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Abstract

Inverse probability of treatment weighting is a popular propensity score-based approach to estimate marginal treatment

effects in observational studies at risk of confounding bias. A major issue when estimating the propensity score is the

presence of partially observed covariates. Multiple imputation is a natural approach to handle missing data on covariates:

covariates are imputed and a propensity score analysis is performed in each imputed dataset to estimate the treatment

effect. The treatment effect estimates from each imputed dataset are then combined to obtain an overall estimate. We

call this method MIte. However, an alternative approach has been proposed, in which the propensity scores are

combined across the imputed datasets (MIps). Therefore, there are remaining uncertainties about how to implement

multiple imputation for propensity score analysis: (a) should we apply Rubin’s rules to the inverse probability of

treatment weighting treatment effect estimates or to the propensity score estimates themselves? (b) does the

outcome have to be included in the imputation model? (c) how should we estimate the variance of the inverse

probability of treatment weighting estimator after multiple imputation? We studied the consistency and balancing

properties of the MIte and MIps estimators and performed a simulation study to empirically assess their performance

for the analysis of a binary outcome. We also compared the performance of these methods to complete case analysis and

the missingness pattern approach, which uses a different propensity score model for each pattern of missingness, and a

third multiple imputation approach in which the propensity score parameters are combined rather than the propensity

scores themselves (MIpar). Under a missing at random mechanism, complete case and missingness pattern analyses were

biased in most cases for estimating the marginal treatment effect, whereas multiple imputation approaches were

approximately unbiased as long as the outcome was included in the imputation model. Only MIte was unbiased in all

the studied scenarios and Rubin’s rules provided good variance estimates for MIte. The propensity score estimated in the

MIte approach showed good balancing properties. In conclusion, when using multiple imputation in the inverse

probability of treatment weighting context, MIte with the outcome included in the imputation model is the preferred

approach.
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1 Introduction

Data from observational studies provide useful information to address health-related questions and notably
estimate treatment effects in real settings.1 However, because individuals are not randomised, the treatment
groups are often not comparable, which may lead to confounding bias2 if these studies are analysed without
appropriate adjustment for confounding. Propensity scores (PS) have been proposed as a means to recover balance
between groups on observed covariates and so obtain a consistent estimate of the causal treatment effect.3 The PS
is defined as the individual’s probability of receiving the treatment rather than the control given their baseline
characteristics.4 One popular method to achieve covariate balance between treatment groups is to weight
individuals by the inverse of their PS. This approach, known as inverse probability of treatment weighting
(IPTW),5 aims to emulate the sample that would have been observed in a randomised trial.

In practice, a major issue when estimating the PS is the presence of partially observed covariates, as the PS
cannot be estimated for individuals with at least one missing covariate value. Standard analyses include complete
case analysis6 or the missingness pattern approach,7 but a popular alternative to handle missing data is multiple
imputation (MI).8 However, there remain four important unresolved questions about how to implement MI for PS
analysis.

First, two approaches to combine information from the imputed datasets have been proposed in the context of
PS analyses: combining the treatment effects estimated on each imputed dataset (method called MIte hereafter) or
combining for each individual their PS value across the imputed datasets (method called MIps hereafter).9,10 MIte
intuitively seems to adhere best to the MI philosophy by applying the full analysis strategy on each imputed
dataset. Furthermore, Seaman and White11 proved that for an infinite number of imputations, the MIte estimator
is consistent. However, Mitra and Reiter9 published recommendations on the use of MI for PS analysis, and they
advocated using MIps, rather than MIte, for PS matching.

The second question is whether or not to include the outcome in the imputation model for the missing
covariates. Mitra and Reiter did not include it in their study,9 which could explain the bias they observed for
both MIte and MIps. One of the advantages claimed for the PS approach in general is that it allows the
investigator to use the data on the treatment and covariates to develop a well-fitting PS model without needing
to look at the data on the outcome.9 This makes it possible to avoid the temptation to search for a PS model that
gives a significant treatment effect estimate, a temptation which may be experienced by an analysis which handles
confounding by using regression adjustment. Intuition may therefore lead one to believe that imputation of
missing covariates should also be done without using the outcome variable.9 However, this intuition conflicts
with advice to include the outcome when imputing missing covariates in a regression model whose parameters are
the quantities of interest.12

The third question is how to estimate the variance of the IPTW estimator after MI. When pooling the treatment
effects (MIte), Seaman and White11 showed that Rubin’s rule for estimating the variance performs well in practice,
although theoretical justification for Rubin’s rules relies on the parameter of interest being estimated with
maximum likelihood, which is not the case for the IPTW method. For MIps, there is, to our knowledge, no
variance estimator that takes into account both the uncertainty due to the estimation of the PS given the complete
data and that due to the imputation of the missing data.

Finally, the fourth question is how well MI performs in comparison to other popular approaches to handle
missing data, namely complete case (CC) analysis or the missingness pattern (MP) approach. Qu and Lipkovitch13

and Seaman and White11 assessed the performance of MIte additionally including the missingness pattern
indicator in the PS model, but they did not compare this approach to other combination rules after MI or to
the MP approach alone.

In this article, we show that the best method when using MI with IPTW is to include the outcome in the PS
model and use Rubin’s rules to combine the treatment effect estimates from the imputed datasets (the method
MIte). An informal survey of recent articles using MI with IPTW revealed that suboptimal methods are commonly
being used. In particular, several studies have following Mitra and Reiter’s recommendation to use MIps rather
than MIte, and in several of these studies imputation is done without including the outcome in the imputation
model (e.g. literature14–20). Another example of suboptimal MI is that of Hayes and Groner,21 who randomly
selected one imputation for each individual and estimated that individual’s PS based on just this single imputation.
Therefore, we conducted this work to address the unresolved questions and provide new recommendations.

This article is organised as follows: we present a motivating example looking at the effect of statins on short-
term mortality after pneumonia in Section 2. A description of IPTW and its underlying assumptions is given in
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Section 3. Section 4 presents different strategies to handle partially missing covariates for PS analysis. The
consistency and balancing properties of the MI approaches are studied in Section 5 and empirically assessed in
Sections 6 and 7 through a simulation study. The application of these approaches to the statin motivating example
is presented in Section 8, followed by a discussion in Section 9.

2 Motivating example: Effect of statin use on short-term mortality after pneumonia

To illustrate the importance of an adequate handling of missing covariates for PS analysis, we focused on a
published study of the effect of statin use on short-term mortality after pneumonia.22 We utilised the THIN
database, which consists of anonymised patient records from general practitioners (GPs) in the UK. As of the
end of 2015, the database represented 3.5 million unique active patients, or approximately 6% of the UK
population. The database has been found to be broadly representative of the UK population, and the validity
of recorded information has been established in previous studies.23,24 Douglas et al. carried out an analysis of 9073
patients who had a pneumonia episode, of whom 1398 were under statin treatment when pneumonia was
diagnosed. In the statin group, 305 patients (21.8%) died within 6 months, while 2839 (37.0%) of the non-users
died within 6 months. However, statin users and non users were very different in terms of characteristics, in
particular on characteristics associated with mortality.

In Douglas et al., PSs were used to recover balance between groups. However, three important potential
confounders were only partially observed: body mass index (BMI), smoking status and alcohol consumption,
with respectively 19.2%, 6.2% and 18.5% of missing data. In the original analysis, a missing indicator method was
used. This approach is similar to the missingness pattern approach described later in this article. We will explore
whether handling the missing data using MI gives results that differ from those given by Douglas et al.

3 IPTW

3.1 PS estimation and assumptions

PSs have become a major tool in causal inference to estimate the causal effect of a binary treatment Z (Z¼ 1 if
treated, Z¼ 0 otherwise) on an outcome in the presence of confounding.3 The PS is the individual’s probability of
receiving the treatment conditional on the individual’s values on a set of baseline covariates X.25 The PS is usually
estimated from the data using a logistic regression model, which predicts each individual’s probability of receiving
the treatment from their baseline covariates.26 The PS approach is best understood using the potential outcomes
framework,27 in which the causal effect of the treatment is defined as the difference between the two potential
outcomes YZ¼0 and YZ¼1, which are the outcomes that would have been observed if an individual had been not
treated and treated, respectively (this notation was invented in the context of randomised experiments). Three
assumptions are usually made to consistently estimate the causal effect of a treatment: (a) positivity,28 (b) Stable
unit treatment value assumption (SUTVA)29 and (c) strongly ignorable treatment assignment (SITA).
Assumptions (a) and (b) mean that each individual has a non-null probability of receiving either treatment and
has only one possible potential outcome value for each treatment, respectively. Assumption (c) implies that there
are no unmeasured confounders.

The key property of the PS is that it is a balancing score. That is, if assumptions (a) to (c) are valid and the PS
model is correctly specified, the variables included in the PS model are balanced between treatment groups at any
level of the PS, i.e. they have the same conditional distribution in both groups given the PS. This leads to the
consistency of PS-based estimators. Initially, three different PS-based approaches were proposed3: PS matching,
subclassification and covariate adjustment. Although PS matching is the most common approach nowadays,
matching often discards a substantial number of individuals from the analysis30 and variance estimation after
PS matching is not straightforward.31 The two other approaches have drawbacks as well: residual bias due to
heterogeneity within strata can remain with subclassification,7 whereas covariate adjustment can be biased in some
circumstances.32 Thus, we focus on a fourth approach33: IPTW.

3.2 IPTW estimator and its variance for complete data

IPTW aims to create a pseudo-population similar to a randomised trial by weighting the individuals by the inverse
of their probability of receiving the treatment they actually received (i.e. ê�1i for treated individuals and ð1� êiÞ

�1
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for untreated individuals). Thus, the IPTW estimators for the marginal proportions for a binary outcome Y, �1

and �0, among the treated and the untreated are34:

�̂1 ¼
Xn
i¼1

YiZi

êi

 ! Xn
i¼1

Zi

êi

 !�1
, �̂0 ¼

Xn
i¼1

Yið1� ZiÞ

1� êi

 ! Xn
i¼1

1� Zi

1� êi

 !�1
ð1Þ

where Zi is the treatment indicator for individual i (Zi¼ 1 if treated, 0 otherwise) and Yi is their outcome value.
From these two marginal estimates, it is possible to estimate a relative risk �̂1

�̂0

� �
, an odds ratio �̂1=ð1��̂1Þ

�̂0=ð1��̂0Þ

� �
or a risk

difference �̂1 � �̂0ð Þ for a binary outcome.
The IPTW estimator, as with other PS-based estimators, is a ‘two-step estimator’. If the uncertainty linked to

the PS estimation in the first step is not taken into account in the second step (treatment effect estimation), the
repeated sampling variance of the treatment effect will be overestimated and inference will be conservative.31

Lunceford and Davidian35 and Williamson et al.34 proposed a large-sample variance estimator for the IPTW
treatment effect estimator in which a correction term including the variance/covariance matrix of the estimated PS
parameters is applied.

4 Handling missing data in PS analysis

A major issue in PS estimation is the presence of partially observed covariates. In this section, we describe five
methods for applying IPTW to incomplete data. We assume the treatment status Z and outcome Y are fully
observed.

4.1 CC analysis

In CC analysis, the PS is estimated only within the subgroup of individuals with observed values for all of the
variables included in the PS model, and only these individuals contribute to the estimation of the treatment
effect.36 Although the CC analysis is known to provide an unbiased estimate of the parameters of an outcome
regression model when the missingness is independent of the outcome,6 little is known about CC analysis for
IPTW. Moreover, excluding individuals with missing covariates can reduce statistical power, because no use is
made of partially observed records.

4.2 Missingness pattern approach

Rosenbaum and Rubin7 defined the generalized PS ê� as the probability of receiving the treatment given the
observed covariates and the pattern of missing data. In practice, the PS is estimated separately in each stratum
defined by missingness patterns using the covariates observed in that stratum, as long as the sample size is large
enough in each stratum. When treatment allocation is independent of the potential outcomes given the observed
covariates and the missingness pattern, the generalized PS balances the missingness indicators and the observed
component of the partially observed covariates but, not surprisingly, may not balance the unobserved component.37

4.3 MI

The principle of MI is to generate multiple sets of plausible values for the missing variables by drawing from the
posterior predictive distribution of these variables given the observed data. Variables of different types are often
included in the PS model. Therefore, we focused on chained equations, in which a specific imputation model,
including the outcome, is specified for each partially observed variable, rather than joint modelling to impute the
missing data.38 M complete datasets are created and analysed independently to produce estimates
ĥk, ðk ¼ 1, . . . ,MÞ of h the vector of the parameters of interest (e.g. regression coefficients) and estimates Wk of
their associated variance matrix. Then ĥk and Wk, ðk ¼ 1, . . . ,MÞ are combined across the M imputed datasets.
Rubin’s rules for the mean and variance state that an overall estimate, ĥMI, of h and an estimate of the variance of
ĥMI, dVarðĥMIÞ, are

8:

ĥMI ¼
1

M

XM
k¼1

ĥk, dVarðĥMIÞ ¼Wþ 1þ
1

M

� �
B, ð2Þ
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where W is the within-imputation variance–covariance matrix, which reflects the variability of the parameter
estimates in each imputed dataset, and B is the between-imputation variance matrix reflecting the variability in
the estimates caused by the missing information. These two components are defined as:

W ¼
1

M

XM
k¼1

Wk, B ¼
1

M� 1

XM
k¼1

ĥk � ĥMI

� �2
ð3Þ

Three variants of MI are MIte, MIps and MIpar. For complete data, the IPTW method involves three steps: (a)
estimation of the parameters a in the PS model; (b) calculation of individual PS’s; and (c) use of equation (1) to
calculate �̂0 and �̂1. In MIte, all three steps are applied to each of the M imputed datasets separately. Then the M
treatment effect estimates obtained are averaged. In MIps, the method recommended by Mitra and Reiter,9 the
first two steps are applied to each imputed dataset separately. Then the M PS’s for each individual are averaged
and equation (1) is applied once using these average PS’s. In MIpar, the first step is applied separately to each of
the imputed datasets. The M values of a and each individual’s covariates Xi are then averaged over theM datasets.
Each individual’s PS is then estimated as:

êi �xið Þ ¼
exp�a �xi

1þ exp�a �xi
ð4Þ

where ði ¼ 1, . . . , nÞ with �a the ð pþ 1Þ vector of the average PS parameter values (for the p covariates and the
intercept) and �xi a ð pþ 1Þ vector of the average p covariates across imputed datasets for individual i. Whereas the
MIps estimate of treatment effect is based on the average PS, �ei xið Þ, the MIpar estimate is based on the PS
corresponding to the average of the covariates, êi �xið Þ. Rubin’s Rules are based on the assumption that ĥk is
approximately normally distributed, and the distribution of âk might be expected to be more approximately
normal than the distribution of a PS (which is constrained to lie in [0,1]). The three MI approaches are
illustrated in Figure 1. To obtain a variance estimator for the MIte estimator, Rubin’s rule for the variance
(above) can be applied to the standard IPTW variance estimator for full data, which takes account of the PS
estimation. For MIps and MIpar, because the PS is obtained fromM imputations, the standard variance estimator
for IPTW is no longer valid, since it does not take into account the uncertainty due to missing data. A large-sample
estimate of the variance for MIpar, derived from Williamson et al.,34 is given in Appendix 1.

5 Balancing properties and consistency of IPTW estimator after MI

Without missing data, Rosenbaum and Rubin showed that the PS is a balancing score.3 A balancing score bðxÞ is
defined as a function of the observed covariates x such that the conditional distribution of x given bðxÞ is the same
for Z¼ 0 and Z¼ 1. Moreover, Rosenbaum and Rubin showed that any balancing score bðxÞ is ‘finer’ than the
true PS, that is eðxÞ ¼ f bðxÞ

� �
, for some function f ð:Þ. The consistency of PS estimators comes from this balancing

property. Lunceford and Davidian35 studied theoretical properties of the IPTW estimator when data are complete
and gave a proof of consistency of this estimator. In this section, we study the consistency of the IPTW estimators
obtained from MIte, MIps and MIpar and how this relates to balancing properties of the PS models used in these
approaches. We suppose hereafter that (a) the SITA assumption required for IPTW (see Section 3.1) holds, (b) the
missing data are missing at random (MAR) and (c) the imputation model is correctly specified. For simplicity, we
consider here the estimation of � ¼ E½YZ¼1�:

5.1 Combining the treatment effects after MI (MIte)

Let X, the vector of covariates, be split into observed and missing components, X ¼ ðXobs,XmissÞ. X
ðkÞ
m is the imputed

value of Xmiss in the kth imputed dataset (k ¼ 1, . . . ,M). We show (see Appendix 2a) that in each imputed dataset:

eðXobs,X
ðkÞ
m Þ ¼ E½ZjXobs,X

ðkÞ
m � ð5Þ

If XðkÞm is imputed from the true model (i.e. correctly specified at the true parameter values), we can also show
(Appendix 2b) that a SITA-type assumption holds in each imputed dataset, i.e.:

Yz¼1?ZjXobs,X
ðkÞ
m and Yz¼0?ZjXobs,X

ðkÞ
m

Leyrat et al. 7



These two assumptions are the imputed-data version of what Imbens calls weak unconfoundedness.39 Note that
we do not have the analogue of the usual, stronger, assumption ðYz¼1,Yz¼0Þ?ZjXobs,X

ðkÞ
m , which requires the

treatment to be independent of the set of potential outcomes. This is because our imputation model is a model
for XmissjZ ¼ z, YZ¼z,Xobs. The stronger assumption would require our imputation model to capture
XmissjZ ¼ z, Yz¼0,Yz¼1,Xobs. However, it is important to note, as Imbens does, that the weak
unconfoundedness suffices to obtain unbiased estimates of the causal treatment effect.

5.1.1 Balancing properties

We show in Appendix 2 that Xobs?ZjeðXobs,X
ðkÞ
m Þ and XðkÞm ?ZjeðXobs,X

ðkÞ
m Þ: Thus the true PS in each completed

dataset balance both the unobserved and the imputed values of the covariates across treatment groups. This
balancing property is what leads to consistency of the MIte estimator.

5.1.2 Consistency

Seaman and White11 proved that for an infinite number of imputations, the estimator obtained by combining the
treatment effects after MI (MIte) is consistent. To understand how this consistency relates to the SITA-type
assumption above, it is helpful to consider the following expectation:

E
YZ

eðXobs,X
ðkÞ
m Þ

" #
¼ E E

YZ

eðXobs,X
ðkÞ
m Þ

�����Xobs,X
ðkÞ
m

" #" #

Figure 1. The three approaches considered after multiple imputation (MI) of the partially observed covariates are missing values on

the original dataset. �ðkÞ, ðk ¼ 1, . . . , ,MÞ are imputed values in the kth imputed dataset. �̂ðkÞ and êðkÞ are the estimated treatment effect

and estimated propensity scores, respectively, from the kth imputed dataset ðk ¼ 1, . . . , ,MÞ. The MIte approach consists of pooling

the M treatment effects estimated with IPTW on each imputed dataset. MIps estimate is obtained by using the average PS across the M

imputed datasets in the IPTW estimator. Finally, the MIpar approach uses the PS of the average covariate value across the M imputed

dataset. The PS is estimated using the average PS parameters as regression coefficients.
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¼ E
E½Yz¼1jXobs,X

ðkÞ
m � E½ZjXobs,X

ðkÞ
m �

eðXobs,X
ðkÞ
m Þ

" #
ð6Þ

¼ E½E½Yz¼1jXobs,X
ðkÞ
m ��

¼ E½Yz¼1� ¼ �,
ð7Þ

Step 6 requires the SITA-type assumption 6. Step 7 relies on PS in the kth imputed dataset being equal to the
probability of being treated given the observed and imputed part of the covariates (equation 5).

5.2 Combining the PS or the PS parameters after MI (MIps and MIpar)

For PS methods, consistency comes from the ability of PS to balance covariates between groups. MIps and MIpar
create a single overall PS used to estimate the treatment effect. Thus, consistency for these methods would rely on the
ability of these overall PS to balance both the observed and the missing parts of the covariates in the original
incomplete dataset. Rosenbaum and Rubin’s results show that this can happen only if the single PS (as estimated
inMIps orMIpar) is ‘finer’ than the true (full data) PS (in other words, if the true PS is a function of the single pooled
PS).3 However, when combining the PS or the PS parameters, the overall PS used for the analysis is not a function of
the observed covariates but rather is a function of the average covariates across imputed datasets, including the
imputed values. Thus, the pooled PS (as estimated either in MIps or MIpar) is not ‘finer’ than the true PS according
to Rosenbaum and Rubins definition (i.e. the true PS is not a function of the pooled PS). Consequently, it cannot be
a balancing score. Thus, neither �̂MIps nor �̂MIpar are consistent estimators.We illustrate the lack of consistency with a
counter example in Appendix 3. We also discuss the balancing properties of the MP approach in Appendix 4.

6 Simulation study design

The aim of this simulation study is to assess the performance of the three MI approaches, CC analysis and
missingness pattern approach for IPTW when the outcome is binary and to compare them with non-MI methods.

6.1 Data generation mechanisms

We generated datasets of sample size n¼ 2000, reflecting an observational study comparing a treatment Z¼ 1 to a
control treatment Z¼ 0 on a fully observed binary outcome Y with three measured covariates X ¼ ðX1,X2,X3Þ.
X1 and X2 were continuous and X3 was binary. X2 was fully observed whereas X1 and X3 were partially observed.
We generated the data as follows:

. Covariates: The three covariates X ¼ ðX1,X2,X3Þ are generated from a multivariate normal distribution
X � N3ð0,DÞ, with �ii ¼ 1 and �ij ¼ � for i 6¼ j. X3 is then dichotomised according to a threshold of 0 to
obtain a prevalence of 0.5.

. Treatment assignment depends on X according to the following model:

logitð pðZ ¼ 1jxÞÞ ¼ �1:15þ 0:7x1 þ 0:6x2 þ 0:6x3 ð8Þ

These coefficients give EðZÞ ¼ pZ ¼ 0:3 and an important imbalance on covariates between treatment groups,
as shown in Appendix 6.

. Binary outcome: The outcome depends on the three covariates and the treatment received according to the
following model:

logitð pðY ¼ 1jZ,xÞÞ ¼ �1:5þ 0:5x1 þ 0:5x2 þ 0:3x3 þ �cZ ð9Þ

In this model, exp �c is the conditional odds ratio (OR). We used the method described in Austin40 to find the
value of �c that gives the desired relative risk (RR).

. Missingness mechanism: In this simulation study, we consider a MAR mechanism. The missingness of each
partially observed covariate (X1 and X3) depends on the fully observed covariate X2, the treatment received Z

Leyrat et al. 9



and the outcome Y:

logitð pðM1 ¼ 1jZ, x1, x2, x3, yÞÞ ¼ �0 þ zþ x2 þ �Yy ð10Þ

logitð pðM3 ¼ 1jZ, x1, x2, x3, yÞÞ ¼ �0 þ zþ x2 þ �Yy ð11Þ

where M1 and M3 are the missingness indicators for X1 and X3 (equal to 1 if the value is missing), respectively.

The values considered for each simulation parameter are in Table 1. A full factorial design (2� 2� 2) leads to
eight scenarios, but five scenarios are added as a sensitivity analysis (Table 2).

6.2 Methods

For each studied scenario, 5000 datasets were simulated. We compared nine methods, all of them using IPTW:
treatment effect were estimated on the full dataset (before the imposition of missingness) and using CC, MP, and
the three MI approaches (MIte, MIps and MIpar). For each of the three MI approaches, we considered two
imputation models, including or not the outcome and we generated M¼ 10 imputed datasets. Simulations were
performed in R and the mi package was used for MI,41 based on full conditional specification (FCS).

6.2.1 Estimands

We focused on three estimands: the log(RR), log(OR) and the risk difference (RD). Rubin’s rules were applied to
the logarithm of the RRs (or the ORs), rather than to RRs (or ORs) themselves, because the asymptotic normal
approximation is likely to be better for the log RR (or log OR) than for the RR (or OR). This is important in
particular when constructing confidence intervals, because log(OR) and log(RR) have unrestricted parameter
spaces.42

6.2.2 Measures of performance

For each method, we computed the absolute bias of the mean treatment effect. We also estimated the variance of
the treatment effect, as well as the empirical variance, the coverage rate and the standardized differences of the
covariates after IPTW.

Table 1. Factors used in the simulation study (2� 2� 2 factorial design).

Factor Values Description Comments

� 0.3 or 0.6 Correlation between the covariates After dichotomization, corrðX1; X3Þ ¼

corrðX2,X3Þ ¼ 0:24 or 0.46

RR 1 or 2 Relative risk In model (9), �c ¼ 0 or 1.221 when

� ¼ 0:3, and 0 or 1.289 when

� ¼ 0:6.

�Y 0 or �0.4 Association between the outcome and

the probability of missingness

When �Y ¼ 0, �0 ¼ �1:5 and when

�Y ¼ �0:4, �0 ¼ �1:3 in model

(10) and (11)

For each scenario, 5000 datasets of sample size 2000 were generated. The prevalence of the treatment was 0.3 and each partially observed covariate

had 30% of data missing. Ten imputed datasets were created.

Table 2. Simulation parameters used for the sensitivity analysis.

Factor Values Description

n 500 Sample size

pm 0.1 or 0.6 Missingness rate

M 5 or 20 Number of imputed datasets

For each scenario of the sensitivity analysis, 5000 datasets were generated. The other parameter values

were: RR¼ 2, � ¼ 0:6 and �Y ¼ �0:4.
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The standardized differences for each covariate were used as a measure of method performance. In the absence
of weighting, standardized differences are defined as:

SDiff ¼
100� �X1 � �X0

�� ��ffiffiffiffiffiffiffiffiffi
ŝ2
1
þŝ2

0

2

q ð12Þ

with �X0, �X1, ŝ
2
0 and ŝ21 denoting the average value (or proportion if the covariate is binary) for the covariate and its

estimated variance in the control and treatment group, respectively. After IPTW, standardized differences are
calculated by replacing the unweighted means and variances in (12) by their weighted equivalents (weighted by
inverse PS). For the MIte approach, standardized differences were calculated using the PS estimated from each
imputed dataset, both to assess the balance on the originally simulated complete dataset (before imposing
missingness) and on the given imputed dataset. For MIps and MIpar, standardized differences were calculated
using the pooled PS to assess balance on (a) the original dataset, (b) on the average value of the covariates across
the imputed datasets. For (b) we also calculated the standardized differences separately on the observed part of the
covariates and the average imputed part.

7 Simulation study results

7.1 Main simulation study

Because results were similar for the three measures of interest, we present the results for relative risks (RR) on the
log scale only in the main text, while results for odds ratios and risk differences are in the appendices.

7.1.1 Bias

The absolute bias of the log(RR) of the treatment, for � ¼ 0:6, is presented in Figure 2. Since results for � ¼ 0:3 are
similar, they are presented in the Appendices.

Full data, CC and MP analyses. As expected, the IPTW estimator on the full data (before generating missingness for
X1 and X3) is approximately unbiased and the CC estimator is strongly biased in all scenarios except those where

Figure 2. Absolute value of the bias for the four scenarios in which � ¼ 0:6. CC: complete case; MP: missingness pattern; MIte:

treatment effects combined after multiple imputation; MIps: propensity scores combined after multiple imputation; MIpar: propensity

score parameters combined after multiple imputation. For the three MI approaches ‘þ’ means that the outcome is included in the

imputation model, ‘�’ means that the outcome is not in the imputation model. RR: relative risk.
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the outcome is not associated with missingness and there is no treatment effect. The MP approach is always biased
in the situations considered, with a bias which can be even stronger than that which is observed for the CC
approach. The reason for this is an incorrect PS model specification in each pattern of missingness: in the strata in
which a covariate is not observed, the covariate is omitted from the model.

MI. First, the results show that the imputation model must include the outcome, even if the outcome is not a
predictor of missingness. All three MI estimators are strongly biased in all scenarios when the outcome is not
included in the imputation model. Second, when the outcome is included in the imputation model, the three MI
approaches lead to a decrease in bias relative to the crude analysis. However, only the MIte approach leads to an
unbiased estimate in the eight main scenarios. Combining the PS parameters to estimate the PS of the average
covariates (MIpar) performed better than combining the PS themselves, but both these approaches are slightly
biased.

7.1.2 Standardized differences between groups

The bias observed for the MP, MIps and MIpar methods can be explained by a remaining imbalance on the
covariates between groups. Standardized differences for each covariate are in Table 3. A covariate is usually
considered adequately balanced if its standardized difference is 510%. IPTW on the full data achieved a very
good balance between groups on the three covariates (as expected, standardized difference <5% for each of the
three covariates). For the CC approach, groups were balanced but the bias occurs since excluded individuals are
different from included individuals on confounding factors. The PS obtained from the MP approaches balanced
the observed part of the covariates, but not the unobserved part. This means that within each pattern of
missingness, treated and untreated individuals are balanced for the covariates included in the PS model, but
unbalanced on the missing covariate because this covariate is an unmeasured confounder in the PS model.
Thus, when the missingness rate increases, imbalances (and consequently, bias of the treatment effect estimate)
increase. MIte performs well because the PS within each imputed dataset balances the observed and imputed
components of the covariates in that imputed dataset (see Table 3). Conversely, MIps and MIpar could only be
consistent by balancing the observed and missing covariates, which is not the case, as seen in Table 3.

Table 3. Standardized differences (in %) after IPTW for each method for one scenario: RR¼ 2, � ¼ 0:6,

outcome predictor of missingness and included in the imputation model (n¼ 2000).

Method X1 X2 X3

Crude (without IPTW) 81.3 74.7 51.7

Full 4.6 4.6 2.4

CC (n¼ 1074) 7.6 7.3 3.5

MP

Balance on full data 14.6 4.3 8.5

Balance on the observed part of the covariate 6.1 4.3 2.9

Balance on the missing part of the covariate 48.6 NA 28.3

MIte

Balance on full data 15.0 4.5 9.1

Balance on each imputed dataset 4.5 4.5 2.4

MIps

Balance on full data 15.9 5.5 10.7

Balance on the average imputed dataset 15.8 5.5 10.6

Balance on the observed part of the covariate 7.6 5.5 4.9

Balance on the imputed part of the covariate 58.1 NA 36.9

MIpar

Balance on full data 15.1 4.8 9.6

Balance on the average imputed dataset 14.7 4.8 9.7

Balance on the observed part of the covariate 7.7 4.8 5.4

Balance on the imputed part of the covariate 52.5 NA 34.3

CC: complete case; MP: missingness pattern; MIte: treatment effects combined after multiple imputation; MIps: propensity scores

combined after multiple imputation; MIpar: propensity score parameters combined after multiple imputation; RR: relative risk;

NA: not applicable because X2 is fully observed.
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7.1.3 Coverage rate and standard errors

Figure 3 displays the coverage rate for each method when the outcome is included in the imputation model. Each
boxplot represents the coverage distribution for the eight main scenarios. Because the CC and MP approaches are
strongly biased, their coverage rates are not relevant. The coverage rate for the MIte approach is close to the
nominal value of 95%, confirming that Rubin’s rules perform well in this context provided that the within-
imputation variance estimation takes into account the uncertainty in PS estimation (Table 4).

Table 1 in Appendix 5.1 shows the mean estimates from different variance estimators for each method when the
outcome is included in the imputation model. For MIte, one could apply Rubin’s rules to a variance estimator that
ignores the PS estimation (treating the PS weights as being known) or to a variance estimator that accounts for the
PS estimation. We know that failing to account for the PS estimation results in an overestimation of the variance
in the full-data context.43 Table in Appendix 5.1 shows that for the analysis on full data and for MIte, the
variances accounting for PS estimation are close to the empirical variance, whereas an estimator not taking the
uncertainty in PSs estimation tends to overestimate the variance for these approaches, as expected. For MIps and
MIpar, one could estimate the variance accounting for the variability linked to PS estimation but not the
imputation procedure by using the pooled PS in the IPTW variance estimator or one could incorporate the PS
estimation and imputation by applying the variance estimator we proposed in Appendix 1. For MIps and MIpar,

Figure 3. Coverage rate of the 95% CI for each method compared. Results are pooled for the 8 main scenarios. CC: complete case;

MP: missingness pattern; MIte: treatment effects combined after multiple imputation; MIps: propensity scores combined after multiple

imputation; MIpar: propensity score parameters combined after multiple imputation. RR: relative risk. For the three MI methods, the

outcome is included in the imputation model.

Table 4. Bias of the log(RR), its estimated variance and coverage rate for the three MI approaches according the sample size n for

one scenario (RR¼ 2, � ¼ 0:6, outcome predictor of missingness and included in the imputation model). Results based on 5000

simulations.

Full CC MP MIte MIps MIpar

n¼ 500 n¼ 2000 n¼ 500 n¼ 2000 n¼ 500 n¼ 2000 n¼ 500 n¼ 2000 n¼ 500 n¼ 2000 n¼ 500 n¼ 2000

Bias 0.007 0.002 0.110 0.141 0.153 0.130 0.010 0.005 0.038 0.028 0.024 0.017

Variance 0.022 0.006 0.050 0.014 0.029 0.008 0.026 0.007 0.022 0.006 0.023 0.006

Empirical variance 0.024 0.006 0.059 0.014 0.027 0.007 0.025 0.006 0.024 0.006 0.025 0.006

Coverage rate 0.940 0.947 0.887 0.769 0.855 0.691 0.955 0.957 0.939 0.932 0.943 0.942

MIte: treatment effects combined after multiple imputation; MIps: propensity scores combined after multiple imputation; MIpar: propensity score

parameters combined after multiple imputation.
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there was little difference between the variance estimates accounting for the imputation and those that did not.
Surprisingly, in our simulations, additionally accounting for the imputation procedure resulted in a lower variance
estimator. This can be explained as follows: the within imputation variance of the PS parameters (reflecting the
correlation between the covariates and treatment; the higher this is the larger gain in precision for IPTW) is higher
than the between imputation variance component (noise due to missing data). However, when the missingness rate
increases, the variance that correctly accounts for the imputation procedure is typically higher than the variance
which ignores the imputation, because of a larger heterogeneity between imputed datasets.

7.2 Sensitivity simulation study

Appendix 5.3 presents the results of one scenario with a non-null treatment effect with a smaller sample size
(n¼ 500). Results were similar in terms of bias for n¼ 500 and n¼ 2000. Because the variance estimator for IPTW
has been developed for large samples, we observed slightly underestimated variances for the full data analysis,
MIps and MIpar. This underestimation is more pronounced in the CC analysis because the sample for the analysis
is even smaller (269 on average when n¼ 500).

Figure 4 shows the bias when 10% or 60% of each partially observed covariate is missing. Full results are
presented in Appendix 5.4. For a low missingness rate, the CC and MP approaches are still biased but the three MI
approaches corrected the bias. For a missingness rate of about 60% for each covariate, only the MIte approach
showed good performance in terms of bias reduction, confirming the good statistical properties of this approach
even with this large amount of missing data. In our sensitivity simulation study, increasing the number of imputed
datasets did not strongly impact the results in terms of bias or variance (See Appendix 5.5).

8 Application to the motivating example

We applied CC analysis, the MP approach and the three MI strategies to estimate the effect of statin treatment on
mortality after pneumonia from our motivating example dataset. For simplicity, we analysed the primary
outcome, mortality within 6 months, as a binary outcome, and estimated the corresponding relative risk and its
95% confidence interval. For each approach, IPTW was used to account for the confounding. We focused the
analysis on the 7158 patients without coronary heart disease. The PS was estimated from a logistic regression
modelling statin use as a function of the following covariates: age, sex, body mass index (BMI), alcohol
consumption, smoking status, diabetes, cardiovascular disease, circulatory disease, heart failure, dementia,
cancer, hyperlipidaemia, hypertension and prescription of antipsychotics, hormone replacement therapy,
antidepressants, steroids, nitrates, beta-blockers, diuretics, anticoagulants and use of antihypertensive drugs.
The imbalance between the study groups is illustrated in Figure 5. Complete case (CC) analysis was conducted

Figure 4. Absolute value of the bias according to the missingness rate. CC: complete case; MP: missingness pattern; MIte: treatment

effects combined after multiple imputation; MIps: propensity scores combined after multiple imputation; MIpar: propensity score

parameters combined after multiple imputation; RR: relative risk. For the three MI methods, the outcome is included in the imputation

model.
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on the 5168 individuals with complete records. For the missingness pattern approach (MP), eight patterns were
identified. However, some of these patterns were very rare. For instance, only six individuals had only the smoking
status missing, and only eight had both smoking status and BMI missing. Thus, we considered only four groups:

. complete records (n¼ 5168) for which all the covariates listed above are included

. individuals with only the alcohol consumption missing (n¼ 455)

. individuals with only BMI missing (n¼ 575)

. individuals with the smoking status missing (alone or in addition to BMI and alcohol consumption) and
individuals with both BMI and alcohol consumption missing (n¼ 960)

For MI, 10 imputed datasets were created. The imputation model included statin use, mortality and all the
variables listed above. The standardized differences estimated before weighting and after weighting by PS for CC,
MP, MIte, MIps and MIpar are presented in Table 5. The MP and the three MI approaches lead to a similar
reduction in imbalance between groups on the observed variables as compared to the crude standardized
differences. Nevertheless, because of the poor overlap of the patients characteristics between groups (Figure 5),
some covariates are still unbalanced even after MI. However, for binary covariates, large standardized differences
can occur even for slight imbalance when the prevalence is low. Estimated RRs are presented in Table 6. First, all
approaches based on IPTW lead to a treatment effect estimate smaller than the unweighted treatment effect. The
three MI approaches lead to similar RR and these were smaller than the RR obtained from CC and MP analyses.
The small differences between the three MI approaches in this example can be explained by a low rate of missing
data and the fact that the three partially observed covariates were not strong confounders.

9 Discussion

This article aimed to address three main questions about MI in the context of IPTW: (a) does the outcome have to
be included in the imputation model? (b) should we apply Rubin’s rules on the IPTW treatment effect estimates or
on the PS estimates themselves? (c) how should we estimate the variance of the IPTW estimator after MI? First,
results showed that the outcome must be included in the imputation model, even if the outcome is not a predictor
of missingness. This is well known in the context of multivariable regression, but can be seen as counter-intuitive in
the PS paradigm, because the PS model for the full data does not use the outcome data. The simulation results
showed a bias in the three MI estimators when the outcome was omitted from the imputation model, even when
the outcome was not a predictor of missingness. In practice, to obtain an unbiased estimate of the intervention

Figure 5. Distribution of the propensity score estimated on complete cases for statin users and non users (n¼ 5168).
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effect when using MI, the outcome should be included in the imputation model. This may not be always possible if
the outcome data has not been yet recorded and the PS is used at the design stage of the study (to find good
matched controls for example), rather than at the analysis stage. In such situations, it is worth considering whether
the assumptions required for CC analysis or the MP approach may be valid. If they are, one of these methods
could be used instead of using MI omitting the outcome. Furthermore, the inclusion of the outcome in the
imputation model may go against the principle of objective design, as described by Rubin.44 However, when
using MI, this is necessary to obtain a consistent estimator of the treatment effect. Second, we showed that

Table 5. Description and comparison of statin users and non users (n¼ 7158).

Variable

Missing

(%)

Statin

users Missing

(%)

Non statin

users

Standardized

difference (%)

n¼ 599 n¼ 6559 Crude CC* MP MIte MIps MIpar

Characteristics

Age (mean (sd)) 66.9 (10.7) 69.8 (10.9) 27.0 3.8 2.0 1.4 1.4 1.4

Male 322 (53.8) 3173 (48.4) 10.8 2.0 6.2 2.2 2.1 2.2

BMI (mean (sd)) 43 (7.2) 27.6 (5.9) 1444 (22.0) 25.8 (5.9) 31.9 7.8 9.0 9.0 11.4 11.4

Drinkers 67 (11.2) 98 (18.4) 1334 (20.3) 814 (15.6) 7.6 2.1 0.3 2.3 2.9 3.0

Smokers 7 (1.2) 256 (43.2) 505 (7.7) 2728 (45.1) 3.7 1.7 1.5 2.8 3.0 3.0

Medical history

Diabetes 243 (40.6) 715 (10.9) 72.1 5.0 7.7 7.1 7.2 7.1

Cardiovascular disease 141 (23.5) 651 (9.9) 37.1 11.4 11.4 13.6 13.6 13.6

Circulatory disease 426 (71.1) 3471 (52.9) 38.2 13.6 9.8 16.6 16.7 16.6

Heart failure 51 (8.5) 426 (6.5) 7.7 11.6 6.2 12.8 12.8 12.8

Cancer 37 (6.2) 607 (9.2) 11.5 2.1 0.4 0.4 0.0 0.1

Dementia 6 (1.0) 190 (2.9) 13.7 7.3 13.0 11.6 11.6 11.6

Hypertension 336 (56.1) 1165 (17.8) 52.1 13.3 21.5 18.7 18.7 18.7

Hyperlipidaemia 205 (34.2) 182 (2.8) 88.5 1.1 4.1 1.9 2.0 2.0

Treatments

Antidepressant 108 (18.0) 995 (15.2) 7.7 1.7 5.9 0.3 0.1 0.1

Antipsychotic 11 (1.8) 340 (5.2) 18.3 0.5 11.3 5.0 5.0 5.0

Hormone replacement therapy 37 (6.2) 277 (4.2) 8.8 0.9 0.9 1.0 1.0 1.0

Steroid 93 (15.5) 1090 (16.6) 3.0 1.0 2.2 0.4 0.3 0.3

Antihypertensive 272 (45.4) 1165 (17.8) 62.3 12.6 27.5 18.0 17.8 17.9

Diuretics 319 (53.3) 2416 (36.8) 33.4 14.3 19.8 15.8 15.9 15.9

Betablocker 193 (32.2) 1061 (16.2) 38.1 11.4 7.2 13.8 13.8 13.8

Nitrate 74 (12.4) 334 (5.1) 25.9 17.3 14.8 17.5 17.6 17.6

For CC analysis, n¼ 5168 (503 statin users and 4665 non users).

Table 6. Estimate of the relative risk of mortality and its 95% confidence

interval for statin vs non statin users (motivating example) (n¼ 7158).

Method bRR 95% CI(bRR)

Crude 0.587 [0.497;0.684]

CC 0.702 [0.534;0.924]

MP 0.708 [0.555;0.904]

MIte 0.654 [0.513;0.835]

MIps 0.653 [0.512;0.834]

MIpar 0.654 [0.513;0.834]

RR: relative risk; CC: complete case; MP: missingness pattern; MIte: treatment effects

combined after multiple imputation; MIps: propensity scores combined after multiple

imputation; MIpar: propensity score parameters combined after multiple imputation; RR:

relative risk.
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combining the treatment effects after MI (MIte approach) is the preferred MI strategy in terms of bias reduction
under a MAR mechanism. This estimator is the only estimator of the three MI estimators to be consistent and to
provide good balancing properties. Even though MIps and MIpar are not consistent estimators of the treatment
effect, they can reduce the bias of the CC analysis, if the rate of missing data is not too high. Combining the PS or
the PS parameters has no clear advantage for IPTW, but may be useful in the context of PS matching: because it
involves only one estimation of the treatment effect, it could provide a computational advantage for large datasets.
In addition, MIte for PS matching implies that the M treatment effect estimates are estimated from different
matched sets, potentially of different sample sizes, leading to a more complex variance estimation because of these
different sample sizes.

Third, as long as the uncertainty in the PS estimation is taken into account in the variance estimation,34 Rubin’s
rules perform well for MIte, even for moderate sample size (n¼ 500). For MIpar, the proposed variance
approximation (Appendix 1) showed good performance in our simulation study.

The three MI approaches differ in terms of their balancing properties. We showed that whereas the PS estimated
in each dataset in the MIte approach can balance covariates between groups in each imputed dataset, this is no
longer true for MIps and MIpar. However, the best method to assess covariate balance after MI remains
unknown. With MIte, the aim being to estimate a treatment effect from each dataset, we require balance
between groups within each imputed dataset. In contrast, for MIps and MIpar, further investigation is needed
to know if we should assess the balancing properties of the pooled PS on the average covariate values across the
imputed dataset or on each dataset.

Our recommendations for the optimal way to implement MI for PS analysis are in contradiction to those given
by Mitra and Reiter, who suggest that pooling PSs across imputed datasets can sometimes out-perform our
recommended method of pooling treatment effects.9 In their simulation studies MIps (or MIpar) led to a bigger
reduction in bias than MIte in some scenarios. This was due to a near violation of the positivity assumption in
their simulated datasets45 combined with the omission of the outcome from the imputation model. Penning de
Vries and Groenwold46 used Mitra and Reiter’s data-generating mechanism to perform a simulation study but
they increased the effective sample size to ensure positivity. Under this condition and when the outcome was
included in the imputation model, as we recommend, they showed MIte was superior, in accordance with our
findings. While we understand the desire to adhere to the principle of objective design by omitting the outcome
from the imputation model, our results show that this leads to bias in MIte and an increase in bias for MIps (and
MIpar). Thus, when it is either undesirable or impossible to include the outcome in the imputation model, we
would suggest considering the validity of alternative approaches, such as CC analysis or the MP approach, rather
than adopting the systematically biased approach of imputation omitting the outcome from the imputation model.

The MP approach, which is widely used in practice to handle missing data for PS analysis, showed poor
performance under a MAR mechanism. In our simulation study, the MP approach does not perform well,
because missing data were generated under a MAR mechanism, but the MP approach relies on different
assumptions about the missing data mechanism.37 When the assumptions for the MP approach are valid, it
avoids the need for an imputation model altogether, and hence avoids the need to use the outcome when
calculating the PS. Because the assumptions for MI and MP are different, we believe that MP could be a
promising alternative when the assumptions for MI are not valid. Further investigations are needed to understand
the usefulness of the MP approach in practice. Moreover, its application to our real-life example dataset was
challenging, because the sample size within each missingness pattern was not large enough to estimate the PS.

This work has some limitations. We generated only three covariates in our simulation, whereas PS are often
calculated from a large number of covariates. Moreover, we studied only the common situation where the PS
model only includes main effects, and we assumed as well the model including main effects only for the outcome
given the covariates. When there are interactions or quadratic terms in these two models, the specification of the
imputation model can be less straightforward, requiring further efforts to ensure the imputation model is
compatible with the substantive (analysis) model.46 Furthermore, we focussed on the IPTW estimator only,
because of its increasing use and its application in the presence of time-varying covariates and treatment.
Indeed, IPTW is widely used in marginal structural models (MSMs) to handle time-dependent confounding.
Although this article is about the simpler situation of a single time-point, it is important to clarify how to use
IPTW after MI correctly in this context, because otherwise it is unlikely to be done correctly in the more complex
situation of time-dependent confounding. However, some issues may arise with IPTW when some estimated
weights are too extreme; PS matching can be a better solution in this context.47 Nevertheless, because the PS
estimated in either MIps or MIpar is not a balancing score, PS matching (like IPTW – and like also PS
stratification and PS covariate adjustment) would not be expected to perform well when used in combination
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with MIPs or MIPar. Conversely, because in MIte, the estimated PS can balance both the observed and imputed
component of the covariates in the imputed dataset, we would expect all the PS-based methods (PS matching,
stratification, covariate adjustment and IPTW) to perform well to estimate the treatment effect within each
imputed dataset as long as the underlying assumptions for these methods are fulfilled.

In conclusion, for IPTW, MI followed by pooling of treatment effect estimates is the preferred approach
amongst those studied, when data are MAR, and the outcome must be included in the imputation model.
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