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Abstract 

Unmanned surface vehicles (USVs) have obtained increasing interests in recent decades. 

Because of the features of improved mission efficiency and decreased resource costs, 

applications of USVs can been seen in both civilian and naval areas. In order to efficiently and 

effectively achieve missions without any human intervention, a robust and intelligent 

navigation, guidance and control (NGC) system is vital for USV. This paper has therefore 

presented a novel NGC system designed for a USV named Springer. The system is developed 

by integrating multiple functional modules, which include a reliable navigation module that 

provides reliable position and heading information, a robust autopilot module enabling 

Springer tracking well the waypoints and an intelligent path planning module that is capable 

of generating feasible and practical waypoints. The path planning algorithm has been 

developed based upon the angle guidance fast marching square method, which is able to 

calculate the optimal path according to vehicle’s motion constraints. The designed NGC system 

has been validated in both real field trials and computer based simulations proving that 

Springer USV is able to autonomously navigate in different maritime environments with the 

guidance of the NGC system. 

 

Key words: unmanned surface vehicle (USV); path planning; autonomous navigation; fast 
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1. Introduction 

The research into unmanned surface vehicles (USVs) has received increasing attention in 

recent years due to the maturity of the technology. Potential deployments of USVs can be seen 
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through both civilian and military applications with the benefits of improved mission efficiency 

and decreased resource costs. Considering the family of existing platforms, USA and European 

countries have become the dominant places for designing, developing and deploying USVs. 

For example, Massachusetts Institute of Technology (MIT) has built a group of platforms for 

scientific research. These include a fishing trawler-like vehicle named ARTEMIS for 

bathymetry data collection, a catamaran structured USV named AutoCAT for hydrographic 

survey and multiple small sized USVs named Kayak SCOUT being used as the reference points 

on water surface (Manley, 1997; Curcio et al., 2005). In addition, in Europe, Charlie USV was 

developed by the Consiglio Nazionale delle Ricerche-Istituto di Studi sui Sistemi Intelligenti 

per l’Automazione (CNR-ISSIA) Genova for sea surface operation (Caccia et al., 2005). The 

Instituto Superior de Engenharia do Porto designed the ROAZ USV for search and rescue 

purposes (Martins et al., 2007). 

In terms of the USV development in the UK, Springer USV has been designed and 

developed by the Marine and Industrial Dynamic Analysis Research Group in Plymouth 

University. The aim of building Springer is to create a low-cost but high-efficiency platform 

to carry out pollutant tracking and environmental monitoring operations. In addition, as one of 

the few full-scale USV platforms in the UK Springer has also been frequently implemented as 

the testing platform for scientific research to validate newly designed sensors, algorithms and 

controllers to promote the USV research. (Naeem et al. 2008; Naeem et al. 2012b; Sutton et al. 

2011.) 

In order to undertake complex and contemplated missions, a robust and reliable 

Navigation, Guidance and Control (NGC) system is required and has been subsequently 

developed for Springer. With the assistance of the NGC system, Springer USV is able to 

autonomously perform tasks by accurately detecting surrounding environments, intelligently 

making decisions and robustly following the designed trajectories. Since 2008, a number of 
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researches have been carried out to develop such a NGC system for Springer with main work 

been summarised in Table 1. It can be found that most of these studies have been focused on 

the development of guidance and control modules in the NGC system. For example, interval 

Kalman filtering as well as the fuzzy-logic based multi-sensor data fusion have been designed 

to provide the accurate heading angle information; whereas, in terms of the control module, 

advanced control technologies such as the linear quadratic Gaussian (LQG) and the model 

predictive control (MPC) are used to achieve the robust and adaptive tracking performance. 

However, in the current version of the NGC system, path planning capability has not been fully 

achieved and integrated. Although in Naeem et al. (2012), the A* algorithm has been applied 

into Springer, the trajectory was calculated only based upon the distance cost. The absence of 

more advanced path planning algorithms considering multiple optimisation constraints makes 

the vehicle only capable of undertaking simple tasks. 

To improve the autonomy level, an updated NGC system has been proposed in Liu et 

al (2015) by integrating the fast marching method (FMM) based path planning algorithm. The 

FMM has the feature of being capable of fast generating optimal and smooth trajectories in 

constraint areas, and has been mainly implemented for robots path planning (Garrido et al. 

2012, Gomez et al. 2013). However, USV, as a non-holonomic system, is underactuated during 

most of its operating time making its manoeuvrability and motion flexibility much weaker than 

a robot’s. Therefore, there is a dynamic constraint with the USV in that a path calculated by 

the FMM may not able to be tracked by the USV when a large heading angle change over a 

short distance is required.  

Hence, in this paper, to accommodate the motion constraints of the USV, the angle 

guidance fast marching square method proposed (AFMS) in Liu and Bucknall (2016) has been 

adopted to replace the FMM in the NGC system. In addition, because the autopilot mounted 

on Springer is only capable of following waypoints instead of continuous path, a novel 
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waypoints generator based on the line-of-sight (LOS) theory has been used such that optimal 

number of waypoints can be extracted from the generated trajectory. Using the newly designed 

NGC system, Springer has been proven to have the increased autonomy that can autonomously 

and intelligently design the most suitable path according to specific environment conditions 

and vehicle’s motion constraints. 

The rest of the paper is organised as follows. Section 2 gives a brief introduction to 

Springer USV. Section 3 and 4 describe the fundamentals of the FMM based path planning 

and the details of the AFMS algorithm. Section 5 introduces the line-of-sight (LOS) based 

waypoints generator, and Section 6 specifically illustrates the integration of the proposed 

algorithms with the NGC system of Springer. Real field trails and simulations have been given 

in Section 7 to validate the performances of the algorithms.  Section 8 concludes the paper and 

discusses the future work. 

2. The overview of Springer USV 

Springer USV (shown in Figure 1) is a catamaran structured vessel with the dimensions of 4.2 

m in length and 2.3 m in width and a displacement of 0.6 tonnes (specific parameters are shown 

in Table 2). Within the vehicle, the two hull bodies are the most important component. First, 

the power sources - eight 12 V 135 Ah batteries - are placed within the hulls with four in each 

side to provide power for the electrical motors to drive two propellers to propel the vehicle. 

Second, two Peli-cases with guaranteed waterproof capability are placed on two hulls 

to contain the Navigation, Guidance and Control (NGC) system. The NGC system consists of 

three digital compass units, one gyroscope and two computers running NGC algorithms. This 

is the core of the vehicle's navigation system and will be discussed in detail in the next section. 

Thirdly, in order to establish a robust communication channel, a mast is placed in 

between the two hulls to carry a wireless router as well as a GPS receiver. The mast is able to 
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exchange data information between Springer and external devices as well as receive navigation 

information. 

2.1. Vehicle dynamics 

As a result of the improved stability of the catamaran structure, the motion of Springer can be 

reduced from the conventional six degrees of freedom to three degrees of freedom by ignoring 

the roll, pitch and heave motions (Motwani, 2015). Springer is steered by a differential steering 

mechanism by having different Revolutions Per Minute (RPM) values of two propellers. 

Therefore, the surge speed and the heading of the vehicle can be controlled by: 

 𝑛𝑐 =
𝑛1+𝑛2

2
 (1) 

 𝑛𝑑 =
𝑛1−𝑛2

2
 (2) 

where n1 and n2 are two propeller thrusts, nc is the common mode thrust defining USV's surge 

speed and nd is the differential mode thrust having the maximum value of 900 rpms. 

In order to maintain the velocity of the USV, nc remains constant for most of time except 

the time period when Springer is approaching closely to waypoints. The dynamic model of 

Springer was calculated from system identification (SI) process using the data obtained from 

the real trails conducted at Roadford Lake, Devon, UK (Naeem, et al, 2012(b)). The system 

dynamics is a linear second-order single-input single-output system and can be expressed in 

the state space form as (Motwani et al., (2013)): 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) (3a) 

 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) (3b) 

where 
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 𝐴 = [
1.002 0
0 0.9945

] (4a) 

 𝐵 = [ 6.354 × 10
−6

−4.699 × 10−6
] (4b) 

 𝐶 = [34.13 15.11] (4c) 

 𝐷 = [0] (4d) 

where 𝑢(𝑘) represents the differential thrust input in rpm and 𝑦(𝑘) is the heading angle in 

radius. It should be noted that the sway motion is ignored for simplicity.  

2.2. The navigation guidance and control (NGC) system of Springer 

The NGC system of Springer has been systematically represented in Figure 2. It consists of 

three different systems namely the Guidance system, the Navigation system and the Control 

system. Springer perceives its surrounding environment using the Navigation system, which 

obtains navigation information using a range of different sensors such as the GPS, the Inertial 

Measurement Unit (IMU) and the compasses. The information is then processed using a data 

fusion algorithm to improve its accuracy. Based upon the sensor measurements, the Guidance 

system generates the desired reference heading angle for the Control system, which then 

calculates the actual control commands for Springer. 

Currently, the Navigation system mounted on Springer is developed using three 

compasses along with a gyroscope to calculate instantaneous heading and a GPS combined 

with an IMU to localise the position as the vehicle is navigating. To improve the accuracy of 

the heading information as well as overcome possible sensors malfunctions, a weighted interval 

Kalman filter has been implemented (Motwani et al., 2013, 2014). 

In terms of the Control system, the Linear Quadratic Gaussian (LQG) (Naeem et al., 

2008), the Local Control Networks (LCNs) (Sharma et al., 2012) and the Model Predictive 
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Control (MPC) (Annamalai et al., 2015) have been designed in sequence and applied providing 

promising tracking performances in both simulation and experimental results. However, it 

should be noted that by analysing different controllers’ performances, the PID controller 

provides the most robust tracking results (Motwani, 2015) due to its advantages in correcting 

present control errors, compensating the accumulated errors and predicting the rate of change 

of error. 

It is also worth noting that in the Navigation system of Springer, no path planning 

algorithm has been developed and integrated. Therefore, Springer is only able to carry out 

simple missions, i.e. tracking the manually predefined waypoints or trajectories, making the 

USV not fully autonomous. To improve the autonomy level of Springer and make it capable 

of automatically generating trajectory according to mission requirements, path planning 

algorithms have therefore been integrated into the NGC system of Springer. In the following 

sections, details will be given and discussed. 

3. The fast marching method based path planning algorithm 

3.1.  The fast marching method 

The fast marching method (FMM) was first proposed by J. Sethian in 1996 to iteratively solve 

the Eikonal equation to simulate the propagation of an interface (Sethian, 1996). The Eikonal 

equation has the form as: 

 |∇𝑇(𝒙)|𝑉(𝒙) = 1 (5) 

where 𝑇(𝒙) is the interface arrival time at point 𝒙 and 𝑉(𝒙) is the interface propagating speed. 

Equation 5 belongs to the partial deferential equation (PDE) and its numerical solution can be 

obtained via the upwind deferential method when using the FMM. The solving process of the 

FMM is similar to Dijkstra's method but in a continuous way. Suppose (x,y) is the point that 
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T(x,y) needs to be solved. The neighbour of (x,y) is a point set containing four elements (𝑥 +

∆𝑥, 𝑦), (𝑥 − ∆𝑥, 𝑦), (𝑥, 𝑦 + ∆𝑦),( 𝑥, 𝑦 − ∆𝑦). T(x,y) can be obtained as: 

 𝑇1 = min (𝑇(𝑥−∆𝑥,𝑦), 𝑇(𝑥+∆𝑥,𝑦)) (6) 

 𝑇2 = min (𝑇(𝑥,𝑦−∆𝑦), 𝑇(𝑥,𝑦+∆𝑦)) (7) 

 |∇𝑇(𝑥,𝑦)| = √(
𝑇(𝑥,𝑦)−𝑇1

∆𝑥
)
2

+ (
𝑇(𝑥,𝑦)−𝑇2

∆𝑦
)
2

 (8) 

 (
𝑇(𝑥,𝑦)−𝑇1

∆𝑥
)
2

+ (
𝑇(𝑥,𝑦)−𝑇2

∆𝑦
)
2

=
1

(𝑉(𝑥,𝑦))
2 (9) 

where ∆𝑥 and ∆𝑦 are the grid spacing in x and y directions. 

The solution of Equation 8 is given by: 

 𝑇(𝑥,𝑦) =

{
 
 

 
 𝑇1 +

1

𝑉(𝑥,𝑦)
,             𝑖𝑓 𝑇2 ≥ 𝑇 ≥ 𝑇1

𝑇2 +
1

𝑉(𝑥,𝑦)
,             𝑖𝑓 𝑇1 ≥ 𝑇 ≥ 𝑇2

𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8)  𝑖𝑓 𝑇 > max (𝑇1, 𝑇2)

 (10) 

To further illustrate the FMM algorithm, a simple case representing how to update a 

6*6 grid map is shown in Figure 3. Figure 3a shows the initial configuration of the algorithm 

with the middle point being the algorithm start point. The interface propagating speed is set to 

be uniform as 1 at each grip point. When the FMM is being executed, grid points are 

categorised into three different groups as: 

 Far (marked as light blue): contains grid points with undecided arrival time value 

(T). In the first time step when running the FMM, all grid points except the start 

points belong to Far; 

 Known (marked as red): contains grid points with decided arrival time values (T). 

Such values will not be changed when the algorithm is executed; 
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 Trial (marked as green): contains grid points with calculated arrival time values (T); 

however, values may be changed then the algorithm is running. 

In Figure 3b, the first step time of running the FMM has been represented. The start 

point is currently the only Known point with T value as 0. Four neighbour points of the start 

point consist of the Trial set and therefore are marked as green with calculated arrival time T 

as 1. 

For next time step, the point with minimum arrival time cost will be first selected from 

the Trial set to become the new Known point; however, four neighbours have the same cost, 

and the point below the start point is considered as the point with the minimum cost thereby 

being re-marked as Known with its neighbours identified as Trial as well (shown in Figure 3c). 

Figure 1d and Figure 3e show how the grip map is updated by repeating such a process in time 

step 3 and 4, and the final updating result is represented in Figure 3f. In Figure 3f, it can be 

observed that the start point has the minimum arrival time 0; whereas other points’ arrival times 

are increasing proportionally to the distances to the start point, which forms a potential field 

where the potential field value is the interface arrival time with the minimum potential located 

at the start point. 

3.2. The FMM based path planning algorithm and fast marching square method 

The FMM based path planning algorithm is described in Algorithm 1. Suppose that the 

planning space (M) shown in Figure 4a, where the algorithm is performed on, has a 

representation of a binary map and is perfectly rasterised. The algorithm first reads in the M 

and calculates its speed matrix (V). The speed matrix (V) is the same size as the M and defines 

the interface propagation speed at each point in the M. Based on the V, the FMM is executed 

to calculate an arrival time matrix T from the start point. The generated T (shown in Figure 4b) 

can be viewed as an arrival time potential field where the potential value represents local arrival 
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time of the interface, which subsequently indicates local distance to the start point if a constant 

speed matrix is used. Then, based upon the arrival time matrix T, the optimal path is finally 

searched by applying the gradient descent method (shown as the red line in Figure 4c). 

Algorithm 1 FMM Path_Planning Algorithm 

Require: planning space (M), start point (pstart), end point (pend) 

1: Calculate speed matrix V from M 

2: Arrival time matrix (T) ← FMM (V, pstart, pend) 

3: path ← gradient Decent (T, pstart, pend) 

4: return path 

 

One of the problems associated with path planning by directly using the FMM method 

is the generated path is too close to obstacles. Such a drawback is especially impractical for 

USVs, because near distance areas around obstacles (mainly islands and coastlines) are usually 

shallow water, which is not suitable for marine vehicles to navigate. Hence, it is important to 

keep the planned path a certain distance away from obstacles. 

To tackle this problem, Gomez et al. 2013 has proposed a new algorithm named the fast 

marching square (FMS) method. The basic concept behind the FMS is to apply the 

conventional FMM algorithm twice but with different purposes. The FMS is represented in 

Algorithm 2. It first generates a safety potential map (Ms) by applying the FMM to propagate 

interfaces from all the points in obstacle area. Based on the Ms, the FMM is executed again 

from the start point to generate the final path. By using the same previous planning space, the 

path generated by the FMS is shown as the green trajectory in Figure 4c with increased safety. 

 

 

 

 

Algorithm 2 Fast_Marching_Square Algorithm 

Require: planning space (M), start point (pstart), end point (pend) 

1: for each point a in obstacle do 

2:       obstaclePoints ← a 
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3: end for 

4: Ms ← FMM (obstaclePoints) 

5: T ← FMM (Ms, pstart, pend ) 

6: path ← gradientDecent (T, pstart, pend ) 

7: return path 

 

4. The angle-guidance fast marching square method 

To address the motion constraints problem of the USV when searching for a path, the FMS 

algorithm has been improved to a new method named the angle-guidance fast marching square 

(AFMS) algorithm with the specific application for USV path planning (Liu and Bucknall. 

2016). Before introducing the AFMS algorithm, the basic motion equations of USV’s is 

explained here. Consider 〈𝑒〉  is the inertial coordinate frame and 〈𝑏〉  is the body fixed 

coordinate frame. Let the state of the USV relative to the 〈𝑒〉 is denoted as 𝜂 = [𝑥  𝑦  𝛼]𝑇 , 

where x and y represent the position coordinates of the USV in the planning space and 𝛼 is the 

yaw angle. The surge and yaw speed of the USV is expressed with respect to 〈𝑏〉 and has the 

form of 𝑠 = [𝑢  𝑣  𝑟]𝑇, where u and v are surge and sway speed and r is the yaw rate. The 

kinematic motion of the USV can therefore be written as: 

 𝜂̇ = 𝐽s (11) 

where 

 𝐽 = 𝐽(𝛼) = [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos𝛼 0

0 0 1
] (12) 

Normally, the USV has constant speed during operation but limited turning capability. 

Hence, the yaw rate is subject to the constraints of yaw boundary (𝑟𝑚𝑎𝑥) as: 

 𝑟 < 𝑟𝑚𝑎𝑥 (13) 
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The pseudocode of the AFMS is shown in Algorithm 3. It uses the FMS as the base 

algorithm; however, before searching for a path, the AFMS calls guidanceRange function to 

create a guidance range (GR) upon the planning space (M) with the aim of assisting the 

algorithm to search the path according to the USV’s dynamics. 

 

Algorithm 3 Angle_guidance FMS Algorithm 

Require: planning space (M), start point (pstart), end point (pend), heading angle (α), 

turning angle (θ), range radius (r) 

1: range ← guidanceRange (M, r, α,  pstart , θ) 

2: for each point p in Obstacle sector do 

3:       M (p) = 0 

4: end for 

5: Ms ← FMS (M) 

6: path ← pathgradientDecent (Ms, pstart, pend ) 

7: return path 

 

The shape of the GR is constructed graphically as shown in Figure 5. It consists of two 

different sectors, i.e. the Turning Range sector in white, and the Obstacle Region sector in the 

shaded sector. The dimensions of the Turning Range are controlled by three parameters, i.e. 

range distance (d), heading angle (𝛼) and turning angle (𝜃). The turning angle (𝜃) parameter is 

calculated according to vehicle yaw constraint as: 

 𝜃 = 𝑟𝑚𝑎𝑥 ∗ ∆𝑇 (14) 

where ∆𝑇 is the time step. The calculated value of  𝜃 represents the maximum turning angle 

that can be made by the USV during ∆𝑇 , i.e. 𝜃  =  30°  represents USV can only make a 

starboard or port side turn up to 30 degrees for one operation cycle. It should be noted that this 

parameter should be adjusted according to specific USV dynamics in real operation. The range 

distance (d) is the radius of the cone shape which is able to control the influence range affecting 

the path and is related to the surge speed of the USV as: 



13 
 

 𝑑 = {
𝑑𝑚𝑖𝑛      𝑖𝑓 𝑢 < 𝑢𝑝𝑒𝑟𝑚𝑖𝑡,

𝑢 ∗ 𝑟𝑎𝑛𝑔𝑒𝑆𝑐𝑎𝑙𝑎𝑟  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (15) 

where 𝑑𝑚𝑖𝑛 is the predefined minimum distance (3-4 times the vessel’s length is recommended 

according IMO (International Maritime Organisation) (Maritime Security Committee, 2002)) 

used in the case when the USV is at low speed. Enough range space will be created such that 

the USV can make the required turn. Also it can be observed from Equation 15 that the GR 

dimension increases proportionally with the USV speed. This facilitates the generated path 

being located more in the GR to accommodate a USV's dynamics when the USV is travelling 

at higher speed. The range distance (d) is also controlled by the parameter rangeScalar. This 

is primarily used to regulate GR range size to prevent the algorithm from generating an 

oversized obstacle area such that the target point will be unnecessarily blocked, which is 

undesirable especially in narrow passages. It is noted that both 𝑢𝑝𝑒𝑟𝑚𝑖𝑡 and rangeScalar should 

be adjust according to specific vessel’s dynamics as well as manoeuvrability. Finally, the 

heading angle (𝛼) represents the USV's current heading angle and determines the direction of 

the GR. 

 The weighting values inside the Turning Range sector remains the same as they are in 

the Planning space (M). However, since it is desired that the path should be located within the 

Turning Range sector making the Obstacle Range sector act like an obstacle, weighting values 

of the Obstacle Range are assigned as 0. By adding the GR to the original planning space, a 

new planning space (M) can be generated with the consideration of USV’s dynamics, upon 

which the FMS algorithm is employed to search for the path. 

In Figure 6, paths generated by the AFMS and the FMS are compared with the AFMS’s 

trajectory represented in magenta and the FMS’s in green. Differing from the testing 

environment employed in Figure 4, a more complex area containing multiple randomly located 

obstacles are used in this new test. The mission start and end points are marked with red and 
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blue dots respectively. The USV has an initial heading angle of 120° with the turning angle of 

30° and the rang distance of 15 m. To better explain the results, the zero degree has been 

defined in east direction in this case. From Figure 6(a), it can be observed that without 

considering the turning capability of the USV, FMS searches for the path based on the 

minimum distance criterion and avoids the obstacles from the bottom part of the area (shown 

in green line). However, a large heading change exists at the start point making the USV 

incapable of tracking such a trajectory. On the contrary, path provided by the AFMS stays 

alongside the direction of the USV’s heading and has a turning circle formed at the initial 

section of the trajectory to assist with the vehicle adjusting its heading. The turning circle has 

been formed according to the guidance of the GR as displayed in Figure 6(b). In addition, 

because of the influence of the GR, the AFMS’s path avoids the obstacles from upper section 

of the area. It should be noted that such a trajectory is calculated based upon both the minimum 

distance as well as the vehicle’s dynamic constraints requirements making it become a more 

practical solution.  

5. The line-of-sight (LOS) based waypoints generator 

Trajectories provided by the FMS algorithm or the AFMS algorithm have good characteristics 

of continuity and smoothness. If the autopilot system of a USV is capable of tracking a 

continuous path, there is no need to amend it. However, because Springer USV employs an 

autopilot system which does not track a continuous path but a series of waypoints using the 

line-of-sight (LOS) theory, it is required to extract informative waypoints from the path such 

that they can be used as reference points for the USV. 
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5.1. The LOS based guidance strategy 

Because of its simplicity and ease of implementation, the LOS guidance strategy has been 

implemented on Springer (Naeem et al., 2003). The strategy iteratively uses the current 

position of the USV and the next waypoint to calculate the reference angle as: 

 𝜃𝑟𝑒𝑓 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦2−𝑦1

𝑥2−𝑥1
 (16) 

where (x1, y1), (x2, y2) are the coordinates of USV's current position and next waypoint, 

respectively. The reference angle will be compared with the actual heading of Springer to 

generate heading control commands to adjust the movement of the vehicle. 

In order to decide whether the waypoint has been reached or not, a circle of acceptance 

(COA) is pre-defined around each waypoint with the radius as rCOA. In each time instance, the 

distance, denoted as r, between the current position of the USV and next waypoint is calculated 

and compared with rCOA. Only when r is less than the rCOA, is it recognised that the USV has 

arrived at the corresponding waypoint and is able to move on to the next one. 

5.2. The waypoints generator based on LOS 

There is a trade-off between the number of waypoints for the USV and the tracking 

performance of the vehicle. Intensive waypoints along the path will create a large number of 

control points, which could generate a series of unwanted control outputs, thereby affecting the 

USV's tracking performance. However, if there are not enough waypoints placed on the path, 

especially on the turning arcs, a large heading angle change will occur during the transition 

from straight line to the circle arc. A jump in the desired yaw rate will thus be experienced, 

which is difficult for the autopilot to cope with. 

Hence, a novel waypoints-generator algorithm is proposed to obtain useful waypoints 

from the calculated trajectory. It consists of two main procedures: 1) generating a series of 

consecutive waypoints retaining the characteristics of the trajectory and 2) using a ‘waypoints-
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trimmer’ to reduce the number of waypoints on a straight path while maintaining waypoints 

located on arcs. For the first step, total of number of desired waypoints can be determined by: 

 𝑛 =
𝐿𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦

𝑑𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 (17) 

where 𝐿𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦  represents the total length of the calculated trajectory and 𝑑𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  is the 

distance between every two adjacent waypoints calculated as: 

 𝑑𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑢 ∗ ∆𝑡 (18) 

where u is the speed of the USV and ∆𝑡 is the sampling time step. Note that 𝑑𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  should 

be selected according to the specific dynamics of the USV, i.e. for a USV with high 

manoeuvrability, 𝑑𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  can be assigned with a relative small value as the USV is able to 

adjust its motion efficiently. In fact, a larger number of waypoints 𝑛 is preferred as the larger 

the number is, the better the trajectory characteristics can be retained especially for non-straight 

sections. 

After the determination of the total number of waypoints, a ‘waypoint-trimmer’ is 

employed to refine these waypoints by following the LOS theory. The details of the ‘waypoint-

trimmer’ are presented in Algorithm 4. From the start point, every three waypoints (point A, 

point B, point C) are selected in sequence to calculate the turning angle ∆𝜑 by using the Law 

of Consines as: 

 ∆𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑎2+𝑏2−𝑐2

2𝑎𝑏
 (19) 

where a, b and c are the sides of length of the triangle formed by point A, B and C. 

If point C is not visible to point A, which is expressed as: 

 ∆𝜑 < 𝜃𝑚𝑖𝑛 (20) 
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where 𝜃𝑚𝑖𝑛  is a predefined parameter having a relatively small value, a ‘straight’ line can be 

determined to exist between A and C then point B can be removed. If point C is visible to point 

A, an arc possibly exists between A and C, therefore, point B needs to be kept to maintain the 

shape of the trajectory. 

Figure 7 represents the process of waypoints generation. In Figure 7a, the result after 

running the first step of the waypoints-generator is displayed. It can be observed that a total 

number of 31 waypoints are generated and equally placed along the trajectory. The ‘waypoint-

trimmer’ is then used to generate an optimal number of waypoints with the results shown in 

Figure 7b. It is clear that the number of waypoints has been reduced to 12 with most of them 

located at arc sections to preserve the continuity of the path. The advantage of using such a 

strategy is that optimised waypoints can be provided to ensure the USV is able to robustly 

follow the trajectory especially when taking complex manoeuvres such as making a turning. 

 

Algorithm 4 Waypoint trimmer Algorithm 

Require: waypoints (Wp), anglemin (𝜃𝑚𝑖𝑛) 

1: 𝑞𝐴 ← 𝑊𝑝_𝑠𝑡𝑎𝑟𝑡 

2: 𝑞𝐵 ← 𝑞𝐴. 𝑛𝑒𝑥𝑡 
3: 𝑞𝐶 ← 𝑞𝐵. 𝑛𝑒𝑥𝑡 
4: while 𝑞𝐶 ≠ 𝑊𝑝_𝑔𝑜𝑎𝑙 do 

5:       ∆𝜙 = 𝜙𝐴𝐵 − 𝜙𝐵𝐶 

6:       if Δ𝜙 ≤ 𝜃𝑚𝑖𝑛 then 

7:           Wp.remove(qB) 

8:       else 

9:             𝑞𝐴 ← 𝑞𝐵     

10:     end if 

11:     𝑞𝐵 ← 𝑞𝐶 

12:     𝑞𝐵 ← 𝑞𝐶 . 𝑛𝑒𝑥𝑡 
13: end while 

14: return Wp 
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6. The integration of the path planning algorithm with NGC system of Springer 

USV 

To improve the autonomy level of Springer, the designed path planning algorithm has been 

integrated with the NGC system making the vehicle have the capability of autonomous 

accomplish the mission by simply knowing the mission start and end points. A three-level 

system has been developed including the planning level, the control level and the hardware 

level, which are shown in Figure 8.  

Before the mission commences, the planning level is first executed based on 

information such as the mission environment (free and obstacle spaces) and mission 

requirements (the start and end points). The path planning module works out the collision-free 

trajectory and calculates the waypoints by using the LOS based waypoints generator. Then, the 

generated waypoints are transmitted to the control level, which is mainly the NGC system of 

Springer, to start the mission. 

By referring to the obtained waypoints, Springer employs the PID controller to track 

the trajectory, and the tracking performances are iteratively monitored by a sensor suite. The 

sensor suite consists of a single low cost gyroscopic unit and three independent compasses to 

estimate the actual heading of the vehicle. In addition, the IMU-GPS combined unit is used to 

measure the position information for Springer. The measured information will be fed back to 

the navigation module in the NGC system, where robust Kalman filter technology (or the 

Interval Kalman Filter) is used to fuse the measurements and provide accurate navigation 

information to improve the tracking performance (Motwani et al (2015). The refined heading 

angle is then compared with the reference angle to calculate the error value, which will be used 

as the control input to accordingly adjust vehicle’s navigation for next operation. 
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7. System validations on Springer 

7.1. Full-scale experiments on Springer 

A full-scale experiment was undertaken on the Roadford Lake, Devon, UK, 17-18 September 

2014. The aim of the experiment was to test the integration of the FMS based path planning 

algorithm and the NGC system of Springer such that complete USV autonomous navigation 

can be achieved. 

The experiment area is shown in Figure 9a with the testing area indicated by the white 

dashed circle. In order to validate the collision avoidance capability of Springer, a virtual 

obstacle has been added to the binary map of the Roadford Lake represented in Figure 9b. In 

Figure 10, four snapshots of different stages during the experiment are represented as: 1) USV 

about to be launched from the pier (Figure 10a), 2) USV being towed by human operators 

(Figure 10b), 3) USV in operation of tracking virtual waypoints (Figure 10c) and 4) USV 

reaching the target point (Figure 10d). 

Experimental results are presented in Figure 11. The mission start point is waypoint 2; 

whereas, Springer was launched from waypoint 1. A total number of 5 waypoints (excluding 

the start and end points) have been generated for Springer with their GPS coordinates listed in 

Table 3. In Figure 11a, it can be observed that waypoints are located away from the obstacle 

with average deviation distance around 100 m. Such a distance is able to guarantee the safety 

of the vehicle throughout the operation. 

The tracking performance of Springer is plotted as the blue line in Figure 11a. Good 

tracking results can be observed from waypoint 3 towards the end point as the small deviations 

occur between the blue line and the planned path (dashed black line). From the control 

perspective (in Figure 11b), it can also be demonstrated that generated waypoints are 

achievable for the autopilot of Springer to track. From time step 150 the true heading angle (in 
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red) of the USV corresponds well with the reference angle (in blue), which proves that a correct 

tracking is taken by Springer. 

However, large deviation exists between waypoint 2 and waypoint 3. The primary 

reason for this is the generated path does not consider the heading of Springer when it passes 

waypoint 2. The reference angle at this moment makes a significant change from 250° to 

around 175°, which is shown in Figure 11c at time step 50.  Such a large heading angle 

difference is impossible for the USV to cope with in such a short time period. It takes around 

150 time steps for Springer to adjust its heading and accomplishes it at waypoint 3. 

Therefore, the importance of the heading of the vehicle when the path is planned can 

be clearly demonstrated from this case and the AFMS algorithm provides an alternative 

algorithm for Springer. Unfortunately, due to the limited experimental time, the full-scale test 

of the AFMS on Springer could not able to be conducted.  However, simulations based on the 

true dynamics of Springer of the AFMS were run, which will be discussed in next section. 

7.2. Simulations based on the dynamics of Springer 

In this section, simulation results of the proposed algorithms are presented and analysed with 

the simulation area shown in Figure 12. During the real trial, Springer is normally launched 

from the pier and starts the mission in the middle of the lake. Therefore, in this test, the mission 

start point has been selected a certain distance away from the pier (marked with red start in 

Figure 9), and the end point is located above it. 

Two ‘islands’ are located in the area shown in Figure 13. The coordinates of start and 

end points are (445, 330) and (416, 650) marked as red and green points. The initial heading 

angle of Springer is 180° represented by the black arrow in Figure 13. Other simulation 

parameters including USV velocity and surface currents velocity are listed in Table 4. 

Paths generated by the FMS and the AFMS are plotted and compared in Figure 13. 

They are represented in blue and in magenta with corresponding waypoints. It is evident that 
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path in magenta (generated by the FMS) does not consider the initial heading and directly 

avoids two obstacles from the right side to pursue the shortest distance. In contrast, the AFMS 

path can be followed within the constraints of Springer's dynamics and initial heading angle as 

it was planned in accordance with vehicle's initial heading angle and motion constraints. After 

a different path having been planned, the path passes in between the two ‘islands’ to seek the 

minimum path distance. 

The tracking performance of Springer by following these two different paths are 

represented in Figure 14 and Figure 15. In Figure 14a and Figure 15a, each waypoint is marked 

as ‘+’ with a circle around it representing the COA. According to the accuracy of the 

localisation of the USV, the radius of the COA is set as 4m. When the USV is tracking each 

waypoint, as long as Springer enters into the COA, it is acknowledged that the corresponding 

waypoint has been reached so the vehicle can transit to the next waypoint. 

The simulated trajectories taken by Springer are plotted as blue lines. From Figure 14a, 

it can be observed that Springer accurately arrives at each waypoint by entering the COA circle, 

which proves that the path can be tracked. However, when following the waypoints generated 

from the FMS path, the performance is less precise. In Figure 15a, large deviations occur during 

the initial stages and several waypoints have been missed by Springer. The reason for this is 

Springer has to adjust its heading at the beginning to turn towards the reference direction 

determined by the waypoints. This is shown from the comparison between Figure 14b and 

Figure 15b, which record the real-time control input and heading angle. In Figure 15b, between 

time steps 0 and 200, the control inputs vary dramatically between positive and negative 

maximum values. The USV takes alternate full-rudder starboard or port side turnings as a result 

of trying to attain a path produced with no consideration to Springer's dynamic capability and 

the limitations of its autopilot control have been exceeded; whereas in Figure 14b, less serve 

control inputs are required meaning Springer is easier to track. 
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To quantitatively assess the tracking performance, the distance error of each vehicle's 

instantaneous position at time k to the desired trajectory is recorded. Such an error value can 

be measured using the Heron's formula as: 

 𝑑(𝑘) =
√(𝑎+𝑏+𝑐)(−𝑎+𝑏+𝑐)(𝑎−𝑏+𝑐)(𝑎+𝑏−𝑐)

2𝑎
 (21) 

where a, b, and c are the sides of the triangle, which is formed by the USV's instantaneous 

position and two adjacent waypoints, as shown in Figure 16. Error values by following two 

different paths are plotted in Figure 14c and Figure 15c. The highest error for the FMS path is 

20 m, which happens at time step 25. Such a deviation from the desired trajectory is especially 

of risk if the vehicle is navigating in a constrained area, where potential collisions could happen. 

In terms of the distance error for the AFMS, it can be well kept under 4 m, which is sufficient 

to maintain the margin of safety. 

Further comparison of Figure 14c and Figure 15c indicates both the AFMS and the 

FMS provide paths that Springer can maintain, as shown in the latter stages of the transit for 

FMS. From this it can be deduced that the advantage of AFMS lies in its ability to plan a path 

that is commensurate with the USV's dynamic characteristic throughout the whole transit as it 

does not provide a path beyond the capability of the USV at the outset regardless of initial 

heading. In effect AFMS brings strategic decision making planning to the path planning 

problem. AFMS becomes more advantageous as the USV's dynamic characteristics become 

more limited and as the initial heading of the USV deviates more from the initial heading that 

would be planned by FMS. Although AFMS may plan a path that is of higher cost than FMS, 

it would provide a low risk and feasible path for the USV while FMS could produce paths that 

are not practical within the environment. 
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8. Conclusion remarks 

This paper has presented a novel design of an intelligent navigation system for an unmanned 

surface vehicle, Springer USV. The system is achieved by integrating an AFMS based path 

planning algorithm into the NGC module of Springer. With the assistance of the path planning 

algorithm, Springer can now autonomously generate optimal collision free trajectory based on 

the mission requirements, and robustly follow the path to accomplish tasks. Simulations results 

have shown that the AFMS based path planning algorithm is superior to the FMS based one as 

the AFMS is able to search the path according to the vehicle’s dynamics constraints especially 

the turning capability while the advantages of the FMS can be largely retained.  
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Figure 1. Springer USV 
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Figure 2. The NGC system of Springer USV. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 3. The updating process when using the FMM. 
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(a) (b) 

 

 
(c) 

Figure 4. (a) The grid map. (b) Potential field generated by using the FMM. Potential value at 

each point represents the local distance to the start point. Higher the potential is, longer the 

distance to the start point. (c) Path generated by using the FMM (red line) and the FMS 

(green line). 
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Figure 5. The illustration of guidance range (GR). 
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(a) 

 

 

(b) 

Figure 6. Comparison of trajectories generated by the AFMS and the FMS. (a) The generated 

trajectories of the AFMS and the FMS in a cluttered environment. (b) The associated 

potential field of the AFMS. 
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(a) 

 
(b) 

Figure 7. Comparison of waypoints with and without using the ‘waypoints-trimmer’. (a) Path 

with unrefined waypoints. (b) Path with optimal number of waypoints. 
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Figure 8. System block diagram of Springer USV 
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(a) (b) 

 

Figure 9. The experiments on Roadford Lake, UK. (a) The experiment area, Roadford Lake, 

Devon, UK. The testing area is indicated by the white circle. (b) The binary map of the 

experiment area with one virtual obstacle. 
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(a) (b) 

  
(c) (d) 

Figure 10. Experiments on Springer USV. (a) USV launching from the pier. (b) USV towing. 

(c) USV in operation tracking the waypoints. (d) USV arriving at the destination. 
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(a) 

 

(b) 
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(c) 

Figure 11. Experiment results of tracking waypoints generated by the FMM. (a) Trajectory 

taken by Springer, (b) comparison between the reference heading angle and the true heading 

angle, (c) control inputs. 
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Figure 12. Simulation area by referring to the Roadford Lake, Devon , UK. 
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Figure 13. Paths generated by the AFMS and FMS. 
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(a) 

 
(b) 
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(c) 

Figure 14. The tracking performance of Springer when following the path generated by the 

AFMS. 
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(a) 

 

 
(b) 
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(c) 

Figure 15. The tracking performance of Springer when following the path generated by the 

FMS. 
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Figure 17. The calculation of distance error at time k. 
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Table 1. Summary of the key work for Springer USV. 

Reference Studied areas in the 

NGC system 

Comments 

Naeem et al. (2008) Guidance and Control 1) The line-of-sight (LOS) waypoint 
guidance is used to follow given 
points. 

2) The linear quadratic Gaussian 
(LQG) is used to design the 
controller. 

Sutton et al. (2011) Guidance The fuzzy logic based multi-sensor 

data fusion algorithm is developed 

to provide accurate navigation 

information. 

Sharma et al. (2012) Control Local Control Networks (LCN) is 

used in the design of nonlinear 

control systems for Springer. 

Naeem et al. (2012) Navigation and control 1) An improved A* algorithm has 
been developed for path 
planning and collision 
avoidance. 

2) The PID controller is used to 
guide the motion of Springer. 

Motwani et al. 

(2013) 

Guidance The interval Kalman filtering (IKF) is 
applied in the design of a robust 
navigation system. 

Annamalai et al. 

(2015) 

Control The model predictive control 
(MPC) technique is used to provide 
the adaptive and robust control of 
Springer. 
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Table 2. Springer USV specifications (Naeem et al., 2012a) 

Springer parameter Value 

Vehicle length 4.2 m 

Vehicle width 2.3 m 

Vehicle weight 600 kg 

Operating speed 4 knots 

Minimum turning radius 25 m 
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Table 3. GPS coordinates of waypoints 

 Latitude Longitude 

WP1 50.416900 -4.13857 

WP2 50.416890 -4.13919 

WP3 50.516590 -4.13873 

WP4 50.416200 -4.13975 

WP5 50.415942 -4.13920 
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Table 4. Simulation parameters for Springer USV 

Simulation parameters Values 

USV speed (in normal condition) 1.5 m/s 

USV speed (approaching waypoint) 1 m/s 

USV initial heading angle 180° 
USV speed perturbation Random number within the range of [0, 0.1] 

(m/s) 

Current’s speed 0.2 m/s 

Current’s direction 90° 
 


