while TS2 is still 

collision risk, which makes the USV need to take actions to avoid both of these two ships. As shown 

in Fig. 11(i), dynamic safety areas for both TS2 and TS3 are integrated with 𝑾52. Based on 𝑾52, a 

collision free path avoiding both static and dynamic threats can be sought, which is shown as a black 

line in Fig. 11(i). Fig. 11(j) - Fig. 11(m) show how the USV avoids the TS3 and reaches the final 

target point.  

 

6. Conclusions and future works 

 

This paper improves the work of Liu et al. (2014) with a fuzzy multi-sensor data fusion algorithm and 

a predictive path planning algorithm. A practical application of the fuzzy MSDF algorithm is 

demonstrated and the results provide operational evidence of improving system robustness. 

Meanwhile, the simulation results show the newly designed path planning algorithm is capable of 

identifying collision risk and generating a new path in time to ensure obstacle avoidance. Future work 

to this research includes integrating a marine radar, generating an environmental map with both USV 

trajectory and dynamic TSs positions and considering environmental effects, e.g. current, wind in the 

path planning algorithm. 
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