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Abstract. The solar wind is a highly turbulent and inter-
mittent medium at frequencies between 10−4 and 10−1 Hz.
Power spectra are used to look at fluctuations in the compo-
nents of the magnetic field at high frequencies over a wide
range of latitudes. Results show steady turbulence in the
polar regions of the Sun and a more varied environment in
the equatorial region. The magnetic field fluctuations exhibit
anomalous scaling at high frequencies. Various models have
been proposed in an attempt to better understand the scaling
nature of such fluctuations in neutral fluid turbulence. We
have used the Ulysses fast latitude scan data to perform a
wide ranging comparison of three such models on the solar
wind magnetic field data: the well-known P model, in both
its Kolmogorov and Kraichnan forms, the lognormal cascade
model and a model adapted from atmospheric physics, the
G infinity model. They were tested by using fits to graphs
of the structure function exponents g(q), by making a com-
parison with a non-linear measure of the deviation of g(q)
from the non-intermittent straight line, and by using extended
self similarity technique, over a large range of heliolatitudes.
Tests of all three models indicated a high level of intermit-
tency in the fast solar wind, and showed a varied structure in
the slow wind, with regions of apparently little intermittency
next to regions of high intermittency, implying that the slow
wind has no uniform origin. All but one of the models per-
formed well, with the lognormal and Kolmogorov P model
performing the best over all the tests, indicating that inho-
mogeneous energy transfer in the cascade is a good descrip-
tion. The Kraichnan model performed relatively poorly, and
the overall results show that the Kraichnan model of turbu-
lence is not well supported over the frequency and distance
ranges of our data set. The G infinity model fitted the re-
sults surprisingly well and showed that there may very well
be important universal geometrical aspects of intermittency
over many physical systems.

Correspondence to:C. Pagel (c.pagel@ic.ac.uk)

1 Introduction

Kolmogorov’s (1991a) derived hypotheses for a homogene-
ous, isotropic flow (K41 theory) form the basis of a large
body of research into the statistical characteristics of turbu-
lent systems. More recently, it has become clear that the ve-
locity fluctuations in many turbulent flows do not scale as
predicted by K41 theory, i.e. they show anomalous scaling
(see Frisch, 1995, for a comprehensive fluid dynamical re-
view). Such systems are then often described as exhibiting
intermittent turbulence. However, the causes or mechanisms
for such anomalous scaling are far from clear, and there exist
several models or theories attempting to achieve a better un-
derstanding of such flows. One popular approach is that of
generating intermittency via an inhomogeneous energy trans-
fer cascade, with different models distributing energy dif-
ferently through the cascade. These models are then tested
against available data (for instance, Meneveau and Sreeni-
vasan (1987a,b); Borgas (1992) for neutral fluids and Ruz-
maikin et al. (1995); Marsch and Tu (1997); Horbury and
Balogh (1998) for the solar wind). We will use two such
models in this paper (see Sect. 5.1). Currently, there is no
dominant model, so there is no consistent way of quantifying
intermittency in a system.

The defining parameter controlling turbulence in a flow
is the Reynolds number, defined as the ratio of inertial to
viscous forces,LV /ν, whereL andV are the characteristic
length scale and velocity of the fluid andν its kinematic vis-
cosity. The solar wind is an environment particularly suited
to studying these phenomena since it displays fully devel-
oped intermittent turbulence at higher Reynolds number than
can be achieved in laboratory flows: the highest recorded
laboratory Reynolds numbers so far is 23000, achieved at
the National Aerospace Facility whereas, with a kinematic
viscosity approaching zero, the kinematic Reynolds number
in the solar wind is approaching infinity. In magnetohydro-
dynamic (MHD) systems, a magnetic Reynolds number can
also be defined, analogous to its counterpart in neutral fluid
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Fig. 1. Comparison of power at 10−4 Hz between the N component
and magnitude of the magnetic field. The power has units nT2/Hz2.
There is a similar difference for the radial and tangential compo-
nents.

turbulence, asLV /η∗, whereη∗ is the magnetic diffusivity.
In the solar wind, this parameter is as high as 1010 (Hor-
bury, 1996). Recent studies into solar wind turbulence have
been conducted by Roberts et al. (1987); Kraichnan (1990);
Marsch and Liu (1993); Carbone (1993); Feynman and Ruz-
maikin (1994); Tu and Marsch (1995); Velli and Prunetti
(1997); Horbury et al. (1997b); Horbury and Balogh (1998).
With the launch of the Ulysses satellite ten years ago, it has
been possible to obtain an extremely accurate picture of the
solar wind, in particular, its magnetic field fluctuations over
a long period of time and a wide range of heliolatitudes.

Using the statistical techniques associated with turbulence
and intermittency on this data set, we hope to further inves-
tigate both the nature of these fluctuations in the magnetic
field and their scaling behaviour. In Sects. 2 and 3, brief
overviews of structure function analysis and the solar wind
are given respectively. In Sect. 4, the fast-latitude scan results
using power spectral analysis are presented, while Sect. 5
deals with the analysis of intermittency using structure func-
tion analysis, and includes a description of the intermittent
models used. Sect. 6 analyses the results of Sect. 5 with ref-
erence to solar wind speed, and finally, Sect. 7 discusses the
conclusions of this study.

2 Statistical methods for studying fluctuations

Power spectra are probably the most familiar way of
analysing scaling properties in a system, particularly in tur-
bulence. In systems where the fluctuations are Gaussian, they
completely characterise their nature, however, in cases where
the underlying probability distributions have a different be-
haviour, higher order moments are needed to characterise the
scaling properties of the fluctuating field. In this sense, struc-
ture functions provide a better alternative to power spectra,

since they pick up on a fuller range of statistics, while still
providing the information given by spectra through a for-
mal equivalence of the second order structure function with
a power spectrum (see below). A quick overview of struc-
ture functions is given. For a more detailed introduction, see
Frisch (1995).

A structure function of orderq, for a time seriesx(t), is
defined as follows:

S(q, τ ) = 〈|x(t + τ) − x(t)|q〉 (1)

whereτ represents the time lag between points, and the〈〉

represent time averages. Absolute values for the structure
functions have been used here since they give better sta-
tistical convergence and also ensure that odd and even or-
der functions have the same large-scale saturation behaviour
(Vahnstein et al., 1994; Grossmann et al., 1997). Certainly,
the use of absolute values is now customary in solar wind in-
termittent studies (Marsch and Liu, 1993; Ruzmaikin et al.,
1995; Tu and Marsch, 1995; Horbury et al., 1997b; Horbury
and Balogh, 1998; Veltri, 1999).

In a system exhibiting scaling, structure functions have a
power law dependence:

S(q, τ ) ∼ τ g(q). (2)

There is an equivalence between the second order struc-
ture function and the power spectrum: ifS(2, τ ) has in-
dexg(2), then the power spectrum will have indexα where
α = −g(2) −1. If no intermittency is present, then the struc-
ture function index is linear with the order, i.e.:

g(q) = aq (3)

wherea is a constant. In fact, in Kolmogorov turbulence,
a = 1/3 (Frisch, 1995). However, in an intermittent system,
g(q) flattens out for largerq and linearity is lost.

In classical turbulence, the power spectrum index for
the velocity function under isotropic, homogeneous, incom-
pressible fluid conditions is−5/3, and the corresponding
second order structure function index is 2/3 (from Kol-
mogorov, 1991a,b). This is still largely the case in intermit-
tent systems since the corrections to these values are very
small for such low orders of the structure function, but any
corrections will increase the absolute value of both the struc-
ture function and spectral index.

In both intermittent and non-intermittent turbulence, the
third order structure function should theoretically scale with
the separation inside the inertial range (the range of frequen-
cies where the dominant process is energy transfer and not
energy injection or dissipation):

S(3, τ ) ∼ τ. (4)

This relationship has led to the idea ofextended self-
similarity, where instead of plotting the structure functions
againstτ , they are plotted against the third order structure
function instead. This has been hypothesised to give an ex-
tended scaling regime for the time series, both further into
the dissipation region (Stolovitzky and Sreenivasan, 1993;
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Carbone, 1994; Sain and Bhattacharjee, 1999) and into the
large-scale region (Grossmann et al., 1997). This will be con-
sidered further in Sect. 5.3.

3 The solar wind

Over the last thirty years or so, the solar wind has been ex-
tensively studied with the statistical techniques used for neu-
tral fluid turbulence, beginning with Coleman (1968) and
Belcher and Davis (1971), whereupon it has been found to
be a highly turbulent system. Most of these turbulent fluc-
tuations are thought to be due to Alfvén waves propagat-
ing outwards from the sun. For details of the Alfvénic na-
ture of solar wind turbulence, see the reviews by Roberts
et al. (1987); Burlaga (1995); Goldstein and Roberts (1995);
Tu and Marsch (1995); Bruno (1997), and Goldstein and
Roberts (1999). Alfv́en waves are the incompressible wave
mode of ideal MHD plasmas, and are characterised by:

δv ∼ δB (5)

so that the magnetic field fluctuations are in direct correla-
tion with those of the velocity field. This correlation gener-
ally holds in the fast solar wind, but breaks down in the slow
wind (see, for instance, Roberts et al., 1987). Therefore, the
analysis presented here of magnetic fluctuations in the solar
wind is not any type of absolute guide to the nature of the ve-
locity fluctuations and the dynamical turbulence. However,
the power spectra of the magnetic field at high frequencies
indicate a turbulent process and similarly, the structure func-
tion analysis highlights the anomalous scaling of these fluc-
tuations (see also Feynman and Ruzmaikin, 1994), so they
are worthy of study in their own right.

The Ulysses satellite was launched in 1990 and with a
gravity assist from Jupiter, the satellite entered a near po-
lar orbit of the Sun (for more on the Ulysses mission, see
Balogh et al., 1992). It is the only satellite to have studied
the poles of the Sun and the information it gives, with re-
spect to the range of heliolatitudes it covers, is invaluable.
From September 1994 to June 1995, it covered heliolatitudes
from 80o S to 80o N, a period known as thefast-latitude scan
(Balogh and von Steiger, 2001). The results presented in this
paper concentrate on this scan, specifically the vector com-
ponents of the magnetic field in RTN coordinates, where R
is the radial component directed away from the Sun, T is the
tangential component and is the vector product of the Sun’s
rotation vector with the R direction, and N is the normal di-
rection completing the right-hand orthogonal set. It is hoped
that an overview of the processes in the solar wind can be
gained: most studies so far have concentrated on a few par-
ticular sets of data, each lasting from between a few hours
to a few days, e.g. Ruzmaikin et al. (1995); Horbury et al.
(1996, 1997b). To give a feel for how the solar wind be-
haviour changes with latitude (at solar minimum), the data
was split into segments corresponding to degrees of heliolat-
itude instead of equal periods of time.
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Fig. 2. Spectral indices. The three plots show the power spectral
indices for each component of the magnetic field, against heliolati-
tude. The horizontal lines are drawn at the mean values of the index
in the two regions of fast wind, and the slow wind region at the
equator.

Note that at these time scales (between 1 and 3 days), so-
lar wind data is normally considered to be weakly stationary
(Goldstein and Roberts, 1995; Tu and Marsch, 1995), i.e. the
time series increments are dependent only on the time lag
between them and not on the time the measurements were
taken. However, it should be noted that we did not test each
time interval we used for stationarity, since the application
of such criteria, in general, is not easy and we are using a
wide range of separate time series. Nor did we perform any
additional selection on the basis of features in the data, such
as shocks. However, there were very few shocks or CMEs
recorded over the fast-latitude scan, and more than one shock
in an interval would be needed to greatly affect the resulting
power spectrum (Matthaeus and Goldstein, 1982). Ulysses
data has few data gaps, but those that were there were filled
using linear interpolation.

During the fast-latitude scan, Ulysses’ distance from the
Sun varied between 1.3 and 2.4 AU. At these distances solar
wind turbulence is not fully developed, and the inertial range,
especially over the polar regions of the Sun, is quite small
(Horbury et al., 1996; Horbury and Balogh, 1998). With this
in mind, this study is restricted to relatively high frequency
observations of the magnetic field, from 10−3.5 Hz to 10−2

Hz, using power spectra, and a maximum time interval of
300 seconds using structure function analysis. This guar-
antees that we are firmly inside the inertial range (see also
Bavassano et al., 1982; Goldstein and Roberts, 1995, 1999).

4 Results: power spectra

The magnetometer data from the fast-latitude scan was anal-
ysed per degree of heliolatitude, from−79◦ to +74◦, with a
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Table 1. Spectral index means and their standard errors in the dif-
ferent solar wind regions: southern solar wind from−79o to −19o,
equatorial region from−20o to 20o and the northern solar wind
from 21o to 74o

Component S. Wind Eq. Region N. Wind

R −1.68 −1.83 −1.66
T −1.74 −1.81 −1.73
N −1.74 −1.80 −1.72

Component Standard Error in Each Region

R 0.004 0.008 0.003
T 0.004 0.008 0.003
N 0.004 0.008 0.004

resolution of 10 seconds. Throughout the scan, the power in
the magnitude is much less than in the other components (see
Fig. 1), indicating that most of the fluctuations are incom-
pressible and, hence, indeed Alfvénic (Belcher and Davis,
1971; Goldstein and Roberts, 1999). Given the large range
of latitudes we are using, this paper will concentrate only on
the magnetic field components, and not on the magnetic field
magnitude which displays different characteristics. The data
from latitudes−78,−72,−50 and−9 were discarded since
the data over these periods was unreliable. For each degree of
heliolatitude, this gives between 8640 and 25920 data points.
The power spectra for each of the components of the mag-
netic field were estimated using a fast-Fourier transform with
Thomson multi-tapering (see Percival and Walden (1993)
and Denison et al. (1999) for more details on this technqiue).
For each degree of heliolatitude, the scaling exponentα was
calculated for the inertial range:E(f ) ∼ f −α. The results
for the entire fast-latitude scan are shown in Fig. 2.

The fast wind region shows a steady turbulent index, with
spectral index slightly higher than the Kolmogorov value, ex-
cept for the radial component which is very close to−5/3.
The slow wind, however, shows a clear dip in the spectral
gradient (see Table 1 for the actual mean values). Bavas-
sano et al. (1982) analysed Helios data in a frequency range
of 10−4 to 10−2 Hz of the magnetic field component, at
the edges of high speed streams at low latitudes. They
found for data at 0.89AU an average spectral index of about
−1.65± 0.2, which, while lower, does not contradict the re-
sults presented here.

The central region has a steeper gradient, indicating a
somewhat different environment in the equatorial region at
these frequencies. Since we are interested in changes in the
spectral index, we need some measure of how significant
the above dips in the mean index are. To do this, we have
taken the average deviation from the mean over the whole
range of heliolatitudes, 1/n

∑n
i=1 |xi − x|. We express this

as a percentage of the maximum range of the actual index
values,xmax − xmin, and use it as a base measure of vari-
ability. Then, we have averaged the two values of the mean
index in the fast wind for each component, and taken the dif-

Table 2. Percentage variation of the spectral index means of the
magnetic field components between fast and slow wind compared
with the base variation across all heliolatitudes

Component Variability (%) Diff. in Means (%)

R 15 33
T 9 14
N 13 19

ference between this value and the mean in the slow wind:
(mf1 + mf2)/2 − ms , wherems is the mean spectral index
in the slow wind, andmfi

is the mean index in the two re-
gions of fast wind. We calculated this number as a percentage
of the maximum range for each component of the magnetic
field. The results of this are shown in Table 2, with all per-
centages rounded to the nearest whole number. The drops
seen in the spectral index are significant for all the compo-
nents of the magnetic field. Tu and Marsch (1995) estimated
the spectra of Els̈asser variables using Helios data, and in the
frequency range 10−4 to 10−3 Hz found an average index for
the radial component of−1.64 in fast wind and of−1.7 in
slow wind, for outward propagating Alfvén waves. While
this is obviously not the same as looking only at magnetic
data as we are doing, it does suggest that there are processes
in the equatorial region which act to steepen observed spec-
tral indices.

The transition is particularly evident for the radial com-
ponent probably because this aspect of the magnetic field
is more susceptible to compressive fluctuations in the so-
lar wind which are prevalent in the equatorial region, where
most solar activity is taking place. It is also clear that the
spectral index of the radial component of the field is signif-
icantly different from the perpendicular components of the
magnetic field.

The differing behaviour of the high and low frequency
contributions to the fluctuations was also analysed (see
Fig. 3). This frequency cut-off at 10−3.5 Hz is in agreement
with previous results (Bavassano et al., 1982; Smith, 1989;
Horbury, 1996; Velli and Prunetti, 1997). In the fast wind,
the low frequency spectra have a reasonably stable index of
−1, indicative of the energy-injection scale (Matthaeus and
Goldstein, 1986; Smith, 1989; Smith et al., 1995; Horbury
et al., 1997a), whereas in the slow wind, the index drops
sharply towards−2. Clearly, the low frequency fluctuations
in the solar wind display more variability and also have more
power than the high frequency range we have concentrated
upon in this study. For more detail on the low frequency re-
gion of the fluctuations, see Burlaga’s book (1995).

5 Results: intermittency

One way of looking for intermittency in the solar wind is to
look at the deviation from linear behaviour of a plot ofg(q)

vs. q. An example (see Fig. 4) of one such plot taken in
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Fig. 3. High and low frequency gradients. Spectral indices for fre-
quencies above 10−3.5 and below 10−3.5 Hz. Only the R and T
components of the magnetic field are shown here, but the normal
component is similar.

the southern polar fast wind shows clear intermittency in the
solar wind.

The Ulysses magnetic field data was analysed using struc-
ture functions. Time lags of 10 seconds and multiples of 10
seconds were used up to a maximum time lag of 300 sec-
onds. Note that using multiples of 10 seconds gives greater
detail than the more traditional method of using steps taken
in jumps of 2n seconds, although admittedly, in our relatively
small time range, this is necessary. The range was chosen to
keep within the small-scale inertial range identified by Hor-
bury (1996; 1997b). The structure functions up to order five
were calculated for each degree of heliolatitude; higher or-
ders would become too unreliable for data sets of the length
that we were using (Horbury, 1996; Marsch and Tu, 1997;
Horbury and Balogh, 1998). Their scaling index was cal-
culated with respect to the time lag, i.e.g(q) in Equation
2. The data from heliolatitudes−78, −72, −50 and−9 has
again been discarded.

To try to understand this scaling behaviour, various mod-
els have been proposed which attempt to model the fluid pro-
cesses. These models are based on some hypothesised aspect
of the flow, and the predicted structure function index equa-
tion for g(q) is calculated and tested against the data. There
are two main constraints which need to be built into turbulent
intermittency models: firstly, in the limit of zero intermit-
tency, the proposed model forg(q) needs to revert back to
the K41 version, namelyg(q) = q/3, and secondly, models
must fulfill the criteria thatg(3) = 1 (see Eq. 4). The only
exception to this rule is if the intermittency model is based
on the Kraichnan (1965) modification to K41 theory, namely
Kraichnan’s attempt to add magnetic field effects to the Kol-
mogorov fluid theory (KI65 theory). In this case,g(q) = q/4
andg(4) = 1 are the constraints on the models.

As mentioned above, Horbury and Balogh (1998) high-
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Fig. 4. The straight line in the above graph represents the non-
intermittentg(q) = q/3 case, while the curved line shows theg(q)

curve for the solar wind, along with associated error bars from fit-
ting a straight line to the individual structure functions of different
orders. It is clearly intermittent since it deviates significantly from
the non-intermittent linear relationship. Note that the corrections
to g(q) = q/3 are positive forq < 3 and negative forq ≥ 3, in
agreement with Vahnstein et al. (1994).

lighted the problems involved in using structure function
analysis with regard to using high order statistics. The data
sets used in this study are not long enough to justify using
more than five orders of magnitude and so we are attempting
to distinguish between different models on the basis of model
fits to five data points. It is hoped that studying the fits over
the entire range of heliolatitudes will help in this task. For
instance a good model should show a relatively stable level
of intermittency in the fast wind.

Another measure of the model fits is to look at the in-
termittency without the use of any model at all. Structure
functions and their anomalous scaling have been looked at
before, but either models are used to try to quantify the inter-
mittency (see above for examples) or else no quantification
is attempted (e.g. Marsch and Liu, 1993). We have tried to
introduce such a quantification in order to have something
to test the models against on a very basic level. As Marsch
and Liu (1993) state, “multifractality is not a directly mea-
surable quantity but merely a mathematical concept”. There-
fore, an independent measure means a quantification of the
non-linearity of the structure function index curveg(q), i.e.,
its deviation from the non-intermittentg(q) = q/3 case.
Since all the models to be studied are tested by their abil-
ity to replicate the observedg(q) curves, i.e. the observed
deviation from the straight line, using an independent mea-
sure of this deviation is a reasonable check to perform on the
model fits. To do this, we have used the simplest way of mea-
suring the deviation, where for each degree of heliolatitude,
the ‘nonlinearity’ measure

∑
q(|g(q)−q/3|), the sum of the

vertical differences, is used.
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5.1 Intermittency models

Three models were studied closely over the whole range of
data. It should be noted that these models were not de-
signed to be applied to magnetic field fluctuations, and in-
deed one model was not meant for any type of fluid data
at all. However, given that we have yet to understand the
mechanisms behind intermittency in the magnetic field, and
the corresponding scarcity of intermittency models formu-
lated for precisely this system, we can make use of intermit-
tency models already available which have proven successful
in other systems. As we shall see below, all the models prove
relatively successful in modelling the magnetic field fluctua-
tions.

The models were selected on the basis of their goodness
of fits over the range of heliolatitudes. On these grounds, the
She-Leveque model (SL model) is not included in this paper,
as it did not yield good results. It has two forms, a 1D form
(6) and a 2D form (7), shown below:

g(q) =
q

9
+ 2

(
1 −

(2

3

)q/3)
(6)

g(q) =
q

9
+ 1 −

(1

3

)q/3
(7)

It also has a Kraichnan form which is not shown here. This
model has been used extensively (for example, Politano and
Pouquet, 1995; Marsch and Tu, 1997; Horbury and Balogh,
1998; Ching, 2000), and these authors have found the SL
model to give good fits, especially the 2D version, which
assumes sheet-like structures in the solar wind. The same
calculations were made for the SL model as for the other
models used in this study. Its fit to the data was consistently
worse over the whole range of heliolatitudes than the fits of
the other models. A more theoretical consideration is its lack
of a free parameter. Given that the model has no such param-
eter, it essentially assumes uniform intermittency throughout
the solar wind. This is akin to saying that all intermittency
is the same (once its geometry has been chosen to be 1D or
2D), and that it is an ‘on/off’ condition, whereby a flow ei-
ther is intermittent or it is not. However, looking at the data
below, this does not seem to be a good description of the so-
lar wind over the whole range of latitudes, where variations
in the level of intermittency of the flow are evident. Poli-
tano and Pouquet (1995) suggested that the model works well
only when far away from the Sun, where the solar wind has
become more homogeneous and the turbulence fully devel-
oped. It is possible that the model is simply not suitable for
such a wide ranging scan relatively close to the Sun. How-
ever, despite the above justifications for its exclusion here,
the support given to the SL model by others should justify a
separate study into the SL model over the fast-latitude scan,
but such a study would be too extensive to be included here.

5.1.1 P models

We studied two variations of the P model, one based on
K41 theory and the other on the Kraichnan theory (from

now on, these two models will be referred to as the PK41
and the PK65 models, respectively). The P model, in-
troduced by Meneveau and Sreenivasan (1987b), uses the
framework of the Richardson cascade, where energy is trans-
ferred through the scales by the breaking up of larger eddies
into smaller eddies and so on. In the K41 framework, the
energy given to daughter eddies is equal, making energy dis-
tribution throughout the flow homogenous. In the P model,
a proportionp of the energy is transferred to one daugh-
ter eddy, with 1− p going to the other daughter. Clearly,
p = 1/2 gives back the K41 theory, andp = 1 provides
maximum intermittency. So essentially the energy dissipa-
tion through the cascade follows a binomial-type distribution
with a constant parameter.

The predicted structure function equations for these mod-
els are as follows:
K41:

g(q) = 1 − log2(p
q/3

+ (1 − p)q/3), (8)

KI65:

g(q) = 1 − log2(p
q/4

+ (1 − p)q/4). (9)

Note that for Eq. 8,g(3) = 1 while in Eq. 9,g(4) = 1
and both equations give back the expected non-intermittent
linear functions whenp = 1/2. This model has proven to
be popular and successful over several varied data sets, with
many people finding it among the best models available at
the moment (Borgas, 1992; Burlaga, 1995; Tu and Marsch,
1995; Horbury, 1996; Marsch and Tu, 1997; Horbury and
Balogh, 1998).

5.1.2 Lognormal model

This model, introduced by Kolmogorov in 1962 (Frisch,
1995; Burlaga, 1995), also uses the concept of the turbu-
lent cascade, but now the inhomogeneity of energy trans-
fer is not constant throughout the flow but varies with each
scale. Here, the energy flux,ε, from one scale to the next
is multiplied by an independent realisation of a random vari-
ableW at each level, whereW follows a lognormal distri-
bution, i.e. W = 2−m wherem is Gaussian, and〈W 〉 = 1.
Therefore, if at the 1st level ε = ε1, then at thenth level,
εn = ε1W1 . . .Wn.

The predicted structure function exponents for this model
have the following form:

g(q) =
q

3
+

µ

18
(3q − q2) (10)

whereµ = 0 gives back the non-intermittent K41 frame-
work. The lognormal model has not proved to be popular,
despite giving good fits to data (Burlaga, 1995) since it has
two theoretical problems: it violates a theoretical inequality
introduced by Novikov (see Frisch (1995) for details) and,
often considered more important, it implies supersonic ve-
locities at high Reynolds numbers, not seen in laboratory or
atmospheric flows. However, as we are dealing with the so-
lar wind, which is supersonic, the latter is less of a problem
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Fig. 5. Nonlinearity,
∑

q (|g(q)−q/3|), of the radial and tangential
components of the solar wind magnetic field. Horizontal lines rep-
resent means in the two sections of fast wind and in the equatorial
region.

in this study, while the precise relevance of the Novikov in-
equality to the solar wind components of the magnetic field
has yet to be considered. Let us also note for the sake of clar-
ity that a spatial lognormal distribution of the magnetic field
has been put forward as an explanation for the low-frequency
1/f spectrum (Matthaeus and Goldstein, 1986). However,
this is a different issue from the lognormal model proposed
here, which deals with the distribution of the energy dissipa-
tion through a turbulent cascade.

5.1.3 G-infinity model

This model is adapted from one looking at intermittency in
atmospheric humidity fluctuations, introduced by Pierrehum-
bert (1999) and later used by Cho et al. (2000). The original
model was not intended for fluid dynamics, and, in particu-
lar, not for a turbulent system. Pierrehumbert was looking
at self-similarity in cloud variability in the outgoing long-
wave radiation obtained from satellite measurements. The
model he formulated is an empirical model, chosen to best fit
the data he was using as opposed to attempting to model the
system theoretically. It has the following structure function
exponent equation:

g(q) =
aq

1 + aq/g(∞)
(11)

wherea is thought to characterise the smoothness of the time
series, whileg(∞) characterises the intermittency. Assum-
ing that there are aspects of intermittency which are univer-
sal across different systems, we adapted the model above for
turbulence by simply adding in the turbulent constraint that
g(3) = 1, reducing to the following one-parameter model:

g(q) =
g(∞)q

3g(∞) − 3 + q
(12)
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Example of model fits to structure function g(q) curve  at −57o 

Fig. 6. An example of the 4 model fits to an observedg(q) curve
in the fast wind at−57◦. The solid line represents the observed
g(q) curve for structure functions taken with time lags 10 s to 300 s
with associated error bars. The dashed lines represent the best-fit
intermittent model predictions to that curve for the two versions of
the P model, lognormal model and G-infinity model.

This conforms to the constraint thatg(q) = q/3 wheng(∞)

→ ∞ with zero intermittency. We call this model the G-
infinity model for ease of reference, sinceg(∞) is the only
free parameter. Again, we emphasise that this model is em-
pirical and has no theoretical underpinning, unlike the multi-
plicative cascade models. Hence, if it were to give a reason-
able fit to the data, it could indicate that the dominant process
in intermittency is independent of the system it manifests it-
self in.

5.2 Model fits

Before we look at the model fits to the data for each of the
models, we first present the results of the non-linearity mea-
sure in Fig. 5. All the results in this section are shown for the
radial and tangential components of the magnetic field, since
the tangential component can be taken as representative of
the normal one.

Although the non-linear measure is noisy, there is still a
noticeable dip in the mean in the equatorial region, indicat-
ing an overall reduction in intermittency in this region. The
model fits should mirror this behaviour to some extent, and
should also be less noisy.

Each of the models from the previous section was fitted to
the structure function index curve for each degree of helio-
latitude (Fig. 6). The fits are calculated by varying the free
parameter in the model in jumps of 0.01 and then picking
the parameter which minimises the least-squares fit value,∑

q(g(q)−x(q))2, wherex(q) represents the observed value
of the structure function indices andg(q) represents the
model prediction for those indices. The fits for each degree
of heliolatitude are then characterised by the best-fit param-
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Fig. 7. Best-fit parameters for each of the models for the tangential
component of the magnetic field plotted against heliolatitude. The
horizontal lines represent the means in the different solar wind re-
gions. Remember that higher G-infinity parameters corresponds to
lower intermittency.
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Fig. 8. Best-fit parameters for each of the models plotted against
heliolatitude, for the radial component of the magnetic field. The
horizontal lines represent the means in the different solar wind re-
gions.

eter and the least-squares goodness of fit value.
The best-fit parameter for each model and its correspond-

ing goodness of fit (in the least-squares sense) were plotted
against the heliolatitude. Figures 7 and 8 show the best-fit
parameters while Figs. 9 and 10 show the corresponding
goodness of fit.

Again, the horizontal lines represent the parameter means
in the distinct solar wind regions (see Tables 3 and 4 for
actual values). The parameters in each case correspond to
the p-value,µ-value andg(∞) value in the best-fit predicted
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Fig. 9. Least-squares goodness of fit value for the models plotted
against heliolatitude for the tangential component of the magnetic
field.
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Fig. 10. Least-squares goodness of fit value for the models plotted
against heliolatitude for the radial component of the magnetic field.

g(q) curve. All the models show consistency across the ra-
dial and tangential components, and all indicate an increase
in intermittency in the northern fast wind, but only for the
radial component, an effect mirrored in the non-linear data
suggesting it is a real phenomenon.

In all models, although less so in the lognormal one, the
equatorial region is clearly distinguishable and the mean in-
termittency drops sharply, particularly in the P and G infin-
ity models. The change is more marked than in the non-
linear analysis, and also the values in the fast wind are more
steady. Certainly the goodness of fit in the equatorial region
also changes, becoming markedly worse in the PK65 model.
The lognormal and PK41 models seem least affected by the
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Table 3. Table of intermittency parameter means for the 4 models
for the radial and tangential components of the solar wind magnetic
field. R and T postscripts indicate radial and tangential component
data, respectively. The three regions are southern solar wind, low-
latitude solar wind (equatorial region) and northern solar wind

Parameter S. Wind Eq. Region N. Wind

PK41R 0.89 0.79 0.91
PK41T 0.89 0.81 0.89
PK65R 0.84 0.72 0.87
PK65T 0.87 0.75 0.86
LNR 0.77 0.55 0.83
LNT 0.76 0.57 0.74
GINFR 2.4 4.4 1.9
GINFT 2.1 4.1 2.1

change, but in general, there seem to be areas in the slow
wind where intermittency drops to almost zero, although this
is not mirrored as sharply in the non-linearity analysis, so we
should be wary of these sudden drops.

In looking at the steadiness of the intermittency parameter
in the fast wind, all the models except the PK65 one perform
reasonably well, and all the models are unanimous in indi-
cating a very high general level of intermittency. Again, to
study the significance of these values and the changes in the
slow wind, it is better to look at percentage changes in the
means in the different regions (see Sect. 4 for details on how
these are calculated) compared to the percentage variation
over the whole range of latitudes (see Table 5), than to try
to tease out any direct error values (especially since structure
function indices often have very low direct errors, Horbury
and Balogh, 1998). Similarly, the goodness of fit criteria do
not have a direct impact on this variation, except in the PK65
model, where the fits becomes much worse in the equatorial
region. We see that the mean drops are significant for all the
models, except perhaps the lognormal model, which is on the
borderline.

Marsch and Liu (1993) studied solar wind fluctuations in
the inner heliosphere, looking at both proton velocity and
Alfv én velocity. They point out that at these distances (up
to 1AU), solar wind turbulence is often not fully developed,
whereas the turbulence assumed by intermittency models is
fully developed. They assumed that their data were, how-
ever, still relevant to questions of intermittency. The data we
present here is further from the sun than the Helios data they
used, but the question of developed turbulence is still perti-
nent, and part of the reason for using high frequency data and
restricting ourselves to a maximum 300 s time lag is to min-
imise the problems of using an undeveloped turbulent data
set. Marsch and Liu (1993) found that the structure func-
tion analyses for the Alfv́en velocity (and hence, the mag-
netic field) in the fast wind displayed less deviation from the
Kolmogorov straight line than the same criteria in the slow
wind, although they were only comparing a few sets of data.
It should also be noted that our results deal with higher fre-

Table 4. Mean goodness of fit in the least-squares sense in each
solar wind region for each model given to 2 dp

Parameter S. Wind Eq. Region N. Wind

PK41R 0.06 0.10 0.07
PK41T 0.03 0.05 0.03
PK65R 0.08 0.44 0.03
PK65T 0.08 0.31 0.07
LNR 0.04 0.07 0.05
LNT 0.02 0.04 0.02
GINFR 0.08 0.13 0.05
GINFT 0.05 0.06 0.04

quencies than those of Marsch and Liu.
Tu et al. (1996) used an extended P model developed for

undeveloped turbulence in order to study intermittency in
magnetic field fluctuations, again using Helios data. They
found that while the intermittency for solar wind velocity
seemed similar in fast and slow speed streams, the same
could not be said for the components of the magnetic field.
Instead, they found that while the intermittency in the fast
wind was relatively stable, the intermittency parameter for
the magnetic components in the slow wind varied a great
deal, from relatively low values to very high ones, most no-
tably in the radial component. Even though they used only
a few data sets (3 from slow wind, 2 from fast wind) and
their structure function time lags extended over a greater pe-
riod than ours (from 81 s to 2500 s), we feel that the results
presented here support those found by Tu et al. (1996).

Sorriso-Valvo et al. (1999) looked at bulk solar wind ve-
locity and magnetic field intensity using Helios data to anal-
yse the probability distribution functions (PDFs) of the fluc-
tuations while investigating intermittency. They used time
scales from 81 s to 1 day to analyse the data, and consid-
ered fast and slow streams separately, although all data orig-
inated from the equatorial region. They found scaling for
the time interval region between 81 s and around 200 s, and
considered intermittency in this range, which falls within the
structure function time ranges used here. Their results in-
dicated that the intermittency in the magnetic field intensity
was roughly the same for both slow and fast wind. It seems
reasonable to conjecture that perhaps there is more than one
type of ‘slow wind’, with one type having almost zero in-
termittency and the other types being as intermittent, if not
more so, than the fast wind.

Ruzmaikin et al. (1995) studied fluctuations in the mag-
netic field using Ulysses data far from the Sun (at 3.9 AU),
and concentrated on high frequency data with time scales
from 60 s to 3600 s. They also found a very high level
of intermittency in the solar wind, but their data correlated
well with the Kraichnan model of turbulence, unlike ours.
However, Horbury and Balogh (1998) later argued that their
results were suspect because of the high orders of structure
functions used.

Marsch and Tu (1997) also looked at Alfvén velocity fluc-
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Table 5. Percentage variation of the means between fast and slow
wind compared with the base variation across all heliolatitudes for
intermittency parameters. Percentages have been rounded to the
nearest integer

Model Variability (%) Diff. in Means (%)

PK41R 14 21
PK41T 11 16
PK65R 24 27
PK65T 19 24
LNR 14 15
LNT 13 14
GINFR 16 25
GINFT 13 22

tuations using absolute structure functions, but with time lags
of 1 s to 105 s, using Helios data at 0.87 AU, and found that
intermittency appeared to increase at smaller scales. They fit-
ted the P model to their data for velocity fluctuations, finding
a p-value of 0.7 – 0.8. While this cannot be directly com-
pared with our results for the magnetic data, it does suggest
that the solar wind is a highly intermittent medium.

Horbury et al. (1996) looked at fluctuations in the mag-
netic field components using Ulysses data, at a distance of
4 AU. They used absolute value structure functions to study
the data, using time lags of 10 s to 2 days, but split these
time scales into three sections, with their small-scale re-
gion encompassing time lags of 80 s to 320 s, correspond-
ing to the time lags considered in this study. They found that
these small-scale fluctuations were “significantly intermittent
across all components”, agreeing with our results. Horbury
and Balogh (1998) also used absolute structure functions to
study magnetic field fluctuations with time lags from 20 s
– 200 s, using the Ulysses data set. They found that the P
model fitted their data best, and found a p-value of about 0.8
for these high frequency observations. An earlier study by
Horbury et al. (1997b) found again thatp ∼ 0.8.

Burlaga (1995) studied intermittent fluctuations in solar
wind velocity and magnetic field magnitude at 8.5AU and
at large time scales, with lags from 0.85 hrs to 13.6 hrs, and
found a p-value of about 0.7. However, given the difference
between his data and the data considered here, it is possible
that his data was sampling fluctuations of a different nature
compared to the high-frequency ones we are studying here.
Thus, our results should not be compared directly with those
of Burlaga.

In all, the values presented here for the various intermit-
tency parameters show a higher mean value than those of
previous studies, which may well be due to the high frequen-
cies we are studying. Certainly this study has highlighted the
latitudinal variations of the small-scale intermittent features
of the solar wind magnetic field in greater detail than has
been achieved before, using the Ulysses fast-latitude scan.

The values ofg(3) andg(4) over the whole range of lat-
itudes were also considered (see Fig. 11). On this basis, it
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Fig. 11. Values ofg(3) andg(4) vs. heliolatitude taken for time
lags up to 300s. The dashed line corresponds tog(4) and the solid
one tog(3).

seems that the Kolmogorov description is better sinceg(3) is
more consistently close to 1, with the mean across all helio-
latitudes and all components forg(3) being 0.96± 0.04 and
for g(4) being 1.11 ± 0.06. Verma et al. (1996) looked at
the question of which of the Kolmogorov or Kraichnan de-
scriptions better suited the solar wind, and found that while
it was difficult to decide definitively between them, there
were certain areas in which the Kolmogorov predictions out-
performed the Kraichnan ones. Horbury and Balogh (1998)
also found that for the small-scales they considered, the Kol-
mogorov picture was again the better one. Since the PK65
model shows, in addition, the worst fits and the worst sta-
bility, we have disregarded it in further analysis (although,
as will be mentioned below, the fits of the PK65 model are
not independent of theg(4) value, so its lack of stability is a
more important criterion). However, we stress that this does
not say anything about the possible validity of the Kraichnan
pictures at other frequency ranges, or radial distances from
the Sun.

Furthermore, it should be noted that the value ofg(3) af-
fects the goodness of fit of the actual models to the data. In
general, theg(3) value is less than 1 over the range of the fast
wind regions and more than 1 in the equatorial region. Tu
et al. (1996) found that their extended intermittency model
predicted values ofg(3) to be less than 1 for regions of unde-
veloped turbulence, so perhaps the low values in the fast wind
are a sign that the turbulence there is less developed than in
the slow wind. Velli and Prunetti (1997) found, in general,
that turbulent fluctuations from the poles are often less de-
veloped than those of the equatorial region. This should be
kept in mind when studying the goodness of fit data presented
here, and perhaps it helps to explain the higher values ofg(3)

in the equatorial region. However, we do not know why the
values in this region are generally higher than 1. To see how
the deviation ofg(3) from 1 affects the goodness of fit values,
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Fig. 12. This shows how the deviation ofg(3) from 1 affects the fit
of the intermittency models.
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Fig. 13. This scatter plot shows how the deviation ofg(3) from 1
affects the parameter value of the intermittency models.

see Fig. 12.
It is clear that the fit of the models to the data is highly

dependent on the value ofg(3). There is also a slight correla-
tion between theg(3) value and the actual best fit parameter
value, as shown in Fig. 13, where the intermittency parame-
ter tends to show a slightly greater degree of intermittency for
larger deviations ofg(3) from 1. This has also been shown
by Horbury and Balogh (1998). However, there is no correla-
tion between heliographic latitude and the deviation ofg(3),
as shown in Fig. 14.

So, the differences shown in the parameter values in the
different solar wind regions are still significant, although the
influence of theg(3) value should be noted. In particular, the
strong dependence of goodness of fit ong(3) means that it
is very hard to distinguish between different models on the
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Fig. 14. The histograms here show the occurrence of deviations of
g(3) from 1 in the equatorial region (top plot), and at high latitudes
(bottom plot). Here the equatorial region has been defined to run
from −20o to 20o. Note that there are no significant differences
between the two regions.

basis of their fits, since they all fit very well wheng(3) ∼

1. This may also explain the relatively poor fit of the PK65
model, sinceg(4) is not close to 1 for much of the time,
especially in the equatorial region.

5.3 Extended self-similarity

In both intermittent and non-intermittent turbulence, in the
inertial range, the third order structure function should scale
with the separation:

S(3, τ ) ∼ τ. (13)

This relationship has led to the idea ofextended self-
similarity (ESS), where instead of plotting the structure func-
tions againstτ , they are plotted against the third order struc-
ture function instead. So each index,g(q), is worked out as
the gradient of the log-scale plot ofS(q, τ ) vs. S(3, τ ). This
has been hypothesised to give an extended scaling regime
for the time series, essentially extending the apparent iner-
tial range. Plotting structure functions against the third order
structure function, for velocity fluctuations, has been used
to study the transition region between the small-scale iner-
tial range and the dissipation range (Stolovitzky and Sreeni-
vasan, 1993; Carbone, 1994; Sain and Bhattacharjee, 1999)
and Grossmann et al. (1997) has also studied the scaling be-
haviour between the large-scale inertial range and the low-
frequency regime. Meneveau (1996) has also looked at the
phenomenon of ESS, and is much more cautious about its
abilities to extend the scaling regime in fluid turbulence.
While most interest in ESS has been in neutral fluid turbu-
lence, it has also been of interest in the solar wind turbulence
(for instance, Carbone, 1994; Marsch and Tu, 1997).



324 C. Pagel and A. Balogh: Magnetic fluctuations and their anomalous scaling in the solar wind

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Order of Structure Function, q

S
tr

uc
tu

re
 fu

nc
tio

n 
in

de
x,

 g
(q

)

Example of model fits to structure function g(q) ESS curve: −57o

Fig. 15. The solid line represents theg(q) curve obtained by using
ESS on the data for−57o heliolatitude for structure functions with
time lags 4 s to 300 s. The dashed lines correspond to the three
model fits (PK41, LN and Ginf) to this observed curve. The error
bars ing(q) are added as well.

We have used ESS to study the Ulysses fast-latitude scan
data to see how fitting the models to the ESSg(q) would
compare with the results of the previous section. To look
at the Kolmogorov picture, the structure functions were all
plotted versusS(3, τ ), the third order structure function, and
their indices at that time taken forq = 1 . . . 6, for each de-
gree of heliolatitude. We increased the order to 6 of the struc-
ture functions considered due to the better scaling obtained
by using ESS (see below). Since it has been suggested that
ESS gives a greater penetration into the dissipation range, a
time lag of 4 seconds (the approximate order of the dissipa-
tion scale in the solar wind) was used to study the data in-
stead of the 10 second time lag used when plotting the struc-
ture functions againstτ . The maximum time lag remained
300 s. It should be noted that this proposed extension of the
scaling regime could be due to the trivialq/3 scaling in the
dissipation region, which can be very similar to the structure
function value in the inertial range (Stolovitzky and Sreeni-
vasan, 1993). In terms of actually identifying intermittency,
it does not matter which order of the structure function the
others are plotted against, since any non-linearity would be
visible regardless, but it is important in terms of fitting the
models to the ESS results.

It is apparent that using ESS greatly improves the good-
ness of fit of the models to the data (see Fig. 15). However,
the associatedg(q) error bars are also much smaller, so it is
still meaningful to compare the goodness of fit values for the
individual models. So, similar to the last section, the best-fit
parameter was taken with its corresponding goodness of fit
and plotted for each degree of heliolatitude (see Fig. 16).

Looking at Fig. 17 we see that the fits using ESS have
improved by an order of magnitude. Given the relative size
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Fig. 16. Best-fit parameters of the models using ESS, where the
vertical lines represent the approximate entries and exits into the
equatorial region.
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Fig. 17. The least-squares goodness of fit value of each of the three
different models, using ESS analysis against heliolatitude.

of the error ing(q), there is nothing to choose between them.
Regarding the actual parameter values (see Fig. 16), one of
the first things to notice is that the drop in intermittency in
the equatorial region disappears, leaving only a heightened
variability in its place (see Table 6 for mean values). All the
parameters remain stable in the fast wind, and all still show
a high level of intermittency in the flow, consistent with the
results for time lag. However, the increased intermittency
for the radial component in the northern fast wind has also
disappeared which, given that this was evident in the non-
linear plot, is a significant omission.

Looking back at the correlation between the deviation of
g(3) from 1 and the goodness of fit of the models, it seems
probable that the better fits shown here are due, largely to the
automatic requirement of ESS thatg(3) = 1. Also, since
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Table 6. Table of ESS intermittency parameter means for the radial
and tangential components of the solar wind magnetic field for the
different solar wind regions

Parameter S. Wind Eq. Region N. Wind

PK41R 0.87 0.86 0.87
PK41T 0.89 0.87 0.88
LNR 0.67 0.66 0.67
LNT 0.73 0.70 0.70

GINFR 2.4 2.7 2.3
GINFT 2.1 2.3 2.3

there was a slight correlation betweeng(3) 6= 1 and a high
intermittency parameter, the fact thatg(3) = 1 might also
explain the slightly lower values of intermittency parameter
found in the fast wind regions with ESS. There does not seem
to be any obvious explanation for the difference in mean val-
ues in the equatorial region. In the next section, we will try to
discriminate between the two pictures of intermittency pre-
sented by the time lag analysis and the ESS analysis, but the
ESS should not be preferred by virtue of its better fits given
the dependence ong(3).

6 Comparison with solar wind speed

In order to try to understand more about the intermittency in
the solar wind, particularly the changes seen in the equatorial
region, we compared the data with the solar wind speed (see
Fig. 18). Direct comparison is not very fruitful, so we used a
scatter plot of the data, for example, a scatter plot of the PK41
parameters against solar wind speed in Fig. 19. The differ-
ence between fast and slow wind is immediately apparent,
with fast solar wind exhibiting a uniform high intermittency,
whereas there is no discernible pattern for slow wind, and
a greater range in the intermittent parameter value. To look
at this in more detail, we divided the data into fast and slow
wind regions, with the boundary chosen to be 600 km/s. For
each region, the different model parameters were binned into
twenty bins, and the resulting frequency histograms plotted,
using results for both the radial and tangential components.
This is illustrated in Figs. 20 and 21.

Again, the difference between the fast and slow winds is
marked, with the fast wind displaying steady high intermit-
tency in the magnetic field components, and the slow wind
exhibiting generally lower values of intermittency but also
a much greater range of values: this is particularly notice-
able for the radial component, again probably because the
changes in the equatorial region affect this component the
most. Clearly, this is a sign that different processes are oc-
curring in the fast and slow winds, and also an indication of
the fact that the slow wind is not a single type of structure.
Its origin is not well understood and these results indicate
that there may be different types of slow wind giving rise to
differing levels of intermittency.

The same histogram analysis was performed for the ESS
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Fig. 18. Solar wind speed, averaged over each degree of latitude,
plotted against heliolatitude.
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Fig. 19. Scatter plot of PK41 parameters for the radial and tangen-
tial magnetic field components vs. solar wind speed.

results (see Figs. 22 and 23) as a comparison. Certainly the
differences seen for the time lag magnetic data between the
fast and slow wind regions has all but disappeared, although
the variability in the slow wind has remained, again most
obviously for the radial component. The question is which
of these two analyses, the time lag or the ESS, provide the
best picture? To try to answer this question, we compared
the histograms of the model parameters with the results from
the non-linear analysis performed in the previous section. To
do this across the different parameter ranges and models, all
the histogram data was normalised, usingY = (X − µ)/σ ,
whereµ is the mean andσ the standard deviation for each
parameter in each region. These normalised histograms were
then compared with the equivalent normalised histograms for
the non-linear measure.

These comparisons are shown in Figs. 24, 25, 26 and
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Fig. 20. Frequency histograms for intermittency parameters for the
radial component of the magnetic field. (1) shows the PK41 model –
i.e. thex-axis is the P parameter value andy-axis is the occurrence
frequency in the two regions of solar wind, (2) shows Lognormal
model (i.e. µ parameter) and (3) shows G-infinity model (i.e. the
g(∞) parameter) . The left-hand column represents data taken in
the slow wind, and the right-hand column, data taken in the fast
wind.
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Fig. 21. Frequency histograms for the intermittent parameters for
tangential component of the magnetic field. (1) shows the PK41
model, (2) shows Lognormal model and (3) shows G-infinity model.
The left-hand column represents data taken in the slow wind, and
the right-hand column, data taken in the fast wind.

27. One of the first points to be taken from these histograms
is that the G-infinity model stops being as good a model of
the processes taking place when these normalised histograms
are considered, with its shape being very different to all the
others. This is perhaps not surprising because it is precisely
in this analysis that differences in the flow become important,
since we are separating the data on the basis of flow velocity,
and it is explicitly a model with no basis in any fluid physics.
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Fig. 22. Frequency histograms for the intermittent parameters for
the tangential component of the magnetic field, obtained using ESS
analysis. (1) shows the PK41 model, (2) shows Lognormal model
and (3) shows G-infinity model. The left-hand column represents
data taken in the slow wind, and the right-hand column, data taken
in the fast wind.
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Fig. 23. Frequency histograms for the intermittent parameters for
the radial component of the magnetic field, obtained using ESS
analysis. (1) shows the PK41 model, (2) shows Lognormal model
and (3) shows G-infinity model. The left-hand column represents
data taken in the slow wind, and the right-hand column, data taken
in the fast wind.

In comparing the four different figures, the lognormal model
emerges as the best in mirroring the non-linear behaviour,
and it is better at it (certainly for the T component) in the time
lag analysis than the ESS. So, although ESS did demonstrate
scaling down to 4 seconds, and hence into the dissipation
region, it seems to remove too many features from the data to
be a desirable method, especially since much of its increased
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Fig. 24. Frequency histograms for the normalised intermittent pa-
rameters for the radial component of the magnetic field. (1) is
the normalised histogram for the non-linear measure, (2) are nor-
malised PK41 parameter values, (3) are normalised Lognormal pa-
rameter values and (4) are normalised G-infinity parameter values.
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Fig. 25. Frequency histograms for the normalised intermittent pa-
rameters for the tangential component of the magnetic field. (1) is
the normalised histogram for the non-linear measure, (2) are nor-
malised PK41 parameter values, (3) are normalised Lognormal pa-
rameter values and (4) are normalised G-infinity parameter values.

goodness of fit may be based on the dependence of fit on
g(3), which is obviously fixed to be 1 in ESS methods.

7 Discussion

Ulysses’ fast-latitude scan has given us the opportunity to
study turbulent phenomena in the solar wind magnetic field
over a large number of distinct time series, each correspond-
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Fig. 26. Frequency histograms for the normalised intermittent pa-
rameters for the radial component of the magnetic field, using ESS
analysis. (1) is the normalised histogram for the non-linear mea-
sure, (2) are normalised PK41 parameter values, (3) are normalised
Lognormal parameter values and (4) are normalised G-infinity pa-
rameter values.
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Fig. 27. Frequency histograms for the normalised intermittent pa-
rameters for the tangential component of the magnetic field, using
ESS analysis. (1) is the normalised histogram for the non-linear
measure, (2) are normalised PK41 parameter values, (3) are nor-
malised Lognormal parameter values and (4) are normalised G-
infinity parameter values.

ing to a particular degree of heliolatitude. The spectral results
corroborate previous work in identifying steady turbulence at
high frequencies. It is clear from the results that the fast and
slow wind show profoundly different properties, although the
precise reasons for the steepening of the index in the equa-
torial regions is not known, and there may be some issues
of stationarity in the slow wind data. The spectra presented
here do, however, substantiate the view of the solar wind as
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a highly turbulent plasma, although we have studied only the
magnetic field fluctuations.

Investigations into the nature of the magnetic field fluctua-
tions showed that they were highly non-Gaussian and hence
implied that the solar wind magnetic field was indeed inter-
mittent. We concentrated on high frequency data, and found
that, at least in the polar regions, the solar wind displayed a
very high level of intermittency. However, the results from
the equatorial region proved to be much more variable and
difficult to interpret. In comparison with solar wind velocity,
it seems clear that there exist different types of slow wind,
with the model fits indicating various levels of intermittency,
accounting for the variability in the equatorial region. There
were significant sections of slow wind which displayed al-
most zero intermittency, leading to an average overall drop
in intermittency in the central latitudes, while other sections
displayed the same level of intermittency as the fast wind.
Any future models of the slow wind will need to explain
these variations.

In terms of the models used to evaluate the intermittency
present in the solar wind, the lognormal and P model seem
to provide the best explanation when the criteria of ‘best
fit’, steadiness, and the non-linear measure are taken into ac-
count; however, as mentioned in Sect. 5.2, the goodness of fit
criteria are affected by theg(3) value. Since the lognormal
model has performed so well, the relevance of the problems
traditionally associated with it should be considered for the
solar wind data. This has not yet been done. This gives some
support to the concept of an inhomogeneous energy transfer
model in the turbulent cascade.

The comparison of the models also gave us an opportu-
nity to evaluate the Kolmogorov viewpoint against that of
Kraichnan. The latter model is clearly the least well sup-
ported, simply by its poor fit with respect to the time lag,
which is quite a fundamental criterion. When this is added
to the lack of support from the comparison betweeng(3) and
g(4) in Fig. 11, we conclude that the Kolmogorov picture of
turbulence is more relevant to the solar wind at the frequen-
cies and distances we were analysing.

Also, by studying the effect of the value ofg(3) on how
well the models fitted the data, we saw that there was a close
correlation with the goodness of fit and the nearness ofg(3)

to its theoretical value of 1. This relationship could easily
account for the better fits obtained using ESS analysis. Cer-
tainly, on the basis of fits alone, it is not possible to discrim-
inate between the models using ESS. Overall, considering
also the ESS histogram results, the structure function anal-
ysis with respect to the time lag appears to better represent
the data. It should be noted, however, that the question of the
validity of ESS analysis in probing the transition regime has
not been addressed in this paper.

Returning to the question of the multiplicative cascade
models, the actual physical mechanisms on the solar wind
which might give rise to such high values ofp or µ in the
models are not known. Why ‘eddies’ in the solar wind would
distribute energy so unevenly, or indeed, what the concept of
an ‘eddy’ actually means in the context of the magnetic field,

are questions which should be considered further, along with
the question of how the phenomenological picture of the cas-
cade actually relates to processes which might be occurring
in the system.

The G-infinity model still performed remarkably well,
given its origins. Its good fits could simply be a manifes-
tation of the fact that we are trying to draw conclusions with
curves fitted to only five data points, but its better perfor-
mance than many fluid intermittency models (e.g. the She-
Leveque and Kraichnan version of the P model) suggests a
more profound reason. Burlaga, in his review on magneto-
hydrodynamics (Burlaga, 1995, p. 189), called it “remark-
able” that the P model “derived to describe intermittent gas
dynamic turbulence in a laboratory also describes MHD fluc-
tuations on an astronomical scale” and inferred that “some
universal scale-independent processes are involved”, saying
further that these must be “geometrical and kinematic”. How
much more astonishing then, that a model derived with no
basis in fluid dynamics at all could provide such a good de-
scription. This may well indicate that there are universal,
largely geometric, aspects to intermittency which dominate
over the details of the system itself.

This study has also highlighted the limitations of structure
functions for use in such an analysis. Clearly, the restriction
to low orders makes accurate discrimination between differ-
ent models difficult, and perhaps a different, more sensitive,
data analysis approach is required. In the same vein, it would
be useful to have an independent measure of intermittency
in a data set, so that it can be unambiguously recognised
and quantified from a time series, and the model predictions
then could be compared with this measure, as opposed to the
current situation where the model parameters can only re-
ally be compared with one another through their consistency,
since even their relative goodness of fit becomes difficult to
ascertain when theg(3) effect is taken into account. The
non-linear measure used in this paper is not a good enough
measure for this purpose, but it is intended to demonstrate
the sort of comparison that might be helpful. Possible mea-
sures might be kurtosis, or a singularity measure introduced
by Davis et al. (1996) and Marshak et al. (1997).

It is certainly a quandary in space physics that solar wind
turbulence seems so amenable to classical turbulent mod-
els, since it violates many of the assumptions inherent in
these models; the solar wind is a compressible, supersonic,
anisotropic and inhomogeneous flow. It has already been
noted that the exponent functiong(q) is remarkably univer-
sal in terrestrial flows (Grossmann et al., 1997), so perhaps
research into universal geometrical aspects of both turbu-
lence and intermittency will move towards a resolution of
this problem.
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