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Abstract
Multivariate correlated time series are found in many modern socio-scientific

domains such as neurology, cyber-security, genetics and economics. The focus
of this thesis is on efficiently modelling and inferring dependency structure both
between data-streams and across points in time. In particular, it is considered
that generating processes may vary over time, and are thus non-stationary. For
example, patterns of brain activity are expected to change when performing
different tasks or thought processes.

Models that can describe such behaviour must be adaptable over time.
However, such adaptability creates challenges for model identification. In order
to perform learning or estimation one must control how model complexity
grows in relation to the volume of data. To this extent, one of the main
themes of this work is to investigate both the implementation and effect of
assumptions on sparsity; relating to model parsimony at an individual time-
point, and smoothness; how quickly a model may change over time.

Throughout this thesis two basic classes of non-stationary model are stud-
ied. Firstly, a class of piecewise constant Gaussian Graphical models (GGM)
is introduced that can encode graphical dependencies between data-streams.
In particular, a group-fused regulariser is examined that allows for the estima-
tion of changepoints across graphical models. The second part of the thesis
focuses on extending a class of locally-stationary wavelet (LSW) models. Un-
like the raw GGM this enables one to encode dependencies not only between
data-streams, but also across time. A set of sparsity aware estimators are
developed for estimation of the spectral parameters of such models which are
then compared to previous works in the domain.
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Note on Writing Style

This thesis predominantly follows a third person narrative, where through-
out this thesis I use “we” to relate to the reader and myself. At some places I
use the term “I” to relate to my own thoughts and beliefs.
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Chapter 1.

Chapter 1

Introduction

High-dimensional correlated time-series are ubiquitous in many real world ap-
plications, from observations of how blood flows throughout the brain to under-
standing traffic flows across computer networks. The continuous development
of sensing technologies places new requirements on the tools and methodologies
that are used to gain understanding from data. Not only are new datasets ac-
quired faster, and in greater resolutions, but they also measure more aspects of
the world around us. In many applications, the number of features or variables
that one may measure often outnumber the volume of points at which these
may be sampled. Such high-dimensional situations pose serious challenges for
statistical estimation due to the inherently large number of degrees of freedom
associated with traditional models.

To avoid overfitting, in the high-dimensional setting one is required to make
assumptions about the dynamics and dependency of variables. Typically, these
will be encoded by a statistical model. However, even for very simple statis-
tical models like linear regression, the number of model parameters may grow
faster than data can be collected. To enable estimation of the model, it is often
assumed that the data may be described by a smaller subset of the parame-
ters required in the ambient dimension. While such assumptions help stabilise
our model statistically; they give rise to challenges in computation associated
with how we search the model space for the best set of parameters. These
challenges are inextricably linked. For example, certain statistical models and
assumptions allow for a simplified computational search, but potentially at the
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20 1. INTRODUCTION

expense of statistical performance. The assumptions that we make in order
to identify a model often affect the level of insight one may obtain from the
underlying data. It is therefore of paramount importance to consider the the-
oretical and empirical consequences of assumptions, both in a computational
and statistical sense.

1.1 Motivational Applications
To give an idea of how and where methods developed in the thesis may

be used, we here discuss two areas of critical importance to society; namely,
neuroscience, and cyber-security. Both of these applications are examined to
various depths further in the thesis, particularly, Sections 3.4 and 7.4.

1.1.1 Understanding Brain Activity

There are several neuroscientific objectives associated with the analysis of
neurological data. For example, one may be interested in localising regions of
the brain linked to certain tasks, determining how regions of the brain interact
(functional mapping), or making predictions about psychological or disease
status. In this thesis, the primary topic of interest is modelling dependency
structure between variables; concerning neurological analysis this strongly re-
lates to the objective of functional mapping within the brain. Specifically, if
one represents the relationships between parts of the brain as a network, then
robustly inferring this network structure is of paramount importance. Not
only do the methods of this thesis aim to address the challenge of infering
network strcutre, but also extend this to the setting where these dependencies
can evolve over time.

Several forms of sensing technology may be used to measure brain activity:
techniques such asmagnetoencephalography (MEG) and electroencephalography
(EEG) rely on sensing the magnetic and electrical activity within the brain,
whereas functional magnetic resonance imaging (fMRI) data uses blood flow
in the brain as a proxy for activity.
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Figure 1.1.1 – Left: Integrated MRI image of my brain displaying high spatial
resolution, image produced by 3-T Siemens Magnetom Trio MRI as part of the
study by Zeki et al. (2014). Right: Example of anatomical regions of interest
over which voxel wise data may be integrated. For each region, a time-series
may be constructed (Source: Wikipedia; Hagmann P, Cammoun L, Gigandet X,
Meuli R, Honey CJ, et al.).

FMRI Data

If we first consider fMRI data, it is possible to get very high spatial reso-
lution, but low resolution in time1. For example, a typical fMRI analysis may
capture around p = 100, 000 voxels (the equivalent of a pixel in an image) over
a period of several minutes, resulting in around T = 200−2000 time points. To
maintain interpretability this activity is often aggregated into larger regions of
interest, an example of possible aggregations is demonstrated in Figure 1.1.1.
However, even in the aggregated setting, when one considers the estimation
of correlation (a simple measure of variable dependency), the required matrix
may have many parameters; a p = 60 dimensional correlation matrix requires
the estimation of d = p(p − 1)/2 = 1770 parameters. If one further considers
that this matrix may change over time, then the problem is still clearly well
in the high-dimensional regime.

Traditionally, the estimation of such networks assumes stationarity, i.e. a
dependency network for the regions would be estimated assuming that it does
not change over time. As such, these stationarity assumptions can affect the
level of insight given by the analysis. Increasingly, the aim of studies is not only
to find which regions interact with each other, but how this varies over time, or
throughout various experimental situations such as performing different tasks.

1For a review on statistical analysis of fMRI data, see Lindquist (2008)
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Epileptic EEG Trace
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Figure 1.1.2 – Left: EEG electrode placement points for the international 10-20
standard. Right: EEG readings for 10 electrodes in the lead up to an epilepsy
seizure, see Chapter 6 for more details.

To relax the assumption that the graph is constant over time requires extend-
ing the degrees of freedom within the chosen statistical model. Throughout
this thesis, and especially in Chapter 3, several approaches to relaxing sta-
tionarity assumptions are discussed. In particular, a new type of dynamic
graphical model is proposed which can operate in high-dimensions while also
detecting changes (or changepoints) across many data-streams. While anal-
ysis of fMRI data is not explicitly discussed in this thesis, it is one of the
areas where methods developed here may provide great value. Indeed, other
researchers are investigating the application of algorithms presented in this
thesis to fMRI data, and the similarly motivated work of Monti et al. (2014)
and Xu et al. (2013) suggests increasing acceptance of these methodologies in
the neuroscience community.

EEG Data

In contrast to fMRI data, EEG sensors provide very high resolution in time
at the expense of spatial resolution (see Figure 1.1.2). Recording frequencies
of 256Hz are common, which gives rise to an abundance of data, especially
when monitoring can take place for prolonged periods of time. For example,
epilepsy patients are routinely monitored for days or weeks prior to surgical
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operations. In this data-rich environment, we may not expect to find ourselves
in a high-dimensional setting. If we again consider the task of estimating a
correlation matrix to describe cross-channel variation we can easily operate in
the standard-dimensional setting where T > p2. However, if we want to ask
more questions of the data and describe not just its cross-channel variance,
but also its auto-covariance structure, our models very quickly grow in size.
For example, a p-dimensional lag h vector auto-regressive (VAR) model will
have of order p2h parameters. If we again consider that these models may have
parameters which change over time, then the high-dimensional setting is soon
reached.

In Chapter 7, a class of dynamic graphical model is developed that utilises
wavelet basis functions. Such models can not only describe cross-covariance,
but also how auto-covariance structures change over time. As an example ap-
plication, it is demonstrated how these models may be used to characterise
EEG activity in the lead up to, and throughout an epilepsy seizure. A par-
ticular novelty of the method is that it decomposes dependency structure as
a network across a set of different length scales. Therefore, not only is the
seizure activity clustered according to seizure, but one can readily see which
electrodes appear dependent across a network. Potentially, this may give an
indication of how epileptic activity spreads across the brain, which could be of
particular value in understanding complex epielpsies where seizure activity is
not well localised. If shown to be robust over multiple patients, features such
as those proposed here may one day help clinicians improve epilepsy diagnosis
and treatment.

1.1.2 Statistical Analysis of Network Traffic

Dynamic graphical models provide a valuable tool not just in the scientific
domain, but also to help us understand complex systems in general. Large
computer networks, such as the internet, are perhaps one of the most complex
and data-rich systems available to study. As computing technology has pro-
gressed, it is not only possible to transfer more data across networks, but also
monitor this activity itself. Again, in such a data-rich domain, one may ques-
tion the need for high-dimensional statistics. For example, if one considers the
popular network monitoring protocol NetFlow, it is not uncommon to collect
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hundreds of gigabytes of data. However, when one considers that a large cor-
porate network may have thousands of devices attached, it is again plausible
that statistical models will have to operate in high-dimensional settings.

Given society’s reliance on computer networks, such systems are increas-
ingly being targeted by sophisticated cyber-criminals and other parties. Rather
than cause immediate damage and expose themselves to defenders, attackers
are increasingly choosing to infiltrate and remain active within a network for
extended periods of time. These Advanced Persistent Threats (APT) are hard
to detect due to the massive complexity and volume of activity within net-
works which can mask the subtle movements of an attacker (Friedberg et al.
2015). Traditional Intrusion Detection Systems (IDS) operate on a rule-based
approach (Patcha et al. 2007), these can react very quickly to detect known
threats as long as these correspond to previously modeled and coded patterns.
Unfortunately, such hard-coded rules require frequent updating and given their
high levels of specificity, such defences are being increasingly bypassed using
so-called polymorphic attacks (Fogla et al. 2006)2. To counter these rule spec-
ification issues, a popular research direction in network anomaly detection is
to adopt machine-learning based approaches. Generally speaking, these aim
to model different classes of network activity, anomalous or normal, based on
some algorithm which is trained on real network data. Two main strands of
machine-learning methodologies are employed in the literature:

Discriminative methods: Act to classify network activity as normal or ab-
normal based on an explicit labelling of normality, i.e. one has access to
some labelled data where the state of the network is known. Sometimes,
this may be extended to consider specific types of anomaly, in a task which
is known as anomaly identification (Iglesias et al. 2014).

Generative models: Aim to describe an underlying statistical distribution
from which observed data might be generated. Anomalous activity can
then defined with respect to the estimated distribution (Patcha et al. 2007).
Many correlation based methods, for example principle component analysis
(PCA), may be seen in this light (Ringberg et al. 2007).

2A polymorphic attack is one which is capable of automatically (or easily) adjusting the way
it appears to network monitoring systems, i.e. they do not have a fixed signature.
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Figure 1.1.3 – Dense (left) and sparse (right) estimates of precision (inverse
covariance) matrices obtained from network traffic features. A graphical mod-
elling approach is represented by the sparse model whereby many of the entries
in the matrix are zero. The graphical models corresponding to these matrices are
given below. The assumption of sparsity clearly provides a more interpretable
model and gives increased insight into the data-generation process. The size of
the nodes in the estimated graph represent the relative degree (number of edges)
associated with each node. A more complete analysis of this data can be found
in Section 3.4.2.

To train a discriminative model, we need observations that relate to both
network features X, which describe traffic flows, and the network state variable
Y , which labels whether traffic is anomalous or not. In many situations, we
simply don’t know whether the network is in an abnormal state, i.e. we cannot
measure Y and do not necessarily know whether the network is under attack or
not. In the case where we cannot observe the network state directly, a genera-
tive approach can prove useful for defining anomalies. Rather than model the
conditional distribution P (Y |X), a generative model aims to describe the joint
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distribution of the network features P (X1, X2, . . . , Xp). Whether the network
is in a normal or anomalous state can be defined relative to the estimated
P (X1, X2, . . . , Xp). However, defining and learning a full joint distribution,
as opposed to conditional discriminative, or marginal models is hard due to
the inherent complexity of such models. At this stage, a graphical modelling
approach can add significant value as they possess the flexibility to model
many distributions, but are robust due to their parsimonious construction. As
demonstrated in Figure 1.1.3, graphical models enable enhanced interpretation
of a dataset by highlighting dependencies between variables. In this case, the
graphical structure is derived in a static manner from features derived from
computer network traffic. When the graphical model is sparse, that is, there
are only a few edges selected, the degrees of freedom in the model are reduced
as fewer parameters are needed to specify the distribution. In the application
to computer network modelling, the added robustness of graphical models may
contribute to reducing the false positive rate of detecting anomalies. The ap-
plication of graphical models to modelling computer network data is examined
further in Chapter 3.

1.2 Thesis overview
In the rest of this introductory chapter I will give a brief overview of the

thesis structure and notation. There are two principle literature reviews con-
tained within this thesis. The first, “Regularised Learning” (Chapter 2) pro-
vides a relatively mathematical introduction to high-dimensional estimation
and convex optimisation; the second, “Locally Stationary Wavelet Processes”
is contained in Chapter 5 and relates to more traditional time-series litera-
ture. The remaining chapters contain what should be considered as the main
contributions of this work.

It is worth remarking at this point that the traditional boundaries be-
tween the domains of computer science, statistics, and signal processing are
being eroded. Indeed, the developing field of machine-learning may be seen
as a result of the inter-disciplinary requirements for modern statistical mod-
elling. The work presented throughout this thesis is very much in-line with
this convergence of disciplines. For example, the first half focusses on Gauss-
ian graphical models, which may be traditionally seen from a statistical and
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optimisation perspective; the second half is very much born out of statistical
signal-processing and the mathematical development of wavelet systems.

A brief summary of chapters is given below:

Chapter 2: Regularised estimation is introduced in the context of M-estimation.
The requirement for regularisation is examined in the context of linear re-
gression in high-dimensions. Different `p regularisation schemes along-
side optimisation machinery are introduced. Gaussian graphical mod-
els (GGM) are defined in the i.i.d. setting and different model-selection
schemes discussed. Finally, a theoretical framework for analysing M-estimators
in high-dimensions is discussed.

Chapter 3: Dynamic GGM are introduced, recent literature is discussed, and
several ways of relaxing stationarity assumptions are compared. Two novel
estimators for dynamic graphical models; the group-fused graphical lasso
(GFGL), and independently fused graphical lasso (IFGL) are compared.
Two algorithms are proposed for estimation of such models. Synthetic
experiments are used to highlight the respective properties of the estima-
tors. The chapter concludes by considering the applications of dynamic
graphical models in genetics and cyber-security.

Chapter 4: A theoretical analysis of the changepoint error with the GFGL
estimator is constructed. In standard dimensional settings (p fixed) as-
ymptotic changepoint consistency is demonstrated. In high-dimensions the
GFGL estimator is discussed in the context of the M-estimation framework
introduced in Chapter 2.

Chapter 5: Until this point in the thesis, all models assume that data is
independently, but not identically drawn. A class of locally-starionary
wavelet (LSW) and Fourier based models are introduced that enable the
modelling of auto-covariance structures. Some statistical properties and
previously proposed methods for spectral estimation in these models are
discussed.

Chapter 6: The potential high-dimensional nature of spectral estimation
motivates regularisation of the empirical spectrum. We discuss and im-
plement fused smoothers for the spectrum of LSW processes. Such fused
estimation is extended to 2-D fields, giving rise to applications in image
processing.
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Chapter 7: This chapter translates ideas from Chapter 3 to the estimation
of the multivariate LSW spectrum. Synthetic experiments suggest that
regularisation can improve estimation performance and recover graphical
spectral structure. An application to modelling EEG data throughout
epilepsy seizures demonstrates the benefit of regularisation in terms of
separating seizure pathways and enabling enhanced interpretation of EEG
data.

Chapter 8: The thesis concludes with a discussion of how these methods
can be further extended. In particular, it is discussed how one may extend
the M-estimation framework of Chapters 2 and 4 to the locally-stationary
wavelet setting.

1.3 Notation
Specific notation, i.e. what individual characters mean, may change through-

out the thesis, their meaning should thus be considered in the local context.
In general, vectors are denoted in bold font and lower case and matrices are
bold and upper case. For example:

x = (x1, x2, . . . , xp)
> ∈ Rp

A =

 A1,1 · · · A1,q

... . . . ...
Ap,1 · · · Ap,q

 ∈ Rp×q .

Table 1 provides a summary of notation for matrices and vectors. Asymptotic
notation is fairly standard. For positive sequences {an}, {bn}; an = O(bn)

means there exists a constant c1 such that an ≤ c1bn. Similarly, an = Ω(bn)

means there is a constant c2 such that an ≥ c2bn. Analogously, for func-
tions we denote f(x) = O(g(x)) to mean |f(x)| ≤ c3|g(x)| for constant
c3. Capitilised non-bold letters are used to describe random variables, if
the variable is multivariate then this is indicated by an arrow. For exam-
ple; ~X := (X1, X2, . . . , Xp)

> ∼ N (µ,Σ) denotes p variables drawn from a
multivariate normal distribution.

It is worth noting that some probabilistic statements in this thesis may
slightly abuse the notation. For example, I may write P [y|X,θ, σ] which
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actually means what is the probability of obtaining samples y from some ran-
dom variable ~Y and it’s associated distribution (in this case, this should be
parameterised in terms of X,θ, σ).

In much of the thesis the notation can become quite complicated simply
due to the number of indexes required. For example, we will deal with quan-
tities which may vary as a function of; time, space, scale, or direction, all of
which require indexing. Generally, time-indexed quantities will have the nota-
tion {x(t)}Tt=1 = {x(1), . . . , x(t), . . . , x(T )}. Super-scripted indices are encased in
brackets to differentiate them from the exponentiation operators. For example,
the notation (X(t))−1 refers to the inversion of the matrix X(t) indexed by t.

Table 1 – Notation for properties and operations on matrices A ∈ Rp×p and
vectors x ∈ Rp.

Notation Description Example
A·,i Vector constructed from entries in

column i of matrix A
A\ii The matrix A with elements

Aii = 0
A>, x> Transpose of matrix or vector
A−1 Inverse of matrix A
A � 0 Matrix A is positive definite x>Ax > 0 for all x 6= 0
A � 0 Matrix A is positive semi-definite x>Ax ≥ 0 for all x 6= 0
〈x,y〉 Inner product of vectors 〈x,y〉 = x>y
〈〈A,B〉〉 Inner product of matrices 〈〈A,B〉〉 = tr(A>B)
‖x‖p p-norm for vector x ‖x‖p = (

∑p
i=1 |x|

p
i )

1/p

‖x‖0 `0 pseudo-norm (number of
non-zero elements in x)

‖x‖0 = |{xi 6= 0 , i =
1, . . . , p}|

‖x‖∞ Largest value in x max1≤i |xi|
‖A‖F Frobenius norm of matrix

∑p
i,j=1 |Ai,j|2

tr(A) Trace of A tr(A) =
∑p

i=1Ai,i
|||A|||2 ≡ ‖A‖2 Induced `2, `2 norm, or spectral

norm of matrix
max‖x‖2=1 ‖Ax‖2

‖A‖∞ Largest element in matrix max1≤i,j≤p |Ai,j|
‖A‖2,1 Group-mixed `2/`1 norm

(row/column)

∑p
j=1 ‖Aj,·‖2

In Chapters 5,6, 7 it is convenient to use some notation from the signal-
processing literature. Primarily, these relate to operations acting on discretely
indexed functions f [t], where the square brackets imply that the argument of
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the function is integer valued. Notation for some operations on such functions
is summarised in Table 2.

Table 2 – Notation for operations on a discrete function f .

Notation Description Example
f [t] A function supported on t ∈ S ⊆ Z

f ↑ l[k] Up-sampling of f by l and then
taking the kth element

f ↑ l[k] ={
f [k/l] k = nl n ∈ Z
0 otherwise

f ↓ l[k] Downsampling by l and then
taking the kth element

f ↓ l[k] := f [lk]

(f ∗ g)[t] Convolution of signal f with filter
g

(f ∗ g)[t] :=∑∞
k=−∞ f [k]g[t− k]



Chapter 2.

Chapter 2

Regularised Estimation

. . . for theories (of equal scope) rendering equally probable our
observational data (which, for brevity I shall call equally good
at “predicting”), fitting equally well with background knowledge,
the simplest is most probably true – Swinburne 1997

From a statistical estimation viewpoint, the significance of a model component
or parameter can be viewed in terms of a model selection problem. One may
construct a loss function which tells us how well the model fits some data, a
lower value of this function implies the model more adequately describes the
data. Formally, let us construct this function as L(M,θ,X), where M ∈ M
indexes a model with parameters θ ∈ P(M), and the matrix X relates to
some observed data. Additionally, to account for differences in perceived model
complexity, one should penalise this with a function R(M,θ). A more complex
model should have a larger value of R(·). An optimal identification of model
and parameters may then be found through balancing the two terms, such that

(2.0.1) (M̂, θ̂) = arg min
M∈M,θ∈P(M)

[
L(M,θ,X) +R(M,θ)

]
.

In statistics such a formulation is referred to as an M-estimator; however, such
frameworks are popular across all walks of science (Boyd and Vandenberghe
2004). For example; maximum-likelihood (ML), least-squares (LS) , robust
Huber loss, and penalised ML estimators can all be discussed in this context.
The principle idea is to suggest a mathematical, and therefore objectively

31
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training error

generalisation error

high bias
low variance

low bias
high variance

Model Complexity HighLow

Figure 2.0.1 – Generalisation vs training error. Increasing model complexity
may reduce training error, but perform poorly on out-of sample data.

communicable statement to the effect of Occam’s Razor ; given similar model-
fit, one should prefer the simpler model (Swinburne 1997).

Figure 2.0.1 provides a graphical motivation for the Occam’s Razor in the
context of model estimation. If we plot the training and test error of a given
set of models (M) with respect to their complexity, we can draw curves cor-
responding to those in the figure. The key point to take away is that good
performance on training data does not guarantee good performance on the
out-of-sample test data. Occam’s Razor and Eq. 2.0.1, therefore suggest we
attempt to choose the model with the lowest generalisation error.

Depending on the specification of the functions L(·) and R(·) and associ-
ated model/parameter spaces, the problem in (2.0.1) can be either very easy
or difficult to solve. Throughout this chapter the motivation for framing sta-
tistical estimation problems as convex 1 M-estimators is developed. In the next
section, we start this discussion in the context of the canonical linear regres-
sion model. Specifically, we focus on the high-dimensional setting where the
number of covariates is larger than the number of data-points and traditional
estimation methods may fail to identify a model. We discuss why this happens,
and how regularisation and formulation of M-estimators can enable model esti-
mation, even in the relatively extreme case of high-dimensionality. After this,

1Special attention is given to M-estimators (2.0.1) where the constituent functions are convex
as they result in relatively easy optimisation problems. Some properties of convex functions
are given in the Appendix A.1.
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a set of optimisation tools are introduced to help us solve practically solve M-
estimation problems; this is followed by an introduction to graphical models.
In the final section, a framework for theoretically analysing M-estimators is
introduced alongside several key results from the literature.

2.1 Linear Regression
Linear regression is one of the most popular and simple statistical models in

use today. Focussing on the predictive task, the model attempts to predict the
value of an outcome Y ∈ Y ⊆ R, conditional on a set of input variables ~X ≡
(X1, . . . , Xp) ∈ X ⊆ Rp. While most of this thesis is not directly concerned
with the task of prediction, but rather descriptive modelling, it is still very
important to understand the linear predictive model. In addition to providing
a simple introduction to regularised M-estimation, we will later see how the
linear model can be adapted for use in dependency and changepoint analysis.

In a statistical sense, the end goal of linear regression is to obtain the
posterior predictive P [Y = ytest| ~X = xtest, θ̂], where θ̂ ∈ Rp are a set of
model parameters estimated on some pre-observed training data. As the name
suggests, linear regression assumes the function mapping the feature space to
the labels f(θ) : X 7→ Y is linear in nature.

Definition 2.1. Linear Regression Model
The linear regression model has two principle constructions. These are

given as the fixed design model where the covariates are not random variables

(2.1.1) Y (i) = θ0 +

p∑
j=1

θjx
(i)
j + ε(i) for i = 1, . . . , N ,

and the random-design model

(2.1.2) Y (i) = θ0 +

p∑
j=1

θjX
(i)
j + ε(i) for i = 1, . . . , N ,

where ε(i) is a zero-mean noise process (random variable). Additionally, it is
usually assumed that the noise process is sampled independent, and is identi-
cally distributed (i.i.d).
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Typically, one may assume that stochasticity is provided through a Gauss-
ian random variable such that ε(i) i.i.d∼ N (0, σ2). For simplicity, let us consider
the fixed design case where the intercept θ0 is zero, and the covariates are
centered and measured on the same scale2. For observational pairs (y(i),x(i)),
the linear model (2.1.2) can be written in matrix-vector notation as

y = Xθ + ε ,

where y = (y(1), . . . , y(N))> ∈ RN is the response vector, andX = (x(1), . . . ,x(N))> ∈
RN×p consists of measured covariates and is known as the design matrix. Tra-
ditionally, one may find estimates for the regression parameters, through either
least squares (LS); θ̂LS := arg minθ

∑N
i=1 ‖y(i) − Xi,·θ‖2

2 , or if we associate a
parameterised model to the errors, via maximum likelihood estimation (MLE);
θ̂MLE := arg maxθ P [θ|X,y].

Assuming that we have associated a Gaussian distribution function to our
model, the likelihood P (y|X,θ) is given by

P [y|X,θ,Σ] = (2π)−T/2
(
det(Σ)

)−1/2
exp
{
− (y −Xθ)>Σ−1(y −Xθ)/2

}
.

Further, if one assumes errors are i.i.d we can set Σ = σ2I and the above
simplifies to

P [y|X,θ, σ] = (2πσ2)−T/2exp[−(2σ2)−1‖y −Xθ‖2
2] .

As the name suggests, for the MLE estimator one is required to maximise the
above function with respect to θ. For example, say we wish to train the model
to a set of observations (y,X) ≡ (ytrain,Xtrain), then one can simply maximise
the likelihood, or equivalently the log-likelihood

{θ̂MLE, σ̂
2} := arg max

θ,σ2

[
logP [y|X,θ, σ2]

]
= arg max

θ,σ2

[
−N

2
ln(σ2)− 1

2σ2
‖y −Xθ‖2

2

]
.

Differentiating the log-likelihood and equating to zero leads to the estimators

θ̂MLE =(X>X)−1X>y ,

2This can generally be achieved through z-scoring the data such that ȳ = N−1
∑N
i=1 y

(i) = 0

and σ̂2
j = N−1

∑N
i=1(x

(i)
j − x̄j) = 1 for all j = 1, . . . , p.
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σ̂2
MLE =

1

N
(y −Xθ̂MLE)>(y −Xθ̂MLE) .

There are several remarks worth making about the above result:

• The regression parameter estimates obtained through MLE are identical
to those obtained via Least Squares (LS), ie θ̂LS := arg minθ ‖y−Xθ‖2

2 =

θ̂MLE.
• The MLE estimator for the variance differs from the unbiased estimator.
Through Cochran’s theorem we have; Nσ̂2

MLE/σ
2 ∼ X 2

N−1 =⇒ E[σ̂2
MLE] =

σ2(N − 1)/N .
• If (X>X) is singular and cannot be inverted then the MLE problem as
above is an ill-posed problem. Additionally, if (X>X) is nearly singular,
ie det(X>X) ≈ 0, then the estimates for θ̂MLE will be very unstable.

Before proceeding, one may note that the matrix X>X is related (in the
random design case) to the empirical covariance estimator for the Gaussian dis-
tribution. If the covariates were drawn from a centered multivariate Gaussian
distribution such that ~X ∼ N (0,Σ), then the MLE estimator for the covari-
ance is given as Ŝ = N−1X>X. The covariance matrix Ŝ ∝X>X is singular
and thus non-invertible when there exists a linear inter-dependency between
covariates. Specifically, if there is a linear dependency between columns, i.e.
rank(X>X) < p, then the covariance matrix will be singular and a unique
estimate θ̂MLE cannot be obtained. With regards to the dimensions p,N we
note; rank(X ∈ Rp×q) ≤ min(p, q), and thus rank(Ŝ) ≤ min(p,N)3. As such,
in the high-dimensional setting where p > N , the covariance matrix becomes
singular and the LS and MLE estimates are ill-defined.

Figure 2.1.1 provides a graphical illustration of how linear dependency
between covariates can result in an inability to estimate parameters. While in
the N < p setting such singular behaviour is guaranteed, even in settings where
N > p, the covariance can almost be singular, i.e. when the angle between x1

and x2 is very small.
It is well known that one can stabilise estimators in the high-dimensional

setting by utilising prior knowledge relating to regression parameters. Two
traditional approaches for this are discussed in the following sections. The
first known as ridge-regression aims to shrink the estimates for our parameters

3Recall that rank(AB) ≤ min(rank(A), rank(B))
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Figure 2.1.1 – Linear dependency between covariates provides a problem for
estimating the two regression parameters θ1, θ2 as the plane defined by x1,x2 is
no-longer defined.

towards zero. Alternatively, one may perform subset selection and regress onto
a small subset of parameters. Interestingly, both of these approaches may be
considered in the context of M-estimators, and understood in terms of placing
priors on the model parameterisation.

2.1.1 Ridge Regression

One of the simplest priors we can adopt is to assume the parameters are
drawn from a Gaussian distribution. For example, one may consider a zero-
mean prior with identical variance σ2

0 along each of the p parameters such that
~θ ∼ N (0, σ2

0I). If, for simplicity we assume a fixed design matrix, then the
posterior over parameters is now given as

P [θ|X,y] =
P [y|X,θ, σ2]∫
P [y|X,θ, σ2]dθ

P [θ] ,

∝ exp

(
− 1

2σ2

N∑
i=1

(y(i) − (x(i))>θ

)2

exp

(
− 1

2σ2
0

P∑
j=1

θ2
j

)
.(2.1.3)

Taking the log-posterior; logP [θ|X,y], we arrive at the familiar objective of
ridge-regression (Hoerl et al. 1970)

LRidge(θ, σ
2/σ2

0) := −‖y −Xθ‖2
2 −

σ2

σ2
0

‖θ‖2
2 .(2.1.4)
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Maximising the log-posterior4, or equivalently minimising the negative log-
posterior, allows us to gain a unique estimate for the parameter

θ̂Ridge = arg min
θ∈Rp

[−LRidge(θ, λ)] ,

where the quantity λ = (σ/σ0)2 is known as the regularisation parameter.
Written in this form, the ridge-regression estimator can be directly related to
the M-estimator framework of Eq. 2.0.1; consider the loss function L(θ) ≡
‖y −Xθ‖2

2, and complexity penalty R(θ) ≡ λ‖θ‖2
2. Furthermore, since the

ridge regression problem is convex it has a global mimima located at θ̂Ridge.
Due to this convexity and smoothness, an explicit solution for the posterior
mode is easily found by equating the partial derivatives of LRidge(θ) to zero.
The resulting estimate is given as

θ̂Ridge = (X>X + λI)−1X>y .

Comparing this with the vanilla MLE solution we observe that the use of a
Gaussian prior has added a term λI ∈ Rp×p to the diagonal of the covariance
matrix, hence the name ridge regression. Given this additional diagonal term,
the solutions are stabilised even in the case where N � p. Unfortunately, this
stability comes at the expense of adding a bias into our estimators. Netherthe-
less, by adjusting the regularisation strength λ we now have the ability to move
along the bias/variance trade-off curve (Figure 2.0.1). One can interpret the
use of a prior as adding extra assumed data to an estimation problem. In
this case, adopting the Gaussian prior and likelihood with uniform variance
means we are not letting this artificial data lie in any preferred direction. The
bias imposed by ridge regression therefore does not preferentially select any
parameters, but rather shrinks all the parameters together.

A further interesting way to interpret this prior, is to consider how it re-
stricts estimates to what are known as feasible sets. Specifically, if one con-
siders the regulariser RRidge(θ, λ) := λ‖θ‖2

2 in conjunction with a certain loss
function, then only solutions within a certain sub-space are allowed. We can
see this more clearly by re-writing (2.1.4) as a constrained optimisation prob-
lem

4Similarly, one may consider the maximum a-posteriori (MAP) estimate. Maximising the
log posterior is equivalent due to the monotonic nature of the log function.
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Figure 2.1.2 – Diagram of how the ridge regression estimator can be under-
stood in terms of an explicitly constrained optimisation problem. Only when the
contours of the least squares solution intersect the `2 ball are solutions feasible.

θ̂Ridge = arg min
θ
‖y −Xθ‖2

2

subject to ‖θ‖2
2 ≤ l .(2.1.5)

For a given threshold l, such a formulation is equivalent to the ridge regres-
sion in (2.1.4). The appropriate value for l is defined by the regularisation
parameter λ in conjunction with the size of the model fit term ‖y −Xθ‖2

2.
Figure 2.1.2 presents a graphical representation of both this projection, and
other constraints considered in the sequel.

The idea of explicitly constraining estimates via such a norm ball, i.e. such
that ‖θ‖2

2 ≤ l is extremely popular, not just in statistics, but also for general
ill-posed inverse problems (Gockenbach 2016). In the next section, projections
for different constraint sets that correspond to different prior assumptions are
considered and result in new classes of M-estimators.

2.1.2 Subset Selection

A pervasive idea in high-dimensional statistics is that data may lie in some
embedded low-dimensional structure or subspace (Meinshausen 2008; Negah-
ban et al. 2012). Indeed, as figure 2.1.1 suggests, when the covariance matrix
is singular it might be beneficial to reduce the dimensionality of the model.
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For example, in the diagram, rather than regressing onto a plane, we could
regress onto a line and choose a subset of features to utilise within the model.

A traditional approach to the subset selection problem is to start with no
regression parameters (we assume they are inactive and equal to zero) and
gradually add them as required. This method known as forward selection
starts with an empty set A = {} and then iteratively activates parameters
that appear to improve the model. However, we need a way to know when to
stop adding parameters, “How far down the model complexity curve in Figure
2.0.1 do we allow our model to go?”

Similarly to the M-estimation idea, a popular way to achieve this is by
penalising model fit with a complexity penalty. In particular, some popular
penalties are the Akikake Information Criteria (Akaike 1973)

AIC(k) := 2k − 2L ,

or the Bayesian Information Criteria (Schwarz 1978)

BIC(k,N) := k(ln(N)− ln(2π))− 2L ,

where L ≡ − log(L) is the negative log-likelihood, and k is the number of free
parameters required to be estimated, in the forward selection case k = |A|.

Remark 2.1. Complexity penalties in high-dimension
Immediately, one notes that the AIC penalty is not dependent on N as it

is derived in the asymptotic setting where N →∞. It would immediately seem
somewhat inappropriate for use in the high-dimensional setting where we often
have relatively small N . On the other hand, whilst BIC does depend on N , this
also runs into trouble in the high-dimensional setting. For example, J. Chen
et al. (2008) discuss issues of BIC not being able to adapt to high-dimensional
model spaces. This is due to an implicit prior P [M ] in the formulation of
BIC which assigns equal probability for all models M over model space M.
For regular problems where the number of parameters k = p is fixed it is well
known that BIC is consistent. However, in the high-dimensional setting where
the number of covariates included k = |A| varies between models we see that
regular BIC assigns probability according to the model class size. For example,
consider the class of models S1 with p = 100, but only k = |A| = 1 covariate,
the number of models in this class is 100. Now, if we consider the class of
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models with two covariates S2 we find this has size 100 × 99/2. Thus, the
traditional BIC penalty when used to compare models with varying number of
covariates assigns much greater probabilities to those with larger active sets.
To overcome such inconsistencies J. Chen et al. (2008) suggest an extended
BIC definition which actively accounts for the number of active covariates.

All of the above information criteria, including the extended BIC rely on
us penalising the likelihood by some quantity proportional to the number of
active elements. If we consider the problem in the context of linear regression,
we would be required to construct an M-estimator of the form

(2.1.6) θ̂A = arg min
θ∈Rp

‖y −Xθ‖2
2 + λ|A(θ)| ,

where |A(θ)| = k is the number of active non-zero components at a given point
in the parameter space. In machine learning and engineering, the addition of
this counting factor is often referred to as an “`0 norm”, although this is not a
norm in the traditional sense5. The reason for such abuse of terminology, is that
when one considers a q-norm, often denoted `q of the form ‖θ‖q := (

∑
i |θi|q)1/q.

In the limit q → 0 we obtain the `0 norm ‖θ‖0 ≡ |A(θ)|.
A particularly appealing property of subset selection, is that of sparsity,

whereby there exist many zero elements in our estimate, i.e. ‖θ̂‖0 ≡ k � p.
Unlike the ridge regression setup, where ‖θ̂Ridge‖0 = p, when performing subset
selection we have a bias which directs us to preferentially choose some key
components. This appeals to us, both in terms of stabilising our estimator
by adding bias, but also allowing some form of model interpretation through
selection of coefficients. Given the discussion above, the challenge when using
subset selection is not necessarily a statistical one, but a computational one.

In the previous section, where we discussed ridge-regression it was noted
that the `2 norms led to an overall convex M-estimator as both constituent
functions were convex (see 2.1.5). Unfortunately, this is not the case when one
adopts the `0 “norm” (or any `q norm for 0 ≤ q < 1) as a penalty.

Proposition 2.1. Let x ∈ Rp, the `q norm ‖x‖q for 0 ≤ q < 1 is not convex.

5For example, ‖cx‖0 = ‖x‖0 for all c 6= 0 and thus fails to satisfy the absolute homogeneity
requirement of norms.
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Figure 2.1.3 – As in the case of ridge-regression, the exact sub-set selection
operator can be understood as an explicitly constrained estimate. In this case
the `0 “norm” is confined to the axis, such that the estimator must select one of
the directions, and is hence sparse. For any LS estimate in the grey region, the
resultant regularised estimator will be sparse.

Proof. It is sufficient to demonstrate that the epigraph of ‖x‖q is not a convex
set. See Appendix A.1.

Again, as in the ridge-regression setting, we may consider an explicitly
constrained equivalent to (2.1.6) as graphically represented in Figure 2.1.3.
Due to the addition of a non-convex function, the overall M-estimator (2.1.6)
is also non-convex and it is therefore not guaranteed to have a single minima6.
As a result, we are required to perform exhaustive search over the model space.
The naive combinatorial cost for checking subsets scales as orderO(2p). Hence,
while routines such as forward selection may provide a method to perform this
search, they are only feasible for very small problems of size p ≈ 10→ 40.

In summary, the subset selection methods inspired by BIC can allow for a
sparse selection of parameters; however, this comes at a high computational
cost due to inherent non-convexity. In the next section, a third penalty func-
tion is introduced, which acts as a middle ground between the ridge regulariser
and sub-set selection methods. Crucially, this new penalty enables a convex,
and thus efficient search, whilst also possessing some parameter selection ca-
pabilities.

6Note: this can be seen graphically in Figure 2.1.3 where it is not possible to draw a straight
line (or linearly move) from the `0 level set on one axis to another.



42 2. REGULARISED ESTIMATION

2.1.3 Least Absolute Shrinkage and Selection Operator

In this section, possibly one of the most significant methodological ad-
vances in modern statistics is introduced. Motivated by the desire to maintain
convexity, while keeping the sparsity properties of an estimator, R. Tibshirani
(1996) proposed the least absolute shrinkage and selection operator, or lasso
estimator7. In practice, the lasso is simply another complexity penalty that
can be used in conjunction with the linear-regression least-squares estimator.
Written in the unconstrained form, the lasso is defined according to

(2.1.7) θ̂Lasso := arg min
θ∈Rp

1

2
‖y −Xθ‖2

2 + λ‖θ‖1 ,

where ‖θ‖1 :=
∑p

i=1 |θi| is known as the `1 norm. Crucially, unlike ridge
regression, the lasso is capable of selecting parameters; while, unlike exact sub-
set selection, it forms a convex problem. The lasso therefore takes a special
middle ground in the regularisation hierarchy; the `1 norm is the limiting case
for which an `p norm may be convex (c.f. Prop. 2.1).

Before further discussing the selection properties of the `1 regulariser, it is
worth taking some time to consider how the lasso and `1 regularisation relate,
not just to other ideas in this thesis, but also the wider literature. First of
all, given the interesting convex and selection properties of the lasso, there are
many many extensions to this method. In line with the M-estimation para-
digm, these can generally be seen as incorporating different prior knowledge
into the estimation of parameters. For example; the group lasso of M. Yuan
et al. (2006), the fused lasso (R. Tibshirani et al. 2005), the elastic net8 (Zou
and Hastie 2005), and generalised lasso9 (R.J. Tibshirani and J. Taylor 2011),
all enable a practitioner to incorporate prior knowledge into an estimate. Fur-
thermore, the development of the lasso, and more general shrinkage estimators
is closely tied with work in signal processing where the problem (2.1.7) is often
referred to as basis pursuit denoising problem (BPDN) (Candes et al. 2005)10.
7The original lasso paper by Tibshirani had (according to Google) approximately 9500 cita-
tions in 2014, today, it has over 20,000.
8A linear combination of `1 and `2 penalties.
9The penalty is constructed of a linearly transformed parameter, i.e. ‖Tθ‖1.
10One can interpret the lasso problem as attempting to find a sparse (in the `1 sense) set of
basis vectors in which to approximate y.



2. LINEAR REGRESSION 43

Figure 2.1.4 – Comparison of p-norm constraints, for p = 0, 1, 2 corresponding
to exact, lasso and ridge regression respectively. Shaded areas represent areas in
which if the MLE/LS estimate falls then only one of the two parameters (x1, x2)
will be selected. The `2 norm does not select an explicit sparse subspace. In the
`0 case we assume that the constraint level is set to ‖x‖0 ≤ 1.

In Chapter 5, these relationships are explored in more detail, in the context of
wavelet denoising (D. L. Donoho et al. 1995; D. Donoho 1995; D. Donoho et
al. 1994) and non-parametric smoothing (R.J. Tibshirani 2014). As hinted at
earlier in the introduction, one of the main aims of this chapter is to motivate
the formulation of convex M-estimators. Additionally, we note that the prop-
erty of sparsity is desirable from an interpretability point of view. The lasso
estimator provides the canonical M-estimator which possesses both convexity
and sparsity properties. More importantly for this thesis, the lasso also has a
counterpart which can be used for dependency analysis, known as the graph-
ical lasso (Banerjee et al. 2008; Friedman, Hastie, and R. Tibshirani 2008).
This is further discussed in Section 2.3.5; however, has direct parallels with
the ideas introduced here.

Let us now further consider the properties of the lasso estimator. As with
the ridge-regression, the problem (2.1.7) can be written in an explicitly con-
strained form:

θ̂Lasso : = arg min
θ∈Rp

1

2
‖y −Xθ‖2

2

subject to ‖θ‖1 ≤ l .(2.1.8)

Again, as in (2.1.5) given (y,X) there is a one-one mapping between the
threshold l and regularisation parameter λ. It seems then, that the lasso can
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also be interpreted as constraining an estimator through projection onto a
norm ball. In the case of the lasso we have the constraint that the optimal
point θ̂

∗
, should lie in a feasible sub-level set

(2.1.9) C`1 = {θ ∈ dom(‖ · ‖1) | ‖θ‖1 ≤ l} ,

where θ̂
∗
∈ C ⊆ Rp. At first it is not clear how such a restriction enforces

sparsity within the estimates. Again, such a property is perhaps best demon-
strated geometrically. Figure 2.1.4 demonstrates the contrasting shapes of the
constraint sets provided by the different p-norms considered so far. In both the
`0 and `1 cases, corresponding to subset and lasso selection respectively, it is
quite clear that the norm is not smooth at the boundaries between quadrants.
This lack of smoothness mandates that within large regions of the parameter
space, estimates will be constrained simply to a point. Since the example in
Figure 2.1.4 considers a model with two parameters, one of the parameters will
be shrunk exactly to zero, hence we obtain a sparse estimate.

The convexity of both the lasso and ridge regression (`1, `2) constraints is
evident from Figure 2.1.4; one can easily see how it is possible to linearly move
from point to point within the sets. As previously mentioned, in the exact-
selection `0 case (2.1.6), we find the function f(x) = ‖x‖0 is not convex; the
sub-level set for the `0 function the set only contains entries at the axis where
x1 or x2 are zero. However, while the `1 norm is convex, it is not continuously
differentiable and possesses a discontinuity at the origin. In the next sections,
an extended calculus which can deal with discontinuous functions is introduced.
The enables us to minimise the lasso objective and further assess the behaviour
of the estimator.

2.1.4 Optimality Conditions for the Lasso

The lasso allows us to encourage some level of sparsity and selectivity within
our model parameterisation whilst maintaining convexity. However, unlike in
the ridge-regression or least squares problems, the lasso problem involves a
non-smooth ‖x‖1 penalty term. There is a clear discontinuity at the origin,
as seen in Figure 2.1.5. In order to evaluate the minima of the M-estimators,
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Figure 2.1.5 – The lasso regulariser term R(x) = λ‖x‖1. Note, the gradient
is classically well defined for all regions except the origin where there is a clear
discontinuity.

we introduce a concept known as a subdifferential which provides a value, or
a set of values, for the gradient at all points:

Definition 2.2. Let f ∈ conv(V), and V∗ be the dual space of V. The vector
ψ ∈ V∗ is called a subgradient of f at x ∈ V if

(2.1.10) f(y) ≥ f(x) + 〈y − x,ψ〉 for all y ∈ V .

The subdifferential is defined as the set of subgradients at x. For a convex
function this is given as the closed interval ∂f(x) = [a, b] with one-sided limits:

(2.1.11) a = lim
y→x−

f(y)− f(x)

y − x
, b = lim

y→x+

f(y)− f(x)

y − x
.

In the above case, if the limits from both sides are equal then the subdiffer-
ential contains only a single entry and the function is classically differentiable
at that point. Crucially, we now have the ability to deal with discontinuous
functions through the notion of the subdifferential set ∂f(x) ∈ [a, b]. For
example, the subdifferential of the `1 norm over x ∈ Rp is given as:

(2.1.12) ∂‖x‖1 ∈

{sign(xi)} if xi 6= 0

[−1, 1] if xi = 0
, for i = 1, . . . , p.

The minima of the convex lasso problem can now be found by considering that
the gradient evaluated an optimal point θ∗ must be zero
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0 ∈ ∂L(θ, λ)|θ=θ∗

= ∇(
1

2
‖y −Xθ‖2

2) + λ∂‖x‖1

= −X>y +X>Xθ + λ∂‖x‖1 ,(2.1.13)

Rearranging, we arrive at the so-called Karush-Kuhn-Tucker (KKT) optimal-
ity conditions for the lasso

(2.1.14) X>(y −Xθ∗) ∈ λ∂‖x‖1 .

Note that there is no equality in the above statement, as even though the lasso
problem (2.1.7) is convex, it is not always strictly convex, this is espcially the
case when p � N . Generally, further analysis of the curvature of the loss
function is required in order to show estimation stability. Further discussion
of this is provided in Sec. 2.4. A requirement for strict convexity means
the standard lasso problem saturates and can only select up to N variables
(Bühlmann et al. 2011). If one wishes to include more variables, it is possible
to use extensions such as the elastic-net (Zou and Hastie 2005) which utilise
a combination of `2 and `1 penalties.

Due to the importance of the lasso estimator and `1 regularisation through-
out the thesis, it is useful to discuss further properties of the estimators. In
the next section, we discuss the application of lasso in the simple orthonormal
design case, where closed form solutions are available. In the general case one
requires an optimisation scheme which can deal with non-smooth functions.
Some machinery for optimising such functions is introduced in Sec. 2.2.1.

2.1.5 Analysis in the Orthonormal Design Case (a rela-
tion to thresholding)

An intuitive understanding of the lasso is gained if one considers the or-
thonormal case where X>X = I ∈ Rp×p. Clearly, in this case rank(X>X) =

p, and thus we are not restricted by the stability considerations that we faced
previously when dealing with design matrices with p > N . It is also worth
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Figure 2.1.6 – Comparison of soft and hard thresholding operators, correspond-
ing respectively to the `1 and `0 proximity operators. The dashed line indicates
the shrinkage/selection of the adaptive lasso.

remarking that the lasso problem with an orthogonal design is directly related
to the problem of denoising via wavelet shrinkage (see Chapters 5,6).

Proceeding to set X>X = I in Eq. 2.1.13, gives us the KKT conditions
in the orthonormal case:

θ = X>y − λ∂‖x‖1 .

In the orthogonal situation the least squares solution is given as θ̂LS = X>y.
Given that the subdifferential is defined at the individual parameter level, then
for i = 1, . . . , p , for the active components (i.e θi 6= 0) we now have

θi = θ̂
(i)
LS − λsign(θi) .

Furthermore; if θi < 0, then θ̂(i)
LS < −λ; and if θi > 0, then θ̂(i)

LS > λ. Finally, in
the case |θ̂(i)

LS| > λ we have sign(θi) = sign(θ̂
(i)
LS); we thus obtain

θi = sign(θ̂
(i)
LS)(|θ̂(i)

LS| − λ) .

In the alternate case, where |θ̂iLS| < λ, we have, from the subgradient; θi =

λ[−1, 1]− θ̂iLS = 0. Gathering the two cases together we find

θ̂
(i)
Lasso =

0 if |θ̂(i)
LS| < λ

θ̂
(i)
LS − λsign(θ̂

(i)
LS) if |θ̂(i)

LS| > λ
.
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The above can be re-written as below and is known as the soft-thresholding
operator

(2.1.15) θ̂Lasso = soft(θ̂LS;λ) := sign(θ̂
(i)
LS)max(|θ̂(i)

LS| − λ, 0) ,

for each element i = 1, . . . , p. From the above, the solution of the lasso in the
orthonormal case acts as a thresholding operator on the ordinary least squares
solution.

Figure 2.1.6 demonstrates the effect of this operator in comparison to that
of the hard-thresholding operator which arises in the `0 penalisation case.
The lasso solution not only selects certain parameters when |θ̂(i)

LS| < λ, but
when parameters are non-zero this adds a shrinkage bias with respect to the
LS estimates. The bias associated with shrinkage is often undesirable. For
example, Bühlmann et al. (2011) discuss how this may lead the lasso to over-
estimate the number of true active covariates.

2.2 Convex Optimisation
Whilst we have discussed solutions of the lasso in the orthonormal setting,

methods to solve the general design case have not been discussed. In this
section a modified approach to gradient descent is introduced that enables
us to deal with non-smooth objectives. Additionally, a method for splitting
objective functions up into simpler problems is introduced. For more details
and a complete review on convex optimisation, the texts by Boyd, Parikh,
et al. (2011) and Nesterov (2007) and Boyd and Vandenberghe (2004) are
recommended.

2.2.1 Proximal gradient descent

In conventional (smooth) optimisation problems the canonical approach to
obtaining minima is via gradient descent type algorithms. Extending gradi-
ent descent methods to cope with non-smooth objectives requires re-thinking
how we step through parameter space when faced with discontinuous func-
tions. One such method, known as proximal gradient descent revolves around
minimising a surrogate function known as the Moreau envelope.
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Definition 2.3. The Moreau envelope or Moreau-Yoshida regularisationMλf

of the function λf is defined as:

(2.2.1) Mλf (v) = inf
x

{
f(x) +

1

2λ
‖x− v‖2

2

}
.

The Moreau envelope can be interpreted as a smoothed form of f that has
domain dom(Mλf ) ∈ Rp and is continuously differentiable even when f is not.
Furthermore, the sets of minimisers for f and Mf are the same (see Nesterov
(2005)). This property can be useful for generalising gradient descent methods
to non-smooth objectives, such as those found in the lasso.

Proposition 2.2. Geometric Moreau
Let f be convex and closed on the Hilbert space V = H, with dual V∗ = H.

Then for every z ∈ H there is a unique decomposition

(2.2.2) z = x̂+ψ with ψ ∈ ∂f(x̂) ,

and the unique x̂ in this decomposition can be computed with the proximal
operator:

(2.2.3) proxf (z) := arg min
x∈H

{1

2
‖x− z‖2

H + f(x)
}
.

Proof. See Parikh et al. (2013) and Rockafellar (1970).

Essentially, this result provides us with a way to move along our function by
stepping in the direction given by the gradient (sub-gradient) ψ. The Moreau
envelope can now be related to the proximal operator, as the proximal operator
returns the minimal value of Mλf , such that

Mf (x) = f(proxf (x)) +
1

2
‖x− proxf (x)‖2

2 .

Proposition 2.3. Let ẑ be a fixed point, such that; ẑ = proxf (ẑ). The min-
imiser of the functional f is thus ẑ.

Proof. This is a consequence of Moreau’s theorem 2.2.2, where we have ẑ ∈
proxf (ẑ) + ∂f(ẑ) ⇐⇒ 0 ∈ ∂f(ẑ).
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For a given point x = proxλf (z) and λ > 0 from 2.2.2 we have z ∈
x+ ∂λf(x) ⇐⇒ x ∈ z − λ∂f(x). The proximal operator therefore steps us
through our parameter space with an implicit subgradient descent step of size
λ. Iterating according to

(2.2.4) xk+1 = proxλf (xk) ,

then leads to a convergent sequence until we arrive at a fixed point, at which
the function f is minimised.

2.2.2 Alternating Directed Method of Multipliers (ADMM)

If one can calculate the proximity operator for the regulariser term R(θ),
then Eq. 2.2.4 allows for a simple and effective gradient descent approach
(Beck et al. 2009; Nesterov 2007; Wright et al. 2009). For some estimators
such as those considered later in this thesis, a closed form solution for the
proximity operators is not so obvious. A popular approach to solve problems
with more complex regularisers is to attempt to split up the objective func-
tion into separate simpler optimisation problems. The Alternating Directed
Method of Multipliers (ADMM) approach provides a way to do this splitting
and is briefly introduced in this section. Specific versions of this algorithm are
discussed in more detail in Chapters 3 and 6.

ADMM constitutes what is known as a dual-ascent algorithm, whereby the
minima

(2.2.5) min
u
f(u) subject to Au = b ,

can be obtained by maximising a different so-called dual function. Consider
the Lagrangian function of the original constrained (2.2.5) problem

L(u, q) := f(u) + 〈q,Au− b〉 ,

where q may be referred to as Lagrange multipliers or dual variables. The dual
function is then defined as the minimiser of the Lagrangian:

g(q) := inf
u
L(u, q) .

An optimal value for the primal problem can be recovered from an optimal
value for the dual q∗ := arg maxq g(q) according to u∗ = arg minu L(u, q∗).
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Furthermore, if a property of the problem known as strong-duality holds, then
the optimal values of the primal and dual problems are the same, i.e. f(u∗) =

maxq g(q).
Dual ascent methods therefore work by iteratively maximising the dual and

finding the mapping to the primal problem. For example, one may iteratively
update the primal estimate u(k) according to:

u(k+1) := arg min
u
L(u, q(k))

q(k+1) :=u(k) + α(k)(Ax(k+1) − b) ,(2.2.6)

where α(k) is a step-size parameter. A simple modification to the above
(known as the method of multipliers) introduces a regularisation term to the
Lagrangian and solves the problem

(2.2.7) min f(u) +
ρ

2
‖Au− b‖2

2 subject to Au = b ,

while when completing the dual update one sets α(k) = ρ. Clearly, when the
constraint is met, the additional function is zero, and thus does not alter the
minima. However, the additional term helps add curvature to the Lagrangian
Lρ(u, q) at non-optimal points, and thus allows convergence under more gen-
eral conditions (on f) than pure dual-ascent Boyd, Parikh, et al. (2011). To
see how such methods help us split up M-estimation problems, consider the
constrained optimisation problem:
(2.2.8)

min
u

{
L(u) +R(v) +

ρ

2
‖Au+Bv − c‖2

2

}
such that Au+Bv = c ,

where v is known as an auxiliary variable. Specifically, if we set A = I,
B = −I and c = 0, then the optimisation problem looks very similar to the
M-estimator formulation (2.0.1). The augmented Lagrangian for the above is
given as

Lρ(u,v, q) := L(u) +R(v) +
ρ

2
‖Au+Bv − c‖2

2 + 〈q,Au+Bv − c〉 ,

or equivalently

(2.2.9) L′ρ(u,v,p) := L(u) +R(v) +
ρ

2
‖Au+Bv − c+ p‖2

2 ,
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where p = ρ−1q is a scaled dual variable. Performing dual ascent on (2.2.8)
results in what is known as the Alternating Directed Method of Multipliers
algorithm

u(k+1) := arg min
u
L′ρ(u,v(k),p(k))

v(k+1) := arg min
v
L′ρ(u(k+1),v,p(k))

p(k+1) :=u(k) +Au(k+1) +Bv(k+1) − c .

In the above scheme we note that the updates are separated across u,v which
gives rise to the alternating direction name. This can be contrasted with a pure
dual-ascent approach which would solve (u(k+1),v(k+1)) = arg minu,v Lρ(u,v,p

(k)).
In the formulation given above the objective is linear separable, i.e. L is only
a function of u and R is only a function of v. The ADMM algorithm can
harness this property of the objective to separate the optimisation problem
into two (potentially easier) problems. Furthermore, when considered in the
context of L′ρ(u,v,p), the updates for u(k+1), v(k+1) take the form of proximity
operators. For example, with the lasso L(u) =∝ ‖y−Xu‖2

2 and R(v) ∝ ‖v‖1

results in the updates

u(k+1) =proxρ`2(v
(k) + p(k))

v(k+1) =prox(λρ)`1(u
(k+1) + p(k)) .

Since in many cases the proximity updates have closed form solutions, the
iterates of the ADMM routine may be computed with remarkable efficiency.
In practice, there are many different variants of ADMM and proximal splitting
algorithms (Combettes et al. 2011; Glowinski et al. 1989). For example, in the
next chapter (Sec. B.3) an approach to splitting the objective into more than
just two blocks proves useful (X. Wang et al. 2015). For proof of convergence
for the ADMM iterates, the reader is directed towards Deng et al. (2012) and
Lin et al. (2014). Furthermore, given linear separability of updates, one can
often trivially distribute such optimisation algorithms (Boyd, Parikh, et al.
2011).

In summary, the ADMM algorithm presented above enable us to use very
simple closed form proximity updates to solve a wide range of large scale op-
timisation problems. In relation to the rest of the thesis, throughout Sections
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3.2 and 6.4.4 several variants of ADMM are utilised to break up large, oth-
erwise computationally infeasible optimisation problems. In the next section
the discussion switches back to statistical modelling where a link between the
lasso and estimation for graphical models is made.

2.3 Graphical Models and Dependency Modelling
As a prelude to dependency modelling, the linear regression model was

previously introduced and discussed in the high-dimensional setting. Linear
regression forms what is commonly referred to as a discriminative model and
aims to describe the conditional distribution P [Y = y| ~X = x] over a target
label y ∈ Y based on inputs x ∈ X . In particular, linear regression does not
aim to model relationships between the covariates. Alternatively, one can use
what are known as generative models to try and represent the joint distribution
P [Y = y, ~X = x]. Not only can these models be used in a predictive task,
i.e. to find the conditional P [Y |X]11, but they can also describe statistical
relationships between the covariates.

Unlike in linear regression, where each covariate can have an impact on
the distribution for Y , in the generative model one needs to model not only
these relations, but also assess the impact of the covariates on each others.
As such, generative models generally possess more degrees of freedom when
compared to their discriminative counterparts. Due to such model flexibility,
in order to stabilise model estimation there is correspondingly greater require-
ments for prior knowledge. One form of prior knowledge, is that relationships
between variables may be described in relation to a network or graph. In this
section the concept of a graphical modelling is introduced in the context of
both directed and undirected graphical models. The sub-class of relatively
simplistic Gaussian graphical models (GGM) are then introduced which form
the basis for many of the models and estimators in this thesis. Estimation of
GGM and particularly the underlying graph structure is then discussed, in the
high-dimensional setting clear parallels to the linear regression estimators can
be drawn.

11One can simply condition on the covariates X by considering P (Y |X) = P (Y,X)/P (X) =
P (Y,X)/

∫
Y P (Y,X)dy.
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2.3.1 Directed Graphical Models

Let ~X ≡ (X1, . . . , Xp)
> ∼ D(θ) be set of random variables drawn from

some distribution with parametric joint distribution given by P [ ~X = x] ≡
fD(x,θ).12 Now let G(V,E) define a graph with a set of V = {1, . . . , p} ver-
tices and E ⊂ V × V edges. A directed graphical model aims to represent
the joint distribution f() as a product of functions defined with respect to
conditionally dependent sets of variables. Specifically, if a variable Xi is con-
ditionally dependent on another Xj then the graph G(V,E) will contain a
directed edge (i, j) ∈ E. The directed graph decomposes the joint distribution
over these edges with functions relating to variables and their parent nodes
such that

fD(x,θ) =
∏
v∈V

fv(xv, xPa(v),θv) ,

where fv is a function for each vertex in the graph and xPa(v) are the values
of nodes belonging to vertices that are parents of v. Figure 2.3.1 provides
an example of such a graphical model where the joint distribution can be
factorised according to fD(x1, x2, x3) = f1(x1)f2(x2)f3(x1, x2).

The canonical example of such a directed graphical model is the so-called
Bayesian network. In these models the underlying graph G takes the specific
form of a directed acyclic graph (DAG), the graph possesses no directed cycles
such that there is no way to start at one vertex and follow edges to arrive
back at that edge. Such models are particularly useful for representing causal
relationships between variables. For example, if X3 represents whether grass
in your garden is wet, X1, X2 might be used describe whether it has rained,
and whether the sprinkler has been turned on or off. These variables can then
be used to predict, through the directed dependencies the state of the grass.
For more details on directed graphical models the reader is directed to the
excellent reviews of Jordan (2004) and Koller et al. (2007) .

12In the rest of this section no distinction is made between the label variable Y and the
covariates X. Instead all variables under consideration are contained in the random vector
X.
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Figure 2.3.1 – Left: Example of a directed graph. Right: Example of an
undirected graph.
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Figure 2.3.2 – Left: Example of a set of maximal cliques in relation to an
undirected graph. Right: Example of a set of separating vertices C.

2.3.2 Undirected Graphical Models (UGM)

An alternative to directed graphical models is to look at distributions which
factor over undirected graphs. In this case there can only be a maximum
of one edge between two vertices. The edge can no longer encode a causal
relationships as before, but instead describes a correlatory relationship between
variables. Rather than decompose with respect to functions describing the
conditional dependency between a variable and its parents, a UGM decomposes
with respect to potential functions gc over maximal cliques c ∈ C (see Figure
2.3.2)13, such that

f(x1, . . . , xp) =
1

Z

∏
c∈C

gc(xc) ,

where xc represents variables included in the clique c and Z is a noramlisation
constant. If certain properties of these decompositions hold, then the graphical
models are referred to as Markov networks or Markov random fields.

13A Maximal clique is a fully connected sub-graph, such that the inclusion of an additional
vertex also requires additional edges.
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Definition 2.4. Markov properties
The distribution D satisfies the global Markov property with respect to

the undirected graph G if for any triple disjoint sets A,B,C ⊆ V whereby
C separates A,B the independence relation XA ⊥ XB|XC holds. A weaker
condition is that the distribution satisfies the local Markov property, a special
case of the above where A = {i}, B = {j} and C = V \{i, j} for all unconnected
vertices i 6= j ∈ V .

This property allows us to link conditional dependencies between vertices
based on separating vertices within the general set C ⊆ V . However, this does
not guarantee that a conditional dependency XA ⊥ XB|XC in the distribution
D necessarily results in a node separator in the graph. For this a further
requirement is defined below.

Definition 2.5. Faithfullness
The probability distribution D is faithful to the graph G if for every triple

of disjoint sets A,B,C ⊆ V ,

C seperates A and B ⇐⇒ XA ⊥ XB|XC

Faithfulness is a strong condition on a graphical model, such that all con-
ditional dependencies permitted by D are represented by G. In general this is
not true, and whilst the graphical model will permit us to represent some de-
pendencies, the distribution D may permit independence relations not encoded
by the graph. An example to demonstrate the consequences of unfaithfulness
is given in the next section. Finally, it is worth noting that some directed
graphical models can be related to undirected ones by confounding the ef-
fect of parent variables and representing dependencies according to the global
Markov property.

Definition 2.6. Moralised DAG
A moralised graph GM is constructed by converting all edges in the DAG to

be undirected and connecting the parents of any node with an undirected edge.
For example X1 and X2 in Figure 2.3.1.
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Theorem 2.1. Markov Moral Graph
If a probability distribution factors with respect to a DAG GDAG, then it

obeys the global Markov Property with respect to its moralised undirected graph
GM.

2.3.3 Gaussian Graphical Models

Specifically, in this chapter (and throughout this thesis) the set of para-
metric Gaussian Graphical Models (GGM) is considered whereby the joint
distribution follows a multivariate normal distribution, such that14

(2.3.1) (X1, . . . , Xp)
> ∼ Np(µ,Σ).

The Gaussian nature of such models restricts them to modelling linear de-
pendencies between continuous valued variables. However, they have several
important benefits when it comes to identifying graphical model structure. In
particular, with the GGM there is a direct connection between the second-order
properties of the variables, i.e. covariances, and the conditional dependency
structure (Lauritzen 1996).

To make a statement about the conditional independence properties and
relate this to the edge set E, one must look at the partial correlation between
variables. The partial covariance is defined as the covariance between two
variables conditioned on the rest

ParCov(Xi, Xj, V \{i, j}) := Cov(Xi|XV \{i,j}, Xj|XV \{i,j}) ,

where in this case XV \{i,j} is the set of all variables excluding the i, jth ele-
ments.

A special property of the Gaussian distribution is that the global and local
Markov properties are equivalent (see Lauritzen 1996 for proof). This property
allows one to show that a pairwise independence Xi ⊥ Xj|XV \{i,j} for an edge
(i, j) implies its exclusion from the set E. In the Gaussian case the pairwise
partial-covariance is encoded through entries in the precision matrix Θ = Σ−1,
whereby

ParCov(Xi, Xj, V \{i, j}) = 0 ⇐⇒ Θi,j = 0 .

14For simplicity, in this thesis it is assumed the mean parameter is zero, i.e. µ = 0
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A key corollary of this result is that if we can estimate accurately from data
this precision matrix, and in particular the pattern of zeros, then we may infer
GGM structure and highlight some dependencies between variables.

Essentially, all models are wrong, but some are useful - (Box
et al. 1986)

Nowhere is such a quote more valid than when implementing a GGM. Care
should especially be taken when interpreting estimated graphical model struc-
ture. Recovering the dependency structure of a graphical model is a compli-
cated task even in standard statistical settings, let alone in the high-dimensional
settings we will consider in this thesis. As such, one should take the estimated
graphical structure with some skepticism and model structure should be inter-
preted in conjunction with both common sense and scientific theory.

Remark 2.2. Example: Unfaithful GGM
An example of an unfaithful GGM can be found in Figure 2.3.1. Specifi-

cally, consider the linear regression construction15

X1 = ε1, X2 = αX1 + ε2, X3 = βX1 + γX2 + ε3,

where εi
iid∼ N (0, 1), and ε3 ⊥ {X2, X1}, ε2 ⊥ X1. In the above setup, de-

pendency between variables is described by the coefficients (α, β, γ). If one
sets β + γα = 0, then assuming Gaussianity we find (X1, X2, X3) ∼ N3(0,Σ)

and Cov(X1, X3) = Σ1,3 = 0 =⇒ X1 ⊥ X3. However, examining the in-
verse covariance matrix (relating to partial correlation) we may generally find
Σ−1

1,3 6= 0 =⇒ X1 6⊥ X3|X2. There is no undirected graph which permits
X1 ⊥ X3 but also allows X1 ⊥ X3|X2 thus in this case the GGM is said to be
unfaithful.

Such an example serves to remind us that while we can infer some, we may
not in infer all of the dependencies from the graph structure. For a GGM to
be faithful we need to encode an independence relation (i.e. no edge in the
graph) when ParCov(Xi, Xj, C) = 0 for some subset C ⊆ V as opposed to all
other variables C = V \{i, j}. This is a stronger condition on the graphical
model, and we would expect to obtain fewer edges in a faithful GGM. To this
end, the work of Soh et al. (2014) provides an interesting direction, suggesting
15See Bühlmann et al. 2011 p446-449 for more on this and other examples of unfaithful
UGM.
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it may be possible to test a GGM for faithfulness. In the proceeding sections,
and throughout the rest of the thesis the issue of faithfulness is not consid-
ered, however it is worth keeping in mind when interpreting extracted graph
structures.

Remark 2.3. Non-Gaussian graphical models
It is beyond the scope of this chapter to fully review all forms of graphical

model construction and estimation. However, it should be noted that there is a
rich literature on this subject. In particular, whilst the precision matrix encodes
the dependency structure of a GGM, generalisations to other distributions can
be made by altering the loss function (as in the neighborhood selection case).
Some notable examples include incorporating losses for binary variables via an
Ising model (Ravikumar, Wainwright, and J.D. Lafferty 2010), count variables
with a multivariate Poisson (E. Yang et al. 2013), or to a non-parametric
setting via a non-paranormal (c.f. copula) model (J. Lafferty et al. 2012).
Further to the above regularised approaches, one may also consider explicitly
constrained approaches such as the CLIME estimator of Cai et al. (2011).

2.3.4 Estimation for GGM

In the previous section we defined GGM in a static (i.i.d) setting where
a relationship between the precision matrix of the Gaussian distribution and
the graphical edge structure was discussed. In this section we consider how
one can practically and robustly estimate the sparsity structure within the
precision matrix.

In the GGM case, learning appropriate structure for the graphical model
can be linked with the general M-estimation framework of (2.0.1) through a
ML or Maximum a-posteriori (MAP) paradigm. Assuming N observations
X ∈ Rp×N drawn as i.i.d samples, the model fit function L(·) can be related
to the likelihood specified by the multivariate Gaussian. Typically, one prefers
to work with the log-likelihood, which is given by

1

N
log(P [X|Θ]) =

1

2
log det(Θ)− 1

2
trace(ŜΘ)− p

2
ln(π) ,

where Ŝ = N−1XX> is often referred to as the empirical covariance matrix.
Setting the loss function as L(·) = − log det(Θ) + trace(ŜΘ) gives (in the
setting where N > p) a well-behaved smooth, convex function describing how
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well the distribution parameterised by Σ describes the dataX. If one considers
Eq. 2.0.1 with the function R(·) = 0, i.e. no complexity penalty, then the
resultant problem gives a ML estimate for the precision matrix

(2.3.2) Θ̂ML := arg min
Θ�0

[
− log det(Θ) + trace(ŜΘ)

]
.

We note some properties of this estimate:

• In general the estimator will be dense (not many zeros) and therefore the
inferred GGM will be close to being complete.
• The estimator exhibits large variance when N ≈ p and is very sensitive to
changes in observations leading to poor generalisation performance.
• In the high-dimensional setting (p > N), the sample estimator is rank
deficient (rank(Ŝ) < p) and there is no unique inverse for Ŝ. This setting
is is extremely important in dynamic graph estimation (Chapter 3).

2.3.5 Sparsity Assumptions

In order to avoid estimating a complete GGM graph where all nodes are
connected to each other, one must actively select edges according to some cri-
teria. In the asymptotic setting where N � p one can test for the significance
of edges by considering the asymptotic distribution of the empirical partial
correlation coefficients (ρ̂ij = −Θ̂ij/Θ̂

1/2
ii Θ̂

1/2
jj ) (Drton et al. 2004). However,

such a procedure cannot be performed in the high-dimensional setting as it
requires that the empirical estimates be positive semi-definite. As discussed
below, techniques for stabilising precision matrix estimation mirror those of
the linear regression case.

BIC, AIC, `0-regularisation, hard-thresholding

An alternative approach to testing is to utilise some prior knowledge about
the number of edges in the graph. If we assume a flat prior on the model16

M and parameters Θ(M), maximising the approximate posterior probability
over models P (M|Y ) leads to the Bayesian information criterion for GGM
(Foygel et al. 2010)

(2.3.3) BIC(Θ̂ML) = n(− log det(Θ̂ML) + trace(ŜΘ̂ML)) + ŝ log(n) ,

16Note: the model here refers to the sparsity pattern, rather than the fact that the distri-
bution is Gaussian.
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where ŝ is given by the number of unique non-zeros within the ML estimated
precision matrix Θ̂ML. Unfortunately, as in the linear regression setting, the
complexity penalty R() = ŝ log(n) is non-convex and thus requires an infeasible
computational search.

Graphical Lasso, `1-regularisation, soft-thresholding

Similarly, to the lasso one may place a Laplace type prior on the precision
matrix entries in an effort to directly shrink off-diagonal values (Friedman,
Hastie, and R. Tibshirani 2008; J. Lafferty et al. 2012; H. Wang 2012; Zhou
et al. 2010). While one could choose to perform full Bayesian inference for the
posterior P (Θ|X, γ), as examined by H. Wang (2012), a computationally less
demanding approach is to perform MAP estimation resulting in the graphical
lasso problem (Friedman, Hastie, and R. Tibshirani 2008)

(2.3.4) Θ̂GL := arg min
Θ�0

[
− log det(Θ) + trace(ŜΘ) + λ‖Θ‖1

]
,

where ‖Θ‖1 =
∑

i 6=j |Θi,j| is the matrix `1 norm of Θ. As with the lasso,
and convex M-estimators generally, there are many efficient optimisation tech-
niques avialiable to solve such problems (see Banerjee et al. (2008) and X.
Yuan (2011)). Additionally, due to the convexity of the problem it is easier
to theoretically analyse estimator properties, as we will see in the following
sections.

Neighborhood selection

A final alternative, and direct link to linear regression, is to attempt to split
the problem up and study the edges connecting each variable separately. Such
a neighbourhood selection process involves fitting a sparse regression model of
each variables on the others and then iterating across nodes. Indexing the
vector of data for variable i as xi and the data without variable i as X\i, then
a sparse set of estimates can be obtained via the lasso

(2.3.5) θ̂
(i)

:= arg min
θ∈Rp−1

(N−1‖xi −X\iθ‖2
2 + λ‖θ‖1) ,

for i = 1, . . . , p. The individual estimates θ̂(i)
j can the be related to a row or col-

umn in the precision matrix Θi,j. For the static case, such a procedure is shown
to be consistent for recovering the support of a precision matrix (Meinshausen
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Figure 2.3.3 – Graphical models estimated from a set of log-return prices with
glasso (top) and neighbourhood-selection (bottom).

and Bühlmann 2006). However, a neighbourhood selection approach does not
necessarily result in positive semi-definite estimates for Θ and therefore cannot
be used to define a GGM. To estimate an actual probability distribution one
would be required to find a positive semi-definite solution which is close to the
graph selected via neighbourhood selection.

Remark 2.4. Global vs local graph estimation
While the graphical lasso and neighbourhood selection approaches can both

be used to recover GGM structure, their estimates in practice appear very dif-
ferent. As an example of this, Figure 2.3.3 displays a set of adjacency pat-
terns estimated from 100 stock prices from the S&P500 over 1258 trading days
(2003-2008).17. To generate the estimates both glasso and neighbourhood se-
lection methods were run (via R package huge T. Zhao et al. (2012)) over a
path of 20 values of λ. The illustrated graphs correspond to estimates at points

17The data-set is included within the huge package, and the 100 stocks chosen correspond
to the first 100 of the listed 452 available through the packaged data-set.
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in this path selected via an approach known as Stability Approach to Regulari-
sation Selection (StARS) (H. Liu et al. 2010)18. Whilst this simply constitutes
one empirical example of graph estimation with the two methods, there are
clear differences between the estimated graphs. Which is the better method
to use will in practice depend on the application and in particular, whether
a local (node-wise) or global view (graph-wise) of the dependency structure is
prioritised.

Given that most of this thesis deals with describing dependency structures,
the ideas contained in this section will come up frequently; see Chapters 3, 4
and 7. In particular, one of the main novelties of this work is to extend these
models to settings where samples are not assumed to be either identically or
independently distributed. In the next, and final section of this introduction,
we consider how one can analyse M-estimators in a theoretical sense. For
example, it is possible to derive bounds on the estimation error under sampling
from a presumed ground-truth distribution. Additionally, one may consider
how well these estimators can theoretically recover the support of a model, in
the context of a GGM how well can we recover the true graph.

2.4 Theory for Regularised estimation
So far, a set of various M-estimators for both linear regression, and precision

matrix (GGM) estimation have been discussed. While such estimators have
beneficial properties in that they enable high-dimensional estimation, they are
intrinsically difficult objects to study statistically. For example, it is hard to
derive distributional properties of general M-estimators. This section serves to
introduce some recently developed mechanisms for analysing theoretical prop-
erties of M-estimators. While this does not give us a full distribution for the
estimates, it can give us upper bounds on the estimation errors. In traditional
statistical asymptotics the number of data-points can run to infinity, but the
number of parameters is fixed. However, since we are applying M-estimators
in high-dimensional settings, we are generally more interested in how the es-
timators behave when the number of data-points is fewer than the number of
18The StARS method forms an alternative post-regularisation procedure to BIC/AIC and
considers selecting the smallest lambda for which the graph is to some sense sparse, and
replicable (under re-sampling c.f. cross-validation).
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parameters. To this end, the methods in this section provide a pathway for
bounding estimation error even when the model dimensionality grows faster
than the number of data-points.

The general framework described here is based on the work of many authors
over the past decade, but is most succinctly described in Negahban et al.
(2012). In what follows, I aim to give a concise description of the framework
described in this paper.

2.4.1 M-estimators and decomposability

To start with, let us consider a more rigorous definition of the M-estimator
as described in Eq. 2.0.1:

Definition 2.7. Regularised M-Estimator
Given a convex and differentiable loss function L(θ,XN) : Rp ×XN 7→ R,

where θ ∈ Rp is a parameter vector and XN = {x(1), . . . ,x(N)} is a set of N
i.i.d observations. A Regulairsed M-estimator is defined as:

(2.4.1) θ̂λN ∈ arg min
θ∈RP

{
L(θ;XN) + λNR(θ)

}
,

where λN > 0 is the familiar regularisation penalty, and R(·) : Rp 7→ R+ is a
norm.

Now, let the L̄(θ) = EX(N) [L(θ;XN)] denote the expected loss over the pop-
ulation, and the optimal estimator be obtained by the as θ0 ∈ arg minθ{L̄(θ)}.
The aim of the framework introduced in Negahban et al. (2012) is to de-
rive bounds which hold in high probability, on the difference between the M-
estimator θ̂λN and the population parameter ‖∆̂‖ = ‖θ̂λn−θ0‖. Additionally,
the theory provides for bounds on the regulariser norm, for example in the
lasso setting we may readily obtain bounds for ‖θ̂λN − θ0‖1.

The general idea of Negahban et al. (2012) is that one may capture er-
ror, as measured by the regulariser, by representing the population (denoted
with bar) and estimated parameters in terms of so-called active (model) and
non-active (perturbation) subspaces. To capture these different errors, let
us introduce the model subspace M ⊆ M̄ ∈ Rp and perturbation subspace
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M̄⊥ := {v ∈ Rp | 〈u,v〉 = 0 ∀u ∈ M̄}. Note, that in general, for an appropri-
ately constructed loss function, we will have alignment between the population
and estimated spaces, such that M̄⊥ = M⊥. Let us now consider how the
regulariser behaves in terms of these model spaces.

Definition 2.8. Decomposable norm
A norm regulariser R(·) is decomposable with respect to a pair of subspaces

(M,M̄⊥), whereM⊆ M̄⊥ if:

(2.4.2) R(θ + γ) = R(θ) +R(γ) for all θ ∈M ,γ ∈ M̄⊥ .

In some sense, if a norm is decomposable, it penalises perturbation max-
imally as for the model and permutation sub-sets the triangle inequality is
required to hold in equality. As an example, the lasso reguariser R(θ) ≡ ‖θ‖1

obeys decomposability with respect to subspaces of the support of θ. Specifi-
cally, if we were to partition θ into a) model subsets where the true parameters
are non-zero and b) perturbation subsets where the true parameters are zero,
then the `1 norm is decomposable with respect to the resultant subspaces (see
Appendix A.1).

It turns out, that if the regulariser of the M-estimator has decomposabil-
ity property, and its curvature (regulariser parameter λN) is appropriate, the
estimation error can be restricted to a specific bounded set (for a graphical
representation see Figure 2.4.1). To demonstrate this, let us introduce the dual
norm of the regulariser:

(2.4.3) R∗(v) := sup
u∈Rp\{0}

〈u,v〉
R(u)

= sup
R(u)≤1

〈u,v〉 .

As an example, in the `1 case the dual norm is given as the infinity norm;
R∗(v) = ‖v‖∞ := maxi=1,...,p |vi|. The result below, as demonstrated in Ne-
gahban et al. (2012) sets a specific condition on the regulariser such that it
bounds the gradient of the likelihood in terms of the dual norm.

Proposition 2.4. Restricted error set
Suppose that θ̂ is any optimal solution to the M-estimator in (2.4.1) with

a regularisation parameter such that
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0
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Figure 2.4.1 – Comparison of restricted error C(M,M̄⊥) sets for the `1 norm.
In this case, a 2-dimensional example ∆ = (∆1,∆2) ∈ R2, we have S = {2},
the model subspace is M(S) = {∆ ∈ R2|∆1 = 0} and the perturbation space
M⊥(S) = {∆ ∈ R2|∆2 = 0}. The set is restricted according to the norms,
see 2.4.5. Left: In the ideal case, the optimal point θ0 ∈ M, ie it lies on the
y-axis. Right: In the case where the optimal parameters lie outside M the set
is enlarged.

(2.4.4) λn ≥ 2R∗(∇L(θ0;XN)) .

Then for any (M,M̄⊥) for which R is decomposable (2.8), the error ∆̂ =

θ̂λn − θ0 belongs to the set

(2.4.5) C(M,M̄⊥;θ0) := {∆ ∈ Rp |R(∆M̄⊥) ≤ 3R(∆M̄) + 4R(θ0,M⊥)} .

2.4.2 Restricted Strong Convexity

The difficulty of an estimation problem may be considered in terms of how
much error we can expect between our estimate θ̂λN and the ideal population
parameter θ0. For example, Figure 2.4.2 demonstrates both a strongly and
weakly curved loss function; if the objective is not sufficiently curved, then it
may be hard or impossible to recover the correct parameterisation.

Since we have assumed the loss function (2.4.1) is differentiable, we can
study the first order Taylor expansion about the population parameter. The
error in such a Taylor expansion is given by
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00

Figure 2.4.2 – The effect of curvature on estimation accuracy. If our loss func-
tion is strongly curved (right), then the error between estimated and the popu-
lation parameterisation is small. The RSC condition places a constraint on the
curvature, however, only in directions that are relevant in terms of contributing
to ∆̂ = θ̂λN − θ0.

δL(∆,θ0) := L(θ0 + ∆)− L(θ0)− 〈∇L(θ0),∆〉 .

Classically, one way to ensure that the loss function is not too flat is through
the requirement of strong convexity. Specifically, this means that the error in
the expansion should be bounded from below such that δL(∆,θ0) ≥ κ‖∆‖2,
for some constant κ. A strongly convex loss function is also strictly convex,
and therefore has a unique and global minima. In the high-dimensional setting
where p > N , the standard least squares problem with L ∝ ‖y −Xθ‖2

2 is not
strongly convex; the loss function in some directions will be completely flat and
there is no unique minima19. Since the lasso uses the same loss function, we
may expect that we could be faced with the same issue even in the regularised
case. However, if we have a sparse support such that we can construct appro-
priate model sub-spaces, given appropriate regularisation we may restrict the
error vector to the set ∆̂λN ∈ C(M,M̄⊥;θ0). Therefore, instead of requiring
sufficient curvature in all directions, we can restrict our requirements to the
set C which leads to a so-called restricted strong convexity condition.

Definition 2.9. Restricted Strong Convexity
The loss function satisfies the restricted strong convexity (RSC) condition

with curvature κL > 0 and tolerance τL if:

19In the linear regression case we obtain the situation depicted in Figure 2.1.1.
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(2.4.6) δL(∆,θ0) ≥ κL‖∆‖2 − τ 2
L(θ0) for all ∆ ∈ C(M,M̄⊥;θ0) .

The extra tolerance term τL is only required when θ0 /∈M and is a conse-
quence of the enhanced size of the set C at ∆ = 0, see Fig 2.4.1. The reader
is referred to Negahban et al. (2012) for further details of such cases. For
the least squares loss of the lasso, or the log-det loss of the graphical lasso no
tolerance function is required.

2.4.3 Bounds for M-estimators

To obtain bounds we introduce a function that consists of a difference of
loss-functions and a difference of regularisers

(2.4.7) F (∆) := L(θ0 + ∆)− L(θ0) + λN
(
R(θ0 + ∆)−R(θ0)

)
.

given that F (0) = 0, the optimal error ∆̂ = θ̂ − θ0 must maintain F (∆̂) ≤ 0.
An important stepping stone to bounding the estimation error is presented in
the result below where the difference in objective F (·) can be used to bound
the error.

Lemma 2.1. Negahban2011 Lemma 4
Let K(ε) := C ∩ {‖∆‖ = ε}. If F (∆) > 0 for all vectors ∆ ∈ K(ε), then

‖∆̂‖ ≤ ε.

The above result can then be used to find a general bound on the estimation
error under appropriate regularisation. For example, once we know that the
error vector is in the set C then by obtaining a lower bound on F (∆) we can
find a value for ε which bounds the size of the error. In order to relate the
regulariser term to the RSC condition (which enables us to construct a lower
bound for F (·)) the subspace compatibility constant is introduced. For any
subspaceM⊆ Rp, the subspace compatibility constant is defined, with respect
to the pair (R(·), ‖ · ‖) as:

(2.4.8) Ψ(M) := sup
u∈M\{0}

R(u)

‖u‖
.
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The constant Ψ(M) relates the distance measured by the regulariser to that
of the defined norm ‖ · ‖. It does this in a maximal sense. For example, if
we consider the lasso with R(u) = ‖u‖1 and we measure the error in the 2-
norm ‖u‖q=2, then for an s-dimensional subspace we have ‖u‖1 ≤

√
s‖u‖2

and Ψ(M) =
√
s.

Returning to Eq. 2.4.7, the RSC condition provides a bound for the differ-
ence in loss functions, while the set C provides a bound for the regulariser part.
Combining these observations a bound for the error in the general M-estimator
setting can be constructed as below:

Proposition 2.5. Bounds for M-estimators (Negahban2011)
If the regulariser R(·) is decomposable (2.8) with respect to (M,M̄⊥), the

loss function obeys restricted strong convexity (2.9), and λN ≥ 2R∗(∇L(θ0)).
Then any solution θ̂λN to the M-estimator problem (2.4.1) satisfies the bound:

(2.4.9) ‖θ̂λN − θ0‖2 ≤ 9
λ2
N

κ2
L

Ψ2(M̄) +
λN
κL

[
2τ 2
L(θ0) + 4R∗(θ0M⊥)

]
.

Furthermore, as a result of the above, in the case where θ∗ ∈M one can obtain
bounds on both the norm error, and the regulariser error, such that

(2.4.10) ‖θ̂λN − θ0‖ ≤ 9
λ2
N

κL
Ψ2(M̄)

and R(θ̂λN ) ≤ 12(λN/κL)Ψ2(M̄).

2.4.4 Bounds for the lasso

In the lasso problem (2.1.7), one can either assume that the regression
coefficients θ0 are exactly sparse, referred to as the strong sparsity setting, or
that they can simply be approximated well by a sparse θ̂, in the weakly sparse
setting (Bunea et al. 2007). Both of these cases are studied in Negahban et
al. (2012), however, only results for the strong sparsity setting are presented
here. As further reference, there is a rich variety of work on the theoretical
properties of lasso like estimators. These include results for; exact recovery
(active predictors) given noiseless observations (Candes et al. 2005; D. Donoho
2006), prediction error consistency and consistency in various `p norms (Bunea
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et al. 2007; Geer et al. 2009; C. Zhang et al. 2008), and variable selection
consistency (Meinshausen and Bühlmann 2006; P. Zhao et al. 2006).

The Taylor expansion of the quadratic loss function that underlies the lasso
is δL(∆,θ0) = 〈∆, N−1X>X∆〉 = N−1‖X∆‖2

2 and is thus independent of θ0.
In this much simplified case, to maintain the RSC it suffices to establish only
a lower bound on N−1‖X∆‖2

2 that holds across an appropriately restricted
subset of ∆ ∈ Rp. When θ0 is exactly sparse, it is intuitive to select the
subspace to be equal to the support set S = {i | (θ0)i 6= 0} (recall that the
`1 regulariser is decomposable, Prop. A.1). One can view this as setting
the model subspace M(S) to look at the components of θ that relate to the
non-zero components of θ0. We can thus obtain error vectors for the allowed
non-zero elements ∆S = θ̂S − θ0S corresponding to M(S) and perturbation
terms ∆Sc = θ̂Sc − θ0Sc that correspond to M̄⊥(S). Given that θ0 ∈ M, we
can consider the restricted set ∆̂ ∈ C = {∆ ∈ Rp| ‖∆Sc‖ ≤ 3‖∆S‖1}. In
the lasso setting, the RSC condition translates into the well known restricted
eigenvalue conditions (Geer et al. 2009; Raskutti et al. 2010):

Corollary 2.1. Restricted Eigenvalue Condition
The RSC (Defintition 2.9) requires the design matrix X satisfies a re-

stricted eigenvalue (RE) condition

(2.4.11)
‖Xθ‖2

2

N
≥ κL‖θ‖2

2 for all θ ∈ C(S) .

or similarly 1
N
‖Xθ‖2

2 ≥ κ
′
L‖θ‖2

1/|S|.

In many settings it is possible to prove with high-probability that the first
order expansion of the loss function satisfies a lower bound. For example, in
the lasso case with Gaussian design Xi,:

iid∼ N (0,Σ), Raskutti et al. (2010,
2011) prove that a bound of the form

(2.4.12)
‖Xθ‖2

2

N
≥ κ1‖θ‖2

2 − κ2
log p

N
‖θ‖2

1,

holds with high-probability (greater than 1 − c1 exp(−c2N)). Recalling that
the RSC condition is only required to hold over the set C. Consider θ ∈ C
(2.4.5) with θ0 ∈ M(S), utilising the subspace compatibility condition on R
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we have
‖θ‖1 ≡ R(θ) ≤ 4Ψ(M̄)‖θ‖ = 4

√
s‖θ‖2 ,

where s = |S|. Thus, given bounds of the form (2.4.12) we can showN−1/2‖Xθ‖2 ≥
(κ1−16κ2s log p/N)‖θ‖2 ≥ κL‖θ‖2, where κL = κ1/2, and the last bound holds
in the case when N > 64(κ1/κ2)2s log p. This form of analysis enables us to
state with high probability that when a certain amount of data is collected,
the RSC condition will be met.

Proposition 2.6. Error bound for Lasso
Consider the linear regression model y = Xθ0 + ε. Assuming that the

columns of the design matrix are normalised, ie N−1/2‖X·,j‖2 ≤ 1 for all j =

1, . . . , p and the noise term ε posseses sub-Gaussian tails such that for a given
scale factor ζ < ∞, P (exp(tε) ≤ exp(ζ2t2/2)) for all t ∈ R. For a suitably
chosen λN = 4ζ

√
(log p)/N , then with high-probability we recover the bound

(2.4.13) ‖θ̂λN − θ0‖2
2 ≤

64ζ2

κ2
L

s log p

N
.

Proof. The RSC condition can be demonstrated to hold in high probability
using results similar to those of Eq. 2.4.12. One is also required to check
that the regulariser is appropriately set. Specifically, this should satisfy λN ≥
2R∗(∇L(θ0)). In the lasso case we obtain 2R∗(∇L(θ0)) = 2‖N−1X>ε‖∞,
which can be bounded considering the sub-Gaussian error structure. For a full
proof see Negahban et al. (2012).

As with the lasso, one can also obtain similar bounds for regularised covari-
ance/precision estimation (Bühlmann et al. 2011; Lam et al. 2009; Ravikumar,
Wainwright, and J.D. Lafferty 2010; Ravikumar, Wainwright, Raskutti, et al.
2011; Rothman et al. 2008; Saegusa et al. 2016). The following bound can be
considered analogous to that of Prop. 2.6, except for the `1 penalised log-det
problem (2.3.4), c.f. the graphical lasso:

Proposition 2.7. Bound for `1 Log-Det Estimation (Ravikumar, Wainwright,
Raskutti, et al. 2011)

If the rescaled Xi/
√

Σ0
ii are sub-Gaussian, the precision matrix has s true

edges, and a sample size of N = Ω(d2 log p) , where d is the maximum node
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degree, then under suitable regularisation conditions the precision matrix is
bounded as

(2.4.14) ‖Θ̂−Θ0‖F = O

(√
(s+ p) log p

N

)
,

with probability 1− 1/pτ−2 → 1, where τ > 2.

Proof. The above result is a summarised version of Theorem 1 in Ravikumar,
Wainwright, Raskutti, et al. (2011) specific to sub-Gaussian sampling for Xi.
The parameter τ reflects the rate of convergence in probability, it affects the
appropriate setting of both the regularsation constant λ and sample size re-
quired for the claims. A high τ results in high probability claims, but also
an increased lower bound on the sample size. Again, as in the lasso case, one
needs to check that the glasso estimator meets both an RSC condition and
that there is sufficient regularisation. The specifics of such sample size and
regularisation requirements are omitted here for readability.

It is worth noting that the above result holds for estimating the precision
matrix of sub-Gaussian random variables. In the case of a GGM, the preci-
sion matrix elements can be considered as specification for a graph G(V,E)

as discussed in Section 2.3. In the more general case there is not such a clear
interpretation of the off-diagonal precision matrix structure. The result is typ-
ical for high-dimensional graph selection problems. For similar related results
see; Rothman et al. 2008, or Ravikumar, Wainwright, and J.D. Lafferty 2010
who also consider a binary Ising model, and Lam et al. 2009 who additionally
consider non-convex penalties.

2.4.5 Support Recovery (Primal-Dual Witness)

In addition to bounding the error ‖∆̂‖ of an M-estimator, it is also of
interest to consider whether the methods can recover the true model structure.
One measure of such recovery is known as sign consistency, and is defined with
respect to the event

EM(θ̂;θ0) := {sign(θ̂i) = sign(θ0,i) ∀i ∈ S} ,
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where S is a set which indicates the true support of θ0, i.e. S = supp(θ0).
On the occurrence of EM, both the estimated parameter structure, in terms
of its support, and the true parameter structure are the same. In fact, sign
consistency is stronger than this, in that it requires both the support and the
sign of the parameters to be successfully recovered. In an asymptotic sense,
we may typically aim to demonstrate P [EM(θ̂;θ0)]→ 1 as p, T →∞.

A popular and fairly general approach to demonstrating such consistency is
known as the primal-dual witness method (Wainwright 2009). Principally, this
method works by deconstructing the KKT conditions (c.f. 2.1.14) of the M-
estimator (2.4.1) into two blocks. Let us label these conditions KKT(S, ∂R(θS))

and KKT(Sc, ∂R(θSc)), such that they respectively concern the true model
components θ0;S and the compliment θ0;Sc . The primal-dual witness approach
consists of the following steps:

(1) Solve a restricted problem; θ̃ := arg minθ L(θ;X)+λNR(θ), such that
θSc = 0. This constitutes a restricted estimation problem, whereby
the compliment of the support is artificially fixed to be zero. It verifies
that the KKT(S, ∂R(θS)) is satisfied under the block corresponding
to the true support.

(2) Select w as the sub-differential of the regulariser R(·) evaluated at θ̃.
Solve for the subgradient over the components Sc by using KKT(θ̃,w)

(3) Check that EM occurs and that the sub-gradient in step (2) is suf-
ficiently small ‖wSc‖∞ < min(|a|, |b|). Note: in the lasso (and `1

penalty) case the limit is simply ‖wSc‖∞ < 1 corresponding to Eq.
2.1.12.

To ensure the EM occurs in high-probability, one needs to perform the above
procedure in the presence of sampling noise via X. The form of this noise will
be model dependent, however, typically one may assess recovery under the
random design setting and assume the co-variates are drawn from a Gaussian
(Bühlmann et al. 2011; Geer et al. 2009) . Again, in order to derive bounds on
the recovery, one must make some assumptions on the problem design. Such
conditions are often referred to as incoherence or irrepresentability conditions.

In the graphical structure learning setting these conditions act to limit
correlation between edges and restrict the second order curvature of the loss
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function. In the multivariate Gaussian case (log-det likelihood) the Hes-
sian Γ0 ≡ ∇2

ΘL(Θ)|Θ0 relates to the Fisher information matrix, such that
Γ0

(j,k)(l,m) = Cov(XjXk, XlXm). Written in this form we can understand the
Fisher matrix as relating to the covariance between edge variables defined as
Z(i,j) = XiXj − E[XiXj], where i, j ∈ {1, . . . , p}:

Definition 2.10. Incoherence Condition
Let S denote the set of components relating to true edges in the graph and

Sc its compliment. For example, Γ0
SS refers to the sub matrix of the Fisher

matrix relating to edges in the true graph. The incoherence condition states
that there exists some α ∈ (0, 1] such that

max
e∈Sc
‖Γ0

eS(Γ0
SS)−1‖1 ≤ (1− α) .

In the multivariate Gaussian case we have maxe∈Sc ‖E[ZeZ
>
S ]E[ZSZ

>
S ]−1‖1 ≤

(1− α). One can therefore interpret the incoherence condition as a statement
on the correlation between edge variables which are outside the model subspace
Z(i,j) such that (i, j) 6∈ E, to those contained in the true model (i, j) ∈ E. In
practice, this sets bounds on the types of graph and associated covariance struc-
tures which estimators such as graphical lasso can recover (see the discussion
Sec. 3.1.1 Ravikumar, Wainwright, Raskutti, et al. (2011) and Meinshausen
(2008)). Again, as with the issue of faithfulness, such restrictions force us
to be careful when interpreting the edge structure as parameterised via the
estimated precision matrix. With such concerns in mind, one can utilise the
primal-dual witness approach to derive finite sample, high probability bounds
on model recovery.
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Proposition 2.8. Model Selection Consistency (Ravikumar, Wainwright, Raskutti,
et al. 2011)

Let θmin ≡ mini,j |Θ0
i,j| and d be the maximum degree of a the true graph.

Given the incoherence condition of (2.10) and sufficient samples N = Ω((d2 +

θ−2
min)τ log p) , then under the same requirements as Prop. 2.7 one obtains the
model consistency result

(2.4.15) P [EM(Θ̂; Θ0)] ≥ 1− 1/pτ → 1 .

Proof. A full proof of the above can be found in Theorem 2 of Ravikumar,
Wainwright, Raskutti, et al. (2011) and follows the primal-dual witness ap-
proach as discussed.

Results such as the above are typical when studying theoretical properties
of M-estimators and many papers discuss finite sample bounds on the error,
as per Eqs. 2.4.13 and 2.4.14, alongside support recovery akin to Prop. 2.8. In
the following chapters, estimators such as the graphical lasso are extended to
consider settings where the underlying distribution can change as a function
of time. In Chapter 4 some asymptotic properties of these estimators are
discussed. In order to provide statistical guarantees on these estimators in
high-dimensions one may attempt to adapt the results of this section.

2.5 Summary
In this chapter we have reviewed several key ideas which are used through-

out the rest of this thesis. As with the models so-far discussed, most regularised
M-estimation problems are formulated in a setting where the underlying model
is not expected to change as a function of where or how the samples are ob-
served. Such assumptions relate to commonly used independent and identically
distributed sampling schemes. However, in many applications this assumption
seems suspect. For example, as discussed in Chapter 2, these assumptions
often limit the insight we can get from statistical models. In the next chapter,
we will discuss several ways in which we may extend graph estimation meth-
ods such as graphical lasso to dynamic settings. The concept of regularised
M-estimation plays a key role in these extensions by giving us a principled way
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to incorporate prior knowledge about model smoothness; i.e. how fast, and in
which ways a model may change over time. In the next chapter, the discussion
will primarily be focussed on different smoothness assumptions alongside the
development of algorithmic methods that make it feasible to identify such dy-
namic models. To this end, a new class of ADMM algorithm is developed and
some empirical properties of dynamic estimators are demonstrated. Chapter
4 considers theoretical analysis of dynamic graphical estimators, and extends
the theoretical discussion of M-estimators (Sec. 2.4) to the dynamic setting.
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Appendix A

A.1 Some properties of functions

For completeness, the properties of some commonly studied classes of func-
tions are given below.

Definition. A function ‖ · ‖ : X 7→ R is a norm if it obeys the following three
properties for all x,y ∈ X and λ ∈ R

• ‖λx‖ = |λ|‖x‖ (absolute homogeneity)
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality)
• If ‖x‖ = 0, then x is the zero vector (defines zero length)

Definition. A function f : Rp → R is convex if domf is a convex set and it
satisfies the condition

f(ax+ by) ≤ af(x) + bf(y) ,

for all a, b ∈ R and points x,y ∈ domf with a+ b = 1 and a ≥ 0, b ≥ 0.

Proposition. Minima of convex functions
Let f be a convex function f ∈ conv(V), then:

• the set of minimisers arg minx∈V f(x) is convex (possibly empty).
• if x̂ is a local minimum of f , then x̂ is in fact a global minimum such
that, x̂ ∈ arg minx∈V f(x).

Proposition. Let x ∈ Rp, the `q norm ‖x‖q for 0 ≤ q < 1 is not convex.

Proof. Proof of Prop. 2.1
It is sufficient to demonstrate that the epigraph of ‖x‖q is not a convex set.

Let S = epi(‖x‖q). Given, x1,x2 ∈ S, convexity requires (1− t)x1 + tx2 ∈ S
for all t ∈ [0, 1]. Without loss of generality let x1 = 0 ∈ Rp, ‖x2‖1 = 1. The `1

norm defines a straight line between x1,i and x2,i (it is the limiting convex case)
therefore ‖tx2‖q > ‖tx2‖1 implies non-convexity. In the case ‖x‖1 = 1, we have
‖x‖1−‖x‖qq = 1−

∑p
j=1 |xj|q−1 and thus‖x‖q = (

∑p
j=1 |xj|q−1)1/q, noting that

a < 0 and 0 < |xj| < 1 =⇒ |xj|a > 1 gives ‖x‖q > p1/q > ‖x‖1 = 1.
�
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Proposition. Decomposability of `1 norm
For each subset S ⊆ {1, . . . , p} defining subspace pairs as:

M(S) := {θ ∈ Rp | θj = 0 for all j ∈ Sc} ,( A.1)

M̄⊥(S) := {θ ∈ Rp | θj = 0 for all j ∈ S} ,( A.2)

thenM⊥(S) = M̄⊥(S) and it follows that the `1 norm is decomposable:

( A.3) ‖θS + θSc‖1 = ‖θS‖1 + ‖θSc‖1 ,

for all θS ∈M(S), θSc ∈ M̄⊥(S).

Proof. This can be shown by construction as we have θS = (θS ∈ Rs,0 ∈
Rp−s), θSc = (0 ∈ Rs, θSc ∈ Rp−s), thus ‖θS + θSc‖ = ‖(θs,0) + (0, θSc)‖1 =

‖θS‖+ ‖θSc‖1.
�



Chapter 3.

Chapter 3

Dynamic Graphical Models

Graphical models provide a powerful mechanism for encoding properties of
joint distributions over large sets of random variables. However, until now our
discussion of graphical models has been limited to the setting where the graph
and joint distribution is assumed identical for all samples. In applications
such as functional connectivity analysis in neuroscience or modelling feature
dependency across flows of network data, the assumption that an underlying
generative distribution is constant over time is extremely limiting.

As demonstrated in Section 2.3, graphical models may be estimated in
the stationary setting by combining appropriate loss functions with a sparsity
inducing regulariser. For example, the graphical lasso (Banerjee et al. 2008;
Friedman, Hastie, and R. Tibshirani 2008) penalizes a Gaussian likelihood
with an `1 norm applied to the precision matrix (Eq. 2.3.4). Of particular
interest in this chapter is how the graphical model evolves over time, and how
prior knowledge of such dynamics can be exploited to constrain and estimate
graph structure. It is worth remarking that the whole field of dynamic graph
estimation is relatively young– examples of early work in this direction can be
found in Ahmed et al. (2009) and Zhou et al. (2010). A simple way of extend-
ing static estimators to allow for model variation is through a localised moving
window approach. However, such estimators are restricted in that they can
only access local data, and assume the graph structure varies in a smooth man-
ner. In this chapter, a more principled approach of regularised M-estimation

79
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is investigated in order to generalise the moving window approach, and incor-
porate different smoothness assumptions. Notably, this allows us to not only
detect smoothly varying graphical structures, but also sharp discontinuities,
or changepoints, in the graphical structure.

The chapter proceeds as follows: We start by discussing the extension of
multivariate likelihoods and sparsity inducing regularisers to the dynamic set-
ting. Several smoothing methods are then discussed; these either involve local
estimation via a moving window, or by introducing additional regularisers to
constraint temporal model variation. One novel contribution of this thesis is
then introduced in the form of a new type of group-fused regulariser that aims
to discover systematic changes in graph structure. The flexibility of dynamic
graphical models makes estimation a computationally challenging problem. In
order to estimate dynamic graphs a new class of ADMM algorithm is devel-
oped. This is then used to examine empirical properties of some regularised
dynamic graphical models in a synthetic setting. Finally, the chapter concludes
with a set of example applications looking at the analysis of time-course micro-
array data and dependency of real-world network traffic metrics. This chapter
contains sections of work derived from Gibberd, Evangelou, et al. (2016) and
Gibberd and Nelson (2014a, 2016, 2017).

3.1 Model and Estimator Formulation
Before proceeding, it is worth noting that the estimators that follow utilise

a loss-function primarily based on the Gaussian likelihood1. As discussed in
the previous chapter (Sec. 2.3) the multivariate Gaussian model allows a
specific interpretation of its parameters in terms of graphical model structure.
Specifically, this enables us to estimate dependency structure from data by
considering the pattern of non-zero entries in the precision matrix. In order
to extend the model to allow dynamics in the model, we may simply allow the
parameters of the Gaussian distribution to vary at each discrete time point

~X(t) ∼ N (µ(t),Σ(t)) ,

1A brief discussion on pseudo-likelihood approaches to dynamic graph estimation can be
found in Sec. 3.1.4.
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for t = 1, . . . , T . If the precision matrices Θ(t) := (Σ(t))−1 are well defined for
each time-point then the dependency structure of the series can be captured
by a dynamic Gaussian Graphical Model (GGM). This comprises a collection
of time-indexed graphs G(t) = (V (t), E(t)), where the vertices V (t) = {1, . . . , p}
represent each variable ~X(t) = (X

(t)
1 , . . . , X

(t)
p )> and the edges E(t) represent

conditional dependency relations between variables over time.
Traditionally, as discussed in the previous chapter, estimation of GGM’s is

usually performed under the assumption of stationarity, whereby we have iden-
tically distributed draws from a Gaussian model. LettingX = (x(1), . . . ,x(T ))

be a set of observations and assuming ~X(t) ∼ N (0,Σ), one can construct an es-
timator for Σ−1 by maximizing the log-likelihood Θ̂ := arg maxU

[
log
(
det(U)

)
−

tr(ŜU)
]
, where Ŝ = XX>/2T . However, if the distribution can change arbi-

trarily over time, because only one data-point may be observed at each node
per time-step the traditional empirical covariance estimator Ŝ

(t)
∝ x(t)(x(t))>

will be rank deficient. To this end, estimation of the precision matrix requires
additional modeling assumptions. A strategy explored in several recent works
(Ahmed et al. 2009; Danaher et al. 2013; Gibberd and Nelson 2014b) is to
introduce priors in the form of regularized M-estimators, viz.

(3.1.1) Θ̂
(t)

:= arg min
U (t)�0

[
L({U (t)})

]
,

with the cost function

(3.1.2) L({U (t)}) =
T∑
t=1

L(U (t),x(t)) +RShrink({U (t)}) +RSmooth({U (t)}) .

As in the case of the graphical lasso, or lasso, the loss function L(U (t),x(t))

may be considered as being proportional to the negative log-likelihood. The
penalty terms RShrink, RSmooth correspond respectively to prior shrinkage and
smoothness assumptions. Typically, the smoothness term will be a function of
the difference between estimates U (t)−U (t−1), whereas the shrinkage term will
act at specific time points, i.e. directly on U (t). With regards to GGM, such
an estimator not only allows us to place shrinkage priors on the individual
precision matrices, akin to the graphical lasso (Banerjee et al. 2008; Fried-
man, Hastie, and R. Tibshirani 2008), but also control variation in this model
structure over time. In what follows, several different forms of estimator are
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t

Figure 3.1.1 – Graphical depiction of continuously smooth varying graph struc-
ture as studied in Kolar et al. (2011) and Zhou et al. (2010).

introduced within this framework which allow for continuously smooth, and
piecewise constant graphical models.

3.1.1 Smoothly Varying Graphical Lasso

Several approaches which incorporate dynamics in such graphical estima-
tors have been suggested. Zhou et al. (2010) and Kolar et al. (2011) utilize a
local estimate of the covariance in the term L(U (t);x(t)) by replacing Ŝ in the
graphical lasso with a time-sensitive weighted estimator

(3.1.3) Ŝ
t

=
t+M∑
s=t−M

h
(s)
t x

(s)(x(s))>/
t+M∑
s=t−M

h
(s)
t ,

where h(s)
t = K(|s− t|/M) are weights derived from a symmetric non-negative

smoothing kernel function K(·) with width M . The resulting graphs Ĝt

are now representative of some temporally localized data. By making some
smoothness assumptions on the underlying covariance matrix such a kernel
estimator can be shown to be risk consistent (Zhou et al. 2010). Kolar et al.
(2011) go further, and demonstrate that placing assumptions on the Fisher
information matrix allows one to prove consistent estimation of graph struc-
ture in such dynamic GGM. The moving window approach does utilise the
smoothing regulariser Rsmooth. In the following sections, we will discuss how
one can harness this additional complexity penalty to promote further, poten-
tially more insightful, smoothness constraints.
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t

Figure 3.1.2 – Changepoints in graph structure are counted at the individual
edge level. The works of Gibberd and Nelson (2014a) and Monti et al. (2014)
can be considered under this model.

3.1.2 Independently Fused Graphical Lasso (IFGL)

There are many situations where we might expect continuous smoothness
assumptions to be broken. For example, activity patterns in the brain may
switch relatively rapidly when performing different tasks (Monti et al. 2014).
Rather than adopt a continuously varying graphical model we now let it be
piecewise constant– points in time where structure changes can be referenced
by a set of K changepoints T = {τ1, . . . , τK} where τi ∈ {1, . . . , T}. When
considering piecewise dynamics, there are a variety of smoothness measures
that one could adopt especially when we are dealing with multivariate dis-
tributions. The discussion in this chapter focusses on two broad classes of
edge-wise, and graph-wise smoothness.

In the edge-wise case, one can relate smoothness to the number of jumps
or changepoints in the edge structure, i.e. entries in the precision matrix
Θt := (Σt)−1. Such a model may be written as a constrained multivariate
normal:

(3.1.4)

(X
(t)
1 , . . . X(t)

p )> ∼ N (0,Σ(t)) , such that
T−1∑
t=2

‖Θ(t)
\ii −Θ

(t−1)
\ii ‖0 = 2K .

In the above, the `0 norm counts the number of non-zero elements of the
differenced precision matrices, i.e. ‖X‖0 = |{Xi,j 6= 0 ∀i 6= j}|. Such a
constraint counts changes on each edge of the graphical model separately,
hence the factor of 2 accounting for symmetry in the matrices. As discussed
in Section 2.1.2, the `0 counting norm is non-convex. A penalised likelihood
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approach to estimate {Σ(t)} which uses the `0 penalty to count changepoints
will therefore also be non-convex, resulting in a computationally infeasible
problem. As with most regularisation problems, one may consider a convex
relaxation. In this case, we relax the non-convex count on the changepoints,
to a convex penalty over the difference of the precision matrices. The resulting
objective function is henceforth referred to as the independently fused graphical
lasso (IFGL) estimator, and takes the following form2:

L({U (t)}) =
T∑
t=1

L({U (t)},{x(t)})︷ ︸︸ ︷(
− logdet(U (t)) + tr(Ŝ

(t)
U (t))

)
︸ ︷︷ ︸

∝−Likelihood

+

RShrink︷ ︸︸ ︷
λ1

T∑
t=1

‖U (t)
\ii‖1︸ ︷︷ ︸

`1 shrinkage

. . .(3.1.5)

. . .+

RSmooth︷ ︸︸ ︷
λ2

T∑
t=2

‖U (t)
\ii −U

(t−1)
\ii ‖1︸ ︷︷ ︸

`1 edge smoothing

.

The works of Ahmed et al. (2009), Gibberd and Nelson (2014a), and Monti
et al. (2014) can be considered in this setting. The work of Danaher et al.
(2013) and S. Yang et al. (2015) also uses a similar smoothing strategy to the
above, however, they do not consider the case of dynamics, and have a-priori
blocks of observations that have a known size.

3.1.3 Group-Fused Graphical Lasso (GFGL)

In the previous section we considered that graph structure may change
edge by edge, and changepoints were counted at an edge level. Alternatively,
one may expect that the graph structure underlying a process may change
systematically, such that the whole, or many of the edges change dependency
structure in a short period of time. One of the main contributions of this thesis
is to introduce estimators which are capable of detecting such graph dynamics.

Consider the Gaussian model as before, but where time variation is pe-
nalised across the graph whereby:

2Recall, the notation U\ii refers to a matrix with the iith elements removed, for example
‖U t
\ii‖1 =

∑
i 6=j |U ti,j |.
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K= 3

Zi,j
0

t

t= 3 t= 4t= 1X1 t= 2X2

X3

Figure 3.1.3 – Group-piecewise constant graph structure, edges are restricted
so that changepoints are counted across the graph. It encodes an assumption
that many edges may change simultaneously, as first introduced in (Gibberd and
Nelson 2017).

(3.1.6)
(X

(t)
1 , . . . X(t)

p )> ∼ N (0,Σ(t)) , such that {‖Θ(t)
\ii −Θ

(t−1)
\ii ‖ 6= 0} = K .

In this case, the estimator assumes that many of the active edges may change
at the same time and that changes in graphical structure are therefore syncro-
nised. As in the IFGL case, the exact penalisation problem associated with
(3.1.6) is non-convex due to the requirement to count changepoints. Solving
such a problem is challenging. If the changepoints were known in advance
then local graph estimation could be performed. However, the changepoints
cannot be found without first estimating the graphs. Previous approaches
(Angelosante et al. 2011) have resorted to using dynamic programming along-
side the `1 graph learning approaches. Unfortunately, these are restricted to
quadratic computational complexity as a function of the time-series length.

An alternative strategy, as with IFGL, is to construct a convex relaxation.
Specifically, one may construct the group-fused graphical lasso (GFGL) esti-
mator (Gibberd and Nelson 2017), with objective:

L({U (t)}) =
T∑
t=1

L({U (t)},{x(t)})︷ ︸︸ ︷(
− logdet(U (t)) + tr(Ŝ

(t)
U (t))

)
︸ ︷︷ ︸

∝−Likelihood

+

RShrink︷ ︸︸ ︷
λ1

T∑
t=1

‖U (t)
\ii‖1︸ ︷︷ ︸

`1 shrinkage

. . .(3.1.7)
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. . .+

RSmooth︷ ︸︸ ︷
λ2

T∑
t=2

‖U (t)
\ii −U

(t−1)
\ii ‖F︸ ︷︷ ︸

group `2,1 smoothing

.

In this chapter we describe how one can efficiently solve the GFGL problem
and demonstrate two key properties consistent with the model formulation in
(3.1.6), specifically:

(1) Estimated precision matrices encode a sparse dependency structure whereby
many of the off axis entries are exactly zero, i.e. Θ̂t

i,j = 0.
(2) Precision matrices maintain a piecewise constant structure where change-

points tend to be grouped across the precision matrix, such that for many
edges indexed by (i, j) and (l,m) the estimated changepoints for the two
edges are the same, viz. T̂i,j = T̂l,m where T̂i,j = {τ̂ (1)

ij , . . . , τ̂
(K̂ij)
ij } repre-

sents the set of K̂ij estimated changepoints τ (k)
ij on the i, jth edge).

3.1.4 Fused Neighbourhood Selection

In the previous sections, we introduced M-estimators which operate in con-
junction with a multivariate Gaussian likelihood. As in the i.i.d. setting, one
can also consider local methods for graph estimation via pseudo-likelihood
neighbourhood selection approaches (c.f. Section. 2.3.5). Such approaches
have also been extended to the dynamic setting, examples of this can be seen
in the works of Ahmed et al. (2009) and Kolar et al. (2012). Instead of a
log-det problem, these authors frame the problem as a temporally sensitive
neighbourhood selection problem extending the static case given in Eq. 2.3.5.
By placing a temporal-difference lasso regulariser

Rtd = 2λ1

T∑
t=1

p∑
j 6=i=1

|u(t)
i,j |+ 2λ2

T∑
t=1

‖u(t)
i − u

(t−1)
i ‖2 ,

on the node-wise loss L(ui) =
∑T

t=1(x
(t)
i −

∑
j 6=i x

(t)
j u

(t)
j )2, it is possible to

recover a piecewise structure in u
(·)
i ∈ RT from which changepoints can be

obtained. The neighbourhood structure θ(b)
i for blocks b = 1, . . . , B = K+1 is

obtained from the values of û(t)
i between changepoints. While these methods

do not necessarily produce positive-semi-definite precision matrices, they have
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potential to be adapted for modelling relationships between mixed types of
data. For example, one may build models to encode dependency between
count, and continuous data types. In the stationary setting, J. Lafferty et al.
(2012) explored non-parametric graphical model estimation, and more recently
Lee et al. (2015) studied models with mixed types of variable. The paper of
Haslbeck et al. (2016) extends some of these methods to the dynamic case
utilising a moving window approach. Extension of the regularised smoothing
methods to the mixed variable case may form a direction for further work.

3.1.5 Summary of approaches

A summary of dynamic graph-estimation methods is presented in Table
1. Apart from GFGL most approaches penalise edge dynamics via an `1

norm. One notable exception to this can be found in the Varying-Coefficient
Varying-Structure (VCVS) model of Kolar et al. (2012) who propose to se-
lect changepoints with an `2 type norm over the differences. The motivation
in that work is similar to that presented here, except the authors formulate
the graph-selection problem differently, utilising a node-wise regularised re-
gression estimator rather than the multivariate Gaussian likelihood. While
node-wise estimation can recover the conditional dependency graph, it does
not in general result in a positive-definite precision matrix. The advantage of
the GFGL/IFGL estimators, is that the output can directly be used to define
a probability distribution via a GGM.

The aim in the following sections is to compare the effect of grouped
(GFGL) and independent smoothing methods such as FMGL (S. Yang et
al. 2015), TESLA (Ahmed et al. 2009), SINGLE/IFGL (Gibberd and Nelson
2014a; Monti et al. 2014) and JGL (Danaher et al. 2013). Rather than focusing
on the smoothly evolving graph through the kernel covariance estimator Ŝ

(t)
,

we instead study the difference between the smoothing regularizer for IFGL
and GFGL. Throughout the rest of this chapter a purely piecewise constant
graph model is assumed and the empirical covariance is simply estimated with
the data at time t according to Ŝ

(t)
= x(t)(x(t))>/2. Effectively, this uses a

Dirac-delta kernel for the covariance estimate, in (3.1.3) we set h(s)
t = δ(s− t).
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Table 1 – Overview of likelihood and smoothing approaches for dynamic graph-
ical modeling. Shrinkage via an `1 term is common to all methods (in VCVS
this is applied at the node-wise level) above when used for edge selection. This
is usually applied to off-diagonal entries in the graph/precision matrix such that
RShrink = λ1

∑T
t=1 ‖U

(t)
−ii‖1. *Note: these methods are not specifically designed

for time-series data but for building fused models over different k = 1, . . . ,K
classes/experiments each with nk data-points.

Name References Likelihood L Graph Smoothing RSmooth

Dynamic
Graphical
Lasso

Zhou et al.
(2010)

{
log
(
det(U (t))

)
−

tr(Ŝ
(t)
U (t))

}T
t=1

via kernel (see Eq. 3.1.3)

Temporally
smoothed `1

logistic
regression
(TESLA)

Ahmed et al.
(2009)

∑T
t=1

[
log
(
1 +

exp(x
(t)
−iu

(t)
·,i )
)
−x(t)
\i u

(t)
·,i x

(t)
i

] λ2
∑T
t=2 ‖u

(t)
\i − u

(t−1)
\i ‖1

Joint
Graphical

Lasso (JGL)*

Danaher
et al. (2013)

∑K
k=1

[
nk
(
log
(
det(U (k))

)
−

tr(Ŝ
(k)
U (k))

)] λ2
∑
k<k′ ‖U

(k) −U (k′)‖1

Fused
Multiple
Graphical
Lasso

(FMGL)*

S. Yang et al.
(2015)

∑K
k=1

[
nk
(
log
(
det(U (k))

)
−

tr(Ŝ
(k)
U (k))

)] λ2
∑K
k=1 ‖U

(k) −U (k−1)‖1

SINGLE
/IFGL

Gibberd and
Nelson

(2014a) and
Monti et al.

(2014)

∑T
t=1

[
log
(
det(U (t))

)
−

tr(Ŝ
(t)
U (t))

] λ2
∑T
t=2 ‖U

(t)
\ii −U

(t−1)
\ii ‖1

VCVS Model Kolar et al.
(2012)

For each node j = 1, . . . , p∑T
t=1(xt,i −

∑
j 6=i xt,juj,t)

2

λ2
∑T
t=1 ‖u·,t − u·,t−1‖2

GFGL Gibberd and
Nelson
(2017)

∑T
t=1

[
log
(
det(U (t))

)
−

tr(Ŝ
(t)
U (t))

] λ2
∑T
t=2 ‖U

(t)
\ii −U

(t−1)
\ii ‖F

It is of course possible, and potentially preferable, to combine kernel and reg-
ularised smoothing approaches. In the context of dynamic graphs, such an
approach is considered in Monti et al. (2014), such a combination of kernel
and regularised smoothing is also examined in Chapter 6. In practice, whether
a kernel smoother is appropriate will depend on the application. However, in
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this chapter the focus is on understanding the effect of the grouped vs inde-
pendent smoothing assumptions encoded within the GFGL/IFGL regularisers.

In the next section, an ADMM approach to solving the convex optimi-
sation problems associated with GFGL/IFGL is developed. This builds on
the basic method discussed in Section 2.2.2 and enables us to practically es-
timate dynamic graphical models for reasonable problem sizes; p ≈ 10 − 100,
T ≈ 1000. Following this, the methods are compared empirically on both
synthetic experiments and real-world data.

3.2 Algorithms for GFGL/IFGL
Since the penalty function of IFGL approaches solely comprises `1 terms

it is linearly separable. This permits block-coordinate descent approaches to
optimisation whereby the precision matrix rows and columns are sequentially
updated. For example, such methods are utilised in Friedman, Hastie, and R.
Tibshirani (2008) and S. Yang et al. (2015). Unfortunately, the GFGL objec-
tive (3.1.7) does not have the same linear separability structure. This is due to
the norm ‖U (t)−U (t−1)‖F := (

∑
i,j(U

(t)
i,j −U

(t−1)
i,j )2)1/2 acting across the whole,

or at least multiple rows/columns of the precision matrix. This lack of linear
separability across the precision matrices precludes a block-coordinate descent
strategy (Tseng et al. 2009). Instead, one can make use of the separability of
the group norm (with respect to time) and utilise an ADMM algorithm.

It is worth noting that there are a variety of ways one can break down (3.1.7)
as an ADMM problem. In this thesis two different forms of algorithm are pre-
sented: the first (ADMM-D) as developed in Gibberd and Nelson (2015b)
uses a single set of auxiliary variables in combination with a proximal split-
ting mechanism, the second (ADMM+), utilises additional auxiliary variables,
sometimes known as a multi-block ADMM construction. This simplifies the
proximal updates and enables more efficient computation. For readability, and
considering the experiments presented later in this chapter use ADMM-D, only
this algorithm is presented in the main text. The ADMM+ scheme is detailed
in Appendix B.3. Work is ongoing to assess the performance difference be-
tween ADMM-D and ADMM+. Reporting on this in more detail is left as
future work.
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3.2.1 ADMM + Dykstra Splitting (ADMM-D)

We here consider splitting the objective (3.1.7) into two separate but related
problems. Minimizing L({U (t)}) in Eq. 3.1.1 is equivalent to solving the
constrained problem:

Θ̂ := arg min
{U (t),V (t)}Tt=1

[ T∑
t=1

(
− logdet(U (t)) + tr(S(t)U (t))

)
. . .

. . .+ λ1

T∑
t=1

‖V (t)
−ii‖1 + λ2

T∑
t=2

‖V (t)
−ii − V

(t−1)
−ii ‖F

]
such that : U (t) − V (t) = 0 ,(3.2.1)

where {U (t)} and the auxiliary variables {V (t)} are also constrained to be
positive-semi-definite. An augmented Lagrangian for GFGL (in the rescaled
form) is given as

L({U (t)}, {V (t)}, {P (t)
V }) : =

T∑
t=1

(
− logdet(U (t)) + tr(S(t)U (t))

)
. . .

. . .+ λ1

T∑
t=1

‖V (t)
−ii‖1 + λ2

T∑
t=2

‖V (t)
−ii − V

(t−1)
−ii ‖F . . .

. . .+
γ

2

T∑
t=1

(
‖U (t) − V (t) + P

(t)
V ‖

2
F − ‖P

(t)
V ‖

2
F

)
,

where P (t)
V is a rescaled dual variable. Note: the construction above follows

in a similar manner to that of Sec. 2.2.2 Eq. 2.2.9. Let the solution at the
nth iteration as {U (t)

n } = {U (1)
n , . . .U (T )

n }, the estimates are then updated
according to to the three steps below; more detail on each step is provided in
the sections that follow.

Likelihood Update (Sec. 3.2.2) :

U (t)
n = arg min

U (t)

[
− logdet(U (t)) + tr(Ŝ(t)U (t)) . . .

. . .+
γ

2
‖U (t) − V (t)

n−1 + P
(t)
V ;n−1‖

2
F

]
,(3.2.2)
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Constraint Update (Sec. 3.2.3):

{V (t)
n } = arg min

{V (t)}

[
γ

2

T∑
t=1

‖U (t)
n − V (t) + P

(t)
V ;n−1‖

2
F + λ1

∑
‖V (t)

−ii‖1 . . .

. . .+ λ2

T∑
t=2

‖V (t)
−ii − V

(t−1)
−ii ‖F

]
,(3.2.3)

Dual Update (Sec. 3.2.4):

P
(t)
V ;n = P

(t)
V ;n−1 +

(
U (t)
n − V (t)

n

)
.(3.2.4)

3.2.2 Likelihood updates: An Eigen-decomposition

We can solve the update for U (t)
n through an eigen-decomposition of terms

in the covariance, auxiliary and dual variables (X. Yuan 2011). If we differen-
tiate the objective (3.2.2) and set the result equal to zero we find

(3.2.5) (U (t))−1 − γU t = Ŝ
t
− γ(V t

(n−1) − P t
V (n−1)) .

Noting that U t and St − γ(V
(t)
n−1 − P

(t)
V ;n−1) share the same eigenvectors, one

can can update the eigenvalues of U (t) based on the auxiliary variables. For
each eigenvalue {uh}Ph=1 = eigval(U (t)), and {sh}Ph=1 = eigval

(
Ŝ

(t)
−γ(V

(t)
n−1−

P
(t)
V ;n−1)

)
, we can construct the quadratic equation u−1

h − γuh = sh. To obtain
some level of interpretation, consider that the right hand side of (3.2.5) con-
tains evidence from the data-set via Ŝ

t
, but also takes into account the effect

our priors encoded within V (t)
n−1. Solving the quadratic and updating the eigen-

values then enables us to gradually incorporate appropriate prior knowledge
into our precision matrix estimates. Upon solving for uh given sh we find

uh =
1

2γ

(
− sh +

√
s2
h + 4γ

)
.

The full precision matrixU (t) can now be found through the eigen-decomposition:

U (t) =

 e1

ep


 u1

. . .
up


 e1

ep


>

.



92 3. DYNAMIC GRAPHICAL MODELS

where {eh} = eigenvec(Ŝ
(t)
− γ(Z

(t)
n−1 − U

(t)
n−1)). By choosing the positive

solution for the quadratic, we ensure that U t
(n) is positive-definite and thus

produces a valid estimator for the precision matrix. Furthermore, since (3.2.2)
refers to an estimation at each time-point separately, we can solve for each
U (t)
n independently for t = 1, . . . , T to yield the set {U (t)

n }Tt=1. Indeed, this
update can be computed in parallel, as appropriate.

3.2.3 Auxiliary Updates: The Group-Fused Signal Ap-
proximator

The main difference between the GFGL estimator and previous approaches
is in the use of a grouped constraint. This becomes a significant challenge when
updating the auxiliary variables {V (t)} in Eq. 3.2.3. Unlike the calculation of
{U (t)

n } we cannot separate the optimization over each time-step. Instead, we
must solve for the whole set of matrices {V (t)} jointly. Furthermore, due to
the Frobenius norm being used in GFGL we cannot separate the optimization
across individual edges. For example, in contrast to independent penalization
strategies like IFGL (Danaher et al. 2013; Monti et al. 2014) it is not possible
to solve GFGL for {U (t)

ij } independently of {U (t)
i′j′}, where (i, j) 6= (i′, j′).

Since each V (t) is symmetric about the diagonal we can reduce the number
of elements by simply taking the elements above the diagonal v(t) = (V

(t)
i,j | j >

i, i = 1, . . . , p)>. We now construct a data-matrix of these elements such
that V = (v(1), . . . ,v(T ))> ∈ RT×p(p−1)/2; row t of the matrix thus corresponds
to values at time-step t. We perform similar transformations for U (t) 7→ U

and P (t)
V 7→ P V , while also adjusting the regularisation parameters, setting3

λ̄1 = λ1/ρ, and λ̄2 = λ2/ρ.

Definition 3.1. Group-Fused Lasso Signal Approximator
Let ΓV := U+P V , then re-writing the objective (3.2.3) with these transfor-

mations yields the group-fused lasso signal approximator (GFLSA). Formally
this is viewed as a proximity operator of the form V̂ (Γ; λ̄1, λ̄2) = arg minV G(V ; λ̄1, λ̄2),
with cost

3Note that, since we have essentially split the data in half (due to symmetry), we may wish
to adjust the lambdas to be consistent with the original problem specification in Eq. 3.1.7.
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(3.2.6) G(V ; λ̄1, λ̄2) :=
1

2
‖ΓV − V ‖2

F︸ ︷︷ ︸
L(V )

+ λ̄1‖V ‖1︸ ︷︷ ︸
R1(V )

+ λ̄2‖DV ‖2,1︸ ︷︷ ︸
R2(V )

,

where the `2,1 norm is defined as the sum of `2 norms over the rows, i.e.
‖U‖2,1 :=

∑
t ‖Ut,·‖2 and D ∈ R(T−1)×T is a backwards differencing matrix of

the form Di,i = −1, Di,i+1 = 1 for i = 1, . . . , T − 1 and the rest of the entries
are zero.

While the GFLSA has a similar appearance to the previously proposed
fused lasso signal approximator (FLSA) studied in H. Liu et al. (2010), it cru-
cially incorporates a group `2,1 norm rather than the `1 norm for performing
smoothing. To understand the effect of the update on the auxiliary variables,
consider that the GFLSA problem can also be thought of as a proximity opera-
tor of the form V̂ (ΓV ; λ̄1, λ̄2) ≡ proxR1+R2

(Γ). IfR1(·) andR2(·) were indicator
functions of two closed convex sets C and D respectively, then V̂ (ΓV ; λ̄1, λ̄2)

would find the best approximation to ΓV restricted to the set C ∩D.
For any unconstrained optimal point V ∗ = arg minV L(V ) there exists a

set of parameters (λ1, λ2) ∈ [0,∞) which will act to move the optimal point of
the regularized case V ∗R = arg minV G(V ;λ1, λ2) such that V ∗ 6= V ∗R where

V ∗R := arg min
V

L(V ), subject to ‖V ‖1 ≤ l1 and
T∑
t=2

‖[DV ]t,·‖2 ≤ l2.

For a given likelihood term, we can obtain an l1 sparse and l2 smooth solution
by solving a penalized problem instead of the explicitly constrained version
above. Such a penalized form is found in Eq. 3.2.6 and, while R1(λ1,V ) and
R2(λ2,V ) are not explicitly indicator functions (i.e. they do not take values∞
outside some feasible region), there does exist a mapping between the values of
the parameters λ1 ≥ 0 , λ2 ≥ 0 to the corresponding l1, l2 sparsity and smooth-
ness constraints. The intuition is similar to that of the lasso (Sec. 2.1.3), for a
given constraint level l1 and function L(V ), the size of the feasible set given by
Cλ1 = {V |λ1‖V ‖1 ≤ l1} reduces as λ1 increases. Thus sparsity is a monoton-
ically non-decreasing function of λ1. The same argument can be constructed
for smoothing and the constraint set Dλ2 = {V | λ2

∑
t ‖(DV )t,·‖2 ≤ l2}.



94 3. DYNAMIC GRAPHICAL MODELS

Unlike FLSA which penalizes the columns of V independently, we find
proxR1+R2

(Γ) 6= proxR2

(
proxR1

(Γ)
)
, thus in the case of GFGL one cannot

apply the two-stage smooth-then-sparsify theorem of Friedman, Hastie, Hoe-
fling, et al. (2007) and J. Liu et al. (2010) (specifically Theorem 1 of J. Liu
et al. (2010)). An alternative approach is to follow the work of Alaíz et al.
(2013) and adopt an iterative projection approach whereas Dykstra’s method
(Combettes et al. 2011) is used to find a feasible solution which simultane-
ously satisfies both the group fused `2,1 and lasso `1 constraints. The proximal
Dykstra algorithm, as outlined in Algorithm 1, provides a way to calculate a
point V ∗r ∈ Cλ1 ∩Dλ2 that is, in the sense of the `2 distance, close or proximal
to the unconstrained solution for arg minV L(V ) = Γ. By iterating between
the feasibility of a solution in Cλ1 and Dλ2 a solution can be found which is
both suitably smooth and sparse. For more details on the proximal Dykstra
algiorithm the reader is directed to Combettes et al. (2011).

Result: V N = proxR1+R2
(Γ)

V 0 = Γ ,Un = 0 , Qn = 0
while not converged, n = 0, 1, . . . do
Y n = proxR2

(V n +Un)
Un+1 = V n +Un − Y n

V n+1 = proxR1
(Y n +Qn)

Qn+1 = Y n +Qn − V n+1

end
Algorithm 1: Dykstras iterative projection algorithm, the sequences of V n

converge to a feasible point.

Given that iterative projection can be used to find a feasible point, the
challenge is now to compute the separate proximity operators for R1() and
R2(). For R1 the proximity operator is simply the soft-thresholding func-
tion as derived in Sec. 2.1.5 (Eq. 2.1.15). Computing the group-fused term
proxR2(Γ;λ2) is more involved and there is no obvious closed-form solution.
Instead, we solve this through a block-coordinate descent approach similar to
that considered by Bleakley et al. (2011) and M. Yuan et al. (2006). Specifi-
cally, Bleakley et al. (2011) show that it is possible to reformulate the GFSA
as a group-lasso problem which can be solved via standard strategies.

Proposition 3.1. Group-Fused Signal Approximator
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The solution to the group-fused signal approximator

(3.2.7) proxGFSA(Γ;λ2) = arg min
V ∈RT×p

1

2
‖V − Γ‖2

F + λ2‖DV ‖2,1,

may be written as a sum of estimates, such that

[proxGFSA(Γ;λ2)]t,· =

ω̂ +
∑t−1

s=1 Ω̂s,· t > 1

ω̂ t = 1
.

Let us define a linear partial sum operatorR ∈ Rp×T−1 as Ri,j = 1 for i > j

and 0 otherwise. The estimated constant is given as ω̂ = 11,T (Γ − V Ω̂)/T ,
where the matrix of jumps Ω̂ can then be obtained from solving the group-lasso
problem with

Ω̂ := arg min
Ω∈R(T−1)×p

1

2
‖Γ̄− R̄Ω‖2

F + λ2‖Ω‖2,1 ,

where X̄ is the column-centred version of X.

Proof. Simple variable substitution in (3.2.7). See Appendix B.1 for details.

Applying the above result in conjunction with a block-coordinate descent
strategy allows us to compute the group-fused proximity operator proxR2

(Γ;λ2).
The overall subproblem (3.2.6) can now be solved through iteratively applying
the proximity operators according to Dykstra’s algorithm.

3.2.4 Dual update and convergence

The final step in the ADMM-based method is to update the dual vari-
able via Eq. 3.2.4. Convergence properties of general ADMM algorithms are
analyzed in Glowinski et al. (1989). Importantly, the sequence of solutions
{Un}n∈N can be shown to converge (Eckstein et al. 1992) to the solution of
the problem arg minU f(U) + g(LU ), under conditions that L>L is invert-
ible and the intersection between relative interiors of domains is non-empty
(ri dom g) ∩ ri L(dom f) 6= ∅. In the GFGL and IFGL problems one simply
sets L = I in order to restrict U = V . Clearly in this case I>I is invertible
and dom g = I(dom f); thus the relative interiors intersect. Convergence of
the Dykstra’s algorithm is discussed in Combettes et al. (2011) and Bauschke
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et al. (2008), it generally requires a minimal feasibility condition such that
domR1 ∩ domR2 6= ∅ and a valid solution exists.

Whilst ADMM is guaranteed to converge to an optimal solution, in prac-
tice it converges relatively fast to a useful solution, but very slowly if high
accuracy is required. Following the approach of Boyd, Parikh, et al. (2011)
two convergence criteria are considered. The first, known as primal feasibility,
relates to the optimality condition U ∗−V ∗ = 0 where U ∗ is the optimal value
of U and is measured according to:

rprime =
T∑
t=1

‖U t
(n) − V t

(n)‖2
F ,

A second, dual feasibility criteria defined as:

rdual =
T∑
t=1

‖V t
(n) − V t

(n−1)‖2
F ,

tracks the requirement that 0 ∈ ∇F (U ∗) + P ∗V . The rate at which the algo-
rithm converges is somewhat tunable through the γ parameter, however it is
not clear how to find an optimal γ for a given problem. In practice, a value
of order γ = 10 provides reasonably fast convergence with tolerances of order
rprime < εprime = 10−3 and rdual < εdual = 10−3.

3.2.5 A solver for the Independent Fused Graphical Lasso

Whilst the ADMM-D algorithm was developed to solve the GFGL esti-
mator, they can easily be adapted for the IFGL estimator by modifying the
auxiliary updates corresponding to the non-smooth constraint projection. In
place of (3.2.6), one may consider a fused lasso problem

(3.2.8) G(V ; λ̄1, λ̄2) =
1

2
‖Γ− V ‖2

F︸ ︷︷ ︸
L(V )

+ λ̄1‖V ‖1︸ ︷︷ ︸
R1(V )

+ λ̄2‖DV ‖1︸ ︷︷ ︸ ,
R2(V )

where Γ = U +P V and we replace the ‖ · ‖2,1 norm of GFGL with a simple `1

penalty of IFGL. Since the `1 norm is linearly separable, i.e. ‖U‖1 =
∑

ij |Uij|,
the objective can now be viewed as a series of p(p − 1)/2 separate FLSA
problems. This can be solved efficiently with gradient descent. In the IFGL
case there is no need to apply the iterative Dykstra projection as one can
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Data: x(1), . . . ,x(T )

Input: λ1, λ2, γ, εdual, εprime

Result: {Θ̂
(1)
, . . . , Θ̂

(T )
}

Calculate covariance matrix: Ŝ
t

= x(t)(x(t))>/2 for t = 1, . . . , T

Initialize: V (t)
(0) = U

(t)
(0) = P

(t)
V ;(0) = 0

while not converged (rprime ≥ εprime, rdual ≥ εdual), n = 0, 1, . . . do
for t=1,. . . ,T do

Eigen-decomposition:
{sh, eh}Ph=1 = eigen

(
Ŝ

(t)
− γ(V

(t)
(n−1) − P

(t)
V ;(n−1))

)
xh =

(
− sh +

√
s2
h + 4γ

)
/2γ

E = (e1, . . . .eP ), Q = diag(x1, . . . , xP )

Apply constraints: U (t)
n = EQE>

end
V (n) = proxR1+R2(U (n) + P V ;(n−1) ;λ1/γ, λ2/γ) // GFLSA via
Dykstras method*
P

(t)
V ;(n) = P

(t)
V ;(n−1) +

(
U

(t)
(n) − V

(t)
(n)

)
, for t = 1, . . . , T

rprime =
∑T

t=1 ‖U
(t)
(n) − V

(t)
(n)‖2

F , rdual =
∑T

t=1 ‖V
(t)
(n) − V

(t)
(n−1)‖2

F

end

Return: {Θ̂
(t)

= U (t), . . .}
Algorithm 2: Outline of ADMM algorithm for GFGL. Note: to solve
IFGL we simply replace the update (*) with V (n) = proxR1+R3(U (n) +
P V ;(n−1) ;λ1/γ, λ2/γ) which can be computed through the sub-gradient
finding algorithm as proposed in H. Liu et al. (2010).

show the proximity operator can be calculated according to proxR1+R2
(Γ) ≡

arg minV G(V ; λ̄1, λ̄2) = proxR2

(
proxR1

(Γ)
)
(H. Liu et al. 2010).

3.3 Synthetic Experiments
In this section, the IFGL and GFGL estimators are applied to simulated,

piecewise stationary, multivariate time-series data. This provides an empirical
comparison of their relative abilities to (i) recover the graphical structure and
(ii) detect changepoints. Instead of assessing the speed of implementation, the
experiments here aim to highlight the different qualitative features of graph
estimation under the GFGL and IFGL penalisation schemes. An outline of
the testing methodology is presented in Figure 3.3.1. In these experiments,
the ADMM-D algorithm is utilised to implement the estimators, preliminary
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Figure 3.3.1 – Diagrammatic representation of synthetic experiments.

results, not reported here, suggest that the extended ADMM+method may en-
able faster convergence in some situations. However, analysis of the ADMM+
algorithm requires further work and the focus in this section is on the empirical
difference between the GFGL and IFGL estimators.

3.3.1 Data simulation

To validate the graphical recovery performance of estimators, data is sim-
ulated according to a known ground truth set of precision matrices {Θ(t)

0 }Tt=1.
The simulation is carried out such that, for a given number K∗ of ground truth
changepoints T ∗ = {τ1, . . . , τK∗}, there are K∗+ 1 corresponding graph struc-
tures. For each segment k = 1, . . . , K∗ + 1, graphical structure is simulated
uniformly at random from the set of graphs with vertex size |Vk| = P and
|Ek| = Mk edges, i.e. G(V,Ek) ∼ ErdösRényi(P, sk). A draw of G(V,Ek) can
then be used to construct a valid GGM by equating the sparsity pattern of the
adjacency matrix and precision matrix, i.e. (i, j) ∈ Ek ⇐⇒ Θ

(k)
i,j 6= 0.

Precision matrices are formed by taking a weighted identity matrix 1
2
I ∈

Rp×p and inserting off-diagonal elements according to edges Ek that are uni-
formly weighted in the range [−1,−1/2]∪ [1/2, 1]. The absolute value of these
elements is then added to the appropriate diagonal entries to ensure positive
semi-definiteness. To focus on the study of correlation structure between vari-
ables, the variance of the distributions are normalized such that (Θ

(t)
ii )−1 = 1

for i = 1, . . . , P .
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3.3.2 Hyper-parameter selection

With most statistical estimation problems there are a set of associated tun-
ing parameters (common examples include; kernel width/shape, window sizes,
etc.) which must be specified. In the GFGL and IFGL model, one can consider
the regularizer terms R1(λ1) and R2(λ2) in Eq. (3.1.7) as incorporating prior
knowledge into the model parameterization. Given this viewpoint, selection
of tuning parameters (λ1, λ2) corresponds to specification of hyper-parameters
for graph sparsity and smoothing.

The recovery performance will depend on the strength of priors employed.
As such λ1 and λ2 must be tuned, or otherwise estimated, such that they
are appropriate for a given data-set or task. In comparison to models which
utilize only one regularizing term (for example, the graphical lasso of Banerjee
et al. (2008)), the potential interplay between R1(λ1) and R2(λ2) sometimes
conflates the interpretation of the different regularizers. For example, whilst
λ1 predominantly affects the sparsity of the extracted graphs, λ2 can also have
an implicit effect through smoothing.

In the synthetic data-setting, the availability of ground-truth or labeled
data affords the opportunity to learn the hyper-parameters via a supervised
scheme. In order to avoid repeated use of data, the simulations are split
into test and training groups which share the same ground-truth structure
{Θ(1)

0 , . . . ,Θ
(T )
0 }, but are independently sampled. The IFGL and GFGL prob-

lems are then solved for each pair of parameters (λ1, λ2) over a search grid.
Optimal hyper-parameters can then be selected according to a relevant mea-
sure of performance. Typically, one may consider either predictive risk (how
well can the model represent the true distribution), or model recovery, i.e.
estimation of the correct sparsity pattern (Zhou et al. 2010).

3.3.3 Model recovery performance

Considering the model recovery setting, the problem of selecting edges
can be treated as a binary classification problem. One popular measure of
performance for such problems is the Fβ-score

(3.3.1) Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
,
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Figure 3.3.2 – Comparison of generalization performance between GFGL and
IFGL, for a dataset of size p = 10, T = 50. Left: F1-score as a function of time
t, plotted lines are the averages over Ntest = 200 time-series. Error-bars are
omitted for presentation, with an estimated standard deviation in the F1-scores
of σIFGL ≈ 0.15 and σGFGL ≈ 0.14. Right: Demonstration of GFGL and IFGL
graph recovery as a function of the number of estimated changepoints |T̂ |.

where TP considers the number of correctly classified edges, whilst FP and FN

relate to the number of false positives and false negatives (Type 1 and Type
2 errors) respectively (a score of Fβ = 1 represents perfect recovery). Since
dynamic network recovery is of interest, the average F1-score is taken over each
time-series to measure the effectiveness of edge selection.

For each training time-series an optimal set of parameters are chosen which
maximise the F1-score. Specifically, let us consider the set Γ = {(λ∗1, λ∗2)i =

arg max F1(λ1, λ2)i}Ntrain
i=1 , the final, optimal parameters λ∗1, λ∗2, are then com-

puted as the median value over this training set. A hold-out test set of inde-
pendently simulated time-series is then used to measure the generalization per-
formance. Figure 3.3.2-left provides a typical comparison of the graph-recovery
(F1-score) performance between the IFGL and GFGL methods throughout the
time-series duration. In this example it can be seen that IFGL tends to per-
form best at points far from the changepoint, whereas GFGL shows a benefit
when estimating a graph close to the changepoint.

We note the primary difference between IFGL and GFGL is the number
of edges effected at each changepoint. This is demonstrated more clearly in
Figure 3.3.3. Here λ1 is fixed and the number of edges which change at each
time-point is plotted over a range of smoothing parameters λ2. Clearly, GFGL
results in a greater number of edges being effected at each changepoint. Due to
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Figure 3.3.3 – Change-point density plots for IFGL and GFGL in the synthetic
setting (p = 10, T = 50, s = 10 λ1 = 0.2), there is a simulated changepoint at
T = 25. Color represents the average number of edges (over N = 100 simula-
tions) which experience a change at a given time point.

the grouped estimation of GFGL, a good graph recovery F1-score performance
is achievable with only a few changepoints (see Figure 3.3.2). In contrast, if one
sets λ2 to be large in the IFGL setting, only a few changepoints are selected -
however, these represent changes in only very few edges (Figure 3.3.3-left). In
this setting IFGL may perform well with regards to changepoint performance
but this comes at the expense of poorer graph recovery as is evident from the
F1-scores. Where such grouped changepoint structure is present across many
edges, GFGL enables one to recover changepoints without sacrificing as much
graphical recovery performance.

3.3.4 Performance scaling

In this section, the recovery performance of the estimators is considered
over a range of different problem sizes. In order to assess changepoint estima-
tion performance and how this varies with scale, we may construct an error
measure that monitors the average distance (in time) between estimated and
true changepoints. The changepoints for a given edge (i, j) can be described
by monitoring differences in the precision matrix, i.e. T̂ij =

{
t
∣∣|Θ̂(t)

ij −Θ̂
(t−1)
ij | 6=

0, t = 2, . . . , T
}

=: {τ̂ (k)
ij }

K̂ij
k=1, with K̂ij =

∣∣T̂ij∣∣. These are compared with the
ground truth changepoints for the i, jth edge (τij) from the changepoint set
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Figure 3.3.4 – Comparison of IFGL and GFGL estimator performance with
increasing number of data-points T . Left: F1-score, Right: Relative changepoint
error vs time-series length. Error bars represent 67% confidence intervals as
estimated from the empirical c.d.f. of N = 200 test examples.

Tij via the mean absolute error measure, namely

MAE :=
1

K̂

∑
i,j

K̂ij∑
k=1

∣∣∣τ̂ (k)
ij − τij

∣∣∣ ,
where4 K̂ =

∑
ij K̂ij. In these experiments a single changepoint is shared

across multiple edges at T = T/2. To allow fair comparison between exper-
iments at different time-series lengths, the same precision matrices are used
on both sides of the changepoint. For example, under scaling T → 2T , the
number of data-points either side of the changepoint is simply doubled. When
considering scaling with respect to dimension precision, matrices are simulated
as in Section 3.3.1. However, the number of active edges scaled as s = p. Ex-
periments were run with data-sets of size Ntrain = 20 and Ntest = 200 and
optimal lambdas were selected through F -score maximization.

Figure 3.3.6 presents the experimental results. As one may have expected,
recovery performance improves as more data is made available (increasing T ),
but degrades as the problem task becomes more complex (increasing p). On
average, IFGL performs slightly better at estimating the correct edges, whereas
GFGL outperforms in the changepoint detection task. Such a result coincides

4One should note that K̂ =
∣∣T̂ ∣∣ only when no changepoints occur simultaneously across

multiple edges; i.e.
∣∣T̂ ∣∣ = K̂ ⇐⇒

∣∣⋃
ij T̂ij

∣∣ =
∑
ij

∣∣T̂ij∣∣.
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Figure 3.3.5 – F1 score vs model dimension p.

with the performance demonstrated in Figure 3.3.2, where GFGL performs
better in the vicinity of a changepoint. If grouped changepoints are present,
the experiments suggest GFGL performs better in the changepoint estimation
task without sacrificing much graph recovery performance.

The results here display how recovery performance scales with problem di-
mensionality. However, such performance will also depend on the structure
of the ground-truth graph and precision matrices. As an example, in the sta-
tionary setting Ravikumar, Wainwright, Raskutti, et al. (2011) suggest that,
for consistent recovery of graphs (with N data-points), one should bound the
partial correlations, [−1,−α] ∪ [α, 1] such that α = Ω(

√
log p/N). To enable

better interpretation of experimental results, the scaling was fixed to α = 1/2

in these examples. However, it is anticipated that changepoint and graph es-
timation may become more difficult as the true non-zero partial correlations
Θi,j tend towards zero. A theoretical analysis of GFGL in Chapter 4 corrob-
orates this intuition, for consistent recovery the non-zero elements should be
appropriately lower bounded.

In order to investigate computational scalability, a series of experiments
were performed on problems of various size (the experimental setup is the
same as in Sec. 3.3.4). Results are summarised in Figure 3.3.6. In contrast
with the quadratic time complexity for dynamic programming methods (An-
gelosante et al. 2011), it can be observed that the ADMM-D routine, as a
whole, maintains roughly linear complexity with increasing T . However, when
considering increases in the estimated number of changepoints K̂, complexity
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Figure 3.3.6 – Left: Compute-time vs time-series length T and Right: dimen-
sion for a fixed number of changepoints.

appears to follow the quadratic rate of GFLseg5 which scales as ≈ O(Tp2K̂2)

(Bleakley et al. 2011).

3.4 Applications
In this section, two example applications of the IFGL and GFGL estimators

are given. In both cases, it is clear that modelling graph dynamics can provide
additional insight into data-generating processes. In the first application, both
the GFGL and IFGL methods are applied to a set of time-ordered genetic
measurements. In this case the data-set has relatively large dimensionality in
terms of the number of variables, but possesses a low number of time-points. In
the second example, the IFGL model is used to estimate dynamic models that
can represent dependency between features derived from computer network
data. In this case, there are less variables to model and an increased number
of data-points than in the genetic example. Additionally, given the increased
volume of data, a cross-validation mechanism for estimating hyper-parameters
is suggested.

3.4.1 Time Evolution of Genetic Dependency Networks

In recent years it has become increasingly common to construct experi-
ments which sample gene-expression activity as a time-series. As an example
5In the implementation tested, the GFLseg algorithm is used to solve the Dykstra proximity
update proxR2

(Γ;λ2). See Appendix B.2 for more details.



3. APPLICATIONS 105

Figure 3.4.1 – Graphical depiction of the life-cycle stages of Drosophila Melago-
naster (the common fruit fly). From left to right; embryo, larval, pupa, adult. At
each stage throughout the life-cycle, genetic material can be analysed to assess
the activity of genes.

of such data, we consider the genetic activity of a fruit-fly (D. melanogaster)
from its embryonic birth to final adult state (for a visual representation see
Figure 3.4.1). The dataset analyzed here is a subset of the data collected by
Arbeitman et al. (2002), who measure gene expression patterns for 4096 genes,
approximately one third of all D. melanogaster genes, over T = 67 time-points.

To aid interpretation of the results and for computational feasibility, we
consider a smaller subset of genes (p = 150), which are understood to be
linked to certain biological processes, in this case immune system response.
The link between this subset of genes and biological function is motivated
by considering conserved co-domains of a gene. Where such co-domains are
shared between genes, one can often infer a similar biological function of the
genes. This similarity can even be extended to other organisms if the genes
are homologous (Forslund et al. 2011). In this case, our selection of genes
is based on the Flybase Gene-ontology database (Attrill et al. 2016). Un-
derstanding the dependency between genes involved in a certain process is of
interest to biologists who want to examine and understand why or how regu-
lation of gene activity evolves over time, for example, after an intervention or
treatment. Previous work on this data-set by Lèbre et al. (2010) considered
estimating changepoints in a causal VAR-type model. In contrast to this work,
the analysis here is concerned with estimating the contemporaneous relation-
ships between genes. Specifically, the innovations εt are modelled as a dynamic
GGM, where X(t) = X(t−1) + ε(t) and ε(t) ∼ N (0,Θ(t)).

Unlike in the synthetic experiments, the time-course data analyzed here was
not replicated, meaning we only have one data-point at each time point in the
fly’s development. It is worth noting that more recent experiments involving
time-course microarray data may produce replicated experiments. These are
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Figure 3.4.2 – Left: Change-point density. Right: number of edges as a function
of regulariser parameters λ1, λ2. Top: GFGL, Bottom: IFGL.

thought to be particularly valuable, as it may allow us to gauge uncertainty
due to variation in genetic populations and environmental factors. With such
replicated experiments, there may also be a meaningful way to perform cross-
validation to estimate the hyper-parameters. In the absence of replicates,
the analysis approach here is an exploratory one whereby inferred structure
is assessed over a wide range of regularization parameters. In particular, the
sparsity parameter is assessed over the range λ1 = 0.1 to 0.5 for both methods,
with smoothing set to λ2 = 80 to 200 for GFGL, and λ2 = 1 to 10 in the IFGL
case.

Figure 3.4.2 demonstrates how both the sparsity, number and position of
changepoints in the solution behave as a function of λ1, λ2. One can clearly see
that both smoothing (the number of changepoints) and sparsity (the number
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Figure 3.4.3 – An example of the graphical models recovered at one set of
solutions. For comparison a set of λ1, λ2 which give roughly the same level of
sparsity in the IFGL and GFGL models are selected.

of edges) are linked to (λ1, λ2) jointly. For a given selection of λ1, λ2, we obtain
an estimate for the dynamic graph. Figure 3.4.3 presents some snapshots of
these graphs.

In this example, the graphs are drawn such that gene-positions (vertices)
are comparable both across time and between methods. This application to ge-
netic data clearly illustrates the qualitative differences between the estimators
in terms of extracted structure. In both methods we observe that more edges
are detected in the later-half of the life-cycle, with a large change in structure
inferred during the Larval stage of development. Unlike IFGL, which expe-
riences changepoints at all time-points, GFGL clearly has more pronounced
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jumps; i.e. more edges change at each changepoint (see Figure 3.4.2). Ad-
ditionally, if one considers the varying size of node (proportional to degree),
it appears that the degree of the GFGL estimates are more stable. Such a
feature suggests that the particular GFGL estimate (in Figure 3.4.3) has fewer
degrees of freedom than the IFGL estimate. Such a property may be appeal-
ing in the high-dimensional setting, where GFGL appears to permit similar
graphical structure, but enhanced temporal stability in the graph.

3.4.2 Statistical modelling of Computer Network Traffic

As discussed in the introduction (Sec. 1.1.2), graphical models may provide
a useful tool to model computer network traffic. It is well known that network
traffic can exhibit non-stationary behaviour (Patcha et al. 2007; Scherrer et al.
2007) and thus one may expect dependencies in metrics derived from the traffic
to change over time. In this section, we aim to quantify whether any such
temporal variation in dependency exists on real network traffic. To achieve
this, we utilise the IFGL model as discussed in previous sections. The GFGL
model was not applied in this context due to the high-computational cost of the
ADMM-D algorithm with respect to the number of changepoints (see Figure
3.3.6). Application of GFGL with the extended ADMM+ algorithm ( B.3) is
feasible, and provides an avenue for future research on changepoint detection.
Dependencies between network extracted features are then represented as a
set of time-varying graphs. The main purpose of the analysis is to uncover key
relationships between features and quantify their variation over several days
of real data. Although not developed here, one potential application of such
models may be to provide anomaly detection functionality. For example, the
extracted graphical models may be used to characterise different behaviours or
activities conducted over the network. Once allowed activities are adequately
mapped out, the models may be used to detect deviations from known activities
and potentially alert to malicious activity. A more complete discussion of this
application to network traffic modelling may be found in Gibberd, Evangelou,
et al. (2016).
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Table 2 – List of extracted NetFlow features used in this analysis. For further
details on the construction of features see Evangelou et al. (2016).

Name Description
No_Events Number of events that start and end in bin
No_StartEvents Number of events that start in bin but end outside
Bytes_Median Median of packet size within bin
Bytes_MAD Median absolute deviance (MAD) of packet size
Bytes_SUM Total number of bytes in bin
Bytes_SD Standard-deviation of bytes
Packets_Median Median number of packets
Packets_MAD MAD of packer distribution within bin
Packets_SUM Number of packets within bin
Packets_SD Standard-deviation of packet distribution in bin
BP_ratio_Median Median of ratio between bytes and packet
BP_ratio_MAD MAD of byte-packet ratio
BP_ratio_SUM Sum of ratio within bin
BP_ratio_SD Standard-deviation of byte-packet ratio

The Dataset

Before starting the analysis, one must first extract the features themselves
from raw network data. Specifically, the dataset used here is constructed from
a subset of 10 IP addresses within the Imperial College London (ICL) network6.
The IP addresses (to be understood as devices) under study are kept constant
throughout the study, data was collected for 13 consecutive days, including 4
weekend days which we discount in our analysis. Table 2 provides a summary
of p = 14 features which quantify; the number of connections, packets, and
size of packets traveling across the network. For more information on their
construction the reader is referred to Evangelou et al. (2016).

The features we use in this study relate to various statistics of events con-
tained within binned time intervals. Figure 3.4.4 demonstrates what one of
these features (Number of events) looks like for different bin sizes. Clearly,
the distribution of features within a bin changes depending on the size of the
bin. In particular we note that many of the features we use are based on count

6This research would not be possible without my collaborators at Imperial College London.
Specifically, I would like to thank Niall Adams, Marina Evangelou, and Andy Thomas, who
curated the data-set and advised on feature construction and interpretation.
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Figure 3.4.4 – Top: Raw packet counts aggregated over 5 and 10 minute inter-
vals.

data, as the bin-size tends to zero these feature distributions will demonstrate
an excess of zero values (Evangelou et al. 2016; Scherrer et al. 2007). This
is undesirable for our particular analysis as we wish to model the features as
continuous random variables. To avoid such problems, we perform our analysis
with a relatively large bin-size of 10 minutes. In future work, one may consider
looking at dynamic extensions of non-parametric or Poisson graphical models
(J. Lafferty et al. 2012; E. Yang et al. 2013) to deal with count data.

To enhance the interpretation of dependency structure it is prudent to
ensure that all features are measured on a similar scale level. To achieve
this, a localised z-scoring procedure is used to approximately remove trends
in the empirical mean and marginal variation of feature flows. The mean and
variance are estimated locally, in a moving window of width m. We perform a
local de-trending and variance stabilising transform (see Figure 3.4.4) to each
feature flow according to Xt = (Xt − µ̂t)/σ̂t where µ̂t = (

∑t+h
i=t−hXi)/m and

σ̂t =
(∑t+h

i=t−h(Xi − µ̂t)2/m− 1
)1/2.
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Results

In this experiment we aim to assess whether there is a common daily pat-
tern to dependency dynamics. For example, one might hypothesize network
behaviour corresponds to a day/night or work/home cycle. To test such a hy-
pothesis, we run IFGL on each of the 9 working week-days within our dataset.
For each day we find a solution path according to a grid of tuning parame-
ters λ1, λ2 (similar to that of Figure 3.4.5). Each point in this solution path
corresponds to a set of dynamic graphs with different sparsity and smooth-
ness properties. Figure 3.4.5 provides a visualistation of this solution path
over the whole week of activity. Qualitatively, this visualisation allows one to
examine where and how dependencies appear to change. However, while the
solution paths alone provide some insight into the dependency dynamics, ide-
ally we would want to identify a model with appropriately chosen shrinkage and
smoothness priors. Such a choice would correspond to taking a cross-section
of the solution path for a specific combination of λ1, λ2. In the following, a
method for selecting such hyper-parameters is developed.

Remark. A pragmatic approach to cross-validation with dynamics
As mentioned in the fruit-fly analysis, with time-series we often simply get

one snapshot of data. For example, we may observe pointsX = (x(1), . . . ,x(T ))>

relating to gene-expression levels. However, unlike conventional i.i.d learning
environments, the requirement to preserve order in a time-series prevents us
re-sampling, or using conventional cross-validation procedures when estimating
models. Unlike in the gene-expression example, when studying computer net-
works we have much more datapoints relative to the dimension p. Additionally,
it may be appropriate to assume that the data generating process is in some
sense locally stationary. For example, we may consider that dependency pat-
terns may change throughout the day, but this activity may be similar across
different days or weeks. In the following, we will make the assumption that
there is some level of smoothness and sparsity that is consistent across days.
With this assumption in mind, one may try to perform some form of cross-
validation across different days of data. We can assume the different days of
data constitute independent observations of an assumed generative process.
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Figure 3.4.5 – Solution path for one week of analysis.

If the data from across different days were generated according to the same
process, then a model trained on one day should be able to describe some
of the behaviour of another day. The descriptive ability of a model may be
formalised by constructing a measure of risk based on how well one training
day can explain the data of a held out test day. Exchanging the test data-set
across the days in a leave-one-out cross-validation fashion enables the risk to
measure how well estimated models generalise between days. By minimising
this risk surface one can estimate an optimal set of tuning parameters (λ1, λ2).
To construct a risk function, we may adapt the idealised setting where we
have knowledge of the ground-truth distribution. For a multivariate Gaussian
distribution, the predictive risk for a pair of ground truth Σ0 and estimated Ŝ
covariance matrices is given as R(Ŝ) = tr((Ŝ)−1Σ0) + log det(Ŝ). Zhou et al.
(2010) observe that up to a constant R(Ŝ) = −2EX [log(fŜ(Z))], where fŜ
is the probability density function corresponding to N (0, Ŝ) and the data is
generated according to ~X ∼ N (0,Σ0). The likelihood and the risk are thus
related via the density function. In our case, this measure of risk is extended
to cover all time-points. A leave one out cross-validation risk may then be
constructed according to:
(3.4.1)

Rloo({Ŝ
(t)
}Tt=1) ≡

T∑
t=1

(
1

N

N∑
itest=1

∑
i 6=itest

[
tr(Θ̂

(t)

i S
(t)
itest

) + log det
(
(Θ̂

(t)

i )−1
)])

,
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Figure 3.4.6 – Leave-one out cross-validation surface as averaged over N = 9
days of data.

where S(t)
itest

= x(t)x(t)> is an ill-conditioned estimate of the local empirical
covariance. In effect, by averaging over the N different days of data, we can
see how estimated models on one day, perform in terms of describing the data
on days in a hold-out set. Such a procedure can be performed for various
settings of λ1 and λ2 to build up a risk surface.

Figure 3.4.6, presents such a risk surface as estimated for the network
traffic features. It tells us a lot about how the estimated dependency graphs
generalise across days. In particular we note:

• Either a non-zero λ1 or λ2 improves generalisation performance as mea-
sured through the risk.
• The shrinkage inducing λ1 appears to have a minima at around λ1 = 0.1.
• The risk surface suggests that λ2 should be set very large, there is no
discernible minima with respect to λ2.

The fact that the risk surface is minimised for very large λ2 suggests that
almost constant precision matrices should be preferred, i.e. there will be no
dynamic structure estimated. This should be interpreted as evidence against
the hypothesis that there is a regular daily cycle of dependency patterns, and
no general level of smoothness to the graphs. At least in this data-set, there
appears to be no consistent pattern to the dynamics across different days. A
more interesting observation is the fact that there is a minima with respect to
λ1. Thus, while there are no regular temporal patterns this does suggest that
there is an optimal level of sparsity which generalises across different days.
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Figure 3.4.7 – Choosing λ1 = 0.1 the number of edges is plotted as a func-
tion of time for two solutions, one with high smoothness λ2 = 6 and one with
low smoothness λ2 = 1. Below this, some snapshots of graph structure are
given at different points in the week (measured in hours). These graphs cor-
respond to the solution with λ1 = 0.1 and λ2 = 6. The features are indexed
as: 1) bp_ratio_mad; 2) bp_ratio_median; 3) bp_ratio_sd; 4) bp_ratio_sum;
5) bytes_mad; 6) bytes_median; 7) bytes_sd; 8) bytes_sum; 9) no_events; 10)
no_start_events; 11) packets_mad; 12) packets_mediam; 13) packets_sd; 14)
packets_sum.

Indeed, this lends support to the assumption that sparsity is appropriate for
modelling network traffic dependencies.

While the cross-validation experiment did not provide evidence for a daily
cycle of dependency activity, the results in Figure 3.4.5 clearly demonstrate
temporal variation in the estimated sparsity patterns. For instance, we note
that there seems to be a slightly more dense region within the periods t ∈
[10, 50] and t ∈ [70, 100]. It is interesting to note that these appear to coincide
with periods of increased activity as measured by overall event count (Figure
3.4.4). Rather than a daily cycle, this pattern suggests that meaningful dy-
namics might be detected over a period of several days. To investigate this
structure further, we can harness the cross-validation analysis performed in
the intra-day experiment to select an appropriate level of sparsity. Setting
λ1 = 0.1, we can then take a cross-sectional view of the solution path; Fig-
ure 3.4.7 plots the number of edges and snapshots of the estimated graph for
two different values of λ2. Again, as in the fruit-fly example, the extracted
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dynamic graphical models can help us understand how features are related to
each other. In this case, it appears that the features; packets_sd, packets_sum,
bytes_sum, and bytes_sd, are somewhat inter-related. In this example, such
relationships would intuitively make sense due to the construction of features;
one may expect that the number of bytes measured in an interval is a function
of the number of packets in the same period.

For privacy reasons, it is not clear in these experiments what specific pro-
cesses were running on the devices attached to the network throughout the
period of study. However, if one could simultaneously monitor what users
are doing on their devices whilst measuring the resultant NetFlow data, then
graphical models such as those applied here could be used to characterise the
state of the network (with respect to these explicit labellings). Demonstrating
this in practice would require significant further work, specifically in data-
collection and classifying the graphical models, i.e. linking dependency graphs
with network state. Given such data, then one may use the extracted graphs
as features for classification. Since the dependency structure is encoded by
the precision matrix, one could think of this as a similar approach to principle
component based methods. In the PCA case, one would use features relating
to the largest eigen-vectors of the covariance matrix; in the graphical model
case, one would have features which correspond to graphs. It is interesting
to note, that sparse extensions to PCA (c.f. Zou, Hastie, and R. Tibshirani
(2006)) have been proposed to increase the interpretability of estimated prin-
ciple components. Given, that incorporating sparsity enables a more robust
estimate of the precision/covariance matrix, one may argue that the resultant
features, if used in a classifier, would also be more robust, i.e. have lower vari-
ance under sampling. Although using the derived classes to construct features
is not considered here, it is feasible that enhanced feature robustness may
result in more stable classification. In an anomaly detection role, this may
act to reduce the false positive rate when flagging anomalies, whilst crucially
ensuring that detection ability is not compromised.
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3.5 Summary
In this chapter, extensions to the stationary i.i.d graphical models have

been developed. We discussed in some detail how different smoothness assump-
tions can be imposed on the graphical models in the context of M-estimators.
Specifically, the IFGL and GFGL estimators were introduced in order to de-
tect edge-wise and graph-wise changes in dependency structure. As these
models are inherently extremely flexible, they rely in a very large part on hav-
ing sufficient regularisation to add curvature within the resultant optimisation
problems. Even though the proposed estimators are convex, they require op-
timisation over many parameters which motivated the development of a new
class of ADMM algorithm. The estimation abilities of the methods were then
assessed empirically in both a synthetic and real-world setting. In both the
case of genetic and computer traffic analysis, it is clear that allowing for dy-
namics in graphical models can produce significant improvements in the level
of insight obtained from observations. In the analysis of fruit-fly development,
this enabled the time-localisation of changes in genetic dependency; in the
study of computer networks, it enables us to highlight relationships between
features and that these may depend on the process operating on the network.
In the next chapter, the estimators introduced here are discussed in a more
theoretical setting and we try to understand the circumstances in which GFGL
may recover true changepoint structure.
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Appendix B

B.1 Proof of Proposition 3.1

Proof. Consider the definition of the group-fused signal approximator prox-
imity operator:

proxR2(Γ;λ2) = arg min
V

1

2
‖V − Γ‖2

F + λ2‖DV ‖2,1.

Re-writing the above with Ω = DV and constructing V as a sum of differences
via Vt,· = ω +

∑t−1
i=1 Ωi,·, where ω = V1,·, then one can interpret the proximal

operator as a group lasso problem (Bleakley et al. 2011). Writing the re-
parameterized problem in matrix form, one can show that solving for the
jump parameters allows us to reconstruct an estimate for V . This is formally
equivalent to a group lasso (M. Yuan et al. 2006) class of problem:

( B.1) Ω̂ := arg min
Ω∈R(T−1)×P (P−1)/2

1

2
‖Γ̄− R̄Ω‖2

F + λ2‖Ω‖2,1 ,

where a bar X̄ denotes a column centered matrix and R ∈ RT×(T−1) is a
matrix with entries Ri,j = 1 for i > j and 0 otherwise, i.e.

R =


0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

 .

The problem ( B.1) can be solved through a block-coordinate descent strategy,
sequentially updating the solution for each block Ωt,· for t = 1, . . . , T − 1 (see
Sec. B.2). We can then construct a solution for V̂ by summing the differences
and noting that the optimal value for ω is given by ω̂ = 11,T (Γ − RΩ̂).
Correspondingly, the proximal operator for R2 is constructed as

( B.2) proxR2(Γ;λ2) =
(
ω̂>, (ω̂ + Ω̂1,·)

>, . . . , (ω̂ +
T−1∑
i=1

Ω̂i,·)
>)>.

�
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B.2 Group-Fused Lasso solver (a note on GFL-Seg)

To solve the group lasso problem in the GFGL subroutine I use the GFLseg
algorithm developed in Bleakley et al. (2011). This algorithm utilizes a natural
block structure in the group lasso problem:

Γ̂ := arg min
Γ∈R(T−1)×P

1

2
‖Y −XΓ‖2

2 + λ2‖Γ‖2,1 ,

where Y is a data or target matrix and X is referred to as the design matrix.
We see that the group lasso problem as formulated above is linearly separable
across the groups, given by rows in Γ. Writing the regularizer as ‖Γ‖2,1 =∑

T−1 ‖Γt,·‖ one notes that the sum of squared term can also be decomposed
across such groups (in our application the groups refer to time slices).

The update for block t can be found according to (Bleakley et al. 2011)

Γt,· ←
1

‖X·,t‖2

(
1− λ2

‖e−tt ‖

)
+

e
\t
t ,

where e\tt := X>·,t(Y −XΓ\t), and Γ\t denotes the matrix Γ with the t-th row
set to zero. If one applies the above update scheme then the estimates are
guaranteed to converge (M. Yuan et al. 2006). To speed up the algorithm,
Bleakley et al. (2011) adopt an active set strategy which takes advantage of
the fact we expect only few active blocks (which would correspond to change-
points). One iterates between adding blocks to the active set A, according to
maximal violation of the KKT conditions, and updating blocks in A according
to the above. The KKT conditions for the group lasso are given as:

−et +
λ2Γt,·
‖Γt,·‖

= 0 ∀ Γt,· 6= 0 ,

‖ − et‖ ≤ λ2 ∀ Γt,· = 0 ,

where et = X>·,t(Y −XΓ) is the residual projected along the t-th group. The
performance of the ADMM-D algorithm in practice appears to follow the com-
putational complexity as discussed in Bleakley et al. (2011). Numerically, we
observe that computational complexity appears to be quadratic in the number
of changepoints, see Figure B.1.
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Figure B.1 – Compute-time vs number of estimated changepoints ˆ|T |.

B.3 Extended ADMM Solver

The algorithm proposed in the main text (as used in Gibberd and Nel-
son (2017)) comprises an ADMM algorithm that only has one set of auxiliary
variables {V t}. In the review for that paper it was suggested that a scheme
with more auxiliary variables may provide a more robust approach. Such an
approach is implemented here with three auxiliary variables {V (t)

1 ,V
(t)
2 ,W (t)}.

In the process of completing this work, the work of Hallac et al. (2017) was
made available via arXiv. The authors propose a similar methodology for
recovering time-varying graphical models as given here. Specifically, they in-
troduce auxiliary variables and constraints according to V 1 = {Θ(t)},V 2 =

{Θ(t)},V 3 = {Θ(t−1)} before proceeding with a linearized ADMM scheme.
In the analysis presented here we forgo this extra variable V 3 and instead
work with the difference defined as W t = V t

1 − V t−1
2 . Arguably, the variable

splitting proposed here allows for simpler updates of the auxiliary variables.
However, given that in both cases proximal updates can be obtained in closed
form, for example via thresholding, it should be expected that performance of
both algorithms will be similar.

As previously, an ADMM Lagrangian for the class of fused graphical mod-
els can be constructed as a function L(U, V1, V2,W, PV1 , PV2 , PW ); where the
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variables are grouped into sets corresponding to primal U , auxiliary V , trans-
formations of auxiliary variables W , and dual variables P . The re-scaled La-
grangian is written as:

L(U, V1, V2,W, PV1 , PV2 , PW ) :=
T∑
t=1

(
− log det(U (t)) + tr(U (t)S(t))

)
. . .

+ λ1

T∑
t=1

R1(V
(t)
1 ) + λ2

T∑
t=2

R2(W (t)) +
γV1
2

( T∑
t=1

‖U (t) − V (t)
1 + P V1‖2

F − ‖P V1‖2
F

)
. . .

+
γV2
2

( T−1∑
t=1

‖U (t) − V (t)
2 + P

V
(t)
2
‖2
F − ‖P V

(t)
2
‖2
F

)
. . .

+
γW
2

( T∑
t=2

‖(V (t)
1 − V

(t−1)
2 )−W (t) + PW (t)‖2

F − ‖PW‖2
F

)
.

where R1(·) and R2(·) are regulariser functions acting respectively on the pre-
cision matrices and their differences. Note, the particular benefit of this formu-
lation is that using an additional set of auxiliary variablesW t = V t

1−V t−1
2 en-

ables us to decouple the update for {U} from the differencing terms. Similarly
to the ADMM-D algorithm, the R2(·) regulariser can take the form of either
`1 (IFGL) or `2,1 (GFGL) smoothing, both options can either include or ex-
clude the smoothing of diagonal elements. For example, in the group-smoothed
without diagonal elements we set the regularisers; R1(V

(t)
1 ) ≡ ‖V (t)

1\ii‖1, and

R2(W (t)) ≡ ‖W (t)‖F = ‖V (t)
1 − V

(t−1)
2 ‖F ≡ ‖U (t)

\ii −U
(t−1)
\ii ‖F .

The optimisation strategy is now to minimise the Lagrangian L(·) with re-
spect to U, V1, V2,W whilst maximising it with respect to the dual variables
PV1 , PV2 , PW . The updates for the primary, auxiliary, and smoothing terms are
given below. The updates for the dual variables follow in the standard way
(c.f. Eq. 3.2.4).
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Update the primary terms {U}

This step is similar to that in (Sec. 3.2.2), whereby we solve a semi-definite
program

arg min
{U (t)�0}Tt=1

[ T∑
t=1

(
− log det(U (t)) + tr(U (t)S(t))

)
. . .

( B.3)

+
γV1
2

T∑
t=1

‖U (t) − V (t)
1 + P

V
(t)
1
‖2
F +

γV2
2

T−1∑
t=1

‖U (t) − V (t)
2 + P

V
(t)
2
‖2
F

]
.

This problem is considerably simplified by the introduction of a third auxiliary
variable V t

2 which means we do not have to consider time-coupling in this
update. The problem is separable w.r.t time and can be trivially parallelised.

Remark. A useful relation for manipulating weighted Frobenius terms is

( B.4)
a

2
‖A−B‖2

F +
b

2
‖A−C‖2

F =
(a+ b)

2
‖A− (aB + bC)

a+ b
‖2
F + f(B,C),

where in general we are not interested in the form of f(·).

Minimising ( B.3) with respect to U (t) requires us to minimise the following

arg min
U (t)

[
− log det(U (t)) + tr(U (t)S(t)) + (γV1 + γV2)/2‖U (t) − Γ

(t)
V ‖

2
F

]
,

where

Γ
(t)
U :=

(
γV1(V

(t)
1 − P V

(t)
1

) + γV2(V
(t)
2 − P V

(t)
2

)
)
/(γV1 + γV2) ,

For notational simplicity, let γ̄ = (γV1 + γV2)/2. The solution to this is given
via eigen-decomposition, where the regularising term γ̄‖U (t) − Γ

(t)
U ‖2

F acts to
update the eigen-values of the resultant matrix U (t). Consider

γ‖U (t) − Γ
(t)
U ‖

2
F = γ̄tr((U (t) − Γ

(t)
U )>(U (t) − Γ

(t)
U ))

∝ γ̄tr((U (t))>U (t))− 2γ̄tr((Γ
(t)
U )>U (t)) .

The gradient of the above gives −(U (t))−1 + S(t) + 2γ̄U (t) − 2γ̄Γ
(t)
U = 0, and

therefore; (U (t))−1− 2γ̄U (t) = S(t)− 2γ̄Γ
(t)
U . A solution for U (t) is constructed
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by equating the eigenvectors of the left and right hand-sides. The eigenvalues
of each side, respectively {uh}ph=1 and {sh}

p
h=1 obey the quadratic u−1

h −2γ̄uh =

sh. Given the eigenvectors {vh} := eigenvec(S(t) − 2γ̄Γ
(t)
U ) and corresponding

eigenvalues {sh}, an update for uh can be obtained by solving the quadratic

uh = − 1

4γ̄

(
sh ±

√
s2
h + 8γ̄

)
for h = 1, . . . , p .

A positive-semi-definite update for U (t) can now be constructed according to

U (t) =

 v1

vp


 u1

. . .
up


 v1

vp


>

.

Updating the auxiliary precision {V1, V2}

The next step is to update the auxiliary variables corresponding to the
original (primal variable). These are used in the differencing term and also the
sparsity update. Assuming that the shrinkage R1(·) only applies to off-diagonal
entries, we obtain the following soft-thresholding updates for all i 6= j:

[V
(t)
1 ]i,j =

sign([Γ
(t)
V1

]i,j)�max(|[Γ(t)
V1

]i,j| − λ1
γV1+γW

,0) for t > 1

sign([U (t) + P
V

(t)
1

]i,j)�max(|[U (t) + P
V

(t)
1

]i,j| − λ1/γV1 ,0) for t = 1
,

where Γ
(t)
V1

:= γV1(U
(t) +P

V
(t)
1

) + γW (V
(t−1)
2 +W (t)−PW (t))/(γV1 + γW ). The

diagonal updates are given by diag(V
(t)
1 ) = diag(Γ(t)) for t = 2, . . . , T , and

diag(V
(1)
1 ) = diag(U (1) + P

V
(1)
1

) for t = 1. The update for V2 is even simpler
and can be found in closed form as

V
(t)
2 = (γW + γV2)

−1
[
γW (V

(t+1)
1 −W (t+1) + PW (t+1)) + γV2(U

(t) + P
V

(t)
2

)
]
.

Updating the auxiliary difference {W}

Taking the minima of L({U}, {V ,W }, {P }) with respect to {W } requires
us to solve

arg min
{W (t)}

[
λ2

T∑
t=2

R2(W (t)) +
γW
2

( T∑
t=2

‖W (t) − Γ
(t)
W ‖

2
F

)]
,
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where Γ
(t)
W := V

(t)
1 − V

(t−1)
2 + PW . With R2(W (t)) ≡ ‖W (t)‖F . This update

is equivalent to a group lasso update as per the below theorem:

Proposition. Group Norm Projection
For matrices W ,Γ ∈ Rp×p the solution to the group-Frobenius projection

arg min
W∈Rp×p

[
1

2

T∑
t=2

‖Γ(t) −W (t)‖2
F +

λ2

γW

T∑
t=2

‖W (t)‖F

]
,

is given by the soft-thresholding operator

[Ŵ (t)]i,j =


Γ
(t)
i,j

‖Γ(t)‖F
(‖Γ(t)‖F − λ2

γW
) if ‖Γ(t)‖F > λ2/γW

0 otherwise
.

Proof. The above can be derived by relating the group-lasso to the optimality
conditions required for the lasso. Principally this is achieved by vectorising the
matrices {W (2), . . . ,W (T )} and extending the definition of the sign() function.
Recall the lasso problem arg minu∈RT

1
2
‖y−u‖2

2 +λ‖u‖1 in the signal approxi-
mation setting. Now consider creating a partitioned target vector ũ ∈ R(T−1)p2 ,
where ũ = (ũ1, . . . , ũT−1) such that ũi represent groups of variables. In partic-
ular, consider setting this modified vector to the Frobenius term ũt = vec(W t).
In the standard lasso setting the thresholding operation is given as

soft(u;λ) = sign(u(t))max(|u(t)| − λ, 0)

For the group-lasso case, consider extending the notation for the sign function
to the matrix

[sign(W (t))]i,j = W
(t)
i,j /‖W (t)‖F .

Note as per Van Den Berg et al. (2008), the usual properties of the sign function
apply:

sign(αW (t)) = sign(W (t)) for all α > 0

‖sign(W (t))‖F < 1 .

In the partitioned vector, define the 1-norm as ‖ũ‖1 =
∑T−1

t=1

∣∣‖ũt‖2

∣∣ ≡ ‖u‖2,1

, one can now equivalently minimise the objective
1

2
‖y − u‖2

2 + λ‖u‖2,1 or
1

2
‖ỹ − ũ‖+ λ‖ũ‖1 .
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Using the optimality conditions for the lasso (see Sec. 2.1.4), and using the
extended definition of the sign(W (t)) function leads to the soft-thresholding
operation as stated in the proposition (set ỹ = (vec(Γ(2)), . . . , vec(Γ(T ))) ∈
R(T−1)p2). For a more complete analysis in the group-lasso setting see Van
Den Berg et al. (2008).

�



Chapter 4.

Chapter 4

Estimation Theory for GFGL

In the previous chapter two methods for estimating dynamic graphical models
were introduced, namely the IFGL and GFGL estimators. The synthetic ex-
periments and applications suggest that these estimators can recover graphical
models to varying degrees of success. In particular, the synthetic experiments
are aligned with what we might intuitively expect, i.e. performance increases
with increasing data, or reduced dimensionality. In this chapter the recovery
properties of the GFGL estimator are studied from a theoretical perspective.
One of the advantages of convex M-estimators such as IFGL and GFGL is that
the curvature around the global minima can readily be assessed in a statistical
sense.

In this chapter a set of stationarity conditions for the GFGL estimator are
derived and then utilised to demonstrate that in high-probability GFGL can
consistently estimate multiple changepoints in a GGM. To my knowledge, this
is the first result of this kind for a group-fused maximum-likelihood estimator.
However, the proof technique follows that of others, primarily Harchaoui et
al. (2010), and Kolar et al. (2012). In addition to proving convergence in
the standard dimensional setting, an extension to high dimensional settings
is discussed. In particular, it is considered how one can reconcile the general
framework of Negahban et al. (2012) with the more specialised changepoint
consistency approaches of Harchaoui et al. (2010). One should note that the
focus of this chapter is on changepoint consistency, as opposed to consistent
recovery of graph structure. However, to some extent, the problem of precision
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matrix and changepoint estimation go hand in hand and this is discussed where
appropriate.

4.1 Preliminaries
As previously discussed, several different forms of cost function have been

proposed for precision matrix estimation (see Table 1 and the review in Sec.
2.3.5). Typically, these are based around either Markov-random field (MRF)
pseudo likelihoods (Meinshausen and Bühlmann 2006; Ravikumar, Wainwright,
and J.D. Lafferty 2010), or the Gaussian likelihood directly (Friedman, Hastie,
and R. Tibshirani 2008). The focus in this chapter, is on Gaussian models and
specifically the GFGL cost function. In the i.i.d setting where structure does
not change over time an analogous estimator would look something like the
graphical lasso. For example, one may consider the regularised negative log-
likelihood cost

L(Ŝ,U) = − log det(U) + tr(ŜU) +R(U) ,

where R(U) is a penalty term and Ŝ := T−1
∑T

t=1X
(t)(X(t))> is the empirical

covariance matrix. Lam et al. (2009) demonstrate that for both non-convex
Rhard(U) := λ2 − (|Uij| − λ)21|Ui,j |<λ and convex penalties R`1(U) := ‖U‖1, a
penalised maximum likelihood estimator can recover the true network struc-
ture of a GGM. The convergence of this class of estimators has been analysed
in the high-dimensional case, where an error bound of order ‖Θ̂ − Θ0‖F =

OP (
√
s log(p)/T ) can be obtained (Lam et al. 2009; Ravikumar, Wainwright,

Raskutti, et al. 2011) (see also the results in Sec. 2.4). However, for sparsis-
tency i.e. the recovery of the true network pattern, Lam et al. (2009) suggest
that the `1 estimator requires the number of non-zero elements to be s = O(p),
the non-convex Rhard loss does not have this restriction. As discussed in the
introduction, in the high-dimensional setting there is often a tradeoff between
algorithmic and statistical efficiency. For example, statistically, one may prefer
a non-convex model-selection paradigm, although in practice the algorithms
one implements may not be able to recover the global minimiser which achieves
this performance. In the i.i.d setting, one can utilise the framework discussed
in Sec. 2.4 to obtain finite sample bounds for the graphical lasso, or neigh-
bourhood selection methods.
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Very recently some authors have considered expanding graphical models
to non-identical (but still high-dimensional) settings. For example, the work
of Danaher et al. (2013) considers estimation across multiple classes of GGM.
The recent work of Saegusa et al. (2016) obtains finite sample bounds for
such non-identical models and makes use of a framework similar to that of
Negahban et al. (2012). Theoretical analysis of such models is particularly
challenging due to the expanded parameter space required to describe hetero-
geneous populations. Additionally, one has to account for the affect of the
smoothing regulariser in conjunction with sparsity inducing penalties.

In the changepoint literature, there are several works which assess change-
point recovery performance with regularised models. A seminal paper being
that of Harchaoui et al. (2010), who demonstrate that total-variation denoising
can consistently recover changepoints such that P [maxk |τk − τ̂k| > δTT ] → 0

for some decreasing sequence δT . While this work focusses on the univariate
setting, a similar proof technique is used by Kolar et al. (2012) to demon-
strate changepoint consistency with a neighbourhood selection network esti-
mation approach. Additionally, the work of B. Zhang et al. (2015) demon-
strates changepoint consistency in a time-varying lasso model. The work of
Roy et al. (2016) studies a neighbourhood selection method to estimate graph-
ical models either side of a single changepoint, which is selected over a grid of
candidate changepoints. While this is only directly applicable to the estima-
tion of a single changepoint, the work provides an interesting application of
the high-dimensional framework of Negahban et al. (2012) to the changepoint
estimation setting.

In this work, changepoint consistency of the GFGL estimator is first exam-
ined in standard dimensional settings via the application of techniques from
Harchaoui et al. (2010). Firstly, it is demonstrated that changepoint consis-
tency can be achieved in standard dimensional settings p < mink{τk− τk−1} <
T . It is then discussed how these bounds may be expanded to high-dimensional
finite sample settings. To my knowledge such a setting has not yet been ex-
amined in the literature with respect to multiple changepoint estimation in
graphical models. Some of the works mentioned above also give results on
estimation error, i.e. the recovery of the precision matrices; however, in the
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GFGL case this is left as further work. In the discussion section, some sugges-
tions for how such results may be obtained are given.

Finally, in the proceeding analysis it is assumed that the actual number
of changepoints to be estimated is known, and that a set of λ1, λ2 can be
adequately set to segment into this number of blocks. Consistent estimation
for the number of blocks in fused models is still an open problem, and one that
I do not aim to tackle here. Pragmatically, one can obtain regularisers through
cross-validation if we have repeated time-series (c.f. the NetFlow example in
Sec. 3.4.2). An alternative strategy is to choose a set of regularisers that over-
segments. Typically, many of the estimated changepoints will then cluster
around a true changepoint which can then be recovered by post-processing the
raw regularised estimator, such approaches are also suggested and examined
in Harchaoui et al. (2010) and Kolar et al. (2012).

4.1.1 Notation

Demonstrating estimator consistency in dynamic settings can be challeng-
ing as one needs to keep track of how both the model and samples are growing
with increasing time. As a result, analysis can be notationally complicated.
A reference for notation in his chapter can be found in Table 1. Throughout
this chapter I will use a form of notational overloading whereby Θ(k) ∈ Rp×p

refers to a block indexed precision matrix and Θ(t) refers to a time-indexed one
t = 1, . . . , T . Note that each block will in general contain multiple time-points.
It is expected that many Θ(t) will be the same, whereas only a few Θ(k) will be
similar. Within this section, the index k is reserved for indexing such blocks
and the changepoints which separate them.

4.1.2 Model and Estimator Definition

Before beginning the analysis we need to define the theoretical settings and
model structure against which consistency is defined. In the following, it is
assumed that the data-generating process is a block-constant GGM. We also
recall the definition of the GFGL estimator.
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Table 1 – Summary of mathematical notation for this chapter. The diagram
below depicts how a set of precision matrices {Θ(t)}Tt=1 may also be referenced
by their corresponding blocks {Θ(k)}K+1

k=1 and can be indexed respectively either
by block k = 1, . . . ,K + 1 or time t = 1, . . . , T .

t=1 2 3 4 5 6 ... T

k=1 k=2 k=3

p

p

Notation Description Example
[K] The set {1, . . . , K}
‖Σ(k)‖F Frobenius norm of covariance at block

k

∑
i,j |Σ

(k)
i,j |2∣∣∣∣∣∣∣∣∣Σ(k)

∣∣∣∣∣∣∣∣∣
2

`2, `2 norm, or spectral norm of
covariance at block k

max‖x‖2=1 ‖Σ(k)x‖2

‖A‖∞ Largest element in matrix max1≤i,j≤p |Ai,j|
φ

(k)
Θ Maximum eigenvalue of precision

matrix at block k
φΘ Largest eigenvalue in all precision

matrices
max1≤k≤K{φ(k)

Θ }

ηFmin Minimum jump in Frobenius norm min1≤k,k′≤K ‖Σ(k) −
Σ(k′)‖F

η∞max Maximum element wise jump max1≤k,k′≤K ‖Σ(k) −
Σ(k′)‖∞

dmin Minimum true interval mink∈K{|τk − τk−1|}
d̂min Minimum estimated intervals mink∈K{|τ̂k − τ̂k−1|}
nk Length of estimated block k τ̂k − τ̂k−1

nlk Length of overlapping estimated k and
ground-truth block l

min{min{τ̂k, τl+1} −
max{τ̂k−1, τl}, 0}

sk Sparsity (number of non-zero
off-diagonal entries) of block k

s∞ Maximum sparsity across blocks max1≤k≤K{sk}
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Definition 4.1. Block-Constant Gaussian Graphical Model
Let the set B(k) = {τk−1, . . . , τk − 1} denote the block of time-points before

the current changepoint τk ∈ [T ] but after the previous one τk−1. A block-
constant GGM is then defined as

(4.1.1) Xt ∼ N (0,Σ(k)) , t ∈ B(k) ,

where t ∈ [T ] indexes the time of the observed data-point, and k ∈ [K +

1] indexes the blocks resulting from changepoints {τk}Kk=1 at which point the
covariance matrices Σ(k) change.

Definition 4.2. Group-Fused Graphical Lasso Estimator
Let Ŝ

(t)
:= X(t)(X(t))> be the localised empirical covariance estimator. The

GFGL estimator is constructed by minimising the penalised log-likelihood, such
that

{Θ̂
(t)
}Tt=1 = arg min

{U (t)}Tt=1

{ T∑
t=1

(
− log det(U t) + trace(Ŝ

(t)
U (t))

)
+ λ1

T∑
t=1

∑
i 6=j

|U (t)
i,j |

. . .+ λ2

T∑
t=2

√√√√ P∑
i,j=1

(U
(t)
i,j − U

(t−1)
i,j )2

}
.

(4.1.2)

Once the precision matrices have been estimated, changepoints may be recov-
ered by identifying time-points where the estimated precision matrices change.
Specifically, we may construct the set:

T̂ := {τ̂1, . . . , τ̂K̂} ≡ {t |Θ̂
(t)
− Θ̂

(t−1)
6= 0} ,

where τ̂1, . . . , τ̂K̂ are the estimated changepoint locations. Additionally, we de-
fine the augmented changepoint set T̂ ′ := {1} ∪ T̂ ∪ {T + 1}.

The task in this work is to assess how well, or indeed if, the GFGL estimator
can recover the changepoint positions {τ1. . . . , τK}. To understand properties
of the estimator when applied to the block-GGM model one needs to consider
the curvature of the loss function in Eq. 4.1.2 around identified minima. The
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following lemma considers what happens when the gradient of the GFGL esti-
mator is set to zero, as is the case when the objective is minimised. It should
be noted that the equality in the optimality condition holds with probability
one, i.e. it is a deterministic result. In the sequel, the stochastic contribu-
tion to the estimator is considered (via Ŝ

t
) from which the performance of the

estimator can be assessed in conjunction with the generative model.

Lemma 4.1. Optimality Conditions for GFGL
Let ~Ψ

(t)
:= Ŝ

(t)
−Σ(t) be the difference between a ground-truth covariance

and the empirical (single sample) covariance matrix Ŝ
(t)

:= ~X(t)( ~X(t))>, where
~X(t) has the distribution given by the model in (4.1.1). Let us introduce a
matrix quantity corresponding to the differences in precision matrices:

Γ(t) =

Θ(t) for t = 1

Θ(t) −Θ(t−1) otherwise
.

Furthermore, let R̂
(t)

1 be the sub-gradient of the `1 penalty and R̂
(t)

2 the sub-
gradient of the group penalty, such that

R̂
(t)
1(i,j) =

sign(
∑

s≤t Γ
(s)
i,j ) if

∑
s≤t Γ

(s)
i,j 6= 0

[−1, 1] otherwise
and R̂

(t)

2 =


Γ̂
(t)

‖Γ̂(t)‖F
if Γ̂

(t)
6= 0

∈ BF (0, 1) otherwise
,

where BF (0, 1) is the unit ball. The minimiser {Θ̂
(t)
}Tt=1 of the GFGL objective

satisfies the following

T∑
t=l

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
−

T∑
t=l

~Ψ
(t)

+ λ1

T∑
t=l

R̂
(t)

1 + λ2R̂
(l)

2 = 0 ,

for all l ∈ [T ] and R̂
(1)

2 = R̂
(T )

2 = 0.

Proof. The result follows from considering the gradient of Eq. 4.1.2, see
Appendix C.2.
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4.2 Changepoint Consistency
In this section, a result for changepoint consistency in standard dimensions

is stated. The approach for demonstrating consistency used here is similar to
that of Harchaoui et al. (2010) and Kolar et al. (2012). The work of Kolar
et al. (2012) is perhaps the most related to this analysis as the authors in that
paper also attempt to find changepoints in a graphical model with a group-
fused penalty. However, there are several key differences between the GFGL
estimator and the neighbourhood selection approach studied in that work:

Remark 4.1. GFGL vs Group-Fused Neighbourhood Selection
Where the neighbourhood selection acts at a row/column wise level, the

GFGL estimator groups changes in edge structure across the full graph. As
discussed in Section 3.1.4, neighbourhood selection is the result of a set of
p group-fused optimisation problems; the changepoints in the graph are thus
related to each node and its neighbours, i.e. they don’t encode changes across
the whole graph. In the case of GFGL the estimator is obtained by optimising
over the whole set of precision matrices jointly.

In the context of changepoint detection for the block-constant GGM (4.1.1)
the results of Kolar et al. (2012) require one to use a union bound over the
p separate nodes. The bulk of the theory in their paper operates at the node
level, with the argument being that when one has successfully recovered the local
structure then global structure can be recovered by combining results over nodes.
This contrasts with the approach taken here where the stationarity conditions
apply to the whole set of p nodes jointly.

Unlike Kolar et al. (2012) who utilise a neighbourhood selection approach
the constraints on the model are now enforced at a graph-wise rather than
node-wise level. These are formalised with regards to the following quantities:

• Let dmin := mink∈[K+1] |τk−τk−1| be the minimum distance between change-
points. In the sequel, it is useful to consider this as a proportion of T .
Specifically, let us define γmin = dmin/T , i.e. a constant proportion of T .
• The minimum jump size is denoted ηmin := mink∈[K] ‖Σ(k+1) −Σ(k)‖F
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Unlike neighbourhood based estimators, GFGL considers changepoints at
the full precision matrix scale, and one might therefore expect that the min-
imum jump size is greater than that utilised in the neighbourhood selection
case. For example, in the nodewise case, consider the analogous quantity

ηNS
min(a) := min

k∈[K]
‖Σ(k+1)

a,· − Σ(k)
a,· ‖2

for nodes1 a = 1, . . . , p. Summing over nodes, the neighbourhood selection
jump size can now be related to the mixed (group) norm ‖Σ(k+1) −Σ(k)‖2,1 =∑

a ‖Σ
(k+1)
a,· − Σ

(k)
a,· ‖2. Furthermore, if the smallest jump occurs at the neigh-

bourhood for all blocks, i.e. arg mink∈[K] ‖Σ(k+1)
a,· −Σ

(k)
a,· ‖2 = arg mink∈[K] ‖Σ(k+1)

a′,· −
Σ

(k)
a′,·‖2 for all a 6= a′ ∈ [p] , then

∑
a η

NS
min(a) = mink ‖Σ(k+1) −Σ(k)‖2,1. Using

the inequality (for x ∈ Rn) ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2, the jumps as measured

through the group-norm can be related to those measured in a Frobenius sense,
such that

ηmin ≤
∑
a

ηNS
min(a) ≤ √pηmin .

Thus, even though the minimum jump size in the GFGL case is greater, i.e.
ηmin > ηNS

min(a), it is not proportionally greater, i.e. when one considers sum-
ming over nodes. In the proceeding analysis it should be noted that consistent
recovery of changepoints requires a tradeoff between the minimum jump-size
ηmin and the amount of data T . For example, a smaller minimum jump-size will
generally require more data; as expected it is harder to detect small jumps.
The relation ηmin ≤

∑p
a=1 η

NS
min(a) suggests that the minimum jump-size at

a graph-wide (precision matrix wide) level is smaller when measured in the
Frobenius norm, rather than at a node-wise level. As a result, for equivalent
scaling of ηmin and ηNS

min the graph-wide GFGL method will be able to detect
smaller (graph-wide) jumps with an equivalent level of data. Conversely, if the
jumps one is interested in occur at the neighbourhood level the neighbourhood
based method would be more appropriate, however, this is generally not the
case with the block-constant GGM model (4.1.1).

In order to control the variance in the underlying model it is required to
introduce several assumptions on the generating process:
1It is worth noting that the work of Kolar et al. (2012) requires a minimum jump on the
precision matrix elements rather than the covariance. In the proof here we work directly
with the covariance due to the form of the optimality conditions (Lemma 4.1).
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Assumption 4.1. Bounded Eigenvalues
There exist two constants φmin > 0, φmax < ∞ that give the minimum and

maximum eigenvalues of the true covariance matrix (across all blocks) such
that

φmin = min{Λmin(Σ(k))| k ∈ [K+1]} and φmax = max{Λmax(Σ(k))| k ∈ [K+1]} .

Assumption 4.2. Variables are scaled such that Σ
(k)
ii = 1 for all k ∈ [K + 1]

and all i ∈ V .

Assumption 4.3. Finite Jumps
There exists a constant M > 0 such that the difference between any two

blocks is bounded:
max

k,k′∈[K+1]
‖Σ(k′) −Σ(k)‖F ≤M .

The above assumptions essentially require the variance of the underlying
process to be well behaved. The eigenvalue conditions represent constraints on
the minimum and maximum variance of the process. Assumption 4.3 requires
that the difference between covariance matrices is bounded by a constant. It
is generally satisfied automatically by Assumption 4.12.

The changepoint consistency result presented here will take the form of an
upper bound on the maximum error. To demonstrate this, let us introduce the
quantity {δT}T≥1 as a non-increasing positive sequence that converges to zero
as T → ∞. Note: this should converge at a rate which ensures an increasing
absolute quantity TδT → ∞ as T → ∞. Specific settings of this quantity are
discussed after statement of the main result.

Assumption 4.4. Minimum jump size
The tradeoff between jump-size and data quantity is formalised through the

assumption that

(4.2.1) ηmin

√
TδT/φmax →∞

as T →∞.

2A finite bound on the covariance also implies a bound on the precision.
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These conditions ensure that there are sufficient samples to estimate the
empirical covariance around the estimated changepoints.

Theorem 4.1. Changepoint Consistency (Standard Dimensions)
Given Assumptions 4.1,4.2,4.3, 4.4, and appropriate regularisers λ1 and λ2

such that:

β1 := (ηminγminT )−1λ2 → 0 ,

β2 := η−1
minλ1

√
p(p− 1)→ 0 ,

β3 := (ηminTδT )−1λ2 → 0 ,

as T →∞ and |K̂| = K. With a finite but large sample T such that β−1
1 > 32,

β−1
2 > 8 and β−1

3 > 3, then the changepoint error is bounded according to
probability

(4.2.2) P [max
k∈[K]

|τk − τ̂k| ≤ TδT ] ≥ 1− CK exp{−ηmin

√
TδT/40φmax} ,

where CK = K(K22K+1 + 4). Furthermore, if ηmin

√
TδT/φmax → ∞ (as per

Ass. 4.4) for T →∞ the changepoint error is bounded such that

P [max
k∈[K]

|τk − τ̂k| ≤ TδT ]→ 1 .

Unlike in high-dimensional settings, the regularisation parameters have less
strict requirements on their form. As suggested by Kolar et al. (2012) the form

λ1 � λ2 = O(
√

log(T )/T ) .

enables convergence in probability with the following quantities

(4.2.3) δT = log(T )α/T and ηmin = Ω((log T )(1−α)/2) .

Under such regularisation, the conditions in the theorem are met and the
exponential bound of (4.2.2) takes the form exp(−c−1

1

√
log T ). While this rate

is relatively slow, this does not depend on α, so holds regardless of whether
ηmin varies with T or not.

Alternatively, one may consider the polynomial quantities

ηmin = Ω(T−b) and δT = T−a ,
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where 0 < a < 1, 0 < b < 1/2 and a + 2b = c < 1. In this case TδT > 0 still
increases with T , however, we obtain the exponential bound exp(−c−1

1 T (1−c)/2).
Unlike in (4.2.3), when using the polynomial scaling there is a clear trade-off
between the minimum jump size ηmin, and the amount of data TδT required to
gain a certain level of changepoint consistency. For example, considering the
case where b = 0 (and thus ηmin is a constant as T → ∞) enables, for a fixed
value of c, a larger value of a = c and therefore changepoints may be recovered
with greater accuracy for the same quantity of data, i.e. TδT

∣∣
a=c

< TδT
∣∣
a=c−2b

.
Although the focus of this work is on changepoint, as opposed to structural

recovery, as we will see in the proof these problems go somewhat hand-in-hand.
Typically, one attempts to assess structural recovery in terms of a normed error
‖Θ̂−Θ0‖, or via sparsistency (graph recovery) results as in Sec. 2.4.5. In the
following proof, such results are not derived, rather the stationarity conditions
themselves can be used to bound the estimation error (in standard dimension).
In the high-dimensional setting one must check that sufficient curvature exists
in the estimator to recover the correct structure. This is further discussed in
Sec. 4.4.

4.3 Proof of Changepoint Consistency
We relate the proof bounding the maximum deviation between estimated

and true changepoints to the probability of an individual changepoint breaking
the bound. Following Harchaoui et al. (2010) and Kolar et al. (2012), we utilise
the union bound

P [max
k∈[K]

|τk − τ̂k| ≥ TδT ] ≤
∑
k∈[K]

P [|τk − τ̂k| ≥ TδT ] .

Note: the compliment of the event on the LHS is equivalent to the target of
proof; we wish to demonstrate P [maxk∈[K] |τk − τ̂k| ≤ TδT ] → 1. In order
to show this, we need to show the LHS above goes to zero as T → ∞. It
is sufficient, via the union bound, to demonstrate that the probability of the
(rather bad) events:

AT,k := {|τk − τ̂k| > TδT} ,
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go to zero for all k ∈ [K]. The strategy presented here separates the probability
of AT,k occurring across complimentary events. In particular, let us construct
what can be thought of as a good event, where the estimated changepoints are
within a region of the true ones:

CT :=

{
max
k∈[K]
|τ̂k − τk| <

dmin

2

}
.

The task is then to show that P [AT,k]→ 0 by showing P [AT,k ∩ CT ]→ 0 and
P [AT,k ∩ Cc

T ]→ 0 as T → 0.

4.3.1 Stationarity induced bounds

As a first step let us introduce some rough bounds (which occur in proba-
bility one) based on the optimality conditions. From here, a set of events can
be constructed that occur when the stationarity conditions are met. These
can be intersected with the required events to break up the probabilities for
P[AT,k ∩ CT ] which can then be separately bounded towards zero.

Without loss of generality, consider the stationarity equations (4.1) with
changepoints l = τk and l = τ̂k such that3 τ̂k < τk. Taking the differences
between the equations we find (see Appendix C.3 for more details):

(4.3.1) ‖
τk−1∑
t=τ̂k

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
−

τk−1∑
t=τ̂k

~Ψ
(t)

+ λ1

τk−1∑
t=τ̂

R̂
(t)

1 ‖F ≤ 2λ2 .

The gradient from the `1 term
∑τk−1

t=τ̂k
λR̂

(t)

1 can obtain a maximum value of
±λ1(τk− τ̂) for each entry in the precision matrix, transferring this to the RHS
we obtain:

‖
τk−1∑
t=τ̂k

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
−

τk−1∑
t=τ̂k

~Ψ
(t)
‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) .

In order to examine the conditions in detail, it is prudent to split the LHS
of the above display into components relating to the ground-truth, minimiser,
and stochastic terms. Let us re-write the above as:

3We can use τ̂k < τk to get inequalities for this configuration of changepoint estimator.
However, the reverse situation τk > τ̂k follows through symmetry.
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(4.3.2)

‖
τk−1∑
t=τ̂k

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
‖F − ‖

τk−1∑
t=τ̂k

~Ψ
(t)
‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) .

The next step is to replace the time indexed inverse precision matrices Θ(t) with
the block-covariance matrices indexed Σ(k) and Σ(k+1). We can re-express the
difference in precision matrices as the sum of a difference between true values
before τk , i.e. Σ(k+1)−Σ(k), and the difference between the next (k+1)st true
block and estimated block, i.e. Σ̂

(k+1)
−Σ(k+1). After some algebra (Appendix

C.3) we obtain the bound

λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥ ‖

τk−1∑
t=τ̂k

Σ(k) −Σ(k+1)‖F︸ ︷︷ ︸
‖R1‖F

− ‖
τk−1∑
t=τ̂k

Σ̂
(k+1)

−Σ(k+1)‖F︸ ︷︷ ︸ . . .
‖R2‖F

. . .− ‖
τk−1∑
t=τ̂k

~Ψ
(t)
‖F︸ ︷︷ ︸

‖R3‖F

,(4.3.3)

which holds with probability one. Define the events:

E1 :={λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥

1

3
‖R1‖F}

E2 :={‖R2‖F ≥
1

3
‖R1‖F}

E3 :={‖R3‖F ≥
1

3
‖R1‖F}

Since we know that the bound (4.3.3) occurs with probability one, then the
union of these three events must also occur with probability one, i.e. P [E1 ∪
E2 ∪ E3] = 1.

4.3.2 Bounding the Good Cases

One of the three events above are required to happen, either together, or
separately. We can thus use this to bound the probability of both the good
CT and bad AT,k events. Similarly to Harchaoui et al. (2010) and Kolar et al.
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(2012) we obtain

P [AT,k ∩ CT ] ≤ P [

AT,k,1︷ ︸︸ ︷
AT,k ∩ CT ∩ E1] + P [

AT,k,2︷ ︸︸ ︷
AT,k ∩ CT ∩ E2] + P [

AT,k,3︷ ︸︸ ︷
AT,k ∩ CT ∩ E3]

The following sub-sections describe how to separately bound these sub-events.

Bound on AT,k,1

Unlike in the work of Kolar et al. (2012), there is no stochastic element (re-
lated to the data ~Xt) within the first event AT,k,1. We can bound the probabil-
ity of P [AT,k,1] by considering the event {1

3
‖R1‖F ≤ λ2+λ1

√
p(p− 1)(τk−τ̂k)}.

Given ‖R1‖F = ‖
∑τk−1

t=τ̂k
Σ(k) − Σ(k+1)‖F ≥ (τk − τ̂k)ηmin we therefore obtain

the bound

P [AT,k,1] ≤ P [(τk − τ̂k)ηmin/3 ≤ λ2 + λ1

√
p(p− 1)(τk − τ̂k)] .

When the events CT , AT,k occur we have TδT < τk− τ̂k ≤ dmin/2 to ensure the
event AT,k,1 does not occur, we need:

(4.3.4)
ηminTδT
λ2

> 3 and
ηmin

λ1

√
p(p− 1)

> 3 .

This occurs asymptotically if

3λ2(ηminTδT )−1 → 0 and 3λ1

√
p(p− 1)η−1

min → 0 ,

as T →∞. Note that for a large enough T , we can show that the probability
P [AT,k,1] = 0, the size of this T depends on the quantities in Eq. 4.3.4.

Bound on AT,k,2

Consider the quantity τ̄k := b(τk + τk+1)/2c. On the event Cn, we have
τ̂k+1 > τ̄k so Σ̂

(t)
= Σ̂

(k+1)
for all t ∈ [τk, τ̄k]. Using the optimality conditions

(Lemma 4.1) with changepoints at l = τ̄k and l = τk we obtain the expression:

2λ2 + λ1

√
p(p− 1)(τ̄k − τk) ≥ ‖

τ̄k−1∑
t=τk

Σ̂
(k+1)

−Σ(k+1)‖F − ‖
τ̄k−1∑
t=τk

~Ψ
(t)
‖F

=⇒ ‖Σ̂
(k+1)

−Σ(k+1)‖F ≤
4λ2 + 2λ1

√
p(p− 1)(τ̄k − τk) + 2‖

∑τ̄k−1
t=τk

~Ψ
(t)
‖F

τk+1 − τk
(4.3.5)
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We now combine the bounds for events E1 and E2, via E2 := {‖R2‖F ≥
1
3
‖R1‖F} and the bounds ‖R1‖F ≥ (τk− τ̂k)ηmin and ‖R2‖F ≤ (τk− τ̂k)‖Σ̂

k+1
−

Σk+1‖F . Substituting in (4.3.5) we have

(4.3.6)

P [AT,k,2] ≤ P [E2] = P

ηmin ≤
12λ2 + 6λ1

√
p(p− 1)(τ̄k − τk) + 6‖

∑τ̄k−1
t=τk

~Ψ
(t)
‖F

τk+1 − τk

 .

Splitting the probability into three components, we obtain
(4.3.7)

P [AT,k,2] ≤ P [ηmindmin ≤ 12λ2]+P [ηmin ≤ 3λ1

√
p(p− 1)]+P

ηmin ≤
6‖
∑τ̄k−1

t=τk
~Ψ

(t)
‖F

τk+1 − τk

 .

Convergence of the first two terms follows as in AT,k,1, the second is exactly
covered in AT,k,1; however, the third term ηmin ≤ 3‖

∑τ̄k−1
t=τk

~Ψ
(t)
‖F/(τ̄k − τk)

requires some extra treatment. As τ̄k < τk+1, we can relate the covariance
matrix of the ground-truth (time-indexed) and block (indexed by k) such that
Σ(t) = Σ(k) for all t ∈ [τk, τk+1]. One can now write the sampling error across
time into one which relates to blocks k as

‖
τ̄k−1∑
t=τk

~Ψ
(t)
‖F ≡ (τ̄k − τk)‖ ~W

(τ̄k−τk)

k ‖F ,

where the block level sampling error is given as

(4.3.8) ~W
(n)

k :=

(
1

n

n∑
t=1

~Z(t)(~Z(t))>
)
−Σi

0 , ~Z(t) ∼ N (0,Σ
(k)
0 ) .

The probability we desire to bound is P [ηmin ≤ 3‖ ~W
(τk−τ̄k)

k ‖F ], or equivalently

(4.3.9) P [‖ ~W
(τk−τ̄k)

k ‖F > ηmin/3] .

Lemma 4.1. Frobenius Bound on Sample Error (SD)
In standard dimensions p <

√
dmin we have

P [‖ ~W
(τ̄k−τk)

k ‖F > ηmin/3] ≤ 2 exp
{
−ηmin

√
dmin/24

√
2φmax

}
.



4. PROOF OF CHANGEPOINT CONSISTENCY 141

Proof. See Appendix C.4.

Gathering the terms in 4.3.7, asymptotically only the last term occurs with
non-zero probability such that

(4.3.10) P [AT,k,2] ≤ 2 exp
{
−ηmin

√
dmin/24

√
2φmax

}
.

To maintain convergence P [‖ ~W
(τ̄k−τk)

k ‖ > ηmin/3] → 0, it is simply required
that ηminφ

−1
max > (γminT )−1/2 as T →∞, as per Assumption 4.4.

Bound on AT,k,3

Recall P [AT,k,3] := P [AT,k ∩CT ∩E3] := P [AT,k ∩CT ∩ {‖
∑τk−1

t=τ̂k
~Ψ

(t)
‖F ≥

1
3
‖R1‖F}]. Given that ‖R1‖F ≥ (τk − τ̂k)ηmin with probability 1, an upper

bound on P [AT,k,3] can be found according to

P [AT,k,3] ≤ P
[
‖ ~W

(τk−τ̂k)

k ‖F > ηmin/3
]

≤ 2 exp
{
−ηmin

√
TδT/24φmax

}
.(4.3.11)

The above is similar to (4.3.9), except where the interval we integrate over is
given as TδT < τk − τ̂k ≤ dmin/2 (recall we condition on AT,k and CT ). In
a similar manner to AT,k,2 the probability converges if ηminφ

−1
max > (TδT )−1/2,

since δT < γmin this probability is the main limiting factor for convergence as
T →∞, as noted in Assumption 4.4.

4.3.3 Bounding the Bad Cases

In order to complete the proof, we need to demonstrate that P [AT,k∩Cc
T ]→

0. The argument below follows that of Harchaoui et al. (2010), whereby the
bad case is split into several events:

D
(l)
T : = {∃k ∈ [K], τ̂k ≤ τk−1} ∩ Cc

T ,

D
(m)
T : = {∀k ∈ [K], τk−1 < τ̂k < τk+1} ∩ Cc

T ,

D
(r)
T : = {∃k ∈ [K], τ̂k ≥ τk+1} ∩ Cc

T ,

where Cc
T = {maxk∈[K] |τ̂k − τk| ≥ dmin/2} is the compliment of the good

event. The events above correspond to estimating a changepoint; a) before
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the previous true changepoint (D(l)
T ); b) between the previous and next true

changepoint (D(m)
T ), and c) after the next true changepoint (D(r)

T ). The events
D

(l)
T and D

(r)
T appear to be particularly bad as the estimated changepoint is

very far from the truth, due to symmetry we can bound these events in a
similar manner. Focussing on the middle term P [AT,k ∩ D(m)

T ], let us again
assume τ̂k < τk , the reverse arguments hold by symmetry.

Lemma 4.2. Upper bound for P [AT,k ∩D(m)
T ]

The probability of the intersection of AT,k and D(m)
T can be bounded from

above by considering the events

E
′

k := {(τ̂k+1 − τk) ≥ dmin/2} ,(4.3.12)

E
′′

k := {(τk − τ̂k) ≥ dmin/2} .(4.3.13)

In particular, one can demonstrate that:

(4.3.14) P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩ E

′

k ∩D
(m)
T ] +

K∑
j=k+1

P [E
′′

j ∩ E
′

j ∩D
(m)
T ] .

Proof. The result follows from expanding events based on neighbouring change-
points (see Appendix C.5 for detail).

Bound on P [AT,k ∩D(m)
T ∩ E ′k]

Consider the stationarity conditions (4.3.2) and set start/end points as
l = τ̂ , l = τk and l = τ̂k, l = τk+1 , we respectively obtain:
(4.3.15)

|τk − τ̂k|‖
(

Σ(k) − Σ̂
(k+1)

)
‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) + ‖

τk−1∑
t=τ̂k

~Ψ
(t)
‖F

(4.3.16)

|τk−τ̂k+1|‖
(

Σ(k+1)−Σ̂
(k+1)

)
‖F ≤ 2λ2+λ1

√
p(p− 1)(τ̂k+1−τk)+‖

τ̂k+1−1∑
t=τk

~Ψ
(t)
‖F .

The next step is to define an event that can bound P[AT,k ∩E
′

k ∩D
(m)
T ]. Using

the triangle inequality we bound ‖Σ(k+1) −Σ(k)‖F whilst noting that we have
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E
′

k := {(τ̂k+1 − τk) ≥ dmin

2
} and AT,k := {|τk − τ̂k| > TδT}. One can therefore

construct the event

HΣ
T : =

{
‖Σk+1 −Σk‖F ≤ 2λ1

√
p(p− 1) + 2λ2

(
1

TδT
+

2

dmin

)
. . .

+
‖
∑τk−1

t=τ̂k
~Ψ

(t)
‖F

τk − τ̂k
+
‖
∑τ̂k+1−1

t=τk
~Ψ

(t)
‖F

τ̂k+1 − τk

}
(4.3.17)

which bounds the first term of (4.3.14) such that P [AT,k∩E
′

k∩D
(m)
T ] ≤ P [HΣ

T ∩
{τk− τ̂k ≥ TδT}∩E

′

k]. Splitting the intersection of events we now have 5 terms
to consider

P [AT,k ∩ E
′

k ∩D
(m)
T ]

≤ P [HΣ
T ∩ {τk − τ̂k ≥ TδT} ∩ E

′

k]

≤ P
[
2λ1

√
p(p− 1) ≥ ηmin

5

]
+ P

[
2λ2

TδT
≥ ηmin

5

]
+ P

[
4λ2

dmin

≥ ηmin

5

]

+P

{‖∑τk−1
t=τ̂k

~Ψ
(t)
‖F

τk − τ̂k
≥ ηmin

5

}
∩
{

(τk − τ̂k ≥ TδT )
}

+P

{‖∑τ̂k+1−1
t=τk

~Ψ
(t)
‖F

τ̂k+1 − τk
≥ ηmin

5

}
∩
{(
τ̂k+1 − τk ≥

dmin

2

)} .

The stochastic error terms (containing ~Ψ
(t)
) can then be shown to converge

similarly to P [AT,k ∩ CT ] c.f. Eq. (4.3.6). Again, it is worth noting that
the term involving TδT will be slowest to converge, as dmin = γminT > δTT

for large T . The first three terms are bounded through the assumptions on
dmin, λ1, λ2, and δT as required by the theorem (and enforce a similar require-
ment to those used to bound P [AT,k,1] in Eq. 4.3.4). The other terms in
(4.3.14), i.e.

∑K
j=k+1 P [E

′′
j ∩ E

′
j ∩ D

(m)
T ] can be similarly bounded. Instead

of using exactly the event HΣ
T one simply replaces the term 1/TδT in (4.3.17)

with 2/dmin.

Bound on D
(l)
T

Recall D(l)
T := {∃k ∈ [K], τ̂k ≤ τk−1}∩Cc

T . The final step of the proof is to
show that the bound on AT,k ∩D(l)

T , and similarly AT,k ∩D(r)
T tends to zero:
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Lemma 4.3. Union bound for D(l)
T

The probability of D(l)
T is bounded by

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [E
′′

l ∩ E
′

l ] + 2KP [E
′

K ] .

Proof. This is based on a combinatorial argument for the events that can be
considered on addition of each estimated changepoint. For details see Appen-
dix C.6.

In order to bound the above probabilities we relate the events E ′′l and E
′

l

to the stationarity conditions as before (via Eqs. 4.3.15, 4.3.16). Setting k = l

and invoking the triangle inequality gives us

{
‖Σl+1 −Σl‖F ≤ 2λ1

√
p(p− 1) +

Γ︷ ︸︸ ︷
2λ2

(
1

|τl − τ̂l|
+

1

|τ̂l+1 − τl|

)
. . .

+
‖
∑τl−1

t=τ̂l
~Ψ

(t)
‖F

|τl − τ̂l|
+
‖
∑τ̂l+1−1

t=τl
~Ψ

(t)
‖F

|τ̂l+1 − τl|

}
.

Conditioning on the event E ′′l ∩ E
′

l implies that Γ = 8λ2/dmin. We can thus
write

P [E
′′

l ∩ E
′

l ] ≤ P
[ηmin

8
≤ λ1

√
p(p− 1)

]
+ P

[
ηmin

32
≤ λ2

dmin

]

+P

{ηmin

4
≤
‖
∑τl−1

t=τ̂l
~Ψ

(t)
‖F

|τl − τ̂l|

}
∩
{
τl − τ̂l ≥

dmin

2

}
+P

{ηmin

4
≤
‖
∑τ̂l+1−1

t=τl
~Ψ

(t)
‖F

|τ̂l+1 − τl|

}
∩
{
τ̂l+1 − τl ≥

dmin

2

} .

Finally, the term corresponding to the last changepoint can be bounded by
noting that when k = K we have Γ = 6λ2/dmin.

P [E
′′

K ] ≤ P
[ηmin

8
≤ λ1

√
p(p− 1)

]
+ P

[
ηmin

24
≤ λ2

dmin

]
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+ P

{ηmin

4
≤
‖
∑τK−1

t=τ̂K
~Ψ

(t)
‖F

|τK − τ̂K |

}
∩ {τK − τ̂K ≥

dmin

2
}


P

ηmin

4
≤
‖
∑T

t=τK
~Ψ

(t)
‖F

|T + 1− τK |

 .(4.3.18)

4.3.4 Summary

The bounds derived above demonstrate that P [AT,k] → 0 since P [AT,k ∩
CT ] → 0 and P [AT,k ∩ Cc

T ] → 0 as T → 0. In particular, once the sam-
ple size T is large enough then the bound P [maxk∈[K] |τk − τ̂k| ≥ TδT ] ≤
K maxk∈[K] P [|τk − τ̂k| ≥ TδT ] can be obtained. The event E ′′l ∩E

′

l establishes
a minimal condition on T , such that ηmindmin/λ2 > 32 and ηmin/λ1

√
p(p− 1) >

8. A final condition for AT,k,1 requires ηminTδT/λ2 > 3 . Once T is large enough
to satisfy these conditions, the probabilistic bound is determined either by the
smallest block size dmin = γminT or by the minimum error TδT . Summing the
probabilities, one obtains the upper bound:

P [|τk − τ̂k| ≥ TδT ] ≤2× 2K
(
(K − 1)2 + 1

)(
2 exp

{
−
ηmin

√
dmin/2

32φmax

})
+ 2 exp

{
−ηmin

√
TδT

40φmax

}
+ 2 exp

{
−ηmin

√
TδT

24φmax

}
,

where the different rows correspond to events; top) D(l)
T , D(r)

T ; middle) D(m)
T ,

and bottom) AT,k,2 and AT,k,3. Since δTT < γminT the above bounds will be
dominated by the exp{−ηmin

√
TδT/40φmax} term. A suitable (although not

particularly tight) overall bound on the probability is

P [max
k∈[K]

|τk − τ̂k| ≥ TδT ] ≤ K32K+1 exp{−ηmin

√
dmin/2/32φmax} . . .

. . .+K(4 exp{−ηmin

√
TδT/40φmax}

≤ CK exp{−ηmin

√
TδT/40φmax} ,

where CK = K(K22K+1 + 4). We thus arrive at the result of Theorem 4.1.
�
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4.4 Changepoint Consistency (in High-Dimensions)
While Theorem 4.1 asserts consistency in terms of changepoint estimation,

it relies strongly on sampling bounds derived in standard-dimensional settings
(Lemmas C.1, C.2). In the context of the changepoint proof, the dimensional-
ity4 (in relation to sampling) concerns the quantities p < TδT and p <

√
dmin.

However, in cases where p > T , we find ourselves firmly in a high-dimensional
setting and we can never attain p < TδT . As a minimum we are required
to obtain alternative sampling bounds for Eqs. 4.3.10, 4.3.11. Additionally,
experience from the canonical example of the lasso (Sec. 2.4) suggests that in
high-dimensions we are required to ensure there is sufficient curvature around
the optima. The remainder of this section discusses these two issues within the
context of GFGL for the estimation of block-constant GGM. In particular, the
GFGL problem is discussed in the context of a regularised M-estimator under
the framework of Negahban et al. (2012). The work of Saegusa et al. (2016)
is of interest here as the authors also consider a fused estimator of a form
similar to GFGL. However, unlike GFGL, in that work, the block partitions
are known a-priori and there is no need to estimate changepoints. As will be
demonstrated in the following sections, such joint estimation of both change-
points and precision matrix structure requires careful thought over how to deal
with mis-specification. The discussion that follows does not constitute a proof
of consistency in high-dimensions but simply suggests a pathway towards such
results. In particular, we discuss how one may account for sampling error and
estimation error in high-dimensions.

4.4.1 Sampling

Lemmas C.1 and C.2 are not sufficient in the high-dimensional setting
where p > TδT . However, an alternative upper bound for the sampling error
between the empirical and ground-truth covariance matrix can be obtained as
below (Ravikumar, Wainwright, and J.D. Lafferty 2010).

Lemma 4.1. Frobenius Sampling Bound (HD)

4However, even under these conditions, the GFGL model may still be considered in some
sense high-dimensional as the number of model parameters scales as O(Tp2).
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Consider a zero-mean p-variate random vector ~Z(t) ∼ D(0,Σ
(k)
0 ) with co-

variance Σ
(k)
0 ∈ Rp×p such that each ~Z

(t)
i /[Σ

(k)
0 ]

1/2
ii is sub-Gaussian with param-

eter ζk. The error of the empirical covariance estimator

~W
(n)

k :=

(
1

n

n∑
t=1

~Z(t)(~Z(t))>
)
−Σ

(k)
0 ,

is bounded according to

P
[
‖ ~W

(n)

k ‖F > ε
]
≤ p24 exp

{
− nε2

2a2
kp

2

}
,

where ak = 8(1 + 4ζ2
k). Note: In the block-constant GGM model ζk = 1.

Proof. See Appendix C.5.

Using the above lemma allows us to bound events which depend on sam-
pling, for example in AT,k,2 (see Eq. 4.3.10), one may obtain P [‖W (τ̄k−τk)

k ‖F >
ηmin/3] ≤ p24 exp(−dminη

2
min/36a2p2) (see Appendix ??). As such, it is clearly

possible to obtain some level of control on the sampling noise, even in the
high-dimensional setting.

Remark 4.2. Non-Gaussian processes
While in Theorem 4.1 we considered a process which is strictly Gaussian, it

may be possible to extend analysis to non-Gaussian situations via Lemma 4.1.
For example, the tail bounds derived in Ravikumar, Wainwright, Raskutti, et al.
(2011) (which Lemma 4.1 is based on) are used to bound the estimation error
of the estimated covariance for sub-Gaussian sampling schemes. Additionally,
it is possible to utilise polynomial tail bounds (c.f. Ravikumar, Wainwright,
Raskutti, et al. (2011) and Saegusa et al. (2016)) to analyse an even wider
range of processes. However, one has to bear in mind, that when the process is
not Gaussian the precision matrix may require a different interpretation. For
example, the sparsity structure may no longer encode conditional dependency
relationships.
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4.4.2 Curvature

As discussed in Section 2.4, the gradient of a loss function may be flat in
many directions when considering high-dimensional estimation. The advan-
tage, and purpose of regularisation is to give added curvature to statistical
estimation problems. In Lemma 4.1 the optimality conditions for the GFGL
estimator were derived, and it should be noted at this point that these con-
ditions hold independently of dimension. However, in the high-dimensional
setting the specific form of the regularisers are more important, in that they
act to give curvature in certain directions. If this curvature is appropriate,
then one may conjecture model structure can be consistently estimated, even
as p > T and p, T → ∞. The form of curvature required is formalised by the
restricted strong convexity (RSC) condition as laid out in Section 2.4.2 (Def.
2.9).

To reconcile the analysis of the previous section (and that of Harchaoui
et al. (2010) and Kolar et al. (2012)) with the M-estimation framework of Ne-
gahban et al. (2012), one needs to check that the RSC condition holds with
respect to an appropriate sub-space of model parameters. The following discus-
sion forms some preliminary work in this direction and suggests an alternative
method to bound estimation error ‖Θ̂−Θ0‖, and thus changepoint error, even
in high-dimensions. Such bounds may then be used in place of (or in conjunc-
tion with) the bounds derived from GFGL stationarity conditions given in Eqs.
4.3.16, 4.3.15. In particular, the results provide a pathway to choosing a set
of λ1 and λ2 which appropriately add curvature in high-dimensions.

In the full GFGL model there are potentially O(p2T ) parameters, however,
in the block-constant GGM there are only O((K + 1)p2). Under the correct
identification of changepoints {τ1, . . . , τK}, the GFGL model has many pre-
cision matrices which are equal and can thus be compared to the underlying
GGM model. For example, from the GFGL estimator with K changepoints
one can identify K + 1 precision matrices {Θ̂

(k)
}K+1
k=1 . These can then be com-

pared to the GGM parameterisation {Θ(k)
0 }K+1

k=1 . Analysis of the curvature in
the estimator can therefore be assessed over a model sub-space parameterised
in terms of the true B block model. Concatenating the parameterisation across
the B blocks gives rise to a block-diagonal matrix Θ0 ∈ R̃(K+1)p×(K+1)p of the
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form

Θ =

 Θ(1)

. . .
Θ(K+1)

 ,

where the block-diagonal sub-matrices are the precision matrices of individual
blocks Θ(k) ∈ Rp×p. If the changepoints were identified correctly such that
T̂ = T , we may utilise the standard GFGL likelihood

(4.4.1) LB(Θ) =
K+1∑
k=1

(τk − τk−1)
(
− log det(Θ(k)) + trace(Ŝ

(k)
Θ(k))

)
,

where Ŝ
(k)

= (τk − τk−1)−1(
∑τk

t=τk−1

~X
(t)
k ( ~X

(t)
k )>) and ~X

(t)
k ∼ N (0,Σ

(k)
0 ) for

t = τk−1, . . . , τk and k = 1, . . . , K + 1. However, such a case is not guaran-
teed and in general the estimator will exhibit some form of mis-specification
relating to estimation error in the changepoint positions. In this setting, it
is inappropriate to analyse curvature (especially when considering sampling)
with respect to the GFGL likelihood (4.4.1). Instead, we should consider the
mis-specified likelihood:
(4.4.2)

LK̂(Θ) =
K̂+1∑
k=1

(τ̂k − τ̂k−1)(− log det(Θ(k)) +
K̂+1∑
l=1

nlktr(Ŝ
(k,l)

Θ(k))

 ,

where nlk = max{min{τ̂k, τl+1} − max{τ̂k−1, τl}, 0}, this represents the pro-
portion of ground-truth block l mixing with estimate block k, and empirical
covariance:

Ŝ
(k,l)

=


∑min{τ̂k,τl+1}

t=max{τ̂k−1,τl}

(
~X
(t)
l ( ~X

(t)
l )>

min{τ̂k,τl+1}−max{τ̂k−1,τl}

)
if l ∈ Q(k) := {i | τ̂k−1 ≤ τi ≤ τ̂k}

0 otherwise

.

Note: the role of the set Q(k) in the above is to indicate changepoint indexes
which need to be considered in the mis-specification for each estimated block
k = 1, . . . , K̂ + 1. In this case Ŝ

(k,l)
describes the contribution of sampling

from the ground-truth covariance into the mis-specified likelihood. Within the
context of regularised M-estimation (Sec. 2.4 Def. 2.7) the GFGL regulariser
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can be written in the form5

R(Θ) ≡

K̂+1∑
k=1

‖Θ(k)
−ii‖1 +

λ2

λ1

K̂+1∑
k=2

‖Θ(k) −Θ(k−1)‖F

 .

Following the framework of Section. 2.4, let S(k) = {(i, j) | [Θ(k)
0 ]i,j 6= 0 i, j ∈

[p]} represent the support (non-zero elements) of Θ
(k)
0 . Analogously, let S is

the support of the full matrix Θ0 ∈ R̃(K+1)p×(K+1)p. If, in a simillar way to
the lasso we construct meaningful model subspaces in the context of the true
sparsity structure, then we can assess the decomposability properties of the
GFGL estimator. For instance, in the block-wise parameterisation, one may
be interested in defining the subspaces:

M = {Θ ∈ R̃(K+1)p×(K+1)p |Θi,j = 0 , (i, j) 6∈ S} ,

M⊥ = {Θ ∈ R̃(K+1)p×(K+1)p |Θi,j = 0 , (i, j) ∈ S} .

If the regulariser R(·) is decomposable over these subspaces, then from
Lemma 2.4, conditional on λ ≥ 2R∗(∇LK̂(Θ0; ~X(1:T ))), the error ∆̂ := Θ̂−Θ0

belongs to the set

(4.4.3) C(M,M̄⊥; Θ0) :=
{
∆ ∈ R̃Bp×Bp|R(∆M⊥) ≤ 3R(∆M)

}
.

As demonstrated in Sec. 2.4, if ∆̂ ∈ C and the RSC condition (Def. 2.9)
is met, then one may upper bound the estimation error ‖∆̂‖. However, in
order to ensure ∆̂ ∈ C, one is required to set an appropriate regularisa-
tion, and therefore needs to examine the dual norm of the likelihood gradi-
ent R∗(∇LK̂(Θ0; ~X(1:T ))). If this can be bounded by λ1 in high probability
for a given amount of data, then the estimation error ‖Θ̂ −Θ0‖ may also be
bounded. The specifics of such an analysis provide a direction for future work
and mark a path towards obtaining bounds on the changepoint error even in
high-dimensions.

5The total cost function can therefore be written in the form LK̂(Θ) + λ1R(Θ).
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4.5 Summary
In this chapter the GFGL estimator was analysed for consistency prop-

erties, both in the standard and high-dimensional settings. In standard di-
mensions, changepoint consistency was demonstrated as long as p < δTT . In
order to extend consistency results to the high-dimensional setting, the GFGL
estimator was then broken down as a M-estimator under the framework of Ne-
gahban et al. (2012) with the aim of bounding the estimation error ‖Θ̂−Θ0‖.

Traditionally, for example with the lasso, the loss-function does not have
to account for mis-specification. One typically assumes that the data is iden-
tically drawn and there are no changepoints that need to be estimated. In
the GFGL class of estimators one must not only characterise the curvature
(in a number of directions identified by the model-subspace), but also con-
sider this curvature in the presence of mis-specification of the likelihood (or
loss function L(·)). To my knowledge such a mis-specified likelihood has not
to-date been analysed in terms of a high-dimensional M-estimator. It may
appear that the stationarity condition induced bounds c.f. Eqs. 4.3.16 and
4.3.15 demonstrate sufficient curvature. However, this is not necessarily the
case, as when operating in high-dimensions the loss function may be flat in
many directions. This contrasts with the RSC requirements that sufficient cur-
vature is present in certain directions, recall we desire δL(∆,θ0) ≥ κL‖∆‖2

for all ∆ ∈ C(M,M̄⊥;θ0). Such specific curvature requirements place more
stringent requirements on λ1, λ2, which require analysis of the mis-specified
likelihood LK̂(·).

There are still several hurdles to overcome in order to obtain a high-
dimensional bound and this provides an important direction for future work.
In particular, it still remains to find probabilistic bounds on the expression
λ1 ≥ 2R∗(∇LK̂(Θ0; ~X(1:T ))), although the sampling bounds of Lemma C.5
provide a pathway to achieve this. If changepoint consistency can be demon-
strated in high-dimensions (with asymptotics in p and T ), the general mecha-
nism of combining a mis-specified likelihood and the framework of Negahban
et al. (2012) would provide a valuable tool for theoretical analysis of a very
wide class of high-dimensional non-stationary models.
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In the following chapters we take a step back from estimation theory and
focus again on model construction. In particular, we will consider how one
may describe non-stationary processes which are not just dependent across
streams, but can also across time/space. The concepts of model sparsity and
smoothness will again play a large role in estimation for the proposed models.
It is plausible that the theoretical analysis developed in this chapter may one-
day be extended to M-estimators for this larger class of models. More specifics
of such an extension are discussed in the conclusion (Chapter 8).
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Appendix C

C.1 Some known results

Tail bounds in standard-dimensional settings

Below are a collection of results fromWainwright (2009) who studies thresh-
olding with the lasso. In the standard, or low-dimensional setting, where
p < ηmin/2. These results can be used to bound the sampling error terms c.f.
Eq. 4.3.5.

Lemma C.1. Concentration relative to Identity (Wainwright 2009)
For p ≤ n, let ~Q ∈ Rn×p be a random matrix from the standard Gaussian

ensemble, such that Qij
iid∼ N (0, 1), then for all σ > 0, we have:

P

[∣∣∣∣∣∣∣∣∣∣∣∣ 1n ~Q> ~Q− Ip×p
∣∣∣∣∣∣∣∣∣∣∣∣

2

≥ δ(n, p, σ)

]
≤ 2 exp(−nσ2/2) ,

where

δ(n, p, σ) := 2

(√
p

n
+ σ

)
+

(√
p

n
+ σ

)2

.

Proof. For proof see Davidson et al. (2001).

Lemma C.2. Concentration of spectral norm and eigenvalues (Wainwright
2009)

For p ≤ n let ~Z ∈ Rn×p have i.i.d rows such that the ith row is generated as
~Z(i) ∼ N (0,Σ) for i = 1, . . . , n. Let Σ̂ := n−1~Z

>~Z be the empirical covariance
matrix

(1) If the covariance matrix Σ has maximum eigenvalues φmax < +∞,
then for all σ > 0

P

[∣∣∣∣∣∣∣∣∣Σ̂−Σ
∣∣∣∣∣∣∣∣∣

2
≥ φmaxδ(n, p, σ)

]
≤ 2 exp(−nσ2/2)

(2) If the matrix Σ has minimum eigenvalue φmin > 0, then for all σ > 0

P

[∣∣∣∣∣∣∣∣∣Σ̂−1 −Σ−1
∣∣∣∣∣∣∣∣∣

2
≥ δ(n, p, σ)

φmin

]
≤ 2 exp(−nσ2/2)
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Proof. The proof follows from Lemma C.1 setting ~Z = ~Q
√

Σ where ~Z and
~Q are random matrices. See Wainwright (2009) Lemma 9.

High dimensional results

The following Lemmata are derived from results in Ravikumar, Wain-
wright, Raskutti, et al. (2011). They may be used to bound the deviation
of the sample covariance matrix in the high-dimensional setting. The result
below gives a rate in the case of sub-Gaussian tails; however, it is also possible
to construct polynomial tail bounds where the variables moments are bounded.

Lemma C.3. Lemma 1 (Ravikumar, Wainwright, Raskutti, et al. 2011)
Consider a zero-mean random vector ~Z ∈ Rp with covariance Σ such that

each Zi/
√

Σii is sub-Gaussian with parameter ζ. Given n i.i.d samples let the
associated sample covariance be denoted Σ̂. The absolute error then satisfies
the bound

( C.1) P [|Σ̂i,j − Σi,j| > δ] ≤ 1/f(n, δ) ,

where

f(n, δ) =
1

4
exp(a0nδ

2) and a0 = (128(1 + 4ζ2)2)−1 ,

for all δ ∈ (0, 8(1 + 4ζ2)) and assuming maxi(Σii) = 1.

While the above tail bound provides constraints on the deviation of indi-
vidual entries in the sample covariance, we are more generally interested in
the error across the whole matrix. For example, this is required to bound Eq.
4.3.5. The following lemma provides a maximum error estimate which we can
then use to bound the required Frobenius norm.

Lemma C.4. Lemma 8 (Ravikumar, Wainwright, Raskutti, et al. 2011)
Let W = Σ̂−Σ0. For any τ > 2 and sample size n such that δ̄f (n, pτ ) ≤

1/v0 we have
P [‖W ‖∞ ≥ δ̄f (n, p

τ )] ≤ p2−τ → 0 ,

where δ̄f (n, pτ ) := arg max{δ | f(n, δ) ≤ pτ}.
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Proof. Consider the sub-Gaussian exponential tail conditions in Lemma C.3
where δ ∈ (0, v−1

0 ] and v−1
0 = 8(1 + 4ζ2) maxi(Σii). Applying the union bound

we obtain
P [max

i,j
|Wi,j| ≥ δ] ≤ p2/f(n, δ) .

Setting δ = δ̄f (n, p
τ ) gives P [maxi,j |Wi,j| ≥ δ̄f (n, p)] ≤ p2/f(n, δ̄f (n, p

τ )) =

p2−τ as f(n, δ̄f (n, p
τ )) = pτ through definition.

�

Lemma C.5. Sample Error in Frobenius Norm (HD)
In the high-dimensional setting where it is possible p ≥ n the sampling

term is bounded according to Ravikumar, Wainwright, Raskutti, et al. (2011)
(Lemmas C.3 and C.4). Given the definition of the sampling error in Eq.
4.3.8, we can then use Lemma C.3 to bound the Frobenius norm by noting
that:

P [‖ ~W
(n)

k ‖F ≥ ε] ≤ p2P [|[ ~W (n)
k ]i,j| ≥ p−1ε]

≤ p24 exp

{
− nε2

2a2
kp

2

}
,

where ak = 8(1 + 4ζ2
k) and p−1ε ∈ (0, ak).

C.2 Proof of Lemma 4.1 (Optimality Conditions)

Proof. Stationarity conditions for GFGL
In GFGL we have a set of conditions for each time-point which must be met

jointly. Unlike non-fused estimators, we also have to consider the stationarity
conditions due to a differenced term. The GFGL objective can then be re-
written in terms of this difference, such that ˆ{Γ(t)}t∈[T ] = arg min{Γ(t)}∈Rp×p{G(Ŝ,Γ)}
where

G(Ŝ,Γ) :=
T∑
t=1

(
−log det(

∑
s≤t

Γ(s))+tr(Ŝ
(t)∑

s≤t

Γ(s))

)
+λ1

T∑
t=1

‖
∑
s≤t

Γ
(s)
\ii‖1+λ2

T∑
t=2

‖Γ(t)‖F .

For each point l ∈ [T ] the derivative when taken with respect to Γ(l) evaluated
at the point {Γ̂

(t)
}t∈[T ] gives a zero matrix 0 ∈ Rp×p. For the log-det term, we
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have F (Γ) := − log det(
∑

s≤t Γ
(s)), letting Θ(t) =

∑
s≤t Γ

(s),

∂

∂Γ(l)
F (Γ) =

−(Θ(t))−1 if t ≥ l

0 otherwise
.

This follows from the chain rule on g(Θ(t)) = − log det(Θ(t)) and (∂/∂Γ(l))g(Θ(t)) =

(∂/∂Θ(t))g(Θ(t)) × (∂/∂Γ(l))Θ(t). The derivative of the first sum of log-det
components is given as

∂

∂Γ(l)

T∑
t=1

(
− log det(

∑
s≤t

Γ(s))

)
=

T∑
t=l

−(
∑
s≤t

Γ(s))−1 .

The trace term is much simpler, as the trace operation can be linearly separated
i.e. tr(A+B) = tr(A) + tr(B), such that

∂

∂Γ(l)

T∑
t=1

(
tr(Ŝ

(t)∑
s≤t

Γ(s))

)
=

T∑
t=l

∂

∂Γ(l)
tr(Ŝ

(t)∑
s≤t

Γ(s)) =
T∑
t=l

Ŝ
(t)
.

Setting the derivative to zero we obtain:

0 =
T∑
t=l

(
− (
∑
s≤t

Γ̂
(s)

)−1 + Ŝ
(t)
)

+ λ1

T∑
t=l

R̂
(t)

1 + λ2R̂
(l)

2 .

We now need a way to link the observations (via Ŝ
(t)
) to the optimality con-

ditions of the GFGL problem. Recalling that ~X(t) ∼ Np(0,Σ(t)), we can then
link Σ(t) to Γ(l) via Σ(t) = (

∑
s≤t Γ

(s))−1. We now have a way to relate the

estimated precision matrices Γ̂
(t)

and the corresponding ground-truth. In the
following, we will consider the deviation of the empirical covariance from the
ground-truth, with a noise term given as ~Ψ

(t)
:= Ŝ

(t)
−Σ(t). Substituting ∆(t)

into the above stationarity conditions for GFGL we obtain;
T∑
t=l

(
(
∑
s≤t

Γ(s))−1 − (
∑
s≤t

Γ̂
(s)

)−1

)
−

T∑
t=l

~Ψ
(t)

+ λ1

T∑
t=l

R̂
(t)

1 + λ2R̂
(l)

2 ,

or equivalently:
T∑
t=l

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
−

T∑
t=l

~Ψ
(t)

+ λ1

T∑
t=l

R̂
(t)

1 + λ2R̂
(l)

2 ,

thus obtaining the result in Lemma 4.1. �
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C.3 Algebraic manipulation

This appendix contains detail on the algebraic steps for some of the ma-
nipulation. These are not listed as formal lemmata, but are provided to help
the reader with replicating the analysis. The notes below should be considered
in the context of the main text.

Differencing stationarity conditions (Eq. 4.3.1)

‖
τk−1∑
t=τ̂k

(
(Θ(t))−1 − (Θ̂

(t)
)−1

)
−

τk−1∑
t=τ̂k

~Ψ
(t)

+ λ1

τk−1∑
t=τ̂

R̂
(t)

1 ‖F ≤ 2λ2 .

The algebra required for the above step is as follows: Let a(τ) = γb(τ)/‖b(τ)‖,
a(τ̂) = γb(τ̂)/‖b(τ̂)‖, it follows ‖a(τ)‖ = γ and ‖a(τ)‖ + ‖a(τ̂)‖ = 2γ =⇒
‖a(τ)‖2 + ‖a(τ̂)‖2 + 2‖a(τ)‖‖a(τ̂)‖ = 4γ2. Consider ‖a(τ) − a(τ̂)‖2 = ‖a(τ)‖2 −
2〈a(τ),a(τ̂)〉+‖a(τ̂)‖2. Substituting for ‖a(τ)‖2+‖a(τ̂)‖2 we find ‖a(τ)−a(τ̂)‖2 =

4γ2 − 2(‖a(τ)‖‖a(τ̂)‖+ 〈a(τ),a(τ̂)〉) =⇒ ‖a(τ) − a(τ̂)‖ ≤ 2γ. The above result
follows from this setting a(τk) ≡

∑T
t=τk

(Θ(t))−1 − (Θ̂
(t)

)−1 − ~Ψ
(t)

+ λ1R̂
(t)

1 and
γ = λ2.

Block-wise condition (Eq. 4.3.3)

Here, it is desired to replace the time indexed inverse precision matrices
(Θ(t))−1 with the block-covariance matrices indexed Σ(k) and Σ(k+1). We can
lower bound the difference in precision matrices as the sum of a difference
between true values before τk , i.e. Σ(k+1) − Σ(k) and the difference between
the next (k+1st) true block and estimated block, i.e. Σ̂

(k+1)
−Σ(k+1). Consider

the triangle inequality

‖Σ(k) − Σ̂
(k+1)
‖F + ‖Σ̂

(k+1)
−Σ(k+1)‖F ≥ ‖Σ(k) −Σ(k+1)‖F .

In the setting where τk < τ̂k+1 and τk−1 < τ̂k (this occurs with probability one
conditional on CT ) we have from the above

‖
τk−1∑
t=τ̂k

(Σ(t) − Σ̂
(t)

)‖F =(τk − τ̂k)‖Σ(k) − Σ̂
(k+1)
‖F

( C.2)
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≥ (τk − τ̂k)
(
‖Σ(k) −Σ(k+1)‖F − ‖Σ̂

(k+1)
−Σ(k+1)‖F

)
.

C.4 Proof of Lemma 4.1

Lemma. In standard dimensions p <
√
dmin we have

P [‖ ~W
(τ̄k−τk)

k ‖F > ηmin/3] ≤ 2 exp
{
−ηmin

√
dmin/24

√
2φmax

}
.

Proof. Consider that

P [‖ ~W
(n)

k ‖F > ε] ≤ P
[√

r
∣∣∣∣∣∣∣∣∣ ~W (n)

k

∣∣∣∣∣∣∣∣∣
2
> ε
]

= P [
∣∣∣∣∣∣∣∣∣ ~W (n)

k

∣∣∣∣∣∣∣∣∣
2
> εr−1/2] ,

where r = rank( ~W
(n)

k ) ≤ p. Furthermore, consider using Lemma C.2, with
the specific setting of the tail conditions such that δ(n, p, σ) = 2(

√
p/n+ σ) +

(
√
p/n+ σ)2 and σ =

√
p/n thus δ(n, p,

√
p/n) ≤ 8

√
p/n thus

( C.3) P
[∣∣∣∣∣∣∣∣∣ ~W (n)

k

∣∣∣∣∣∣∣∣∣
2
> 8φmax

√
p/n
]
≤ 2 exp(−p/2) .

Let 8φmax

√
p/n = εp−1/2 , then one obtains p = ε

√
n/8φmax, substituting

ε = ηmin/3 and n = τ̄k − τk > dmin/2, thus we obtain

P [‖ ~W
(τ̄k−τk)

k ‖F > ηmin/3] ≤ 2 exp

{
−ηmin

√
dmin

24φmax

}
.

�

C.5 Proof of Lemma 4.2

Lemma. The probability of the intersection of AT,k and D(m)
T can be bounded

from above by considering the events

E
′

k := {(τ̂k+1 − τk) ≥ dmin/2} ,

E
′′

k := {(τk − τ̂k) ≥ dmin/2} .

In particular, one can demonstrate that:

( C.4) P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩ E

′

k ∩D
(m)
T ] +

K∑
j=k+1

P [E
′′

j ∩ E
′

j ∩D
(m)
T ] .
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Proof. The strategy is to expand the probability in terms of exhaustive events
(relating to the estimated changepoint positions), under a symmetry argument,
we assume τ̂k < τk. Noting P [E

′

k ∪ E
′′

k+1] = 1, then expanding the original
event, we find

P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩D(m)

T ∩ E ′k] + P [AT,k ∩D(m)
T ∩ E ′′k+1]

≤ P [AT,k ∩D(m)
T ∩ E ′k] + P [D

(m)
T ∩ E ′′k+1] .

Now consider the event D(m)
T ∩ E ′′k+1 corresponding to the second term. One

can then expand the probability of this intersection over the events E ′k+1 and
E
′′

k+2 relating to the next changepoint, i.e

P [D
(m)
T ∩ E ′′k ] ≤ P [D

(m)
T ∩ E ′′k+1 ∩ E

′

k+1] + P [D
(m)
T ∩ E ′′k+1 ∩ E

′′

k+2] .

Again we note that P [D
(m)
T ∩E ′′k ∩E

′′

k+2] is upper bounded by P [D
(m)
T ∩E ′′k+2]

such that P [D
(m)
T ∩ E ′′k ∩ E

′′

k+2] ≤ P [D
(m)
T ∩ E ′′k+2]. Cascading this over all

changepoints j = k + 1, . . . , K we have

P [D
(m)
T ∩ E ′′k ] ≤

K∑
j=k+1

P [D
(m)
T ∩ E ′′j ∩ E

′

j+1] .

�

C.6 Proof of Lemma 4.3

Lemma. The probability of D(l)
T is bounded by

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [E
′′

l ∩ E
′

l ] + 2KP [E
′

K ] .

Proof. Recall the definitions of the different events:

E
′

k := {(τ̂k+1 − τk) ≥
dmin

2
} and E

′′

k := {(τk − τ̂k) ≥
dmin

2
} .

For each new changepoint in the model, there is an extra option for this (latest
changepoint) to trigger the event

( C.5) {∃k ∈ [K], τ̂k ≤ τk−1} .
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In particular, the total number of combinations (of changepoints) which could
trigger this event doubles on the addition of an extra changepoint. Lemma 4.3
considers the probability of each of the changepoints being estimated to the
left of τk−1. To start, we note that the probability of D(l)

T is bounded by

( C.6) P [D
(l)
T ] ≤

K∑
k=1

2k−1P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] .

The term P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] describes the probability that the
last changepoint (such that τ̂l is to the left, i.e. before τl−1) is k. On increasing
k by one (for k ≥ 2), the number of combinations of left/right estimates for
previous changepoints doubles. For example, consider the case for k = 3 such
that the event S3 := {τ̂3 ≤ τ2} is triggered, see Figure C.1. The possible
results for previous changepoints are then S2 := {τ̂2 ≤ τ1}, it’s compliment Sc2,
and the event S1 := {τ̂1 ≤ 1} or Sc1. In total, there are 22 ways that the event
S3 can occur6. In general for the changepoint k there are 2k−1 combinations
of events that allow Sk to be triggered. However, since these events are not
mutually exclusive, this only provides an upper bound.

t

1 2 3

0=1 4 =T
1 22

1

3

Figure C.1 – The gold changepoint estimates indicate examples of allowable
positions for the changepoints l < k = 3 which satisfy {τ̂l ≤ τl−1}. Note: for the
case displayed K = 3 and k = 3 thus there are 4 combinations of changepoints
(in gold) that permit the purple event max{l ∈ [4] | τ̂l ≤ τl−1} = 3.

Harchaoui et al. (2010) and Kolar et al. (2012) note that an event where
the kth changepoint is the largest to satisfy {τ̂l ≤ τl−1}, is a subset of events
relating to later changepoints l ≥ k. Correspondingly, we have
( C.7)
{max{l ∈ [K] | τ̂l ≤ τl−1} = k} ⊆ ∪Kl=k{τl− τ̂l ≥ dmin/2}∩{τ̂l+1−τl ≥ dmin/2} .

6Arguably, there are actually 3 combinations of changepoint event that can cause S3 as
τ̂1 > τ̂0 = 1 by definition. However, this does not effect the upper bound.
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The union bound applied to ( C.7) provides us with the bound:

P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] ≤
∑
l≥k

P [{τl− τ̂l ≥
dmin

2
}∩{τ̂l+1− τl ≥

dmin

2
}] ,

and thus

P [D
(l)
T ] ≤

K∑
k=1

2k−1

K∑
l≥k

P [{τl − τ̂l ≥
dmin

2
} ∩ {τ̂l+1 − τl ≥

dmin

2
}] .

Since we want an upper bound, the largest factor (2K) can be taken out the
summation. The term k = K contains the event {τ̂K+1 − τK ≥ dmin/2}, this
occurs with probability one as the last changepoint τ̂K+1 = T + 1. We can
thus truncate the final term and obtain the bound:

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [{τl − τ̂l ≥
dmin

2
} ∩ {τ̂l+1 − τl ≥

dmin

2
}]

+2KP [{τK − τ̂K ≥
dmin

2
}] .

The above can be written in a shortened form by relating it to the events
E
′

k, E
′′

k defined in (4.3.13), such that

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [E
′′

l ∩ E
′

l ] + 2KP[E
′′

K ] .

�





Chapter 5.

Chapter 5

Locally Stationary Wavelet (LSW)
Processes

In previous chapters we discussed how one may relax the requirement that
statistical models are sampled identically across time. However, to enable es-
timation, we were required to assume that the models met various smoothness
constraints, for example corresponding to continuous, piecewise, or grouped
variation. While these models allow dynamics, they assume that draws at
different time-points are independent. In reality, we see large correlations be-
tween observations that are taken nearby in time or space; for example, levels
of crime may be similar in nearby districts (Bowers et al. 2003), or stock prices
may be correlated to lagged prices nearby in time (Cont 2005). Such depen-
dency between observations has not yet been encoded in our models.

In the following sections, we aim to extend some of the previously discussed
regularised estimation ideas to a class of non-stationary models which can
describe both the dynamic and dependent nature of time-series. To describe
dependency across time we need a way of representing a signal that can account
for variation across segments, as opposed to individual elements of the time-
series. To this end, it is useful to discuss the representation of signals in
terms of their projection onto a set of basis functions. For example, it is often
considered to model the Fourier coefficients of a signal. Such a modelling
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approach is commonly referred to as spectral analysis (Brillinger 1981; Priestly
1981).

In this section, we first discuss how Fourier analysis can enable us to de-
scribe identical, but dependent signals. However, to describe non-stationary
processes we are required to develop time localised representations of the pro-
cess. Two such approaches are introduced, namely, the evolutionary Fourier
process, and the locally-stationary wavelet (LSW) process. In particular, the
LSW model has received much recent attention in the literature due to both
its statistical tractability and modelling flexibility. In this chapter, we discuss
recent results for LSW processes and the estimation of model parameters. The
proceeding chapters, several M-estimators are introduced to help enforce as-
sumptions on the model parameters of LSW processes. Notably, regularised
LSW model estimation is demonstrated in both one-dimensional time-series,
and multi-dimensional image processing settings. Regularised estimation of the
LSW spectrum is shown to enhance the interpretation of spectral estimates,
while also increasing model robustness. The final chapter extends the LSW
model to a multivariate setting. Importantly, this provides a connection with
earlier chapters where one may apply regularised graph identification methods
for spectral estimation.

5.1 Evolutionary Fourier Processes
In order to motivate and understand non-stationary time-series models, it

is prudent to first consider the construction of stationary processes. Specifi-
cally, we will be concerned with second-order stationarity, sometimes known as
weak-stationarity this requires that a stochastic process {Xt} has mean and co-
variance properties that are shift invariant E[Xt] = E[Xt′ ] and Cov[Xt, Xt+τ ] =

Cov[Xt′ , Xt′+τ ] for all t, t′, τ ∈ Z. Although not studied here, one should note
that in addition to second-order stationarity it is possible to consider higher-
order measures of stationarity. For example, Priestly (1981) considers station-
arity of higher order moments, Brillinger (1981) considers stationarity in terms
of the cumulants of a process.
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5.1.1 Spectral Representation of Processes

A fundamental description of stationary processes can be considered via
the Cramér representation:

Proposition 5.1. Cramér Representation of second order-stationary processes
All zero-mean second order stationary processes {Xt}, for t ∈ Z, may be

written in the form

(5.1.1) Xt =

∫ π

−π
A(ω) exp(iωt)dZ(ω), t ∈ Z ,

where A(ω) is the amplitude of the process in the spectral domain (denoted
by frequency ω), and dZ(ω) is an orthonormal increment process such that
E[dZ(ω1)dZ(ω2)] = E[|dZ(ω1)|2]δ(ω1 − ω2).

Let us now consider how the amplitude of the spectra A(ω) is related to
the auto-covariance cX(τ) := Cov[Xt, Xt+τ ]. We find1:

cX(τ) =

∫ π

−π
A(ω1)A(−ω2) exp(itω1 − i(t+ τ)ω2)E[dZ(ω1)dZ(ω2)]

=

∫ π

−π
|A(ω)|2 exp(−iτω)E[|dZ(ω)|2] ,

where the second line comes from considering that E[dZ(ω1)dZ(ω2)] = δ(ω1−
ω2). Taking the final expectation, we obtain

(5.1.2) cX(τ) = 2πσ2

∫ π

−π
|A(ω)|2 exp(−iτω)dω

where σ2 = E[ε2τ ] is the variance of the integral of the increment process ετ =

(1/2π)
∫ 2π

0
exp(itω)dZ(ω). It therefore follows that the second order properties

of the process cX(τ) are directly specified through the spectral amplitude.
When τ = 0 the variance of (5.1.2) can be written as

(5.1.3) Var[Xt] =

∫ π

−π
dH(ω) ,

where dH(ω) = |A(ω)|2dµ(ω) is referred to the power-spectrum of the process;
as the process is stationary, this does not depend on time.
1For simplicity, assume the process has zero mean such that Cov[Xt, Xt+τ ] = E[XtXt+τ ].



166 5. LOCALLY STATIONARY WAVELET (LSW) PROCESSES

Given the wide array of signals which appear to behave in non-stationary
manner, much work has been put into extending these models. However, while
the Cramêr representation allows for us to describe any stationary process,
there is not a unique way to generalise to non-stationary processes. In the
Cramêr representation the exponential basis {exp(iωt)} is utilised. It turns
out, that if one uses the exponential basis alongside an orthogonal increment
process to represent {Xt} or covariance {cX(τ)}, then the resultant process
will be second-order stationary. To observe this, one can consider expanding
the process {Xt} in terms of an expansion of more general orthogonal functions
{φt(·)}:

Proposition 5.2. General Orthogonal Expansion c.f. Priestly (1981)
Let {Xt} be a zero-mean, not necessarily stationary process and {φt(ω)} be

a family of functions that are quadratically integrable with respect to a measure
µ(ω) defined on the real line:

(5.1.4)
∫ π

−π
|φt(ω)|2dµ(ω) <∞ , for all t .

If for all t, t′ the auto-covariance admits a representation of the form Cov[Xt, Xt′ ] =∫ π
−π φt(ω)φt′(ω)dµ(ω), then the resulting process admits a representation of the
form

Xt =

∫ π

−π
φt(ω)dZ(ω) ,

where {Z(ω)} is an orthogonal process with E[|dZ(ω)|2] = dµ(ω).

If the covariance of the process only depends on lag, i.e. cX(t− t′) = cX(τ),
then via Bochner’s theorem there exists a unique positive measure µ(ω) ∈ [0, 1]

such that cX(τ) =
∫

exp(−2πiτω)dµ(ω). The representation (5.1.4) is now
based on the exponential family {φt(ω)} = {exp(iωt)} and thus a representa-
tion of the process in the form Xt =

∫ π
−π exp(iωt)dZ(ω) is guaranteed (Priestly

1981). As such, the traditional family of complex exponential functions as
used in the Cramêr representation are not expressive enough to deal with non-
stationarity.
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5.1.2 Oscillatory Processes

The idea of oscillatory processes as introduced in (Priestly 1981), are an
early example of work where different functional forms for {φt(ω)} are consid-
ered. Specifically, the oscillatory process lets At(ω) vary slowly over time to
enable dynamics in the spectra. Consider the resultant family of basis function
φt(ω) = At(ω)eiωt . Now, for a given family of oscillatory functions {φt(ω)} an
evolutionary power spectrum can be defined at time t as

dHt(ω) = |At(ω)|2dµ(ω) .

We note, that from Prop. 5.2 we have Var[Xt] =
∫ π
−π |At(ω)|2dµ(ω). The in-

tegral of the evolutionary power-spectrum therefore has a similar definition to
the stationary case ( 5.1.3) in that we find Var[Xt] =

∫ π
−π dHt(ω). However,

crucially, we now note that while normally the power-spectrum is determined
by the behaviour of the process over all time, it is now localised to the neigh-
bourhood of the point t.

All the non-stationary models considered in the following chapters possess
a similar notion of time-varying spectra (or decomposition of variance across
frequencies/scale). The down side to allowing such evolution is that, as with
dynamic graphs, it increases model complexity. Again, in order to obtain some
form of consistency we need to constrain how fast or in what way the spectrum
can change over time. In the oscillatory process model, Priestly (1981) suggests
to use locally supported windows to estimate At(ω).

5.1.3 Locally Stationary Processes

One of the problems with such a localised estimation approach to esti-
mating oscillatory processes, is that asymptotically (as T → ∞) we wish to
gather increasing information relating to At(ω). If we construct an estimator
Ât(ω) we desire consistency such that Ât(ω) → At(ω). However, if we allow
for arbitrary non-stationarity, the more recent samples closer to T do not nec-
essarily tell us much or anything about those at the start of the process. This
point as noted by R Dahlhaus (1997) motivates the construction of a different
asymptotic concept.

Rather than having the temporal support of A1(ω), . . . , AT (ω) grow as T
increases, R Dahlhaus (1997) suggests to instead estimate the structure of a
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function on the rescaled interval [0, 1]. As an example, consider the auto-
regressive process Xt = atXt−1 + εt, where εt

iid∼ N (0, σ2). We would normally
aim for inference on at over t ∈ {1, . . . , T}. However, an alternative asymptotic
analysis could aim to estimate a related function A(t/T ) on the interval t/T ∈
[0, 1]. The re-scaling here allows us to asymptotically assess the function A(z)

at ever finer intervals. Applying this re-scaled time concept to the specification
of the family {φt(ω)} gives rise to the notion of locally-stationary processes:

Definition 5.1. Locally Stationary Fourier (LSF) Processes (R Dahlhaus
1997)

The sequence of stochastic processes {Xt;T} for t = 1, . . . , T is referred to
as locally-stationary with respect to sequence of coefficients at and trend µ(·)
if there exists a representation

Xt;T = µ

(
t

T

)
+

∫ π

−π
at;T (ω) exp(iωt)dZ(ω) ,

where Z(ω) is a stochastic process on [−π, π] with Z̄(ω) = Z(−ω) and the
following conditions hold:

• The cumulants of kth order are bounded, such that

cum{dZ(ω1), . . . , dZ(ωk)} = δ2π(
k∑
j=1

ωj)gk(ω1, . . . , ωk−1)dω1 . . . dωk

is the cumulant of kth order, where δ2π is the 2π periodic extension of the
dirac-delta function. Dependency across frequencies is bounded as g1 = 0,
g2(ω) = 1, and |gk(ω1, . . . , ωk)| ≤Mk is bounded by a constant for all k.
• There exists a constant C and a 2π-periodic continuous (in z, ω) function
A(z, ω) : [0, 1]× R 7→ C, where A(z,−ω) = Ā(z, ω) such that

sup
t,ω

∣∣∣∣at;T (ω)− A
(
t

T
, ω

) ∣∣∣∣ ≤ C

T
, for all T .

The locally stationary process, can be viewed as an extension of oscillatory
processes, but with the dynamics of at;T (ω) constrained to be asymptotically
close continuously smooth function A(z, ω) on the interval z = t/T ∈ [0, 1].
The aim of inference when identifying such a locally-stationary model is the
smooth function A(z, ω) rather than the sequence of transfer functions at;T (ω).
However, even with the re-scaled transfer function, one is still required to place
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assumptions on the smoothness of this. Typically, one assumes A(z, ω) is con-
tinuous in z, that it is Lipschitz smooth and is differentiable (R Dahlhaus 1997;
G.P. Nason et al. 2000). Different smoothness constraints on A(z, ω) result in
different classes of process. For example, in the next chapter we consider how
one may construct piecewise constant locally-stationary processes.

5.1.4 Spectral estimation procedures

Estimation for locally-stationary Fourier processes may be performed in a
variety of ways (see Remark 5.1). For now, let us assume the spectral density
is specified via a parametric function Sθ ≡ |A(z, ω)|2. In stationary processes,
estimation is usually performed taking into account all the data together via a
function referred to as the periodogram. However, to take into account that the
spectrum can change, one needs to examine the structure locally throughout
time. Such a requirement motivates the introduction of a periodogram with a
localised taper function h(·):

Definition 5.2. Localised Fourier Periodogram
Let h(z) : R 7→ R be a data-taper function with h(z) = 0 for z 6∈ [0, 1), for

window width 2M . Define the Fourier coefficients of the tapered data as:

(5.1.5) dM(z, ω) :=
2M−1∑
s=0

h(s/N)x[zT ]−M+s+1;T exp(−iωs) .

The localised Fourier periodogram is then defined as

(5.1.6) IM(z, ω) =
1

2πH2,M(0)
|dM(z, ω)|2 ,

where Hm,M(ω) =
∑2M−1

s=0 h(s/2M)m exp(−iωs) is a normalising constant de-
pendent on the taper shape.

If we consider estimation in the maximum-likelihood sense, one may con-
sider minimising a loss based on the method of Whittle (1953):

(5.1.7) θ̂T := arg min
θ

{
1

4π

1

K

K∑
k=1

∫ π

−π

(
logSθ(zk, ω) +

IM(zk, ω)

Sθ(zj, ω)

)
dω︸ ︷︷ ︸

LT (θ)

}
,
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where K is the number of shifted localised periodograms IM(zk, ω) we use
to construct the likelihood. The positions of the periodograms zk are given
as zk = ∆(k − 1) + M where ∆ is the shift in time between segments. R
Dahlhaus (1997) initially introduces such a localised Whittle estimator as a
heuristic. However, on further examination he demonstrates that if the true f
and parametric fθ probability distributions of the process Xt;T are zero-mean
Gaussian then the asymptotic KL-divergence is given as

lim
T→∞

1

T
Ef [log(f/fθ)] =

1

4π

∫ 1

0

∫ π

−π

(
logSθ(z, ω) +

S(z, ω)

Sθ(z, ω)

)
dωdz︸ ︷︷ ︸

L(θ)

+ const ,

where S(z, ω) is the true spectral density (R. Dahlhaus 1996). Asymptotic
identification of the spectrum can therefore be demonstrated by proving that
the discretely constructed Whittle likelihood estimator converges to that of
the true estimate θ0 := arg minθ L(θ) such that θ̂T → θ0 . For a proof of this
convergence, see Thm. 3.2 R Dahlhaus (1997).

Remark 5.1. Asymptotics and alternate estimation procedures
Asymptotic properties of the Fourier transform of stochastic process are well

understood. In particular, the work of Brillinger (1972, 1974, 1981) provide
results, that given certain mixing conditions, i.e. dependency in process is
restricted for large lags, then the Fourier coefficients (c.f. Eq. 5.1.5) will be
distributed in a Gaussian manner. As such, the second order properties of the
process are asymptotically dominant, and the ML inspired Whittle likelihood
provides an appropriate method for estimation. Alternative estimation methods
include averaging across different tapers, or the use of moving windows (Nuttall
et al. 1982; Walden 2000). More recently, the work of Cohen et al. (2010,
2011) examined multi-taper estimation for the Morlet wavelet spectra which
effectively performs a localised Fourier transform of a process.

5.2 Introduction to Wavelet Bases
Thus far, our discussion of modifications to {φt(ω)} has been restricted

to the complex exponential family combined with a time-varying amplitude
function. One of the main criticisms of such locally stationary Fourier models,
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is that at the estimation stage one must specify the scale and shape of the
taper function h(·) to suit the process Xt;T . Additionally, as observed in Eq.
5.1.5 the taper function modifies the contribution of the process equally at all
frequencies. For example, the effective window (taper) width for large wave-
length (low-frequency) structure is the same as that for high-frequency struc-
ture. This is not always desirable as estimates of the Fourier coefficients can
be expected to have different levels of variance, i.e. typically high-frequency
components are estimated at a faster rate.

One solution to such problems is to specify the process itself in terms of a
set of localised basis functions known as wavelets. Rather than decomposing a
function over a set of frequencies, the wavelet basis constitutes what is known
as a time-scale representation. Such schemes can provide a natural extension
of non-stationary Fourier process whereby the taper function is baked into the
construction of the basis. In this section, we discuss how deterministic func-
tions can be represented using a wavelet basis; the following section extends
this discussion to the representation of stochastic processes.

Wavelet Decompositions

While there are many forms and shapes wavelets can take, the common
principle is to build a set of basis functions around a locally supported function
known as the mother wavelet ψ(x). This function can then be shifted and
scaled to create a family of functions. A set of child wavelets is defined as:{

ψa,b(x) := a−1/2ψ

(
x− b
a

)
| (a, b) ∈ R+ × R

}
,

with shift b and scaling a. A linear combination of such wavelets can then be
used to approximate a non-compactly supported function.

Definition 5.3. Continuous Wavelet Transform
One can express the function f(x) for x ∈ R as:

f(x) =
1

Cψ

∫ ∞
−∞

∫ ∞
0

1

a2
Wf (a, b)ψa,b(x)dadb ,

with normalisation constant

Cψ =

∫
R

|ψ̃(ω)|2

|ω|
|dω <∞ ,
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where ψ̃(ω) is the Fourier transform of ψ(x).

The integration constraint in the above represents what is known as an
admissibility condition for the wavelet ψ(x). The continuous wavelet transform
(CWT) Wf (a, b) is the resultant function over 2-dimensional input (a, b) that
specifies the contribution of each child wavelet ψa,b(x) required to describe the
function f(x).

The CWT function defined with respect to arbritary (a, b) is very flexible in
describing functions and is inherently redundant. This means, that in practice
it is hard to specify the continuous function as one has to calculate an often
intractable integral. To simplify this calculation, one may consider a transfor-
mation which is sampled at a set of values (a, b) that take specific values. In
particular, we concern ourselves with two classes of wavelet transform:

Decimated: In this case the scaling and translation of the mother wavelet is
such that the child wavelet is given as

ψj,k(x) = 2−j/2ψ(2−jx− k) .

The form above is observed when one sets the values of a = 2j and b = k ·2j

where k, j are integers. Such a choice of a, b is known as critical sampling.
Setting (a, b) in this way gives a unique invertible transformation whilst
enabling CWT(j, k) : Z× Z 7→ R to be a function of discrete inputs. The
term critical sampling corresponds to the fact that any coarser decimation
of the wavelet will result in a non-invertible transform; the function will
not be able to be uniquely recovered from the wavelet coefficients.

Non-Decimated: In this scheme, the translational shift (k) is also scaled by
the factor of 2j, the child wavelets are defined as:

ψj,k(x) = 2−j/2ψ(2−j(x− k)) .

Unlike the decimated wavelets, the non-decimated set of wavelets are not
orthogonal; they form an over-complete and highly redundant basis. One
advantage of this extra redundancy is that the wavelets can now be shifted
at all scales by an amount specified at the finest scale of analysis. In
contrast with the decimated transform the number of values that k can
take is the same at all scale levels.
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frequency fTfT/8 fT/4 fT/20

Level 1Level 2Level 3

Figure 5.2.1 – Frequency coverage of wavelet decomposition with dyadic sam-
pling of scales.

While the discretisation schemes above allow a more concise representation
of a signal than the CWT; they still require an infinite number of coefficients to
describe the signal, the integrals now become infinite summations, i.e. f(x) =∑∞

k=−∞
∑∞

j=−∞ dj,kψj,k(x). If we consider compression of the wavelet in the
time-domain is equivalent to stretching the spectrum and shifting it upwards
(see Figure 5.2.1); then in order to cover the complete spectrum down to zero
frequency we again require an infinite number of wavelets. However, in real
life, we never directly observe a continuous underlying function but instead
sample a function at a finite number of points.

Multi-resolution analysis

To use wavelets to represent such functions it is useful to consider the trans-
form in the context of a scheme known as multi-resolution analysis (MRA).
As introduced by Mallat (1989), this framework suggests an interpretation of
the wavelet transform where scaled basis functions are used to span nested
sub-spaces. For example, consider the sequence of subspaces {Vj} such that:

{0} · · · ⊂ V1 ⊂ V0 ⊂ V−1 · · · ⊂ V−j · · · ⊂ L2(R) .

If we consider a function which is restricted to a subspace V0, then under
shifting the MRA requires this function to remain in the space, i.e.

(5.2.1) f ∈ V0 ⇐⇒ f(x− k) ∈ V0 .

Additionally, and crucially, we now let there be a mapping between subspaces
according to scaling, such that

(5.2.2) f(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj .
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Similarly to the wavelet function, let us introduce a function φ0(x) known
as the scaling function and use shifted/scaled versions of these {φj,k(x) :=

φj(x−k)} to construct an orthonormal basis in Vj. Combined with properties
(5.2.1, 5.2.2) we obtain the relation φj,k(x) = 2j/2φ(2jx − k). Let us again
consider the wavelet functions {ψj,k} and let these span respective subspaces
Wj. It turns out (Mallat 1989), that there exists a function ψ(x) such that
Wj is the orthogonal complement of Vj in Vj−1. As such, the inner products
{〈ψj,k, f〉| k ∈ Z} contain all the information that is present in approximation
to f at scale j − 1, but lacking at coarser level j (Daubechies 1990).

If the function φ(x) has finite support, then one can represent this function
as a scaling equation that takes the form of a discrete summation2:

φ(x) =
√

2
∑
k

h[k]φ(2x− k) .

If we choose an appropriate wavelet such that W0 ⊂ V1, then we are required
to find a set of coefficients g[k] such that

ψ(x) =
√

2
∑
k

g[k]φ(2x− k) .

The coefficients h[k] and g[k] respectively correspond to low and high-pass fil-
ters; they maintain the relationship g[k] = (−1)kh[1−k]. In signal processing,
such filters are known as quadrature mirror filters. For further discussion on
the existence and uniqueness of the coefficients which define these filters see
Daubechies (1992).

Now that we have discussed how to specify the wavelet and scaling func-
tions, we can work in this expanded basis to study the decomposition of a
function. Consider the projection of a function f onto the sub-spaces is given
as

〈φj−1,k, f〉 = 〈φj,k, f〉+ 〈ψj,k, f〉(5.2.3)

=
∑
k

cj,kφj,k +
∑
k

dj,kψj,k ,

2Note: the indexing for h[k] for k ∈ Z refers to a discrete sequence h[1], h[2] . . . with local
support. The notation is commonly used in signal processing and allows us to distinguish
that h is a function of discrete integers.
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Figure 5.2.2 – Filter-bank representation of the discrete (decimated) wavelet
transform as described in Definition 5.2.

where cj,k and dj,k are known respectively as approximation and detail coeffi-
cients. As a result we observe that the projection at a finer scale level can be
calculated in terms of those at the coarser levels. Starting at coarsest level J
and simply iteratively applying (5.2.3) leads to

f(x) = 〈φJ,k, f〉+ 〈ψJ,k, f〉+ . . .+ 〈ψ1,k, f〉

and the corresponding orthogonal discrete wavelet series decomposition

(5.2.4) f(x) =
∑
k

2−J/2cJ,kφ(2−J − k) +
J∑
j=1

∑
k

2−j/2dj,kψ(2−jx− k) .

Due to the two-scale relation, multiplying (5.2.3) by φj,k and taking inner
products gives:

cj,k = 〈φj,k, 〈φj−1,k, f〉〉 = 21/2
∑
l

h[l − 2k]cj−1,l

dj,k = 〈ψj,k, 〈φj−1,k, f〉〉 = 21/2
∑
l

g[l − 2k]cj−1,l .(5.2.5)

What the MRA gives us, is a way to plug the wavelet decomposition so we do
not have to consider an infinite set of scale levels. For example, in the above
analysis we worked with a finite scale level J which defined the coarsest level of
analysis. If we consider Eq. 5.2.4, one notes that detail coefficients are required
for J scales, the rest of the function is represented via the approximation
coefficient cJ,k.
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Discrete (Decimated) Wavelet Transform

In practice, and in our applications, we will be dealing with discretely
indexed functions or processes of finite size T . Assuming that T = 2J the
discrete wavelet decomposition (5.2.4) permits an efficient algorithm for the
computation of coefficients {dj,k}Jj=1, {cJ,k}. Such a procedure is defined below,
and graphically illustrated in Figure 5.2.2.

Let f [t] be a discrete signal and define the discrete convolution y[t] =

(f ∗ g)[t] :=
∑∞

k=−∞ f [k]g[t − k], let (y ↓ l) := y[lt] denote the sub-sampling
operator. The discrete wavelet coefficients for scale j are then given by

d1,k = (f ∗ h) ↓ 2[k] y1[k] := (f ∗ g) ↓ 2[k]

d2,k = (y1 ∗ h) ↓ 2[k] yj[k] := (yj−1 ∗ g) ↓ 2[k]

...

dj,k = (yj−1 ∗ h) ↓ 2[k] ,

where one notes that the number of coefficients used to describe a segment
of data f [t] for t = 1, . . . , T = 2J at each scale decreases dyadically. The
total number of coefficients depends on the size of the support of h[·] where
|{dj,k∀j, k}| = bT + |supp(h)|c/2.

Remark 5.2. Signal Extension
In this work, we perform theoretical analysis on signals which maintain

the constraint T = 2J . However, in practice, one can easily imagine that a
signal may not be exactly of this length. In such a case we need to specify a
way to extend the signal over the set t ∈ {1, . . . , 2dlog2 T e}. Throughout this
thesis I typically use a zero-padding method whereby the signal is centered in
the interval and then padded on either side with zero entries. In synthetic
settings, the simulation can usually be set up to avoid the need for padding.

Discrete (Stationary) Wavelet Transform

The discrete wavelet transform with non-decimated wavelets is commonly
referred to as the stationary wavelet transform (SWT). This algorithmic trans-
form is a simple modification to the DWT whereby the downsampling is re-
moved and instead the filters are up-sampled at each scale. The filters applied



5. THE LOCALLY STATIONARY WAVELET PROCESS 177

f [t]
Level 1
coefficients

d  [k]1

Level 2
coefficients

d  [k]2

Level 3
coefficients

d  [k]3

g[t]

h[t]

g[t]

h[t]g[t]

h[t]

...

Figure 5.2.3 – Filter-bank representation of the stationary wavelet transform.

at each scale hj+1, gj+1 are given by inserting zeros in the filter at the previous
scale, such that

hj+1[k] = hj ↑ 2[k] , gj+1[k] = gj ↑ 2[k] .

Assuming a dyadic length T = 2J , the number of coefficients at each level is
now the same, i.e. |{dj,k}| = |{dj′,k}| = T for all j, j′. The SWT has a property
known as shift-invariance, such that, on shifting a signal by lag τ the wavelet
coefficients are now also shifted, i.e. f [t] = f [t + τ ] =⇒ dSWT

j,k = dSWT
j,k+τ .

The DWT does not possess this property as the number of coefficients at
each scale is different, instead the values of the coefficients will change, i.e.
dDWT
j,k 6= dDWT

j,k+τ .

5.3 The Locally Stationary Wavelet Process
In the previous section we discussed how one can represent a deterministic

function in terms of a set of wavelets. In analogy to the locally stationary
processes in Sec 5.1.3 which utilised the Fourier basis, we can now use wavelets
to specify a class of stochastic process. In particular, let us consider the set of
discrete wavelets ψj ∈ RNj which have dimension Nj = (2j − 1)(|supp(h)| −
1) + 1, where h[k] is an appropriate low-pass filter. The construction of the
discrete wavelets can be achieved iteratively according to:

ψ1,t =
∑
k∈Z

g[t− 2k]δ0,k = g[t]

ψj+1,t =
∑
k∈Z

h[t− 2k]ψj,k for t = 0, . . . , Nj+1 − 1 .

Remark 5.3. Discrete Wavelet Notation
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One should note, that in general the discrete wavelets {ψj} are not just
sampled versions of the standard continuous wavelet {ψj(x)}3. The above
scheme creates a set of dilated wavelets, however, we also wish to shift these
in order to build our set of basis functions. The integer shifted version of the
wavelet are denoted as ψj,t[k] := ψj,t−k for t− k ∈ {0, . . . , Nj − 1}.

The class of processes introduced here are known as locally stationary
wavelet (LSW) processes, and have attracted considerable research attention in
recent years. While the original formulation is due to G.P. Nason et al. (2000),
extensions to model random fields (Eckley et al. 2010; Nunes et al. 2014; S.
Taylor et al. 2014) and multivariate processes (Park et al. 2014; Sanderson
et al. 2010) have also been proposed.

Definition 5.4. 1d-Locally Stationary Wavelet Process
A locally-stationary wavelet process is a doubly indexed stochastic process

{Xt;T}t=0,...,T−1 . It is defined over the discrete scales j = 1, . . . , J , where
T = 2J ≥ 1, and has the following mean-square representation:

Xt;T =
J∑
j=1

T∑
k=1

wj,k;Tψj,k[t]εj,k ,(5.3.1)

where εj,k is a random orthonormal increment sequence, i.e εj,k ⊥ εj′,k′ for
all j 6= j′ and k 6= k′, and E[εj,k] = 0, Cov(εj,k, εj′,k′) = δj,j′δk,k′ for all
j, j′, k, k′. The basis functions used in the construction are given by {ψj,k−t},
for j = 1, . . . , J and k ∈ Z.

Assumption 5.1. Bounded-deviation from Lipschitz Spectrum
The continuous function Wj(z) is connected with the discrete structure

wj,k;T according to the bound:

(5.3.2) sup
k
|wj,k;T −Wj(k/T )| ≤ Cj/T ,

and the sequence {Cj} is bounded such that
∑∞

j=1Cj < ∞. Additionally, the
function Wj(z) should be Lipschitz smooth and have finite power, such that:
3For the Haar system, the discrete wavelets can be considered sampled versions of
their continuous equivalents i.e. ψ1 = (g[0], g[1]) = 2−1/2(1,−1) and ψ2 =
(h[0]g[0], h[1]g[0], h[0]g[1], h[1]g[1]) = 2−1(1, 1,−1,−1).
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(5.3.3)
∞∑
j=1

|Wj(z)|2 <∞ uniformly in z ∈ (0, 1)

with Lipschitz constant Lj uniformly bounded in j and
∑∞

j=1 2jLj <∞.

Again, it should be noted that in the spectral domain, the stochastic noise
source is assumed to be independent, both across scale and time. Note: the
spectra is now defined with respect to the set of scales j = 1, . . . , J rather
than frequencies. The wavelet basis functions therefore act in place of the
Fourier complex exponential basis. An important consequence of this is that
the model has a very large ambient parameter space and may be considered
non-parametric. For example, consider that coefficients wj,k;T must be spec-
ified both for each scale and each time point. As discussed, and similarly
to the LSF process, this gives the LSW process the ability to describe both
stationary and non-stationary processes. However, as when dealing with dy-
namic graphical models, we are also required to constrain time variation in the
parameterisation. In the LSW model, this is canonically (G.P. Nason et al.
2000) achieved by requiring parameters be close to being Lipschitz smooth.
Similarly to the LSF process (5.1), the LSW parameters {w0

j,k;T} are tied to
an underlying continuous spectral modulation function Wj(k/T ) : [0, 1] 7→ R
for all scales j ∈ N.

The set of functions Wj(z) can be considered the equivalent of A(z, ω) in
the LSF process (Definition 5.1). However, where the Fourier equivalent was
defined with respect to an integral over continuous frequencies, we now have a
discrete summation over an increasing number of scales; increasing in the sense
that as T → ∞, JT = log2 T → ∞. With the LSF process we defined (and
parameterised) the spectral density as Sθ(z, ω) := |A(z, ω)|2, an analogous
quantity in the LSW process is given by the below:

Definition 5.5. Evolutionaty Wavelet Spectrum (EWS)
The evolutionary wavelet spectrum is defined (with respect to the wavelets

{ψj,k}) as Sj(z) := |Wj(z)|2 for j = 1, . . . , JT , z ∈ (0, 1).

In the asymptotic limit (T → ∞) the EWS can be related to the discrete
transfer function {wj,k;T}, such that Sj(z) = limT→∞ |wj,[zT ];T |2 for all z ∈
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Figure 5.3.1 – Top: An example draw from a one-dimensional LSW process.
Bottom: The corresponding transfer functions Wj(k/T ) that generated the pro-
cess. In this case T = 1024 and J = 10, only Wj(z) for scales j = 1, . . . , 5 are
plotted, the others are set to zero.

(0, 1). In contrast to the spectral density, the EWS is defined at a discrete set
of scales according to different scalings of the wavelet basis. The assumption
(5.3.3) gives the LSW process a finite variance, and as E[εj,k] = 0 the process
also maintains zero mean E[Xt;T ] = 0.

5.3.1 Properties of LSW Processes

One of the benefits of the LSW model construction is that it allows for
a parsimonious representation of a stochastic processes auto-covariance func-
tion. In particular, the over-complete representation allows for the description
of time-varying auto-covariances, and thus provides a powerful tool for non-
stationary analysis. We here introduce some properties of the canonical LSW
process as per Definition. 5.4.
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Let the auto-covariance of a process be denoted

cX;T (z, τ) = Cov[X[zT ];T , X[zT ]+τ ;T ]

for z ∈ (0, 1) and shift τ ∈ [−zT, . . . , (1 − z)T ] ⊂ Z. This quantity describes
the covariance properties of the process about a time point zT , but with a
finite length T . An asymptotic equivalent of the above is given by the local
auto-covariance (LACV) and defined as:

(5.3.4) cX;∞(z, τ) :=
∞∑
j=1

Sj(z)Ψj[τ ] ,

for τ ∈ Z and z ∈ (0, 1) where

(5.3.5) Ψj[τ ] :=
∑
k∈Z

ψj,k[0]ψj,k[τ ] ,

is known as the autocorrelation wavelet.
The autocorrelation wavelets act to describe the difference between the sig-

nal projected onto a wavelet at one point, and another point at lag τ . This can
be thought of a basis with which to describe second-order structure of the pro-
cess. Additionally, and importantly, the finite and asymptotic autocovariance
functions tend towards each other.

Proposition 5.3. Convergence of the LACV and auto-covariance (G.P. Na-
son et al. 2000)

Letting J = log2(T ), as T →∞, uniformly in τ ∈ Z and z ∈ (0, 1)

|cX;∞(z, τ)− cX,T (z, τ)| = O(T−1) .

The proof follows simply from substituting the process definition in for
cX;T and then utilising the Lipschitz continuity of Sj(z), a full treatment can
be found in (G.P. Nason et al. 2000). While the asymptotic result (Prop.
5.3) enables the LSW model to describe the time-varying auto-covariance of a
non-stationary processes, the non-orthogonality of the construction requires a
careful treatment when it comes to estimation. We now discuss how one may
invert Eq. 5.3.4 and how one may construct a sample based estimator of the
LACV.



182 5. LOCALLY STATIONARY WAVELET (LSW) PROCESSES

Proposition 5.4. Inversion of the LACV
The spectrum can be related to the LACV via the inversion relation

(5.3.6) Sj(z) =
∞∑
l=1

A−1
jl

∑
τ∈Z

cX;∞(z, τ)Ψl[τ ] ,

where the linear operator A is defined for j, l = 1, . . . ,∞ as

(5.3.7) Ajl := 〈Ψj,Ψl〉 =
∑
τ∈Z

Ψj[τ ]Ψl[τ ] .

Additionally, the family {Ψj(τ)}∞j=1 is linearly independent. Hence:

(1) The EWS is uniquely defined given the corresponding LSW process.
(2) The operator A is invertible, for each finite J the norm ‖A−1

J ‖ is bounded
above by some CJ .

Proof. The proof of the inversion relies on the invertibility of the A matrix,
where the structure is formed by an inner product for each pair of scale levels
{j, l}, i.e. a Gramm matrix. The proof of properties for A can be found
in G.P. Nason et al. (2000). Result (1) is demonstrated via contradiction,
where one can show that two LSW representations are necessarily the same
for a given EWS. The second result (2) can be demonstrated by observing
that A is a Gramm matrix, if the auto-correlation wavelets {Ψj} are linearly
independent this will be positive definite and thus invertible (it possesses all
positive eigenvalues). An explicit demonstration that the matrixA has positive
eigenvalues for the family of Shannon and Harr wavelet families can be found
in (G.P. Nason et al. 2000). It is conjectured, but not demonstrated that such
a property holds for all Daubechies’ compactly supported wavelets.

If we consider Equation 5.3.6, in the setting where τ = 0 then we find
that Ψ(0) = 1, therefore the spectrum Sj(z) constitutes a biased estimate of
the variance cX;∞(z, 0). The matrix A therefore plays a vital role, not only
in demonstrating that the auto-covariance structure can be asymptotically
identified, but also describing how variance at different scales in the spectra
is translated to the time-domain. An example of the matrix A, alongside the
autocorrelation wavelets {Ψj[τ ]} can be seen in Figure 5.3.2. Of particular



5. ESTIMATION OF THE EVOLUTIONARY WAVELET SPECTRUM 183

-0.5
0

0.5
1

j=
1

Auto-correlation Wavelet (Haar) 
j
[ ]

-0.5
0

0.5
1

j=
2

-0.5
0

0.5
1

j=
3

-0.5
0

0.5
1

j=
4

-32 -16 0 16 32
lag 

-0.5
0

0.5
1

j=
5

0
10

100

200

A
j,l

300

scale l

5

400

Bias Matrix A
j,l

 (Haar)

10

scale j

5
0 0

50

100

150

200

250

300

Figure 5.3.2 – Example of the auto-correlation wavelets Ψj(τ) (left) and cor-
responding matrix A (right) for the Haar family of wavelets.

interest in the remainder of this thesis, is how we can estimate the spectra
Sj(z) of a process from finite data.

5.4 Estimation of the Evolutionary Wavelet Spec-
trum

In the previous section, an inversion relation (Eq. 5.3.6) was introduced
that allowed us to relate the wavelet spectrum to the local-autocovariance. In
this final introductory section, we shall discuss how one may use this relation
to estimate the EWS from data. This section aims to present a review of pre-
vious approaches from the literature for estimation. The focus here is on the
canonical one-dimensional LSW process, while the following chapters intro-
duce methods for estimating the wavelet spectra for 2-D fields, such as images,
and in multivariate settings. It is worth noting that the literature has a strong
focus on asymptotic analysis of estimators. Typically, an estimation scheme is
proposed, and then a paper will consider it’s asymptotic consistency proper-
ties. However, while these estimators are asymptotically consistent, they often
fail to produce sensible estimates in practice. For example, we often obtain
negative estimates for the EWS, a quantity which theoretically should always
be greater than or equal to zero. Regularisation can help mitigate such issues,
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however, discussion of this is deferred to later chapters. In this section we intro-
duce canonical estimators for the spectra and some corresponding asymptotic
consistency results.

Recall that the number of scales utilised in a LSW process increases accord-
ing to J = log2 T . As a result, when dealing with real data we will only be able
to measure structure at a finite number of scale levels. An important conse-
quence of Theorem 5.4, is that for an increasing but finite number of scales j =

1, . . . , J , the approximate spectrum Sj;T (z) :=
∑J

l=1A
−1
jl

∑
τ cX;T (z, τ)Ψl(τ)

tends to the true spectrum, i.e. lim
T→∞

Sj;T (z) = Sj(z). We can thus asymptoti-
cally identify the spectrum, even though individual weights {wj,k;T} may not
be uniquely identifiable (G.P. Nason et al. 2000).

Considering that the form of A is fixed in advance by the choice of wavelet
basis function, we only need to estimate the quantity

∑
τ cX;T (z, τ)Ψl(τ).

Previously, it has been proposed (Fryzlewicz et al. 2006; G.P. Nason et al.
2000; Sachs and Schneider 1996) to estimate this quantity at each scale level
l = 1, . . . , J via the wavelet periodogram.

Definition 5.6. Wavelet Periodogram
Consider scales j = 1, . . . , J and positions k = 1, . . . , T . The empirical

wavelet coefficients of an LSW process are defined as:

(5.4.1) dj[k] =
T∑
t=1

xt;Tψj,k[t] .

Analogous to the Fourier periodogram (5.1.6) the wavelet periodogram is de-
fined according to Ij[k] = |dj[k]|2.

It is interesting to note the difference between the wavelet periodogram
statistic and that of the local Fourier periodogram. While they both effectively
square the transform coefficients, we note that the Fourier coefficients require
the setting of a taper-function. In the wavelet case, this taper is baked into the
wavelet basis functions due to {ψj,k[t]} having compact support. Additionally,
in the wavelet construction the width of this effective taper function is different
for each scale level. Indeed this change in taper size is what defines the concept
of scale in wavelet models.
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5.4.1 De-biassing the wavelet periodogram

While in Fourier based models the periodogram can be used to directly
estimate the spectrum, for example via the Whittle likelihood, in the LSW
model things are somewhat complicated by the non-orthogonal choice of basis.
Calculating the expectation of the wavelet periodogram reveals that used alone,
it is both biased and inconsistent estimator for the spectrum. In the following,
we will analyse the properties of the periodogram under sampling from the
process. This is indicated when taking expectations, for example, EX [Ij[k]]

refers to replacing the samples {xt;T} with their stochastic equivalents {Xt;T}.

Proposition 5.5. Bias of Raw Wavelet Periodogram (G.P. Nason et al. 2000)
The bias can be demonstrated, assuming Gaussianity for εj,k, as:

(5.4.2) EX [Ij[k]] =
∑
l

AjlSl(k/T ) +O(2jT−1) .

For the vector constructed across scales, I[k] := (I1[k], . . . , IJ [k])> we can in-
vert the above result to obtain

EX [A−1
J I[k]] = S[k/T ] +O(T−1) .

The above result can be obtained by substituting the process definition into
IXj [k], the convergence rate of O(1/T ) is a result of Lipschitz smoothness. One
can now see that the periodogram is exactly the quantity we desired for the
estimator motivated by the representation of the EWS in terms of the process
auto-correlation (5.3.6). Specifically we note that

lim
T→∞

EX [Ij[k]] =
∑
τ∈Z

cX;∞(z, τ)Ψl[τ ] ,

and the estimator

(5.4.3) S̄j[k] =
∑
l

A−1
jl Ij[k] ,

is unbiased such that limT→∞EX [S̄j[k]] = Sj[k] for j = 1, . . . , J . Whilst the
estimator is shown to be unbiased, we now need to check for consistency.
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Proposition 5.6. Variance of Raw Periodogram
Assuming that εj,k ∼ N (0, 1), the variance of the raw periodogram is given

as:

(5.4.4) VarX [Ij[k]] = 2
( J∑
l=1

AjlSl(k/T )
)2

+O(2j/T ) ,

for j = 1, . . . , J and k = 1, . . . , T .

The result demonstrates that the periodogram by itself is inconsistent (a
proof can be found in G.P. Nason et al. (2000)). In practice, and in the
literature it is preferred to smooth the periodogram before de-biasing in an
attempt to obtain consistency.

5.4.2 Periodogram Smoothing

We here detail several approaches to smoothing the wavelet periodogram
as discussed in the literature. As noted by Fryzlewicz et al. (2006), the signal-
noise ratio of the wavelet periodogram is always relatively low; asymptotically
we obtain

EX [Ij[k]]/VarX [Ij[k]]1/2 = 2−1/2 .

Not only is this signal-noise ratio low, but typically the periodogram sequences
will also be correlated over nearby points in time due to non orthogonality of
the non-decimated basis functions. The distance over which these correla-
tions are significant depends on the ground-truth structure of the spectrum,
and is thus generally not known in advance. An example of the raw wavelet
periodogram, can be seen in Figure 5.4.1.

Sliding Window Smoothing

Perhaps the simplest form of smoothing is to utilise a sliding window ap-
proach whereby the spectrum is estimated at the centre of some localised pe-
riod in time. In some sense, this is similar to the localised Fourier periodogram
(5.1.6) which averages in the context of a data taper function.
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Figure 5.4.1 – Raw, unsmoothed wavelet periodogram, for the process realisa-
tion in Figure 5.3.1.

Definition 5.7. Kernel Smoothed Periodogram Estimator
Let k ∈ [t − M, t + M ] be an interval of time on the discrete grid t =

1, . . . , T . Let h[k] be a weighting function for the data at point k. A smoothed
periodogram estimator can be constructed such that:

(5.4.5) Ŝj(t/T ) =
1

H

t+M∑
k=t−M

( J∑
l=1

A−1
jl |h[k]dl,k|2

)
,

where H =
∑t+M

k=t−M h[k]2 is the integrated weighting function.

We note that the weighting function in the above plays a similar role to
that in the local Fourier process models, for example via Eq. 5.1.6. However,
unlike the Fourier equivalent, this is defined to be the same across all scale
levels. In the particular case where

h[k] =

1 if k ∈ [t−M, t+M ]

0 otherwise
,

the resulting estimator is equivalent to the central moving average estimator
of Stevens (2013). It is also related to the smoothing technique employed in
Park et al. (2014). In practice, the uniform kernel is preferred here, both for
simplicity of analysis and because the wavelets are already localised in time.
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Second Stage Wavelet Smoothing

A slightly more elaborate approach to periodogram smoothing is to smooth
using a second-stage wavelet transform of the periodogram (G.P. Nason et al.
2000; Sachs, G.P. Nason, et al. 1997). Thresholding, or wavelet shrinkage
methods can then be applied to this second-stage transform to act as a denois-
ing step. Transforming back to the original periodogram results in a smoothed
and asymptotically consistent estimator.

More precisely, one takes the raw periodogram and then performs a second
stage of wavelet analysis, this time with a decimated set of wavelets {ψ̄l,m}.
Taking the transform at scale l and position m we have the set of wavelet
coefficients v̂l,m =

∑
k dj,kψ̄l,m[k] for scales 2l = o(T ). Below the results of

G.P. Nason et al. (2000) are quoted:

Theorem 5.1. Properties of Second-Stage DWT Coefficients (G.P. Nason et
al. 2000)

The DWT wavelet coefficients {v̂l,m} of the periodogram from a Gaussian-
LSW process at position z = k/T , with 2l = o(T ) obey uniformly in m,

EX [v̂l,m] =

∫ 1

0

JT∑
i=1

Aj,iSi(z)ψ̄l,m(z)dz = O(2l/2/T ) ,

and

VarX [v̂l,m] =
2

T

∫ 1

0

(
JT∑
i=1

Aj,iSi(z)

)2

ψ̄2
l,m(z) +O(2lT−2) .

Furthermore, let Ŝψ̄j (z) be the estimator obtained from inverse DWT of the
coefficients v̂l,m with the threshold λ2(l,m; j, T ) = VarX(v̂l,m) log2(T ). For
each fixed j, the estimate S̄ obeys:∫ 1

0

EX [Ŝψ̄j (z)− Sj(z)]2dz = O(log2(T )/T 2/3) .

The proof of the consistency result above relies on results obtained through-
out the 1990’s relating to function denoising via wavelet shrinkage. In fact,
the behaviour of such thresholded estimators is very closely related to the
thresholding properties of estimators such as the lasso (c.f. 2.1.5). To avoid
detracting from the main topic, i.e. smoothing the LSW periodogram, I have
added some notes on denoising via wavelet shrinkage in Appendix 5.5.
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Finally, while Theorem 5.1 holds for the case of the DWT smoothed pe-
riodogram, in practice, it is desirable to use a method that allows for time-
invariance; that is, when we shift the data in time, the periodogram esti-
mate should also shift. To this end, it is often suggested (G.P. Nason et al.
2000; Sachs and Schneider 1996) to apply a cycle spinning method, to per-
form translation-invariant denoising, see Coifman et al. (1995) for details of
such a scheme. Briefly, the cycle spinning method works by shifting the data,
in this case the periodogram at scale j a random number of positions (while
maintaining ordering), smoothing the periodogram according to v̂l,m, and then
performing the inverse DWT on these estimates. A modified second-stage
transform known as the Harr-Fisz transform (Fryzlewicz et al. 2006) has also
gained popularity for smoothing the non-decimated periodogram, we discuss
this further in Chapter 6.

5.5 Summary
In this chapter, a set of spectral models and estimators for the represen-

tation of time-series were introduced. One key benefit of adopting a spectral
approach to modelling time-series, is that often in the frequency/scale domain,
the process can be considered to be in some sense sparse; that is only a subset of
frequencies are required to describe the process. However, as discussed, the tra-
ditional Fourier representation is not appropriate for describing non-stationary
processes. Instead, one can either allow the Fourier spectra to vary over time,
c.f. Priestly’s oscillatory processes, or adopt a localised wavelet like basis. The
LSF and LSW processes (5.1, 5.4) form classes of stochastic processes respec-
tively constructed over Fourier and wavelet basis functions. In both cases, a
connection is made from the increasing set of time points t = 1, . . . , T to a
continuous function over the restricted interval z = t/T ∈ (0, 1). In this sense,
they allow us to asymptotically represent, and recover the second order, auto-
covariance properties of a process, even if these are non-stationary. However,
while the processes can now be non-stationary, they must maintain appropri-
ate smoothness constraints to enable spectral identification. For example, in
this chapter, we assumed that the underlying spectral transfer function W (z)

is Lipschitz smooth. Such assumptions place limits on the range of processes
LSW models can represent, for example, they do not permit sharp jumps in
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the wavelet spectra. However, in real dynamic systems, such sharp jumps may
be present, and are important to detect; for instance, one may consider search-
ing for structural breaks in financial time-series, or edges in textured images.
In the following chapters, such smoothness assumptions are considered in the
context of regularised estimators for the LSW spectra.
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Appendix D

D.1 Wavelet Thresholding

Wavelet thresholding typically refers to the method of selecting certain
active coefficients in a wavelet decomposition by thresholding the empirically
obtained coefficients. Traditionally, such thresholding is performed in order to
recover a function ft from noisy measurements {xt}Tt=1. For example, we may
observe the process {Xt;T}, i.e:

( D.1) Xt;T = f(t/T ) + Zt;f ,

where Zt;f is an independently sampled noise term, c.f. Zt;f ∼ N (0, σ2).
Let vj,k be the discrete wavelet coefficients of an observed sequence {xt}. A
somewhat ideal estimate of the function from the wavelet coefficients vj,k is
defined via the selective wavelet construction as

f̂t = TSW(xt, δ) :=
∑
j,k∈S0

vj,kψj,k ,

where S0 is a finite list of (j, k) pairs. In reality, we do not know S0 and need
to estimate this set, thresholding provides one way to achieve this. However,
as when dealing with parameter selection in linear regression, there are many
different thresholding functions available and several ways to set appropriate
thresholds. In this section, I aim to give a brief review of wavelet thresholding
methods proposed by Donoho, Johnstone, Neumann et al. throughout the
1990’s (D. L. Donoho et al. 1995; D. Donoho 1995; D. Donoho et al. 1994,
1998; M. Neumann et al. 1995).

Remark. Second-stage smoothing vs general functional recovery
The discussion here is aimed at the general recovery of a function f(·) in

the presence of noise {Zt;f}. Traditionally, theory on denoising is developed
assuming additive Gaussian noise. However, results for non-Gaussian smooth-
ing also exist such as the work by M. Neumann et al. (1995) (these are covered
briefly in Remark .4). With regards to LSW spectral estimation (as discussed
in Sec. 5.4.2), we treat each scale level Ij,k as the noisy realisations of the
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spectral function S(k/T ). The setup here would mimic that of Eq. D.1 such
that Ij,k = Sj(k/T ) + Zj,t;S.

For the purposes of this discussion, assume that a DWT of the process is
performed alongside that of the true function, i.e. {Yj,k} = DWT({Xt;T}) and
{vj,k} = DWT({f(t/T )}). At each scale level j of the DWT, we now assume
that Yj,k = vj,k+εZj,k;v where Zj,k;v is a noise term for time k = 1, . . . , 2J−j and
ε describes the scale of this noise. Note: the exact distribution of Zj,k;v may
be different from Zj,k;f ; the variables correspond respectively to noise sources
in the time, and spectral domain. In the following, let us temporarily drop
the scale index j, and consider the noisy wavelet coefficients {Yk}N=2J−j

k=1 . If
we assume a Gaussian noise source Zk;v ∼ N (0, ε2), then in the limit of large
N we obtain limN→∞ P [{maxt |Zt;v| > ε

√
2 log(N)}] = 0. Taking a threshold

λ = ε
√

2 logN , then it is unlikely that any contribution from the noise will
breach this level. A particularly amazing fact, is that when using such a
threshold in conjunction with hard/soft thresholding for the DWT the risk of
the associated functional estimator is bounded to within a logarithmic factor
of the oracle risk.

Proposition D.7. Theorem 1 (D. Donoho et al. 1994)
Let Yk = vk + εZk;v where Zk;v ∼ N(0, 1) and ε > 0, defining the risk as

R(v̂,v) := E[‖v̂ − v‖2
2] for v̂ = soft(y; ε

√
2 logN) we obtain

Runiv(v̂,v) ≤ (2 logN + 1)

(
ε2 +

N∑
k=1

min(|vk|2, ε2)

)
.

While setting λ = ε
√

2 logN allows us to bound the risk, it is interesting to
ask whether there is a some sense more optimal setting of λ. If we only have
one observation of a random variable Γ ∼ N (µ, 1) then defining ρST (λ, µ) :=

E[{soft(Γ, λ)− µ}2] one can proceed by introducing the minimax quantities

Λ∗N = inf
λ

sup
µ

ρST (λ, µ)

N−1 + min(µ2, 1)
.

Selecting a threshold λ∗N which is the largest λ attaining Λ∗N enables the tighter
bound:

Proposition D.8. Minimax Risk - Theorem 2 (D. Donoho et al. 1994)
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Defining the soft-thresholding estimator v̂∗ = soft(y, λ∗Nε), with known ε

one can obtain the bound

R(v̂∗,v) ≤ Λ∗N

(
ε2 +

N∑
k=1

min(v2
k, ε

2)

)
.

As one might expect, utilising this somehow optimised threshold we find
both the resulting multiplier and threshold themselves are reduced in compari-
son to those of Prop. D.7. In particular, Λ∗N ≤ 2 logN+1 and λ∗N ≤

√
2 logN .

However, asymptotically as N → ∞, for any ε > 0 one finds results broadly
similar to Prop. D.7, i.e.

Λ∗N ∼ 2 logN , λ∗N ∼
√

2 logN .

With regards to recovering the function f(t/T ), we are interested, not in the
recovery of the second-stage wavelet coefficients vj,k, but the function itself. If
we define f̂ ∗(t/T ) as the inverse wavelet transform of the minimax thresholded
coefficients v̂∗, then it is possible to translate results on the estimation of the
coefficients vj,k to the function itself.

Corollary. Universal Thresholding
Following the above definitions, and Props. D.7, D.8, the risk ‖f̂ ∗ − f‖2

2

can be bounded for all f and T = 2J+1 according to

R(f̂ ∗, f) ≤ Λ∗T

(
σ2

T
+R0(SW, f)

)
,

where R0(SW, f) = infS RT,S(TSW (x,S), f) is the oracle risk (it selects the best
subset of coefficients for reconstruction). The asymptotic limit of the minimax
threshold motivates the application of what is known as the universal threshold:

λuniv = σ̂
√

2 log T .

Remark .4. Application to periodogram smoothing
With regards to estimation of the LSW spectrum, specific studies by H. Neu-

mann (1996) and M. Neumann et al. (1995) establish error bounds over func-
tions in Besov balls F =Bm

p,q. In the Gaussian case, setting λ = 2 log(T )/T 1/2

for all j leads to:

sup
f∈F

{
E[‖f̂ − f‖2

L2
]
}

= O
(
T−2m/(2m+1)(log(T ))2

)
.
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In the case of non-Gaussian time-series, let JT = {(j, k) |2j ≤ T 1−η} for some
η > 0, and set the universal threshold as λ = maxj,k∈Jn{σj,k}

√
2 log |Jn|. Then

sup
f∈F

{
E[‖f̂ − f‖2

L2
]
}

= O
(
(log(T )/T )−2m/(2m+1)

)
.

For more detail on the above results the reader is referred to Theorem 3.2a),b)
in M. Neumann et al. (1995). The threshold given in Theorem 5.1, as suggested
by G.P. Nason et al. (2000) satisfies the Gaussian case above, and uses the
result with m = 1, p = 1.

It is interesting to note the relation between wavelet denoising and the lasso
(Sec. 2.1.5), whereby, in the orthogonal design situation, the lasso becomes
a thresholding operation. Indeed, the DWT is equivalent to this situation,
where given the orthogonality of the wavelet basis the wavelet model is simply
a linear regression model with orthogonal design. The λ in the lasso is therefore
directly related to the thresholds discussed above. In the next chapter, this
relation is highlighted in greater detail in the context of smoothing the LSW
spectra.



Chapter 6.

Chapter 6

Regularised Estimation of LSW Spec-
tra

At the end of the previous chapter we reviewed a set of methods for spectral
estimation in LSW processes. The aim of this chapter, is to demonstrate how
regularised estimation tools discussed in earlier chapters may be utilised for
spectral estimation. As may already be clear, there are strong parallels between
work on wavelet denoising (c.f. Appendix D.1) and that of sparse statistical
estimation methods such as the lasso. Furthermore, as discussed in Chapter
2, there already exists a substantial framework for looking at the theoretical
and empirical properties of regularised M-estimators. Such estimators provide
additional modelling flexibility to statisticians when compared to standard
wavelet thresholding techiques. For example, in the linear regression setting,
methods such as the group-lasso, fused-lasso, and generalised lasso enable one
to easily incorporate broad classes of prior knowledge into point estimation.
In the context of spectral estimation, one can also make use of similar priors,
for instance to promote sparsity at certain scales in the spectra, or grouping
spectral changes.

In this chapter such sparsity constraints are utilised to restrict the varia-
tion of spectral estimates. In particular the Lipschitz smooth LSW definition
is modified to allow for sudden jumps or changepoints in the spectra. Addi-
tionally, an extension of the LSW processes to describe 2-dimensional random

195
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processes otherwise known as random fields is considered. The main contri-
bution of this chapter is the development of a set of regularised estimators
for the LSW spectrum. Their performance is then evaluated alongside ex-
isting methods such as moving average smoothing and second-stage wavelet
denoising.

6.1 Piecewise-constant LSW processes
The original formulation of the LSW process (5.3.1) has several assump-

tions which limit its practicality. For example, the canonical formulation by
G.P. Nason et al. (2000), has a requirement that the spectrum evolve in a
Lipschitz continuous manner. However, many real-world processes may be ex-
pected to break such assumptions and the spectral structure of a time-series
may adapt rapidly in certain situations, for example; stock prices may react
very quickly to economic news, brain activity may change rapidly in struc-
ture at the start of a seizure, or when a person is asked to perform different
tasks. Motivated by such requirements Fryzlewicz et al. (2006) extended the
definition of the LSW process to accommodate changepoints and sharp discon-
tinuities. Others to consider such piecewise constant spectral estimation are
Killick et al. (2013), Van Bellegem et al. (2008) and Cho et al. (2012, 2015).
Adapting to piecewise constant spectra requires modifications to the smooth-
ness assumptions of the LSW model, which in turn motivate different classes
of spectral estimators.

Definition 6.1. Piecewise-Constant LSW Process
Let {Xt;T} have with mean-square representation given by Eq. 5.3.1 (as per

G.P. Nason et al. (2000)). However, instead of assuming Lipschitz continuity
according to Ass. 5.1, we assume Wj(z) ∈ R is a piecewise constant function
with a finite, but unknown number of jumps. Let Cj be the total magnitude of
jumps in the spectrum Sj(z) ≡ |Wj(z)|2 at scale level j. The total magnitude
of jumps in the spectrum is thus controlled according to

∞∑
j=1

Cj2
j <∞ ,
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Figure 6.1.1 – Top: Example realisation from LSW process with spectra given
below. Bottom: Depiction of the ground-truth spectra (for j > 4 Sj(t/T ) = 0).

and
∑∞

j=1 Sj(z) < ∞ uniformly in z ∈ (0, 1]. If the jumps are bounded ac-
cording to above, then the process {Xt;T} is referred to as a piecewise-constant
LSW process.

Having defined the modification to the process in terms of piecewise con-
stant spectra, we now need to modify the estimator to be able to track such
changes. However, as noted by Fryzlewicz et al. (2006), a single element of the
periodogram appears marginally distributed as a scaled χ2

1 random variable,
such that asymptotically:

Ij,k ∼ E[Ij,k]Z
2
k , Zk ∼ N (0, 1) ,

where the Zk are correlated with each other. If our end-goal is estimation of
the spectra, then the resulting problem of recovering E[Ij,k] ≈

∑
lAj,lSl(z)

is quite a different from the task of functional estimation in the presence of
additive noise as is typically faced when performing denoising, for example
via wavelet thresholding (Appendix D.1). In addition to the multiplicative
noise structure, we note that the signal-to-noise ratio at each scale level is
particularly low, as mentioned previously E[Ij,k]/

√
Var[Ij,k] = 2−1/2.

To deal with these issues Fryzlewicz et al. (2006) introduce a variance
stabilising operation known as the Haar-Fisz transform. A summary of the
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Haar-Fisz transform and it’s properties when applied to piecewise constant χ2

noise are given below:

Definition 6.2. Haar-Fisz Transform

(1) Let1 H = log2 T and sH,k := Y 2
k = Ij,k for k = 1, . . . , 2J .

(2) Starting at the course scales, for h = H − 1, H − 2 . . . , 0 construct
2h-dimensional vectors sh,dh,fh of the form

sh,k = (sh+1,2k − sh+1,2k+1)/2

fh,k = (sh+1,2k − sh+1,2k+1)/2sh,k ,

where k = 1, . . . , 2h.
(3) Now, going from fine to coarse scale modify the vectors sh+1

sh+1,2k = sh,k + fh,k

sh+1,2k+1 = sh,k − fh,k ,

where k = 1, . . . , 2h.
(4) Define Un = F{Y 2

k } := sH,k for k = 1, . . . , 2H − 1 as the Haar-Fisz
transform of Y 2

k and F{} as the Haar-Fisz operator.

Proposition 6.1. Properties of the Haar-Fisz transform
Let Y 2

t,T = α(t/T )Z2
t;T for t = 1, . . . , T where α(z) is a piecewise constant

function bounded from above, away from zero and with a finite number of
jumps. Additionally, let Zt;T ∼ N (0, 1) and be drawn i.i.d over time2.

Under these assumptions Fryzlewicz et al. (2006) demonstrate that the
Haar-Fisz transform asymptotically achieves:

(6.1.1) F{Y 2
t;T} − Y 2 ≈ (F{α(t/T )} − α(t/T )) + (F{Z2

t;T} − Z2) ,

where Z2 is the sample mean over t = 1, . . . , T . Additionally, the variance is
stabilised, whereby σ2 := Var[FZ2

t;T ] =
∑H

h=1(2h−1 + 1)−1 + 2−H . The trans-
formed noise is asymptotically normal

F (Hη){Z2
t;T}

d→ N (0, σ2) ,

1I here distinguish between H and J which respectively refer to the maximum scale consid-
ered in the Haar-Fisz transform and the original LSW construction.
2Note: there is no correlation between time points in this model which contrasts with the
case of the raw-periodogram Ij,k.
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with no additional correlation introduced

σ−1Cov[F (Hη)Z2
t;T ,F (Hη)Z2

t′;T ]→ 0 ,

for any t, t′ as H →∞, Hη = b(1− η)Hc and η ∈ (0, 1).

Proof. For proof of the above the reader is referred to Fryzlewicz et al. (2006)
(Proposition 6.1).

Unlike the log-transform, which is sometimes used to try and Gaussianise
variables, the Haar-Fisz transform does not introduce a bias, while it roughly
translates the multiplicative noise structure into an additive one (see Eq.
6.1.1). This is very attractive for spectral estimation as it allows the principled
application of methods developed for smoothing assuming Gaussian additive
noise, i.e. wavelet thresholding. In the next section, we will discuss the effi-
ciency of regularised spectral estimation methods both with and without the
Haar-Fisz transform.

6.2 Fused Lasso for Spectral Estimation
In Chapter 3, a regularised smoothing methodology for dynamic graphical

models was demonstrated. In particular, one may recall that the M-estimators
examined combined a smooth likelihood with a non-smooth regulariser. In the
graphical model case, we implemented a method which imposed both smooth-
ness and sparsity constraints jointly. In this section, we will investigate the
application of a similar class of fused estimator, but where we only utilise the
smoothing part of the regulariser. Specifically, we will apply the fused lasso
estimator of R. Tibshirani et al. (2005) to the task of smoothing the LSW peri-
odogram. Firstly, we apply the fused lasso, or piecewise constant trend filtering
(R.J. Tibshirani 2014) to smooth the raw periodogram Ij,k, then secondly we
apply such smoothing to the Haar-Fisz transformed periodogram F{Ij,k}.
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Given a piecewise LSW process Xt;T , consider its vectorised periodogram
Ij := (|dj,1|2, . . . , |dj,T |2) for j = 1, . . . , log2 T . Furthermore, define the differ-
encing matrix D ∈ R(T−1)×T of the form

(6.2.1) D :=

 −1 1
. . . . . .
−1 1

 .

The fused-lasso proximity operator is defined as

(6.2.2) proxFL(Γ;λ1, λ2) = arg min
β∈RT

‖Γ− β‖2
2 + λ1‖β‖1 + λ2‖Dβ‖1 .

Applying this to the periodogram we obtain the fused-lasso (FL) periodogram
estimator:

(6.2.3) ÎFL
j,k := proxFL(Ij;λ1, λ2) .

Alternatively, a Haar-Fisz fused estimator (HF-F) may be defined as

(6.2.4) ÎHF+F
j,k := F−1(proxFL(F{Ij};λ1, λ2)) .

Given a smoothed estimate of the periodogram, we can de-bias in the usual
way, for example ŜFL

j (k/T ) =
∑J

l=1A
−1
l,j Î

FL
j,k .

6.2.1 Relation to Haar-Wavelet Denoising

As discussed in R.J. Tibshirani and J. Taylor (2011), the wavelet thresh-
olding applied in the context of signal denoising (c.f. Appendix D.1) may be
thought of as solving a lasso problem. Specifically, let us consider the function
with additive noise

Xt;T = f(t/T ) + Zt;f

where Zt;f is an independently sampled noise term. Now, assume we obtain T
observations of the process x = (x1, . . . , xT ), a point estimate of the wavelet
coefficients β may be obtained through solving the lasso problem:

(6.2.5) β̂ := arg min
β∈RT

‖x−Wβ‖2
2 + λ‖β‖1 ,
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where W ∈ RT×T has an orthogonal set of wavelet basis as it’s columns.
The signal can then be approximated via x̂ = Wβ̂. In the context of signal
approximation (6.2.5) can be transformed utilising orthogonality of W into
the equivalent generalised lasso problem. For example, substituting θ = Wβ

we obtain:

(6.2.6) f̂ := arg min
θ∈RT

‖x− θ‖2
2 + λ‖W>θ‖1 ,

where f̂ = (f̂(1/T ), . . . , f̂(1)). The above representation demonstrates a clear
link between wavelet thresholding schemes and the fused lasso scheme for sig-
nal denoising. When considering smoothing the empirical periodogram, one
may compare smoothers of the form (6.2.3) with that of the generalised lasso
problem in Eq. 6.2.6. In the setting where λ1 = 0, such that there is no spar-
sity penalty, the difference between wavelet thresholding and fused estimation
is due to the form of the transformation matrixW> vsD. For the Haar family
we obtain

W> =
1

2


1 1 1 1

1 1 −1 −1
√

2 −
√

2 0
. . .

0
√

2 −
√

2

 D :=

 −1 1
. . . . . .
−1 1

 ,

and note the clear similarity in the form of these transformations. The main
difference between the transforms is that in the case of fused estimation the
support of the rows in D overlaps. Such an overlap is reminiscent of that of
the non-decimated wavelet transform, but only considering the finest scale lev-
els. It suggests that the fused estimator may possess the translation invariant
properties of the NDWT, but only requires a dictionary of T − 1 rows, it only
models the jumps in the data. In R.J. Tibshirani (2014) it is suggested that
a trend filtering approach, a generalised form of using fused lasso for signal
approximation, may outperform wavelet denoising in certain situations. In the
following section the aim is to compare the empirical performance of fused lasso
smoothing, and that of a second-stage Haar wavelet transform (with thresh-
olding). It is noted that Fryzlewicz et al. (2006) utilise a similar second-stage
Haar wavelet transform to perform smoothing on the Haar-Fisz transformed
periodogram.



202 6. REGULARISED ESTIMATION OF LSW SPECTRA

Moving Average Estimator  (M=66)
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Figure 6.2.1 – Left: moving average estimator for the EWS (as defined in
Def. 5.7) with half width M = 66. Right: Example of spectral estimation the
regularised FL-LSW estimator with λ2 = 12.

6.3 Synthetic Experiments
In order to assess the performance of the proposed estimators a piecewise

constant spectrum is constructed. The energy of the spectra is distributed
across the first 4 levels similarly to the example provided in Fryzlewicz et al.
(2006). To quantify uncertainty in the spectral estimation N = 100 LSW
processes are drawn from this spectrum, both at lengths of T = 512 and
T = 1024. The models, as previously introduced are then fit to the individual
processes for a wide range of tuning parameters. A simple moving window
corresponding to the kernel estimator (Eq. 5.4.5) with a uniform kernel is also
included. Varying the tuning parameters allows for one to select in some sense
an optimum threshold for the simulated data and thus allowing fair comparison
across methods. Note: in real applications we do not have access to the ground-
truth spectra, thus an alternative tuning mechanism must be found for setting
the parameters λ1, λ2. This may utilise some form of cross-validation, if we
have repeated draws of a stochastic process, or via some form of in-sample
model complexity measure, c.f. BIC.

For regularised methods which are applied directly to the raw wavelet pe-
riodogram; for example, the fused lasso spectral estimator ŜFL

j (k/T ); tuning
parameters are scaled such that λ(j)

F = λ
(j)
F 2j−1 . This compensates for the

natural increase in variance at coarser scale levels (due to the increased size
of the wavelet support). For the smoothing methods that are applied to the
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Estimation Error Fused Lasso (T=1024)
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Figure 6.3.1 – Left: error surface for Fused Lasso (without Haar-Fisz transform)
spectral estimator at T = 1024. Right: the associated standard deviation of
error.

Haar-Fisz transformed periodogram, the thresholds are not increased for each
scale as the transform has a variance stabilising effect. In these experiments
the moving window smoother, the window width 2M + 1 is kept constant for
all scale levels. One could argue that such a smoothing window should also be
scaled with the expected increase in variance for larger scales analogous to λF .
However, in this case, the window is not scaled as when considering estimation
at the boundaries (near t = 1 or t = T ) the edge effects would vary for the
different scales.

To track the estimation error of the different methods a very simple sum
of squares criterion is utilised, of the form

εT :=
1

JT

J∑
j=1

T∑
k=1

‖Ŝj(k/T )− Sj(k/T )‖2
2 .

When interpreting results one should note that εT averages over all scales
j = 1, . . . J = log2 T ; however, the true signal presents zero contribution from
coarse scales (j > 4). The measure may therefore be slightly biased towards
methods which can smooth the periodogram more effectively when the true
spectrum is zero, i.e. Sj(k/T ) = 0.
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Figure 6.3.2 – Analysis of estimation error for two sample sizes, the statistics
above are taken across N = 100 simulated piecewise LSW processes.

6.3.1 Results and Comparison of Methods

Results are summarised in Figs. 6.3.1, 6.3.2, 6.3.3 and Table 1. The first
two figures demonstrate how performance varies as a function of tuning param-
eters, while the third figure and the table summarise the performance of the
different methods with tuning parameters set at their optimal level (according
to the minimisation of εT ).

Let us first consider the results of the parameter sweep. When considering
the fused estimator without Haar-Fisz (Figure 6.3.1), there is no clear benefit
to implementing a sparsity inducing prior at the periodogram level. This
is demonstrated through the parameter sweep where the minimum error is
attained at λ1 = 0. It also appears that the variance of the estimator increases
for non-zero λ1 suggesting the sparsity assumption is inappropriate when use
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in conjunction with the raw periodogram. Consider that the error results (as
given in the figures) are calculated in the de-biased reference frame, i.e. after
we have linearly transformed the estimates with A−1

J . However, while the
ground-truth spectrum is sparse across scales; it is not necessarily sparse in
the frame of the periodogram (due to bias). In contrast with the sparsity
parameter, minimising the error surface with respect to the λ2 suggests that
the smoothing part of the fused lasso estimator is required. The specific level
of smoothness required will in general be dependent on the ground-truth Sj(z).
All cases in Figures 6.3.1, 6.3.2 demonstrate some minima is obtained for a
non-zero smoothing parameter.

The results of Figure 6.3.2 and Table 1 lend evidence as to the benefit
of utilising a variance stabilising transform (i.e. Haar-Fisz). Specifically, we
note the Haar-Fisz (DWT and Fused) methods have reduced error variance
and mean error at both T = 512 and T = 1024. The moving average estima-
tor appears to perform well with regards to the error metric used, however,
is slightly misleading as it is unable to recover the piecewise nature of the
spectrum. This can be seen qualitatively in Figure 6.2.1 which displays a sin-
gle realisation of estimates for the moving average and fused estimator (with
λ1 = 0). In addition to being unable to adapt to the piecewise smoothness, the
moving window method has significant edge effects, in these experiments the
moving average spectra is only estimated across the interval t = M, . . . , T −M
to ensure the full window can be utilised. If the spectrum was smoothed right
to the edge, with zero padding, we would expect the variance of the estimator
at the edges to increase in-line with the number of periodogram observations
in the smoothing window.

Furthermore, while the fused estimators, applied to both the Haar-Fisz, and
raw periodogram appear to have similar qualitative form, i.e. piecewise con-
stant; it is noted that both the mean and variance of the error when applied
to the Haar-Fisz transformed periodogram is reduced (compare the bottom
row of Figure 6.3.3). Perhaps the most interesting comparison, is between the
performance of the second stage wavelet thresholding (Haar DWT + Thresh-
olding) approach, and that of the fused estimator when applied to the Haar-
Fisz periodogram (Top-Right, Bottom-Left of Figure 6.3.3). When viewing
an individual example estimate of the Fused estimator we obtain structure
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Table 1 – Summary of optimised estimation performance. Haar-Fisz (DWT)
refers to using a second stage Haar-DWT with thresholding applied to the Haar-
Fisz transformed periodogram, Haar-Fisz (Fused) is the smoothing method of
Eq. 6.2.4.

Method ε512 (×10−3) Std(ε512) ε1024 Std(ε1024)

Moving Average 2.2 0.37 1.2 0.19
Haar-Fisz (DWT) 2.3 0.35 1.2 0.20

Haar-Fisz (Fused λs = 0) 2.1 0.50 1.1 0.29
Fused (λs = 0) 2.5 0.71 1.3 0.52

Fused (+ shrinkage) 2.5 0.71 1.3 0.53
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Figure 6.3.3 – Summary of estimation methods for piecewise constant LSW
process with ground-truth structure as depicted in Figure 6.1.1. Tuning param-
eters are selected via error minimisation across the set of N = 100 experiments
as described in Figure 6.3.2. Dashed lines indicate empirical 5th and 95th per-
centiles.
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similar to that of (Figure 6.2.1). However, when looking at the average error
over N = 100 realisations we do not see the clear jump in the spectra that
is obtained in the case of DWT smoothing. As a conclusion, it appears that
the Haar-DWT smoothing is more likely to recover the correct jump positions
(changepoints), however, the actual spectral estimates appear to have more
bias than that of the fused estimation scheme.

In summary, it has been demonstrate that the fused lasso estimator can
be successfully used to identify piecewise constant spectra. It’s performance is
comparable with previously proposed second-stage DWT approaches such as
those suggested by Fryzlewicz et al. (2006). Additionally, while simple moving
window estimators result in viable strategies for recovering smoothly varying
spectra, they are not suitable for settings where we expect a rapid change
(or jump) in the spectral structure. The experiments here serve as empirical
motivation to further investigate the theoretical properties of fused lasso type
estimators for spectral estimation. In the next section, we consider an exten-
sion of the LSW process and regularised estimation to multiple dimensional
fields such as images.

6.4 Piecewise Stationary Wavelet Fields
Many applications of wavelet models do not deal with time-series, but

rather higher-dimensional ordered fields such as images or videos; the latter
can be thought of a combination of temporal and spatial dimensions. While
most of the work in this thesis focuses on the understanding dynamics in
a single dimension, i.e. time, there is no reason it cannot be extended to
higher orders. The original extension of the LSW framework and theory to
2-dimensional fields led to new applications in the analysis of textured images
(Eckley et al. 2010). As in the one-dimensional setting, the well-principled
design of the LSW process means that statistical properties such as asymp-
totic bias and variance of estimators are relatively well understood (c.f. Sec.
5.4, G. Nason (2013) and G.P. Nason et al. (2000)). As such, the estimated
LSW spectrum can be analysed for the detection of non-stationarities which
can aid in anomaly detection tasks (Nunes et al. 2014; S. Taylor et al. 2014).
However, in a finite sample setting, one can often see inconsistencies between
the estimates of the spectra and the modelling assumptions of the underlying
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LSW process. In the previous section, a regularised smoothing approach en-
abled the incorporation of prior knowledge in terms of piecewise smoothness
constraints. To this end, in the two dimensional setting one may regularise the
estimator to try and enhance the finite sample performance of spectral esti-
mation. It is here considered to perform such regularised smoothing to extract
a piecewise constant and positive spectral estimate across a two-dimensional
spectral field. Potential applications include performing texture segmentation
or feature extraction for higher level image processing tasks such as classifica-
tion or anomaly detection. An example of the method applied to a real image
is demonstrated at the end of the chapter.

6.4.1 The Two Dimensional LSW-Process

In order to decompose a two dimensional field it is first required to extend
the set of discrete wavelet functions so they can cover this extended space.
Similarly to the univariate case, we here define a set of two-dimensional discrete
wavelet filters {ψ(l)

j,k}; however, the positional index is now a vector such that
k = (k1, k2)> ∈ Z2. Specifically, the wavelets are a set of square matrices of
size Nj×Nj and the size of the basis is given as Nj = (2j−1)(Nh−1)+1, where
Nh is the number of non-zero elements in the associated low-pass mirror filter.
In two dimensions wavelets may assume different orientations, this gives rise to
an additional directional index l ∈ {h, v, d} relating to the horizontal, vertical,
and diagonal directions (see Figure 6.4.1). The elements of ψ(l)

j,k are defined
through the tensor products of the corresponding one-dimensional wavelets.
In the horizontal direction h we have ψ(h)

j,k = φj,k1ψj,k2 , in the vertical direction
ψ

(v)
j,k = ψj,k1φj,k2 and in the diagonal direction ψ(d)

j,k = ψj,k1ψj,k2 , where φj,k are
the associated father/scaling wavelets.

Again, as in the univariate case the LSW process is constructed with respect
to the set of non-decimated wavelets such that there is an equivalent number of
wavelet coefficients at each scale level j = 1, . . . , J . To achieve this we simply
translate the discrete wavelets {ψlj} over the space Z2, the non-decimated set
of discrete wavelets are defined as ψlj,u[r] := ψlj,u−r for all j, l, and u, r ∈ Z2 .
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Figure 6.4.1 – Example of 2-dimensional wavelet filters. Top: the standard
real-valued wavelets as discussed in this work. Bottom: the corresponding set of
Dual-Tree Complex Wavelet (DTCW) filters within a complex LSW framework
(see Remark 6.1).

Definition 6.3. 2d LSW Process
The 2d-locally stationary wavelet process is defined as a doubly indexed

stochastic process over the field R2. It is indexed by position r = (r1, r2) and
image size R = (R1, R2). The process has a representation in the mean-square
sense of:

Xr;R =
∑
l

∞∑
j=1

∑
u∈Z2

w
(l)
j,u;Rψ

(l)
j,u[r]ε

(l)
j,u ,

where the summation over l takes in three directions l = h, v, d. Again, the
stochastic term {ε(l)j,u} encodes no dependency structure by itself and is an i.i.d
zero-mean random variable, they are independent such that ε(l)j,u ⊥ ε

(l′)
j′,u′ for all

j 6= j′, u 6= u′ and l 6= l′.
As in the one-dimensional case, the transfer sequence {w(l)

j,u;R} is linked to
an underlying spectrum confined to the interval (0, 1]× (0, 1]. We require

sup
u
|w(l)

j,u;R −W
(l)
j (u/R)| ≤ C

(l)
j /T ,

where traditionally W (l)
j (u/R) may be assumed to be Lipschitz or otherwise

continuous. However, we here allow this to vary sharply and posess disconti-
nuities in a manner to the piecewise 1d model (Dfn. 6.1).
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Remark 6.1. Improved Resolution with the Dual-Tree Complex Wavelets
Although not discussed here, the 2d-LSW model as presented may be ex-

panded to use a set of Dual-Tree complex wavelets (DTCW) as originally in-
troduced by Kingsbury (2001) and Selesnick et al. (2005). Such a family of
directional wavelets allows a natural extension of the real valued wavelets and
the construction of a complex valued LSW framework. The added flexibility of
these models allows for an added degree of redundancy and therefore the can
describe a greater range of textures. For example, in the 2d-case the DTCW
LSW model results in enhanced directional resolution with six directional fil-
ters, as opposed to three in the real-valued framework presented here. For more
information on such extensions the reader is directed to Nelson et al. (2016).

In previous works authors enforce smoothness on the process via a Lipschitz
continuous transfer function W (l)

j (u/R)3. This function relates to the discrete
amplitudes w(l)

j,u such that the maximum deviation between the two decays
asymptotically, i.e. supu |w

(l)
j,u;R−W

(l)
j (u/R)| = O(min(R)−1). In the original

LSW formulation (Eckley et al. 2010; G.P. Nason et al. 2000), this constraint
is used to impose asymptotic smoothness on the transfer function. As sample
size increases the authors then show a set of asymptotic properties that relate
the auto-covariance (of the process) to the two dimensional Local Wavelet
Spectrum (LWS)

S
(l)
j (u/R) = |W (l)

j (u/R)|2

for j = 1, . . . , JR = log2(min(R1, R2)). Such results are analogous to their
univariate counter-parts as discussed in Section 5.3.1; only subtle modifications
are needed for controlling error with respect to min{R1, R2} as opposed to T .

In real images we should not realistically expect the spectral structure of
images to vary in such a Lipschitz continuous manner, rather the spectral
properties of the image may change abruptly; for instance where there exist
two or more neighbouring regions of different materials or textures. As in
the one-dimensional setting, an alternative is to construct piecewise-constant
spectra such that variation is bounded through the size of the jumps. Such
assumptions may be formalised along the lines of those in Definition 6.1.

3Note: In the position index (u/R) is taken to mean the pair of points (u1/R1, u2/R2)
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The following section discusses the construction of regularised estimators
for two dimensional piecewise-constant LSW processes. The estimation meth-
ods developed in this section are significantly different from previous works in
that they estimate the spectrum jointly over j = 1, . . . , J instead of smoothing
separately at each scale. While it may be possible to develop a formal theoreti-
cal framework for analysing such estimators, along the lines of Fryzlewicz et al.
(2006), this is avoided at the current time and left as potential future work.
As previously suggested, the point of this chapter and these early applications
is to empirically motivate the development of a general regularised framework
for spectral estimation.

6.4.2 Estimation for the 2d-LSW Spectrum

A natural estimator for the spectrum can be constructed around the empiri-
cal periodogram which is defined as I(l)

j,r := |d(l)
j,r|2 where d

(l)
j,r =

∑
k∈[R] ψ

(l)
j,r[k]xr;R

are the 2d-wavelet coefficients. It has previously been shown in the 1d-case
(Prop. 5.5, G.P. Nason et al. (2000)), and 2d case (Eckley et al. 2010), that
the empirical periodogram is by itself, both biased and inconsistent; more
specifically

E[Î
(l)
j,r] =

∑
j,l

A(j,l),(j′,l′)S
(l′)
j′ (r/R) +O(min(R)−1) .

Similarly to the one-dimensional case, mixing between scales/directions is en-
coded by the matrix

A(j,l),(j′,l′) = 〈Ψ(l)
j [k],Ψ

(l′)
j′ [k]〉

=
∑
k

Ψ
(l)
j [k]Ψ

(l′)
j′ [k] ,

where Ψ
(l)
j [τ ] =

∑
r ψ

(l)
j,r[0]ψ

(l)
j,r[τ ] is referred to as the auto-correlation wavelet

(the summations over r,k go over the support of the child wavelets ψ(l)
j,rψ

(l)
j,r).

Such results are extensions of work in the 1D-case. However, rather than just
mixing over scale, in the 2D-case we also observe a dispersion of power over
direction l. Correspondingly, the biasing matrix A is now of size JL× JL.

Inverting A now allows one to construct an unbiased estimator as Ŝ(l)
j,r =∑

j′l′ A
−1
(j,l),(j′,l′)I

(l′)
j′,r, although, as in the one-dimensional case this estimator

is still not consistent, i.e. Var(Ŝ
(l)
j,r) 6→ 0 as min(R1, R2) → ∞. To encourage
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consistency one must perform some kind of smoothing over the image/samples.
Typically the literature (Eckley et al. 2010; G.P. Nason et al. 2000) suggests
to smooth I(l)

j,r and then perform de-biasing, where smoothing is performed by
either a second stage of wavelet transform and then thresholding, or adopting
a moving average/kernel smoother. It is worth noting that all the pros/cons
of smoothing methods in the one-dimensional case almost directly translate to
the two-dimensional and higher order settings.

In particular, in this section we consider comparison to the de-biased kernel
estimator given as:

(6.4.1) K̂
(l)
j,r =

1

H

M∑
k=r−M

(∑
j′,l′

A−1
(j,l),(j′,l′)|h[k]|2I(l′)

j′,k

)
,

where h[k] is a kernel function defined over Z2 with bounded support [r −
M , r + M ]. This is a simple two-dimensional genearlisation of the kernel
smoother in Eq. 5.4.5, in this case M = (M1,M2) and H =

∑M
k=r−M h[k]2.

For simplicity, in this work we use a box-car (uniform) kernel with width
M1 = M2 := M .

While asymptotically, one may show that kernel smoothers akin to (6.4.1)
can recover the (Lipschitz smooth) LWS spectrum in a consistent manner (G.
Nason 2013; Park et al. 2014), the finite sample performance of such estimators
is often lacking. This is particularly evident at coarser scale levels, where
the wavelet periodogram is more correlated, and estimators possess higher
variance. For an example of this in the one-dimensional case see Figure 6.2.1
where the kernel (moving window) estimator suggests a negative value for the
spectra at j = 4. Such an estimate is inconsistent with the construction of the
LSW process, this has consequences for model interpretation as the spectrum is
required to be positive; it also makes it harder to use the spectrum for anomaly
detection tasks as we cannot define a distribution with negative variance.

6.4.3 Regularised Least Squares Estimation

An alternative to kernel estimation is to construct a regularised estimator
that can incorporate prior information about the LWS estimate. In this section,
regularised estimation is implemented in a least-squares setting. However,
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unlike in the previous section where the regulariser acted on the periodogram
(or the Haar-Fisz periodogram), at each scale separately, the estimator in this
case jointly estimates {S(l)

j (u/R) | ∀(j, l)}.

Definition 6.4. Least-Squares Spectral Loss
A quadratic loss function is defined over the whole set of scales j = 1, . . . , JR

and directions l = {h, v, d} as:

(6.4.2) L(Î;U) :=
∑
j,l

‖Î(l)
j,r −

∑
j′,l′

A(j,l),(j′,l′)U
(l′)
j′,r‖

2
2 ,

where Î := {Î(l)
j,r| ∀j, l, r} is an estimator of the biased spectrum. In the spec-

tral estimation context, the set of parameters U := {U (l′)
j′,r| ∀j, l, r} takes the

place of the spectral estimate within the loss-function. If we consider that∑
j′,l′ A(j,l),(j′,l′)U

(l′)
j′,r is a biased estimator of the spectrum, the quantities U (l′)

j′,r

should represent the un-biased estimate. For convenience, a matrix version of
the above can be constructed as

(6.4.3) L(Î;U) := ‖Î −AJU‖2
F

where Î ∈ RLJ×R1R2 is a reshaped estimate of the periodogram (the set Î) and
U ∈ RR1R2×LJ is a matrix relating to the set U .

A natural choice for the function Î
(l)
j,r would be to use the raw empirical

periodogram Î
(l)
j,r := |d(l)

j,r|2. However, as a more general solution, we may opt
to use the kernel estimator Î(l)

j,r = K̂
(l)
j,r from Eq. 6.4.1. The beauty of the

formulation in Eq. 6.4.2, is that it allows us to consider estimation of the LWS
spectrum as a convex optimisation problem. For example, one can construct
the estimator according to

(6.4.4) {Ŝ(l)
j,r} = arg min

U
‖Î −AJU‖2

F .

Note, in order to obtain the actual elements {Ŝ(l)
j,r} we must unpack the R1R2×

LJ matrix U ∗that is the minimiser of L(Î;U). In the following, such an
unpacking operations are implicitly performed for statements like {Ŝ(l)

j,r} = U ∗.
If we now consider thatÎ = {K̂(l)

j,r} as defined in (6.4.1), then the objective
L(Î;U) is minimised when Ŝ = U which implies Ŝ(l)

j,r = K̂
(l)
j,r. As a result, if

we impose no additional constraints on (6.4.4) then we recover the standard
de-biased kernel estimator (6.4.1).
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Table 2 – Regularised spectral estimators within the least-squares framework.
Note that I refers to the use of the raw-wavelet periodogram I

(l)
j,k = |d(l)

j,k|
2.

Name - Abbreviation Loss Fn. Penalty

De-Biased Kernel - K K̂
(l)
j,r n/a

Positive Kernel - K(P) L(K̂;B) lR+

TV-Positive - TV(P) L(I;B) lR+ +R

TV-Kernel Positive - TVK(P) L(K̂;B) lR+ +R

In order to restrict solutions such that Ŝ ≥ 0 one can simply introduce
a positivity constraint on the loss via the addition of an indicator function,
defined as

lR+(U) =

0 if Ui,j ≥ 0 ∀i, j

∞ otherwise
.

In addition to the fact that the LWS should be positive, we may introduce fur-
ther constraints that relate to how we want or expect the estimates to behave
when applied to real images. Akin to the fused lasso in the one-dimensional
setting, one can introduce a total-variation penalty which actively constrains
the spectral variation across the whole image. Such a penalty can be intro-
duced according to the function

R
(l)
j (U) = λ

R1∑
m=2

R2∑
n=2

∣∣U (l)

j,(r
(m)
1 ,r

(n)
2 )
− U (l)

j,(r
(m−1)
1 ,r

(n−1)
2 )

∣∣ ,
or in matrix form as; R(U) = λ‖[DHU ;DVU ]‖1, whereDH ,DV are differenc-
ing matrices operating respectively in the horizontal and vertical dimensions
(the construction of these matrices follows that of Eq. 6.2.1). In the proceed-
ing experiments, the effect of regularisation within the least-squares estimation
scheme is examined. In particular, different combinations of regularisers are
considered as listed in Table 2.
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Remark 6.2. Effect of Regularisation
Much like the kernel estimator in (6.4.1), the TV-estimators attempt to

smooth the periodogram over space. However, unlike simply using K̂(l)
j,r alone,

the TV-constraint fuses estimates across the whole image resulting in a global
estimator. Due to the `1 form of the norm, such estimators should promote
piecewise structure in the spectra (akin to the fused lasso estimator in the previ-
ous section). Although, unlike in the previous section, estimation is performed
here as a joint optimisation over all scales, it also enables the use of a lo-
cal smoother (via the kernel) prior to being regularised. The work of Monti
et al. (2014) considers the effect of several (Gaussian and boxcar) kernels for
pre-smoothing in the context of dynamic GGM estimation. In that case, the
shape of the kernel function had a significant effect on estimation performance
(especially near changepoints). One may expect a similar situation in the spec-
tral estimation setting. It is worth noting that the experiments below make no
effort to optimise the shape of the kernel function and simply use the constant
(boxcar) kernel.

6.4.4 An ADMM Algorithm for Spectral Estimation

The extension of estimation to 2d-fields dramatically increases the number
of parameters in the LSW model. In terms of the proposed regularised esti-
mators, the number of parameters over which we need to optimise scales as
O(log2(R)R2). Furthermore, since the estimation is not separated over scales,
all these parameters must be optimised jointly. The strategy suggested here
is to tackle this optimisation task with an ADMM approach; this follows in a
similar way to the graphical model estimation of Chapter. 3.

As previously introduced in Sections. 2.2.2 and 3.2, the ADMM method
allows one to split up the optimisation problem across linearly separable por-
tions of the objective. For instance, taking the K(P)-LWS objective, we may
reformulate the optimisation problem in an explicitly constrained form

Ŝ := arg min
U ;V =U

‖K̂ −AU‖2
F + lR+(V ) ,

where V is as an auxiliary variable. In practice, and to ensure sufficient
curvature, an augmentation term ρ/2‖V − U‖2

F is added to the Lagrangian.
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Figure 6.4.2 – Computational cost of spectral estimation via ADMM (Alg. 3).

In the general case, auxiliary variables are introduced for each term

V B =V R+ = U ,

V AB = AU ,

V D = DV B .(6.4.5)

These constraints can be written in matrix form FU = GV , where

F =


A

I

0

I

 , G =


I

I

−D I

I

 .

It should be noted, that the sizes of the individual matrices follow from the
equivalences in (6.4.5). The augmented Lagrangian (for K(P)-LWS) is now
constructed as:
(6.4.6)
L(U ,V ,P V ) := ‖K̂−QAB‖2

F + lR+(QR+)+λ‖QD‖1 +
ρ

2
‖FU−GV −P V ‖2

F ,

where ρ−1P V are Lagrange multipliers. This Lagrangian problem can now
be solved through a series of updates, minimising L(U ,V ,P V ) sequentially
with respect to U and V , then updating the dual P V to keep track of the
cumulative errors. This is a similar procedure to the ADMM procedure in
Chapter 3 or Section 2.2.2.
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One benefit of ADMM, particularly in our case, is that the updates re-
quired for arg minU L(B,Q,V ) are simply proximity operators. These can
be calculated extremely quickly, projecting onto the positive real line for lR+ ,
and updating via the soft-thresholding operator for the TV-denoising meth-
ods. Algorithm 3 provides more details, in practice the experiments utilised a
version of the SunSAL-TV algorithm (Iordache et al. 2012)4. While a standard
ADMM scheme is guaranteed to converge if a solution exists for any ρ > 0,
however this is not necessarily the case for the multi-block scheme utilised
here (C. Chen et al. 2016; Lin et al. 2014). A full analysis of the convergence
properties of this particular formulation is beyond the scope for this work.
Rather, it should be noted in practice for a parameter of ρ = 100 no issues
with convergence were found. Empirically, this allowed for reasonably rapid
convergence ∼ 1minute for an R = 256 size image. As demonstrated by Figure
6.4.2, the algorithm appears to scale computationally as O(R2).

Input: ρ > 0, Ī,A
while not converged do

Update primal variable:
U (k+1) ← arg minU L(U ,V (k),P

(k)
V )

Update auxilary variables:
V (k+1) ← arg minV L(U (k+1),V ,P

(k)
V )

Solve via proximity operators, i.e: V (k+1)

R+ ← max(U (k+1) −P (k)

V ;R+ , 0)

and V (k+1)
H ← soft(DHU − P V ;H , λ/ρ)

Update dual variable:
P

(k+1)
V ← P

(k)
V + (FU (k+1) −GV (k+1))

end
Algorithm 3: 2D-LSW ADMM smoothing algorithm

6.5 Experiments
To test the recovery ability of the proposed estimators we can generate syn-

thetic data-sets according to a simple piecewise constant texture model. The
spectral structure as encoded through S

(l)
j,r is split into a set of blocks corre-

sponding to regions in the plane with alternating values (see Figure 6.5.1). In
4The algorithm developed by Iordache et al. (2012) was originally developed for hyper-
spectral unmixing, but coincidently has the same optimisation structure as the proposed
spectral regularisation scheme.
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this experiment we consider recovery of the true structure {S(l)
j,b} from synthetic

data
{Xr;R} ∼ LSW({w(l)

j,r = (S
(l)
j,r)

1/2})

where ε(l)j,r ∼ N (0, 1) over images of varying size. An example realisation of the
process is given in Figure 6.5.1 (top-right). In these experiments true signal
is restricted to scale j = 1 and is identically distributed across directions
l = {h, v, d}.

Note that variance of the kernel smoothed periodogram when estimating
structure at fine scales is naturally less than when measuring coarse structures
due to the size of the wavelet basis functions. On the other hand, structure
at larger scales induces longer range dependencies in the process and is more
difficult to recover. The aim here is simply to give a high-level overview of
the differences between the regularised and kernel estimators and as such all
experiments have true structure isolated to scale j = 1. The motivation for
this is computational, setting the true scale structure to j = 1 enables us to
gain some insight on the estimation performance while keeping image sizes
small R ≈ 128 pixels.

6.5.1 Results on Synthetic Data

In order to examine statistical properties of the proposed estimators across
the generative distribution, a cross-validation setup is utilised. This is slightly
different to the approach of Section 6.3, in that performance is measured on
a data-set completely independent from the training set. In order to select
tuning parameters (h, λ) a parameter sweep is run across Ntrain = 20 images,
from which (ĥ, λ̂) are selected in order to minimise the error

εtest(h, λ) =
1

3JR2

∑
j,l

∑
k∈R

∣∣|w(l)
j,k|

2 − Ŝ(l)
j,k

∣∣ .
Figure 6.5.2 depicts error surfaces for the cross-validation experiment; and can
be used to visualise the performance trade-off when introducing different levels
of prior smoothness via λ and h. Clearly, estimation performance is enhanced
by performing smoothing using either the kernel and/or regularisation. The
distinctive kink in the cross-validation surface is typical for estimation across
image sizes. As expected, due to the experimental setup (the blocks get larger
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Figure 6.5.1 – Top-left: Ground-truth spectrum for piecewise constant LSW
field; dark-blue S(l)

j (r/R) = 0 and light-blue S(l)
j (r/R) = 1. Top-right: Example

of simulated process with image size R = 128 pixels. Bottom: Examples of
recovered spectrum Ŝ

(1)
1,b (at R = 128). Left: TV(P)-LWS with λ = 20, and

Right: K(P)-LWS with h = 10.

in proportion to the image size), the optimal (ĥ, λ̂) for each scale changes with
the image size. It appears that a kernel on a similar scale to the small blocks
is optimal, i.e. around h = 10 ∼ 20 for R = 128. While optimal performance
seems to require some kernel and some regularisation; the regularised estimate
with h = 1 performs relatively well (see Figure 6.5.2). In practice, this means
that TV-LWS resolves more clearly defined edge detail, for instance, as seen in
Figure 6.5.1 (bottom-left vs bottom-right). Such a result mimics the smoothing
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Figure 6.5.2 – Left: The mean cross-validation error surface εtrain . Right: the
standard-deviation of the surface, taken over Ntrain = 20 synthetic images of size
R = 128.

behaviour of the fused lasso in the one-dimensional case (Figure 6.2.1). Again,
one observes that kernel estimation can provide consistent estimation in areas
which the spectra is smooth but fails to track jumps in the spectrum.

Using the parameter sweep over Ntrain = 20 images to select an appropri-
ate set of smoothing parameters (ĥ, λ̂) = arg min εtrain(h, λ) the out-of sample
performance can now be examined. Figure 6.5.3 summarises performance of
the estimators on a test set of size Ntest = 100 and enables us to compare the
sample efficiency of different estimators. Clearly, the error for all smoothed es-
timators appears to decrease for increasing image size both at scale j = 1, and
when averaged across all scales. This is in contrast to the raw-periodogram,
which does not converge for scale j = 1 where all the true spectral structure
is simulated. The hybrid method TVK(P)-LWS appears to perform best, con-
verging faster at all scales. Again, this agrees with the cross-validation results
which suggest a combination of kernel regularised smoothing is beneficial. Fig-
ure 6.5.3 demonstrates the favourable consistency rates for this estimator while
also highlighting the inconsistency of the bias-corrected raw periodogram.

Remark 6.3. Kernel pre-smoothing is beneficial?
The observation that the hybrid method performs well is interesting, as in

this setting the ground-truth structure is piecewise constant, one might expect
that the blurring effect of the kernel to hamper estimation performance. That
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Figure 6.5.3 – Test performance of the various LWS estimators. Left: The
error at scale level j = 1 as a function of image size. Right: standard-deviation
of estimate taken over Ntest = 100 simulations.

it actually improves performance suggests it may be beneficial to perform some
smoothing of the spectrum before implementing the regularised smoothing. This
provides an interesting question for future research: is localised pre-smoothing
generally beneficial for regularised estimation, or is this due to the nature of
the periodogram noise structure? In the case of the latter, pre-smoothing the
periodogram helps decrease the variance of the input to the regularisation prob-
lem. Additionally, to some extent the distribution of the kernel periodogram
estimator will be pulled towards a Gaussian. However, one should note that
due to auto-correlation in the raw periodogram this will not simply be a χ2 dis-
tribution with increased degrees of freedom. It may turn out that pre-smoothing
is generally a useful strategy, as even in the dynamic GGM setting, it seems
that using a kernel is beneficial to help stabilise the empirical covariance matrix
prior to regularisation. In the dynamic GGM setting, one may compare the
results of Monti et al. (2014) with the results in Chapter 3 and Gibberd and
Nelson (2017).

6.5.2 Application to Real Images

The experiments presented so far have demonstrated the benefits of reg-
ularisation in a quantitative manner, i.e. providing more efficient and robust
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Figure 6.5.4 – Raw greyscale image of carpet mapped to interval [0, 1].

recovery of the spectrum. However, many of the benefits of regularised estima-
tors come from the improved interpretability of the estimates. To demonstrate
some of these properties, it is of interest to consider how one may use the LSW
process to describe a real image. In this case the model is applied to describe
a texture taken from the Brodatz data set5 with R = 640 (see Figure 6.5.4).
While the LSW process doesn’t necessarily assume a Gaussian stochastic com-
ponent, it does require that the process is zero mean. Given this assumption,
the image should first be pre-processed to remove any large-scale trends. In
this case, the image is down-sampling to a size of Reff = 128 × 128 pixels,
it is then standardized by z-scoring the data with respect to all pixels in the
rescaled image.

A benefit of performing modelling with a Gaussian LSW process is that it
gives the process a well defined likelihood. One may then in principle use this
likelihood to perform anomaly detection, for example via a localised likelihood
ratio test. In the example presented here such an application is not considered
but it is worth noting that the pre-processing step of down-sampling is one
way to try and pull the image distribution towards a Gaussian through local

5The figure can be found http://sipi.usc.edu/database/database.php?volume=
textures and is originally found in the book Brodatz (1966)

http://sipi.usc.edu/database/database.php?volume=textures
http://sipi.usc.edu/database/database.php?volume=textures
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Figure 6.5.5 – Comparison of LWS estimation with regularised and kernel
approach. Top-left: Original image. Top-right: Z-Scored image (normalised
across both rows/columns). Bottom-left: Estimated LWS with KLWS h = 16.
Bottom-right: Estimated LWS with TV(P)-LWS and λ = 10.

averaging. Figure 6.5.5 demonstrates the output of the analysis and how the
pre-processing effectively produces a Gaussian intensity distribution.

When analysing a point estimate of the spectra, it is of interest to contrast
the kernel based estimate (bottom-left) with that of the regulariser (bottom-
right). Where, the kernel estimate often contains negative values for the spec-
tra, an undesirable property as by definition the spectrum should be positive;
the regularised case pretty much eradicates this issue6. More importantly, it

6The areas which are negative in the regularised case are actually very close to zero; this is
due to numerical error in the optimisation procedure.
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appears that the regularised estimator can appropriately deal with the nega-
tive regions of the spectrum while also maintaining key structural features. For
instance, one clearly observes the diagonal banding in j = 2, l = d is preserved
in the regularised solution. Qualitatively, it would seem that the regularised
model offers a more parsimonious description of the texture, the regularised
spectra appears constant for large regions, whereas the kernel estimate has
much more local variation.

6.6 Summary
Typically, wavelet decompositions may be used to break down an image

into a set of features which can then be used for general image understand-
ing tasks; for instance; image classification (Meher et al. 2007) or clustering
(Bhattacharya et al. 2014). Enhanced estimation of the wavelet spectra may
therefore aid in many of these applications. Specifically, if the wavelet spectra
are considered as a feature for further analysis, i.e. as an input to a classifier,
one would expect reducing variance of the features would correspondingly map
to reduced variation in classification performance. It is worth remarking that
while most of the work in this chapter is empirical in nature, it provides moti-
vation to develop a more theoretically rigorous treatment of the estimators. A
particularly interesting observation, is that in the one-dimensional case where
we discussed using the fused lasso to estimate the spectra, it appeared that the
`1 shrinkage did not have much beneficial effect, even though the LSW model
could be considered sparse. Although not investigated further in this thesis,
this result appears to be due to the bias imposed by the non-decimated wavelet
framework, where the matrix A smears the spectrum across all scale levels. In
future, one may wish to examine enforcing a sparsity constraint in the non-
biased frame where such assumptions should enable more efficient estimation
of the spectra. For example, in the context of the 2d-LSW estimators, we
may enforce a sparsity assumption across scale levels by adding an additional
penalty to Eq. 6.4.4. In the next section, we will discuss a final further exten-
sion to LSW models where we model multivariate time-series. This provides a
direct link between the LSW framework and the dynamic graphical models of
Chapters 3 and 4.
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Chapter 7

Multivariate-LSW models

Classically, much of the literature in non-stationary time-series analysis (and
particularly for LSW process) is focussed on analysing signals in the univariate
setting (R Dahlhaus 1997; D. L. Donoho et al. 1995; G.P. Nason et al. 2000;
Priestly 1981). However, many modelling applications require a multivariate
treatment as data-streams cannot be analysed independently. For example,
as discussed in the introduction (2) the analysis of brain activity via Electro-
encephalography (EEG) is severely restricted if one is limited to analysing each
signal independently. In applications such as this one is specifically interested
in understanding how the behaviour in one data-stream behaves with respect
to the others. Two popular measures of dependency between a set of variables
are the correlation/covariance and partial-correlation/precision. In the GGM
context, these measures are respectively related to dependency and conditional
dependency between variables (see Section 2.3). In the context of time-series
analysis, it is desirable to combine such measures of inter-stream dependence
alongside auto-covariance (sequential dependence) structure of data-streams.
In particular, given that spectral analysis allows for a decomposition of vari-
ance across scales it is possible to define a localised decomposition of such
cross-stream-cross-time dependency across multiple scale levels. The correla-
tion between streams localised to a specific scale is commonly referred to as
coherence whereas the partial correlation is known as partial coherence1.

1One should note that there are several specific forms of coherence defined in the literature.
The form of coherence that we study here will be defined in the sequel.
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Recently, several methods for analysing the coherence structure of multi-
variate non-stationary time-series have been proposed. Early efforts aimed to
adapt locally stationary Fourier methods to the multivariate setting, for ex-
ample R. Dahlhaus (2000) proposed an approximate Likelihood method for
estimating the Fourier coherence. In Ombao and Van Bellegem (2008), a con-
sistent method for estimating the non-stationary Fourier coherence is suggested
based on time-localised linear filtering. An alternative approach is suggested
in Ombao, Sachs, et al. (2005), where the signals are modelled by a set of ba-
sis selected from the smooth localised complex exponential (SLEX) family (a
dyadic set of scaled SLEX basis functions). Estimation of the coherence is then
performed by selecting a model which minimises the Kullback-Leibler distance
between fitted models and the SLEX principle components of the time-series.
Whilst this method can handle relatively large data-sets, the SLEX construc-
tion is limited to selecting basis from dyadically scaled blocks. More recently,
Cohen et al. (2010) consider coherence in the context of a wavelet analysis
for a bi-variate jointly stationary process. The work of Cohen et al. (2011)
and Sanderson et al. (2010) further extends the analysis of wavelet coherence
to classes of non-stationary bi-variate process. Additionally, the work of Cho
et al. (2015) considers an extension of the multivariate LSW model proposed
in Sanderson et al. (2010) to the general p-variate setting.

In this section, we introduce a multivariate LSW framework (similar to
that of Cho et al. (2015), Park et al. (2014), and Sanderson et al. (2010))
which can describe both linear dependency between streams, and across time.
Many authors assume the extension of coherence estimators to multivariate
settings from the bi-variate setting is trivial. However, this is far from the
case, the full multivariate setting requires us to deal with increased variance in
estimators due to model complexity (this scales in order O(p2)). Without some
form of model selection our models will tend to overfit the data. To this end,
this chapter introduces a novel class of regularised (sparsity aware) estimators
for the wavelet coherence. The empirical performance of these estimators is
examined alongside demonstrating an application to the analysis of epileptic
EEG data.
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7.1 Extending the univariate LSW model
A simple extension of the univariate LSWmodel can be formed by introduc-

ing a transfer matrix in place of the weighting elements wj,k. The construction
we study here originally appeared in (Park et al. 2014)

Definition 7.1. Multivariate LSW Process
The p-variate LSW process { ~Xt;T} is defined as a collection of random

vectors for t = 1, . . . , T , such that

(7.1.1) ~Xt;T =
∞∑
j=1

∑
k

V j(k/T )ψj,t[k]~εj,k ,

where V j(k/T ) ∈ Rp×p is a transfer matrix, and random vector εj,k defined at
scales j = 1, . . . , JT = log2(T ). Specifically, the transfer matrix has a lower-
diagonal form that encodes all dependency and contributions to the variance by
wavelet at given scale/position. Furthermore, we assume that all the random
vectors obey E[εj,k] = 0 and Cov(εij,k, ε

i′

j′,k′) = δj,j′δi,i′δk,k′
2.

In a similar manner to the spectrum associated with the univariate LSW
process we here construct the Local Wavelet Spectrum (LWS) matrix as the
outer product of the transfer functions

Sj(z) = V j(z)V j(z)> .

Additionally, the inverse LWS matrix (iLWS) is defined as P j;T (z) = (Sj;T (z))−1.
It is required that the LWS matrix is finite

∑
j S

(q,r)
j;T (u) <∞ and each element

is Lipschitz continuous with constants
∑∞

j=1 2jL
(q,r)
j <∞.

We note, that the LWS matrix takes the form of a covariance matrix re-
stricted to a specific scale level j. It is easy to then demonstrate the linear
combination of LWS matrices

c(p,q)(z, τ) :=
∞∑
j=1

S
(p,q)
j (z)Ψ[τ ] ,

2Note: this contrasts with the construction used in Sanderson et al. 2010 where structure
may be split between the transfer matrix and the noise terms.
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can asymptotically represent the auto-cross covariance of the process. Note:
The auto-correlation wavelet is still defined in the standard manner, i.e. Ψ[τ ] :=∑∞

j ψjk[0]ψj,k[τ ].

Proposition 7.1. Asymptotic Representation of Auto-Cross Covariance
Asymptotically for T →∞ one obtains

|c(p,q)(u, τ)− cov(X
(p)
uT , X

(q)
[uT ]+τ )| = O(T−1) .

Proof. This is a simple consequence of Lipschitz continuity, it is almost iden-
tical to that of the 1d-case (c.f. G.P. Nason et al. (2000)) the full proof can be
found in Park et al. (2014).

Remark 7.1. Exact vs approximate representation
In the literature on LSW processes there appear to be two forms of model

specification. One which utilises a discrete set of amplitudes {wj,k;T} and links
these to the continuous functions Wj,k(z). For instance, the representation of
G.P. Nason et al. (2000) has the condition supk |wj,k;T −Wj(k/T )| ≤ Cj/T . A
second parameterisation, such as that found in Park et al. (2014) and Sander-
son et al. (2010) utilises the continuous functions i.e. Wj(k/T ) directly in the
model representation. In this chapter we follow the latter representation, sim-
ply due to this being the one suggested in the literature. Asymptotically, it does
not make much difference which representation we use, however, in a finite
sample, it should be noted that the bounded deviation (original) representation
is more flexible. As pointed out by R Dahlhaus (1997) the reason for using
approximate representation is due to the observation that simple AR processes
do not have a spectral representation which is exact in terms of Wj(k/T ).

7.2 Estimation for Mv-LSW Spectra
Previous proposals (Park et al. 2014; Sanderson et al. 2010) for estimating

the LWS matrix are based around the estimated wavelet periodogram dj,k :=∑T−1
t=0 xtψjk[t], where the smoothed periodogram matrix is given as:

(7.2.1) Îj,k =
1

2M + 1

M∑
s=k−M

dj,sd
>
j,s .
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Figure 7.2.1 – Estimation of the on-diagonal spectrum, i.e. Ŝ(q,q)
j using (7.2.2),

for scales j = 1 and j = 5. Whilst the true spectra is equal to one in both cases,
we see that the estimation error at the large scale lengths can cause negative
variance estimates.

While this estimator is consistent, unfortunately it is also biased due to leakage
in the periodogram between scale levels. To account for this, the estimator is
corrected in the usual manner

(7.2.2) Ŝj,k =
J∑
l=1

A−1
jl Îj,k ,

where A−1 is the usual inverse of the de-biasing matrix (see Eq. 5.3.7).
In the limit M,T →∞ Park et al. (2014) demonstrate that the estimator

(7.2.2) is both bias free and consistent. However, in a finite sample setting
where one considers that entries within A−1

jl may be negative, there becomes a

setting where Ŝ
(q,q)

j,k can be negative. Figure 7.2.1 presents an example of this.
Recalling, that Sj(k/T ) appeared to be a covariance matrix, not only does such
an estimate not make sense for a measure of variance, it contradicts our process
construction (7.1.1). Furthermore, Ŝj,k is not guaranteed to be positive-semi-
definite. It is worth noting that Sanderson et al. (2010) also remark that
the standard method of smoothing and then de-biasing the LWS matrix can
result in estimators which are inconsistent with model specification. In the
proceeding section, a regularised method is introduced in order to stabilise the
estimation of the wavelet coherence estimates. These ensure that the model
assumptions are met and providing an interpretable estimate of the LWS and
iLWS matrices.
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7.2.1 Modelling Spectra with Gaussian Graphical Mod-
els

If one assumes that the the wavelet periodogram is drawn from a multi-
variate Gaussian, dj,k ∼ N (0,Σj,k) then maximum likelihood estimation of
the covariance matrix is given by the empirical covariance estimator Σ̂j,k =

dj,k(dj,k)
>. Let us assume that we have k = 1, . . . , 2M + 1 observations drawn

i.i.d from a Gaussian, such that Σj,k = Σj,l for all k, l ∈ {0, . . . , 2M + 1}.
To estimate valid covariance matrices, it is proposed to first estimate a

sparse precision matrix at each scale level j = 1, . . . , J and discrete time-step
k = 1, . . . , T . In particular, we construct a graphical lasso based estimator

(7.2.3) Θ̂j,k := arg min
U�0

[
− log det(U) + tr(Ŝj,kU ) + λ‖U‖1

]
,

where ‖U‖1 =
∑

p,q |Up,q|. In the context of estimating the LWS and iLWS
matrices, the above estimator has several advantages:

(1) The bias induced by λ‖Z‖1 imposes a sparsity structure on the resultant
precision matrix estimate. If the assumption of a sparse ground-truth Θ = Σ−1

is valid, this can improve estimation performance reducing estimator variance.
(2) The estimated graphical models enable one to easily visualise key depen-
dencies within a data-stream.
(3) The constrained problem forms a convex optimisation problem, enabling
fast convergence to a global optima.

Remark 7.2. Suitability of the GGM Assumption
If we assume Gaussian innovations ~εj,k ∼ Np(0, I), then a single set of

wavelet coefficients dj,k ∈ Rp will also be distributed as a Gaussian. However,
these will typically be dependent on those at another nearby point in scale/time,
such that dj,k 6⊥ dl,k′ if the points are relatively close in scale/time. If we use
local kernel smoothing of the raw periodogram, as we do when we construct
Ŝj,k in (7.2.2), then we would expect to find ourselves in a non-i.i.d setting.
As such, the empirical covariance does not provide a maximum-likelihood esti-
mator of the quantity Ij(u) :=

∑
l Sl(u)Al,l. The estimator Îj,k is not Wishart

distributed as one would expect if dj,k were independently drawn. As M in-
creases (relative to the support of the wavelets) the dependency between samples
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becomes less pronounced and in the limit of M →∞, T →∞ the wavelet co-
efficients will become less correlated. In this limit the method suggested which
assumes dj,k ⊥ dj,k′ becomes appropriate, it may be possible to formalise this
via some form of mixing assumption on the process. However, given that we
want to improve the finite-sample performance of the estimators, it is not par-
ticularly useful to make such asymptotic arguments. Finally, although not
applied in this work, it would be interesting to apply a further variance sta-
bilistation step in the multivariate setting. For instance, one may apply the
Haar-Fisz technique of Section 6.1.

There are many algorithms developed for solving problems of the form
Eq. 7.2.3, for simplicity we adopt the approach of Friedman, Hastie, and R.
Tibshirani (2008) whereby the dual of (7.2.3) is solved; instead of actively
updating Θ̂j we update the constrained covariance estimator Ŵ j = (Θ̂j)

−1.
The graphical lasso (glasso) algorithm (Friedman, Hastie, and R. Tibshirani
2008) iterates through updating columns/rows of this matrix to arrive at a
global optima. One benefit of this method, is that it can take advantage
of the sparsity structure within the target matrix, generally the sparser we
assume the matrix (i.e. the larger we set λ) the faster a solution will be found.
The process for computing the multi-scale graphical estimators we propose is
outlined in Algorithm 4.

Input: M,λj, ψj,k,X t;T

Result: Ŵ j,k, Θ̂j,k

for j, l = 1, . . . , J, and k = M, . . . , T −M do
dj,k =

∑T−1
t=0 X tψjk(t)

Ij,k = 1
2M+1

∑M
m=−M dj,k+md

>
j,k+m

Aj,l =
∑

τ Ψj(τ)Ψl(τ)
end
Ŝj,k =

∑J
l=1A

−1
jl Ij,k

for j = 1, . . . , J , k = M, . . . , T −M do
(Θ̂j, Ŵ j,k) = glasso(Ŝj,k + λjI, λj)

end
Algorithm 4: Algorithmic procedure for multi-scale graphical model esti-
mation.
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Figure 7.3.1 – Band limited coherence structure. Left: Example draw from a
p = 4 dimensional MV-LSW process. Right: Graphical representation of noise
structure limited in this case to band j = 2, purple and gold lines respectively
represent non-zero coherence and partial coherence structure.

7.3 Synthetic Experiments
In this section, we consider synthetic experiments where we have full knowl-

edge of the ground-truth structure. The performance of the basic smoothed
estimator and the graphical estimator is compared. Specifically, we will assume
that the ground-truth structure is in some sense sparse, i.e. that the process
may be band limited, and dependency between data streams is limited.

In the LSW framework, data is generated according to Eq. 7.1.1, with
the target of our estimation procedure being the inverse LWS matrix Θj(z) ≡
(Sj(z))−1 ≡ (V j(z)V >j (z))−1 . We proceed by simulating a ground-truth
iLWS matrix encoding a GGM at each scale with adjacency matrix G ∼
ErdosRenyi(P, n) and then constructing:

(7.3.1) Θ
0(i,l)
j =

∼ Uniform[−γ, γ] G
(i,l)
j = 1

0 G
(i,l)
j = 0

, for i 6= l

where γ acts to scale the iLWS off-diagonal elements, i.e. increasing the partial
correlation between variables at a given scale. The transfer function V j(z) can
now be derived through LU decomposition. Realisations of the LWS process
are then generated via Eq. 7.1.1, an example realisation can be seen in Figure
7.3.1.
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Figure 7.3.2 – Coherence estimation in the regularised and un-regularised mv-
LSW framework. Dashed lines indicate the empirical standard deviation of the
estimate over N = 100 realisations.

Estimator performance

To demonstrate the ability to track band limited structure we simulate
precision matrices {Θj} for p = 4 and T = 1024 j = 1, . . . , J = log2(T ) = 10.
Off-diagonal structure, as generated by (7.3.1), is restricted to the specific band
j = 2 as depicted in Figure 7.3.1.

The example in Figure 7.3.2 has piecewise constant ground-truth structure
Sj(z), where we observe that both estimators are somewhat able to track
changes. Although, as in previous chapters, the moving window smoothing is
not capable of resolving jumps in the spectra. As discussed the Park estimator
is unbiased, at least in the periods where the spectra is constant; however, we
observe that it is relatively sensitive to the data, i.e. has large variance (see
dashed lines). Our proposed MR-EGM estimator has biased estimation in the
active period (t = 300− 600), but reduced estimator variance. We note, that
this is especially useful, when one considers that if the sparsity assumption is
true then there will be a very large number of entries in the LWS matrix that
are zero (c.f. the region t = 600 − 900 in Figure 7.3.2). In such cases, the
imposed bias actually helps, as it reduces variance in the estimate around the
true parameter.

In addition to the smoothing parameter M , the regularised spectral es-
timator introduces a sparsity tuning parameter λ. In the synthetic setting,
we are in the fortunate situation where we know the ground-truth parame-
terisation, one can easily generate test and training sets by simply simulating
more realisations from the LSW process in Eq. (7.1.1). If one desired, both
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Figure 7.3.3 – Coherence estimation in the regularised and un-regularised mv-
LSW framework. Error bars indicate empirical variance of measures over N = 30
realisations.

smoothing and regularisation parameters (M,λ) could be selected according
to cross-validation based on an appropriate risk function. Such a procedure is
attempted in a later section where we apply the graphical estimator to a real
data-set.

For model consistency (i.e. selecting the correct sparsity pattern) one may
consider maximising a balance of

Precision = |Êj ∩ Ej|/|Êj| ,

and
Recall = |Ê ∩ Ej|/|Ej| ,

where Êj, Ej denote respectively the estimated and ground truth edge sets at
the jth level. Again, as in Chapter 3 we may consider the F1-score, defined as

F1 = 2(precision× recall)/(precision + recall) .

Alternatively, for predictive risk (approximating the true distribution) one can
consider minimizing R(Θ̂j) = tr(Θ̂jSj) + log det(Θj), the reader is referred
to Zhou et al. (2010) for analysis of such risks in the non-wavelet setting (a
similar risk analysis of the IFGL estimator is studied in Chapter 3).

To examine the effect of regularisation on the estimates we construct a set
of experiments for different combinations of the parameters M , T , and λ. In
these experiments, the dimensionality is fixed at p = 10 with s = 10 true
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edges simulated from Eq. 7.3.1. For each length T = {1024, 2048, 4096} a set
of N = 30 observed processes is constructed according to the multivariate-
LSW model. The smoothing window is scaled in proportion to the process
length such that M = {100, 200, 400}. We then apply the regularised spectral
estimator (7.2.3) to the set of processes and track both model-recovery (F1

score) and the predictive risk.
The results as presented in Figure 7.3.3 are as one might expect, and

demonstrate the benefit of regularisation when performing estimation in fi-
nite sample settings. With sparse models which corresponding to a large λ,
we observe that estimator variance is reduced at all scales; this can be noted
by looking at the empirical variance of the predictive risk measure. More
strikingly, we note that in small sample environments, where M is small the
un-regularised predictive risk is very large. Adding regularisation and imposing
sparsity clearly helps reduce this, we note the distinctive kink in the predictive
risk figure. Increasing the width of the smoothing window reduces the need
for regularsation, for instance, byM = 400 the predictive risk is minimised for
a setting of λ ≈ 0.

In terms of model recovery, i.e. the recovery of the dependency pattern,
we see that sparsity plays a key role at all smoothing window sizes. With a
small window (M = 100), there is hardly any benefit to regularising in terms
of model-recovery; the impact is felt more strongly in terms of predictive risk.
However, when we get to larger window sizes, the situation is reversed; we do
not need regulariser to reduce the risk, but it helps greatly in model recovery.
Crucially, we note that the non-regularised estimator which is sparsity agnostic
(λ = 0), cannot pick up model structure by itself, even when the smoothing
window is very large.

The above experiments clearly demonstrate that regularised estimation of
the spectra is beneficial in certain situtations. In the asymptotic setting, where
M → ∞ it appears that the regularised estimates offer an improvement in
terms of model interpretability, i.e. the F1- score seems to improve with in-
creasing data. In the finite/small sample setting, the regulariser helps to reduce
the predictive risk and reduces variance in the estimator. In the next section,
we will discuss the application of such regularised coherence estimators to the
analysis of electro-encethelographic (EEG) data.
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7.4 Epileptic Electro-Encetheolograph (EEG) anal-
ysis

In the previous sections an overview of how regularised estimation methods
may be adapted to the setting of LSW spectrum estimation. In this section it
is considered how these methods can be applied in a real scientific application,
namely that of understanding epilepsy seizures. More specifically, the goal
here is to examine the similarity between seizure episodes for an individual
suffering from epilepsy. The approach taken here, is to attempt to estimate
a generative statistical model of the seizure process by associating this with
an mv-LSW process. For the purposes of this study, we do not attempt to
study the general population (of epilepsy patients), rather the population we
are interested in representing is that of the electrophysiological behaviour for
a specific patient.

7.4.1 Relation to previous work

Traditional clinical analysis of EEG data is limited to univariate analysis
and the human interpretation of traces/spectra (Hunyadi 2014). In a more
academic setting, studies have been developed for multivariate analysis; with
several looking at the evolution of cross-correlation structure (Müller et al.
2005; Schindler et al. 2007). Often this has the aim of predicting or classifying
epileptic activity (Hunyadi 2014). To date, I am not aware of any other stud-
ies that have considered the dynamics of epilepsy in the multivariate locally
stationary wavelet setting proposed. The closest proposition to the method
proposed here appears to be the work of Conlon et al. (2009), who consider
cross-correlation structure between wavelet coefficients, i.e. at different scale
levels. The work here differs from this approach in that a) bias is accounted for
in the estimation of wavelet cross-covariance structure, and b) the robustness
of estimation is considered through sparse de-noising.

In order to fit a generative model for the development of seizures, we need
to make the assumption that the evolution of dynamics for each seizure are
drawn from some general (patient specific) distribution. The aim of our mod-
eling work is thus to estimate and gain some insight on the structure of this
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Figure 7.4.1 – Epileptic EEG sensor readings.

hypothesised distribution. Due to variation in seizure length, the assump-
tion that all seizures are comparable seems suspect from the start. However,
even though the length of the seizures is varied, one may postulate that high-
level electrophysiological behaviour may share some similarities. The approach
presented here will focus on investigating these similarities by modeling the de-
pendency between electrodes as a function of both time and frequency.

Data and Pre-processing

In this study data from the PhyisoNet (Goldberger et al. 2000) database is
examined which reports electroencephalography (EEG) traces for anonymous
pediatric subjects at the Children’s Hospital Boston. While the dataset con-
tains seizures for a number of patients, the analysis presented here is restricted
to a single female subject labelled chb01_, see Figure 7.4.1 and Table 1 for
more details. The data is collected with 23 electrodes located according to the
international 10-20 system. A graphical representation of electrode placement
can be seen in Figure 7.4.6. For the selected subject seizures vary in length
with an average duration of 63s.

As depicted in Figure 7.4.1, the experiment focusses on the early onset of
seizures where we study the period tpre = 8s before a seizure, to tend = 8s
after a seizure starts. The data is originally recorded at 256Hz, before being
subsampled to 32Hz in preparation for analysis, the resulting data-set is of
size X = (x1, . . . ,xT )> ∈ Rp×T , where p = 23 is the number of electrodes,
and T = 512 is the number of samples. The analysis presented here is limited
to the Ns = 7 seizures recorded when the subject was 11 years old. Before
applying the wavelet analysis described below, the data is z-scored such that
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Table 1 – Relevant data-sets and periods for study as taken from the Children’s
Hospital Boston Massacusets Institute of Technology (CHB-MIT) dataset (www.
physionet.org).

seizure file start end
1 chb01_03 2996 3036
2 chb01_04 1467 1494
3 chb01_15 1732 1772
4 chb01_16 1015 1066
5 chb01_18 1720 1810
6 chb01_21 327 420
7 chb01_26 1862 1963

when taken across the whole analysis window, it is centered such that it has
mean zero, and variance one.

7.4.2 Cross-validation

Most estimation procedures require a number of tuning-parameters to be
selected. In this case, we will apply the regularised estimator developed in
the previous sections. For the purpose of this section, we will refer to (7.2.3)
as the multi-resolution exploratory graphical model (MR-EGM) estimator (c.f.
Gibberd and Nelson (2015a)). This estimator has two tuning parameters,
the size of the smoothing window M , and the regualriser strength λ. These
parameters must be set such that they are relevant for a given data-set. In the
previous section, the behaviour of the the estimator was discussed in a synthetic
setting where one could repeatedly draw samples from a known ground-truth
distribution. These could then be used to compare the estimated and known
distributions. However, in practice we don’t know a-priori what distribution
the data is drawn from, instead we can only train parameters on the limited
samples (in our case the number of seizures Ns) that we have from the assumed
generative model.

The approach proposed here, is to attempt to assess the predictive risk on a
holdout test dataset (corresponding to one seizure), and train on the remaining
Ns−1 seizures. Rotating the test data-set across the seizures in a leave-one-out
cross-validation fashion should then give us some idea of how well the model
generalises from the trained data. Such a procedure mimics that performed

www.physionet.org
www.physionet.org
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in Chapter 3, in that case we were trying to generalise across different days of
network activity whereas we here try to generalise across seizures.

To construct a risk function one can consider extending the idealised setting
where we know the ground-truth distribution. For the multivariate Gaussian
distribution, the predictive risk for a pair of ground truth Σ and estimated Ŝ
covariance matrices is given as (Zhou et al. 2010):

R(Ŝ) = tr((Ŝ)−1Σ) + log det(Ŝ) .

Consider fS to be the density for N (0, Ŝ) and the data is drawn under the
ground truth structure Z ∼ N (0,Σ), then one notes that up to a constant
R(Ŝ) = −2E0[log(fŜ(Z))]. The likelihood and the risk are thus related via
the density function. The risk is proportional to the negative expected log-
likelihood (given the estimate) drawing under the true model. Note: the risk
function we use here is directly related to the Gaussian model, this again results
in us making an assumption about the properties of the data generating process.

Constructing a measure of risk

In practice we do not have access to Σ, it is therefore suggested to estimate
this from the test data as

S
(itest)
j,t =

J∑
l=1

A−1
jl I l,t ,

where Ij,t is the raw-periodogram matrix. We then define the leave one out
cross-validation risk for each time point tand scale j as:

(7.4.1) Rloo(Ŝj,t) :=
1

Ns

Ns∑
itest=1

∑
i 6=itest

[
tr((Ŝ

(i)

j,t)
−1S

(itest)
j,t ) + log det(Ŝ

(i)

j,t)

]
.

Throughout the rest of the section, let us denote the un-regularised but
smoothed coherence estimator (7.2.2) as Ŝ

K
(M); and the MR-EGM covariance

estimator (7.2.3) as Ŝ
MR

(M,λ) := Θ̂
−1

(M,λ). Substituting these estimates
into (7.4.1) in place of Ŝj,t enables us to measure the leave-one-out cross-
validated risk for both methods.
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Figure 7.4.2 – Left: averaged risk throughout different periods leading up to,
and throughout seizure activity. Right: empirical standard deviation of the risk.

Experiments

To examine the effect of regularisation on the risk (7.4.1) a series of ex-
periments were performed over a range of λ. For simplicity, and the fact the
smoothing parameter M is common to both methods only the effect of chang-
ing the regularisation parameter λ on the cross-validated risk is reported in the
experiments. Since Rloo(Ŝj,t) reports a value for every scale j and timepoint
t it will be highly variable. In order to gain some level of insight, we must
therefore average the risk not only across seizures, but also across portions of
the time.

Figure 7.4.2 presents the risk level Rloo(Ŝj,t) averaged across different seg-
ments of seizure activity. Specifically, the risk surfaces Rloo(j, λ) are averaged
over time in the phases leading up to, and throughout a seizure (-ve values
indicate the time in seconds prior to seizure, +ve values indicate post seizure
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periods). The unregularised estimate corresponding to Ŝ
K
is found at λ = 0

(in the figures this appears as 10−2 due to the log-scaling).
The results are interesting, but also quite hard to interpret. For example,

while it seems introducing a non-zero λ can help reduce the cross-validated
risk in the period leading up to a seizure, this does not hold when the seizure
actually starts occurring. For example, in the pre-seizure activity, where it
appears that a regulariser of λ ≈ 0.1 appears to minimise the risk; but a similar
value during the seizure results in a very large risk measure. Additionally, and
unlike in the synthetic data, the standard deviation of the risk is very large
across many parts of the risk surface. Furthermore, while the regulariser helps
reduce risk in the pre-seizure period, it does not help mitigate variance in
the risk surface. The reasoning for this is unknown, but one should take into
account the rather extreme demands we are placing on the cross-validation
scheme given that we only have Ns = 7 seizures worth of data. With regards
to the variation of optimal λ over time; it is quite reasonable that the optimal
strength of regulariser change as seizure activity progresses. Indeed, it appears
that the marginal variance of the signal increases throughout a seizure, which
would intuitively suggest a large λ is required during these periods.

7.4.3 Epileptic brain Dynamics

In this section, the aim is to enable some level of interpretation of seizure
activity in the context of the estimated MR-EGM model parameters. Our
aim is to highlight and understand clusters of activity that may represent
seizure activity. If such clusters exist, this may explain to some extent why
the generalisation performance of the model decreases in the seizure activity
phase. Crucially, in a clinical setting this may help diagnose and characterise
complex seizure activity.

Our suggested multi-resolution methods results in a very high dimensional
feature space. In a standard univariate analysis, the one-dimensional NDWT
results in O(T log2(T )) parameters. However, in the multivariate setting, the
number of model parameters is compounded by the requirement to model
coherence structure; in the mv-LSW framework the number of parameters
scales as O(p2T log2(T )). In order to analyse the estimated coherence struc-
ture {Ŝj,t}Jj=1 as a function of time we turn to a principle component based
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approach. Specifically, a feature matrix is constructed by vectorising the co-
herence at each time-point. Let

yt = (Ŝ
(1,1)
j,t , . . . Ŝ

(p,p)
j,t | ∀ j = 1, . . . , J)> ∈ Rpf ,

represent one data point in the resultant pf = p2J dimensional mv-LSW fea-
ture space. These can then be concatenated into a matrix Y = (y1, . . . ,yT )>.

Remark 7.3. A note on PCA
A popular tool for visualising multivariate feature vectors is principle com-

ponent analysis (PCA). Mathematically, PCA is defined as an orthogonal lin-
ear transformation of feature-vectors such that the variance of the feature vec-
tor is maximally described by the first principle component, i.e. for the first
principle component we have w1 = arg maxw

[
(w>Y >Y w)/(w>w)

]
. Since

(Y >Y ) ∈ Rpf×pf is symmetric the first k-th principle components correspond
to the eigenvectors associated with the largest k eigenvalues. Projecting fea-
tures onto these eigenvectors allows us to visualise a high-dimensional features
in a lower dimensional sub-space. In our case we will examine the brain dy-
namics within the highly redundant feature space provided by the MR-EGM
and mv-LSW frameworks. Finally, rather than analyse seizures separately, it
is of interest to select principle components that are relevant across all seizures.
This may then enable the clustering of seizures, and provide valuable insight to
clinicians. In order to jointly analyse the seizures, prior to performing PCA
the feature vectors across all Ns seizure episodes are concatenated.

To start with, it is interesting to see what the PCA analysis produces in the
signal space, i.e. using the signal directly as a feature. The results of such an
experiment are given in Figure 7.4.3, where the raw observationsX i ∈ Rp×T for
i = 1, . . . , Ns are projected into the first two principle components. There is no
clear separation between seizures, but it is possible to distinguish seizure and
non-seizure activity simply in terms of the variance; the black dots represent
pre-seizure activity.

We will now compare this with the mv-LSW based approach where the
dynamics of seizures may now be linked to the dynamics of the estimated
wavelet coherence structure. In this setting the number of features is very
high (Pf = 4761). However, due to the large redundancy in the wavelet rep-
resentation the amount of variance explained in the first two components is
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Figure 7.4.4 – Principle components of the estimated spectra after concatena-
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still relatively high. To investigate the role of regularsation in the param-
eter estimates we perform estimation with different regulariser parameters
λ = {0, 0.3, 1}. Table 2 presents the results of PCA applied to the resulting
estimates. Clearly, as the level of sparsity is increased, we observe a corre-
sponding increase in the proportion of variance that can be explained by the
first two principle components. The effect of this can also be seen by visualis-
ing the resulting principle component vectors. For example, Figure 7.4.4 plots
the loading of the principle components w1,w2 with the regularised estimator.
As demonstrated by the sparsity column in Table 2, the proportion of zeros in
the principle components increases as a function of regulariser strength.
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Table 2 – Comparison of principle components of the MR-EGM model as a
function of regularisation strengths. Sparsity is the proportion of zero elements
in the principle components.

λ sparsity Var(PC1) Var(PC2)
0 0 31.9% 15.5%
0.3 0.23 41.3% 14.2%
1 0.51 45.2% 13.9%

The benefit of principle component analysis is that it enables us to visualise
the key dynamics of the seizure process in two dimensions. Such a visualization
of the MR-EGM feature space is provided in Figure 7.4.5, where we compare
dynamics in both regularised and non-regularised estimates. Clearly, there is
a considerable difference in terms of how the seizure activity aligns itself with
the estimated eigen-vectors. While in the non-regularised case, we can easily
distinguish seizure and non-seizure activity, clustering between seizure activity
is not so obvious. Now contrast this with the regularised case where λ = 1.
Not only is seizure and pre-seizrure activity well separated, but seizure activity
appears to fall into clusters which follow the principle components.

Such a separation might suggest that the subjects seizure activity fall into
two distinct behavioral classes. To examine this behaviour, we can take the
estimated principle components and project them back into the form of co-
variance matrices. Rather than interpreting the eigenvectors as a vector (c.f.
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Figure 7.4.6 – Heatmap of estimate wavelet cross-spectrum corresponding to
scales as identified in Figure 7.4.4.

Figure 7.4.4), we can now interpret these as covariance matrices restricted to
different scale levels. For example, the first p2 = 529 components of the prin-
ciple component can be matched to the covariance matrix at the scale level
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j = 1. Notationally, I will refer to such matrices as the principle covariance
Ŝ
PC1

j for scale level j. From inspection of the principle components (Figure
7.4.4), we clearly see that most of the structure is contained within the scale
levels corresponding to j = 3 and j = 4. Investigating the principle covariance
matrices for these two components we notice very obvious differences in the
structures (see Figure 7.4.6). As the eigenvectors describing w1 and w2 are
orthogonal, there is not much overlap in terms of the covariance structure.
However, it is interesting to note that the structure appears to be split pri-
marily by frequency band; while Ŝ

PC1 is mainly confined to the j = 3 band
corresponding to 4Hz (using the Haar wavelet), the other principle covariance
matrix is dominant within the band j = 4 at 2Hz. The actual covariance struc-
tures seem to suggest that some seizures (1,6, and 7) may be characterised by
Ŝ
PC1

3 , indicating a lack of activity in the nodes corresponding to the bottom
left of the scalp (nodes 2,3,4,19), and strongly anti-correlated activity between
nodes 16 and 21,22 (see Figure 7.4.6). The rest of the seizures are more aligned
with Ŝ

PC2

4 which indicates strong correlated activity in the mid-right area of
the scalp (nodes 10, 11, and 12).

7.4.4 Discussion

In this section the MR-EGM models of the previous section (Gibberd and
Nelson 2015a) were used to model time-frequency dependency structure within
epileptic EEG data. Our attempts to understand the generalisability of the
mv-LSW model show that controlling complexity via a sparsity constraint
can reduce some measure of predictive risk. In particular, the model appears
to capture structure in the 4Hz band corresponding to Theta waves in the
period prior to seizure, however, this predictability is lost in the seizure phases.
Previous studies (Conlon et al. 2009) demonstrated that activity in the Theta
band was significantly reduced during some seizures, it is possible a mix of
this reduction and potential clustering of seizure activity may account for
this reduction in generalisation ability. On the other hand, such a method
of assessing risk and setting regulariser parameters should not be taken too
seriously when performed over such few seizures.

Further to the consideration of predictive risk, it was demonstrated how
a principle component analysis of the estimated parameters may shed light
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on seizure activity. In particular, encouraging sparsity appeared to help cap-
ture key components in the highly redundant mv-LSW parameter space. For
example, within the subject analysed, two coherence matrices are identified
that can characterise epileptic activity. Without further clinical data as to the
location of the epileptic region in this particular subject, it is hard to further
interpret these results more generally.

It is important to stress that this study was performed on a single sub-
ject, and future work may look at studying a wider range of seizures and/or
across multiple patients. It would be particularly interesting if one could iden-
tify characteristic dependency patterns that generalise to large numbers of
patients or seizures. One might also wish to expand the range of frequencies
analysed; other studies suggest that higher frequency activity in the 60Hz band
is a prominent feature of seizures (Conlon et al. 2009). Additionally, it may
be of interest to assess the performance of other wavelet families, or imple-
ment alternative piecewise smoothing methods to attempt to detect different
phases in epileptic activity. This latter point may consider extending the graph
estimation algorithms of Chapters 3, 4 to the multivariate LSW framework.

7.5 Summary
This chapter bridges the gap between the first and latter half of the thesis by

introducing a multivariate extension of the LSW process. In the multivariate
setting, the LSW model not only needs to describe auto-correlation, but also
cross-correlation structures. As such, it requires far more parameters than the
standard one-dimensional construction. Estimation of these parameters with
finite data proves a challenge, and regularisation can help in these settings.
Specifically, the chapter demonstrates how the graphical lasso (as previously
used to identify GGM) can be employed to estimate the cross-spectra of a
multivariate LSW process.

Synthetic experiments demonstrate the considerable benefit of such regu-
larisation where the underlying coherence structure is sparse. Not only does
this help improve interpretability of the coherence estimates (we recover the
correct sparsity structure), but it also improves the performance of the esti-
mator in recovering the true distribution. Following these experiments, the
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regularised estimator is applied to the analysis of real-world EEG data in or-
der to characterise epileptic seizures. In this case, regularisation helps identify
a set of sparse principle components which enables seizure activity to be split
into two classes (in the single patient under analysis).



Chapter 8.

Chapter 8

Conclusion and Future Work

Throughout this thesis several methods for the analysis of multivariate time-
series have been developed; however, there is still much more one could do to
extend these approaches. In this chapter, I will take time to gather ideas from
across different parts of the thesis before offering some concluding remarks.
Some of the directions highlighted here are in fact already under consideration
and are loosely ordered in terms of difficulty, easiest first.

8.1 Joint Changepoint and Graph estimation in
High-Dimensions

Chapter 4 introduced some theoretical analysis for the GFGL class of es-
timators and primarily considered the standard dimensional setting where
T → ∞ and p is fixed. The original aim of this theoretical work was to
obtain a high-dimensional result where both p, T increase, in such a case, one
may have p > T , even asymptotically. A pathway to obtaining such results
is discussed at the end of Chapter 4. In particular, it is suggested that ob-
taining a probabilistic bound on λ1 ≥ 2R∗(∇LB̂(Θ0;X1;T )) will be crucial to
demonstrate high-dimensional consistency. In fact, it should not be too hard
to derive such a bound, but considering the detail in calculating rates etc, I
prefer to leave these results as future work instead of including them in the
thesis.

249
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On a more applied note, it is worth noting that there have been several re-
quests for software to implement the GFGL/IFGL estimators. The majority of
interest is from researchers considering fMRI or financial data-sets. However,
while all the code developed in this thesis is available on request, it is not neces-
sarily production ready or appropriately packaged for third parties. Given, the
interest in the dynamic graphical estimators, I plan to make available a soft-
ware package to make these methods more easily accessible. Preliminary work
in this direction can be found via the python GraphTime package. The pack-
age is available via Github: https://github.com/GlooperLabs/GraphTime,
or through the Python package manager via “pip install Graphtime”. 3.

8.2 A General M-Estimation Framework for LSW
Spectra

One of the initial directions of interest in considering the LSW/LSF family
of models was to see whether regularised estimation could provide a useful tool
for statistical estimation. The results in this thesis on the wavelet modelling
side are very much empirical in nature; however, this leaves lots of room for
further theoretical analysis. In particular, when considering sparsity aware es-
timators, one naturally asks, how well can our estimators recover this sparsity.
To answer such questions, and to fully understand the power of sparse esti-
mators, one needs to encode sparsity assumptions in the model construction.
For example, in the LSW framework, we often assume that signals are “band-
limited” meaning that contribution to the variance of the process is limited to
a subset of available frequencies/scales.

On an empirical level, the analysis of Section 7.3 can be thought of in this
setting, whereby only a few elements in the coherence are non-zero. The fact
that the graphical lasso based estimator can identify this model structure is
promising, and as demonstrated by these experiments introducing sparsity can
help form a robust estimate of the joint distribution. For example, in Fig. 7.3.3,
a sparsity aware estimator obtains performance levels similar to of the dense
model, but with using only half the amount of data. For a theoretical analysis
of such estimators, one may consider adding strict sparsity assumptions in the
process definition (Def. 7.1). The challenge would then be to assess how these

https://github.com/GlooperLabs/GraphTime
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assumptions propagate into the resultant Fourier/wavelet coefficients. From
this one could construct an appropriate likelihood for the spectrum which
would form a basis for M-estimation.

8.3 Non-Gaussian, Non-Stationary Processes
The models and estimators presented in this thesis are primarily based

on the parametric Gaussian distribution. However, there are many situations
where such assumptions are restrictive. For example, the analysis of network
traffic in Sec. 3.4.2 was limited in time-resolution due to the Gaussian assump-
tion breaking down for small bin sizes. While, the wavelet extensions enable
us to study and model dependencies at different length scales, we would also
like to generalise our model to be flexible with regards to the distributional
assumptions.

One way of achieving this is by parameterising the marginal and depen-
dency structure separately, through what is known as a copula. As a result
of Sklar’s theorem (Choroś et al. 2010), we may write the joint density f in
terms of its univariate marginals F1, . . . , Fp and densities f1, . . . , fp as:

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))

p∏
i=1

fi(xi) ,

where c = (u1, . . . , up) = ∂C(u1, . . . , up)/∂u1 . . . ∂up is the density of the p-
dimensional copula C(u1, . . . , up;θ). The above construction implies that we
can decompose the log-likelihood as the sum of a dependent and marginal
terms

L = Lc︸︷︷︸
dependence

+

p∑
i=1

Li︸ ︷︷ ︸
marginals

.

Such use of copulas has been studied in a graphical context by the non-
paranomal family of models promoted in J. Lafferty et al. (2012). If we can
adopt GFGL within a copula setting, we may be able to generalise our model,
to handle other types of data, for example multivariate count data (E. Yang
et al. 2013).
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Finally, in the context of wavelet or Fourier based models, it is interest-
ing to note that while the process itself may not be Gaussian, the result-
ing Fourier/wavelet coefficients are, at least asymptotically (Brillinger 1981;
Stevens 2013). Such an argument can be used to motivate a Gaussian likeli-
hood based model for the wavelet coefficients, even in the setting where the
process itself may be non-Gaussian. However, it remains as further work to
formalise these kind of results, and it would be interesting to consider the
robustness of the Gaussian assumption in finite sample settings.

8.4 Concluding Remarks
The contributions of this thesis are two-fold; firstly, to introduce and pro-

vide estimation mechanisms for dynamic graphical models, and secondly, to
extend M-estimation concepts to a class of locally-stationary wavelet processes.

With regards to dynamic graph estimation, two novel classes of estima-
tor (IFGL and GFGL) are proposed; furthermore, computational methods are
developed to allow for the practical implementation of these estimators. The
developed methods are demonstrated on two important applications, namely,
the detecting changepoints in high-dimensional genetic time-course data, and
the analysis of computer network traffic. Such applications demonstrate how
accounting for dynamics can generate enhanced insight, particularly at the ex-
ploratory stage of analysis. Not only are the proposed dynamic graph estima-
tors amenable to computation, but they also allow for some level of theoretical
statistical analysis. To this end, under certain conditions on the generating
process, it is demonstrated that GFGL can asymptotically recover changepoint
positions.

The second half of the thesis focusses on the application of regularised
smoothing methodologies to the spectra of classes of; 1) univariate, 2) mul-
tidimensional, and 3) multivariate LSW models. In all cases, the regularised
methods perform well, often outperforming traditional estimators. The M-
estimation framework enables one to easily incorporate sparsity or smoothness
priors when identifying the spectra. Not only can the proposed estimators
produce more sensible estimates (c.f. avoiding negative values in the spectra),
but can also lead to enhanced interpretation. For example, in the multivari-
ate setting, analysis assuming a sparse coherence structure enabled both the
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better description (improved explained variance) and greater interpretation
(enhanced cluster separation). However, while this thesis demonstrates that
spectral M-estimation is empirically useful, it does not develop a theoretically
rigorous analysis of such estimators; rather, such treatments provide an excit-
ing opportunity for further research.

In summary, I hope this thesis provides a useful and balanced resource, for
not only those who are interested in theoretically describing non-stationary
processes, but also pragmatically understanding what is going on behind time-
series data.
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