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Variable-flavor number scheme for next-to-next-to-leading order
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At NNLO it is particularly important to have a Variable-flavor Number Scheme (VFNS) to deal with
heavy quarks because there are major problems with both the zero-mass variable-flavor number scheme
and the fixed-flavor number scheme. I illustrate these problems and present a general formulation of a
Variable-flavor Number Scheme (VFNS) for heavy quarks that is explicitly implemented up to NNLO in
the strong coupling constant �S, and may be used in NNLO global fits for parton distributions. The
procedure combines elements of the ACOT(�) scheme and the Thorne-Roberts scheme. Despite the fact
that at NNLO the parton distributions are discontinuous as one changes the number of active quark flavors,
all physical quantities are continuous at flavor transitions and the comparison with data is successful.
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I. INTRODUCTION

While up, down and strange quarks may be treated as
being effectively massless partons, the heavy quarks,
charm �1:5 GeV, bottom �4:3 GeV, top �175 GeV,
must have their mass, mH taken into account in any QCD
calculations. In particular it is essential to treat charm and
bottom correctly in global fits for parton distributions.
There are two distinct regimes that can be considered.
Near threshold, Q2 �m2

H, massive quarks are not treated
as parton constituents of the proton but are created in the
final state. Any processes may be described using the
Fixed-flavor Number Scheme (FFNS). For example, struc-
ture functions are given by

F�x;Q2� � CFFk �Q
2=m2

H;Q
2=�2� � f

nf
k ��

2�; (1)

up to higher twist (O��2=Q2�) corrections, where nf is the
number of light partons and all the mass dependence is in
the hard coefficient functions which have been calculated
up to NLO (i.e. O��2

S�) [1]. This is reliable for scales not
much greater than m2

H, but increasing orders in �S contain
increasing logarithms in Q2=m2

H, and order-by-order per-
turbation theory is not guaranteed to be accurate. Also, the
FFNS coefficient functions are not known yet at NNLO,
rendering an NNLO FFNS impossible to define.

At high scales, i.e. Q2, �2 � m2
H, the heavy quarks are

expected to behave like massless partons. The heavy quark
is treated like the other partons and ln��2=m2

H� terms are
then automatically summed via evolution. The simplest
approach is the Zero Mass Variable-flavor Number
Scheme (ZMVFNS) [2]. This ignores all O�m2

H=Q
2� cor-

rections for each of the nH heavy quarks, and the structure
functions are given by

F�x;Q2� � CZMVFj �Q2=�2� � f
nf�nH
j ��2�; (2)

where the hard coefficient functions are mass independent.
Although this is called a ‘‘scheme’’ it is important to note
that unlike usual scheme definitions, which are alternative
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ways to order the perturbative series, the ZMVFNS is
incorrect by terms of O�m2

H=Q
2�, and is really only an

approximation in the region m2
H �Q

2. The approximation
in this region may indeed be very important in practice, as I
will demonstrate later. A correct variable-flavor number
scheme should not have these inaccuracies, but should
correct the coefficient functions for the mass effects.

As we go from an nf-flavor to an nf � 1-flavor scheme,
the partons in the different number regions are related to
each other perturbatively,

f
nf�1
j ��2� � Ajk��2=m2

H� � f
nf
k ��

2�; (3)

where the perturbative matrix elements Ajk��2=m2
H� con-

tain the ln��2=m2
H� terms which relate f

nf
k ��

2� and

f
nf�1
k ��2� and lead to the correct evolution for both.

There is then a similar relationship as we go from an nf �
1-flavor to an nf � 2-flavor scheme, but I will consider the
transitions one at a time in this paper. At the bottom quark
transition point nf is effectively equal to 4, i.e. the charm
quark is already evolving like a massless partons below this
point.

At LO, i.e. zeroth order in �S, the relationship is trivial,

q�g�
nf�1
k ��2� � q�g�

nf
k ��

2�: (4)

At NLO, i.e. first order in �S, the nontrivial contributions
are

�h� �h���2� �
�S
4�

P0
qg � gnf �Q2� ln��2=m2

H�;

gnf�1��2� �

�
1	

�S
6�

ln��2=m2
H�

�
gnf ��2�;

(5)

where h�x;�2� is the heavy quark parton distribution.
Hence, the heavy flavor evolves from zero at �2 � m2

H
according to standard massless quark evolution and the
gluon loses corresponding momentum. It is natural to
choose �2 � m2

H as the transition point from the
nf-flavor to the nf � 1-flavor scheme, since at this order
the partons are then continuous and the heavy quark starts
-1 © 2006 The American Physical Society
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FIG. 1 (color online). The discontinuity in Fc2�x;Q
2� (left) and

F2�x;Q2� (right) using the zero-mass variable-flavor number
scheme at NNLO.

1The scheme has previously been outlined in a very brief form
in [4].
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evolving from a zero value. At NNLO, i.e. second order in
�S, there is much more complication

f
nf�1
i;NNLO��

2� �

�
�S
4�

�
2X
ij

�A2;0
ij � A

2;1
ij ln��2=m2

H�

� A2;2
ij ln2��2=m2

H�� � f
nf
j ��

2�; (6)

where the A2;0
ij [3] are generally nonzero. There is no longer

any possibility of a smooth transition at �2 � m2
H. Since

each of the Ak;0ij is a different function there is no smooth
turn on of the flavor distribution at any alternative value of
�2, hence, for technical simplicity, it seems sensible to
keep the transition point at �2 � m2

H, though any other
point can be chosen if desired. Making this choice it turns
out that A2;0

Hg, the matrix element giving the gluon contri-
bution to the heavy quark distribution, is negative at small
x, even though the structure function is always positive,
and the heavy quark starts evolving from a negative value
in the MS scheme. This highlights the fact that parton
distributions are not physical quantities. However, it also
illustrates a major problem with the zero-mass variable-
flavor number scheme.

In order to make a concrete illustration of the effect we
must choose a factorization and renormalization scale. For
light partons both of these are conventionally chosen to be
�2 � Q2. It is most natural to place the heavy flavor on the
same footing, and choose the same scale, e.g. it is difficult
to think of momentum conservation at a given scale if the
factorization scale is different for different partons. Hence,
for the remainder of this article I will set �2 � Q2. Having
made a choice, we see that in the ZMVFNS the coefficient
functions already lead to a discontinuity in the structure
functions at NLO, i.e.

FH2 �x;Q
2� � 0 Q2 <m2

H;

�
�S
4�

C2;g � gnf�1�Q2� Q2 >m2
H: (7)

However, this is a very small effect at NLO. It is larger at
NNLO, since the coefficient function makes a larger con-
tribution, even though it is nominally of higher order, and it
is negative at smallish x (x� 0:001), as is the starting value
of the partons. Hence, FH2 �x;Q

2� is also negative for Q2 �
m2
H. This shows that the ZMVFNS is not really feasible at

NNLO. It leads to huge discontinuities in the charm struc-
ture function Fc2�x;Q

2�, and even significant discontinu-
ities in the total structure function F2�x;Q

2�. These are
shown in Fig. 1, where a small discontinuity in F2�x;Q2� at
Q2 � m2

b is also seen. This is a measure of the mistake
made in omitting the O�m2

H=Q
2� corrections in this ap-

proximate scheme. One really needs a general Variable-
flavor Number Scheme (VFNS) joining the two well-
defined limits ofQ2 
 m2

H andQ2 � m2
H in a theoretically

correct manner. We will outline such a scheme, which has
054019
been implemented explicitly up to NNLO, in the remainder
of this article.1
II. THE VARIABLE-FLLAVOR NUMBER SCHEME

A correct VFNS can be defined by demanding equiva-
lence of the nf (FFNS) and nf � 1-flavor descriptions at
all orders, i.e.

F�x;Q2� � CFFk �Q
2=m2

H;Q
2=�2� � f

nf
k ��

2�

� CVFj �Q
2=m2

H;Q
2=�2� � f

nf�1
j ��2�

� CVFj �Q
2=m2

H;Q
2=�2� � Ajk��

2=m2
H�

� f
nf
k ��

2�: (8)

Hence, the VFNS coefficient functions have to satisfy

CFFk �Q
2=m2

H;Q
2=�2� � CVFj �Q

2=m2
H;Q

2=�2�

� Ajk��
2=m2

H�; (9)

at all orders. It is important to remember that the left-hand
side of this expression is expanded in the nf-flavor cou-
pling �S;nf , while the right-hand side is most naturally
expanded in the nf � 1-flavor coupling �S;nf�1. The two
are related by

�S;nf�1��2� � �S;nf �
1

6�
ln��2=m2

H��
2
S;nf
�O��3

S;nf
�:

(10)

The coupling is therefore continuous up to O��2
S�, but at

O��3
S� there is a small discontinuity. This discontinuity

does not influence the VFNS up to NNLO.
-2
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At O��S� Eq. (9) becomes, for example, for the structure
function F2�x;Q

2�

CFF;12;g �Q
2=m2

H� � CVF;02;HH�Q
2=m2

H� � P
0
qg ln��2=m2

H�

� CVF;12;g �Q
2=m2

H;Q
2=�2�; (11)

The VFNS coefficient functions automatically tend to the
massless limits as Q2=m2

H ! 1 [5] and, if we use the
zeroth order cross-section for photon-heavy quark scatter-
ing,

CVF;02;HH�Q
2=m2

H;z� � �1� 4m2
H=Q

2���z	 1=�1�m2
H=Q

2��;

(12)

this is the original ACOT scheme [6].
However,CVF;i2;HH�Q

2=m2
H� (we set�2 � Q2 explicitly for

simplicity) is only uniquely defined in the massless limit
Q2=m2

H ! 1. One can swap O�m2
H=Q

2� terms between
CVF;02;HH�Q

2=m2
H� and CVF;12;g �Q

2=m2
H� while still satisfying

Eq. (11), i.e. CVF;02;HH�Q
2=m2

H� is not uniquely defined. This
is true for all CVF;n2;HH�Q

2=m2
H�. The original ACOT prescrip-

tion removed the ambiguity by defining CVF;i2;HH�Q
2=m2

H� as
the calculated coefficient function for an incoming massive
quark. However, this violates the physical production
threshold W2 > 4m2

H since it only needs one quark in the
final state rather than a quark-antiquark pair. Hence, there
is not a smooth transition at Q2 � m2

H as nf ! nf � 1.
The Thorne-Roberts Variable-flavor Number Scheme (TR-
VFNS) first recognized this ambiguity in the definition of
CVF;02;HH�Q

2=m2
H� [7] and removed it by imposition of the

physically motivated constraint of (dF2=d lnQ2) being
continuous at the transition point Q2 � m2

H (in the gluon
sector). Hence, it guaranteed smoothness at Q2 � m2

H, but
the approach to Q2=m2

H ! 1 is a little odd—the VFNS
result overshooting the zero-mass result before approach-
ing it asymptotically from above. This effect diminishes at
higher orders but more of a problem is the complicated
form of the scheme—CVF;02;HH�Q

2=m2
H� / �P

0
qg�
	1, which is

not a simple function. This makes the scheme very in-
volved at higher orders and it is also not well suited to
charged currents [8].

There have been various other alternatives since this.
Most recently Tung, Kretzer and Schmidt have devised the
ACOT(�) prescription [9] which may be interpreted as

CVF;02;HH�Q
2=m2

H; z� � ��z	Q2=�Q2 � 4m2
H��;

FH;02 �x;Q
2� � �h� �h��x=xmax; Q2�;

xmax � Q2=�Q2 � 4m2
H�:

(13)

Hence, the zeroth-order coefficient function tends to the
standard CZM;02;HH�z� � ��1	 z� for Q2=m2

H ! 1 but re-
spects the threshold requirement W2 � Q2�1	 x�=x �
4m2

H for quark-antiquark production. Moreover, it is very
simple. For the VFNS to remain simple (and physically
054019
motivated) at all orders n in �S it is necessary to choose

CVF;n2;HH�Q
2=m2

H; z� � CZM;n2;HH�z=xmax�: (14)

It is also important to choose

CVF;nL;HH�Q
2=m2

H; z� / C
ZM;n
L;HH�z=xmax�; (15)

and to impose the condition that CVF;0L;HH�Q
2=m2

H; z� � 0 (as
is done in [7]), despite the fact that one obtains

C0
L;HH�Q

2=m2
H; z� � 4z

m2
H

Q2 ��z	 1=�1�m2
H=Q

2�� (16)

for single quark-photon scattering. Because the heavy-
flavor contribution to FL�x;Q2� is highly suppressed at
low values of Q2, compared to that for F2�x;Q2�, we
choose

CVF;nL;HH�Q
2=m2

H; z� �
5

4

�
1

1� 4m2
H=Q

2 	
1

5

�
CZM;nL;HH�z=xmax�:

(17)

The prefactor is zero at Q2 � m2
H and tends to unity as

Q2=m2
H ! 1, but is suppressed by the physical threshold

of 4m2
H for intermediate values of Q2. This factor guaran-

tees that the heavy-flavor parton contribution to FHL �x;Q
2�

is heavily moderated for Q2 just above m2
H. Failure to do

this results in a kink in FHL �x;Q
2� just aboveQ2 � m2

H. The
fact that this is a function of Q2=m2

H only avoids any
additional complications when obtaining higher-order co-
efficient functions by convolutions with matrix elements
which the definition in Eq. (9) requires.

Adopting this convention for the heavy-flavor coeffi-
cient functions at NNLO we have, for example,

CVF;22;Hg�Q
2=m2

H; z� � CFF;22;Hg�Q
2=m2

H; z� 	 C
ZM;1
2;HH�z=xmax�

� A1
Hg�Q

2=m2
H� 	 C

ZM;0
2;HH�z=xmax�

� A2
Hg�Q

2=m2
H�

	
1

6�
ln�Q2=m2

H�C
ZM;0
2;HH�z=xmax�

� A1
Hg�Q

2=m2
H�: (18)

The last term comes from the change in the coupling
constant as we go across the transition point, i.e. from
Eq. (10). This would be absent if we used (somewhat
unnaturally) the nf-flavor renormalization scheme above
Q2 � m2

H, as is sometimes done, but this means the defi-
nition of A2

Hg�Q
2=m2

H; z� is different in the two renormal-
ization schemes (compare that in [3] with that in [10]).
There is also in principle a contribution of the form

	
1

6�
ln�Q2=m2

H�C
VF;1
2;Hg�Q

2=m2
H; z� 	 C

VF;1
2;Hg�Q

2=m2
H; z�

� A1
gg�Q

2=m2
H� (19)

on the right-hand side, but
-3
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A1
gg�Q2=m2

H; z� � 	
1

6�
ln�Q2=m2

H���1	 z�; (20)

as seen in Eq. (5), so these terms cancel. Both would be
absent if we used the nf-flavor renormalization scheme
above Q2 � m2

H.
From the definition in Eq. (18) we see that since

A2
Hg�1; z� � 0, the coefficient function C2

2;Hg�Q
2=m2

H; z�
is discontinuous as we go across Q2 � m2

H. This compen-
sates exactly for the O��2

S� discontinuity arising from that
in the heavy-flavor parton distribution, i.e. for the term
CVF;02;HH � �h� �h�, and FH2 �x;Q

2� is continuous.2 In practice
this requires the knowledge of CFF;22;Hg�Q

2=m2
H; z�. An ex-

pression for this exists as semianalytic code [11] where the
2In principle there are O��3
S� discontinuities due to terms such

as CVF;12;HH � �h� �h� and CVF;12;Hg � g
nf�1, i.e. O��S� coefficient

functions convoluted with O��2
S� discontinuities in partons.

These would be cancelled at NNNLO by discontinuities in
O��3

S� coefficient functions, but are actually tiny in practice.

054019
dominant contributions for W2 ! 1 and W2 ! 4m2
H

(from above) are analytic and the rest numerical. I have
produced much faster analytic expressions which are exact
for Q2=m2

H ! 1 and in some cases for W2 ! 4m2
H, and

the �m2
H=Q

2� remainders are provided by fitting the values
to analytic functions with a number of free parameters.
These final expressions are slightly approximate, but the
error in FH2 �x;Q

2� is only �1% even in the most extreme
cases.

There is one more problem in defining the VFNS. The
ordering for FH2 �x;Q

2� is different for the nf and nf � 1
regions. This can be illustrated by the following table
which shows the order-by-order expressions both below
and above the transition point.
nf 	 flavor nf � 1	 flavor

LO �S
4�C

FF;1
2;Hg � g

nf CVF;02;HH � �h� �h�

NLO ��S4��
2�CFF;22;Hg � g

nf � CFF;22;Hq ��nf � �S
4� �C

VF;1
2;HH � �h� �h� � CVF;12;Hg � g

nf�1�

NNLO ��S4��
3P
i
CFF;32;Hi � f

nf
i ��S4��

2P
j
CVF;22;Hj � f

nf�1
j :
The issue is that the series expansion begins at zeroth order
above the transition point, where there is a heavy-flavor
distribution, but at O��S� below the transition point.
Hence, what is meant by LO, NLO etc. is different by
one power of�S as one changes the number of active quark
flavors. Therefore, making the transition directly from a
given fixed order to the same relative order when going
from nf to nf � 1 flavors leads to a different order in �S
and discontinuities which may be rather significant—for
example, LO is nonzero as one approaches the transition
point from below, but zero when approaching it from
above. One must make some decision on how to deal
with this problem.

Up to now ACOT have used the same order of �S above
and below the transition point, e.g. at NLO
�S
4�

CFF;12;Hg � g
nf ! CVF;02;HH � �h� �h� �

�S
4�
�CVF;12;HH � �h� �h� � CFF;12;Hg � g

nf�1�: (21)

The structure function is then automatically continuous. However, there is effectively LO evolution below the transition
point—CFF;12;Hg contains only information on P0

qg, not on P1
qg—and NLO evolution above it. Hence the slope

dFH2 �x;Q
2�=d lnQ2 is discontinuous.

The Thorne-Roberts scheme used the same relative order above and below the transition point, but added a uniquely
determined Q2-independent term above the transition point to maintain continuity of the structure function. For example,
at LO

�S�Q
2�

4�
CFF;12;Hg�Q

2=m2
H� � g

nf �Q2� !
�S�M2�

4�
CFF;12;Hg�1� � g

nf �M2� � CVF;02;HH�Q
2=m2

H� � �h� �h��Q2�; (22)
i.e. this prescription freezes the higher order �S term when
going upwards through Q2 � m2

H. This difference in
choice is extremely important at low Q2 (if using �2 �
Q2), as is illustrated in Fig. 2 which compares the two
choices at NLO. The O��2

S� part is dominant at low x for
Q2 
 m2

c because the O��2
S� coefficient functions diverge

at small x whereas the O��S� coefficient function is finite
in this limit. Indeed, the ‘‘frozen’’ part is very significant
for m2

c 
 Q2 
 12 GeV2. Its inclusion clearly improves
the match to the data [12,13]. It is also clear that switching
from the standard nf-flavor NLO to the standard nf �
1-flavor NLO would lead to a large discontinuity in
-4



Fc
2 TR style and ACOT style

0

0.05

0.1

0.15

0.2

10
-5

10
-4

10
-3

10
-2

10
-1

1

Fc 2(
x,

Q
2 )

Q2=1.75 GeV2

ACOT style

TR style

ZEUS

H1

0

0.05

0.1

0.15

0.2

0.25

10
-5

10
-4

10
-3

10
-2

10
-1

Q2=3.75 GeV2

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

1x

Fc 2(
x,

Q
2 )

Q2=11.5 GeV2

0

0.2

0.4

0.6

10
-5

10
-4

10
-3

10
-2

10
-1

x

Q2=60 GeV2

FIG. 2 (color online). Comparison between the ACOT choice
of ordering and the Thorne-Roberts choice at NLO.
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FH2 �x;Q
2�. Hence we choose to continue using the Thorne-

Roberts approach for the matching at the transition point.
However, this is a place where there is a definite freedom of
choice, and there are various possibilities available.

With the type of choice made for the definition of the
heavy-flavor coefficient functions CVF;nL;HH�Q

2=m2
H; z� in

Eq. (17) there is no problem with ordering across the
transition point for the longitudinal structure function.
This is because both the FFNS and VFNS coefficient
functions begin at O��S� for both the gluon and heavy
quarks. It is possible to choose a nonvanishing value for
CVF;0L;HH�Q

2=m2
H; z�, and indeed some VFNS definitions do

so, but this is contrary to the spirit of this approach, and
will lead to extra complications.

In order to define fully the VFNS at NNLO, this choice
for ordering above and below the transition point means
that we need the O��3

S� heavy-flavor coefficient functions
for Q2 
 m2

H and that the contribution from these should
be frozen for Q2 >m2

H. However, these coefficient func-
tions are not yet known. Nevertheless, we do know the
leading threshold logarithms [14], i.e. the leading contri-
bution for W2 not much above 4m2

H. This is given by
054019
CFF;3;thresh
2;Hg �Q2=m2

H;z��
1

z�1���
Q2

Q2� 4m2
H

���;Q2=m2
H�;

��
Q2�1	 z�

z4m2
H

	 1; (23)

i.e. �! 0 at threshold and �!1 as W2 ! 1.
���;Q2=m2

H� is a function which models the contribution
from the dominant threshold logarithms. This contribution
occurs only in the gluon sector.

We can also derive the leading ln�1=x� term from
kT-dependent impact factors derived by Catani, Ciafaloni
and Hautmann [15]. With a little work these can be shown
to give

CFF;3;lowx
2;Hg �Q2=m2

H; z� � 96
ln�1=z�
z

�2�Q2=m2
H�; (24)

where �2�Q
2=m2

H� may be calculated and �2�1� � 4. We
also know that in this small-x limit CFF;3;lowx

2;Hq �Q2=m2
H; z� �

4=9CFF;3;lowx
2;Hg �Q2=m2

H; z�. By analogy with the known
NNLO coefficient functions and splitting functions it is
reasonable to propose that this be modified to

CFF;3;lowx
2;Hg �Q2=m2

H; z� �
96

z
	�ln�1=z� 	 4�


 �1	 z=xmax�
20�2�Q2=m2

H�:

(25)

	 � �1	 4m2
Hz=�Q

2�1	 z���1=2 is the velocity of a heavy
quark in the center-of-mass frame and its introduction
ensures that this contribution ! 0 smoothly at threshold.
The leading ln�1=z� is accompanied by �	 4, i.e. a 1=z
term of similar size to that in other known coefficient
functions and splitting functions is introduced. Finally,
the effect of the this entire small z term is damped as
z! 1 by the large power of (1	 z=xmax). The power of
20 is chosen in order to make the contribution in Eq. (25)
very suppressed until x < 0:1, which is in line with the
values of x above which the small-x divergent terms tend to
be suppressed in the complete NNLO splitting functions
[16]. The total approximate NNLO coefficient function is
obtained by adding the contributions in Eqs. (23) and (25).
The amount of information is similar to (though a little
weaker than) that used previously to derive approximate
NNLO splitting functions [17], which turned out to be a
very good approximation once the exact expressions be-
came known.

These expressions could also be used to provide an
approximate NNLO FFNS definition. However, in this
case they would have to be used over a far wider range
of Q2, rather than the small range here. In particular the
-5
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FIG. 3 (color online). Comparison of the NLO and NNLO
predictions for Fc2�x;Q

2� compared with data.

3This is an updated version of Fig. 8 in [18]. This previous
figure used the MRST04 NNLO partons which applied a rather
approximate NNLO treatment of heavy flavors. The updated
figure is constructed using NNLO partons from a fit which
applies the NNLO VFNS. This leads to a generally slightly
increased prediction for Fb2 �x;Q

2�. The gluons from this new
fit are exhibited in Fig. 3 of [19], and are more negative than our
previous, approximate NNLO partons at low Q2 and very
small x.
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frozen NNLO contribution becomes a proportionally very
small contribution to the total FH2 �x;Q

2� at high Q2,
whereas there is no reason to believe the O��3

S� contribu-
tion in the FFNS is small since it contains terms of order
ln3�Q2=m2

H�. The NNLO FFNS would therefore be more
genuinely approximate. For FHL �x;Q

2�we can approximate
the O��3

S� coefficient functions at Q2 
 m2
H using the

same approach. In this case there is no large threshold
contribution and the small-x contribution is estimated to be

CFF;3;lowx
L;Hg �Q2=m2

H; z� �
96

z
	3�ln�1=z� 	 4��1	 z=xmax�

20


 �L�Q
2=m2

H�; (26)

where �L�1� � 0:16 and the 	3 reflects the fact that the
longitudinal heavy-flavor coefficients are much more sup-
pressed near threshold. For the VFNS for FHL �x;Q

2� one
can then extrapolate smoothly to the exact massless O��3

S�
coefficient functions used in the VFNS at high Q2.
Explicitly, for Q2 >m2

H

FHL �x;Q
2� �

5

4

�
1	

1

1� 4m2
H=Q

2

���
�S
4�

�
3X
i

CFF;3L;Hi � f
nf
i

	 CFF;1L;Hg � A
2
gg;H � g

nf

�
Q2�m2

H

�
5

4

�
1

1� 4m2
H=Q

2 	
1

5

��
�S�Q

2�

4�

�
3



X
i

CZM;3L;Hi � f
nf�1
i �Q2�; (27)

where the term / CFF;1L;Hg � A
2
gg;H � g

nf maintains continu-
ity of the structure function across the transition point
despite the discontinuity in the gluon distribution. Again
the degree of modelling and approximation is far less than
in a NNLO FFNS.

Using these approximate O��3
S� coefficient functions

one can produce full NNLO predictions for structure func-
tions with discontinuous partons and coefficient functions
but continuousFH�x;Q2�. The results are not very sensitive
to the choices made in this approximation, as long as they
are within a sensible range. Note also that the definition of
the VFNS, relying only on Eqs. (9), (14), and (17) and the
ordering across the transition point, may be straightfor-
wardly generalised to any choice of factorization and
renormalization scales. For the simplest choice of �2 �
Q2 the NNLO corrections are seen in Fig. 3. They clearly
improve the match to the lowest Q2 data, where NLO is
always too low. This large increase at low x is because the
NNLO coefficient functions are more divergent than the
NLO coefficient functions. The comparison with the recent
bottom quark production data [18] from H1 is also shown
054019
in Fig. 4.3 The agreement is good, but one can clearly see
that the slope �dFb2 �x;Q

2�=d lnQ2� is smaller at NNLO
than at NLO, and the same is true for charm. This is
because one is interpolating from a higher value at low
Q2, due to the NNLO coefficient function contribution, to
lower values at high Q2, where the quark content is domi-
nant and has a relative reduction compared to NLO be-
cause the evolution has started from a negative value rather
than zero. Hence, this tendency for a reduction in the slope
of the heavy-flavor structure function at NNLO is a generic
feature of NNLO. The detailed phenomenology of the
global fit with the NNLO VFNS prescription will appear
in the account our next global parton analysis [20].
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III. LIGHT-FLAVOR SECTOR

At NNLO it is no longer possible to think of heavy-
flavor effects as only associated with heavy-flavor produc-
tion, as has already been discussed in [21]. At this order we
also get contributions due to heavy flavors away from the
photon vertex. Examples of such contributions are shown
below.

In the light-flavor sector the VFNS is defined as before.
There are matrix elements changing the light flavors as we
go from nf flavors to nf � 1 flavors and contributions to
light-flavor coefficient functions in the FFNS from the type
of diagrams above. The exact expressions for these, as well
as the asymptotic limits, can be found in [10]. Defining the
consistent VFNS according to Eq. (9) then leads to a
discontinuity in the coefficient functions across the tran-
054019
sition point, which again cancels that in the light quark
distributions, leaving the total structure function continu-
ous. In this sector there are peculiar complications due to
the occurrence of �lnm�1	 z�=�1	 z��� terms at the
threshold. For example, from the type of diagrams on the
right-hand side we get contributions to the structure func-
tion of the form

�2
Sln2�Q2=m2

H�

�
lnm�1	 z�

1	 z

�
� q�x;Q2�

� �2
Sln3�Q2=m2

H�q�x;Q
2� � �2

Sln2�Q2=m2
H�




�
lnm�1	 z�

1	 z

�
�
� q�x;Q2� �O�ln2�Q2=m2

H��:

(28)

The maximum value of z in the convolution is 1=�1�
4m2

H=Q
2� so the divergence at z � 1 is not reached.

However, the convolution on the left-hand side does pro-
duce an additional power of ln�Q2=m2

H�. The ln3�Q2=m2
H�

contributions then cancel exactly with contributions from
terms of the form �2

s ln
3�Q2=m2

H���1	 z� in the coefficient
functions from the type of diagrams on the left-hand side,
leaving the remainder, including the ‘‘�’’-distributions.
This is an added complication compared to the case where
the heavy quark appears at the photon vertex, requiring
particular care in a numerical implementation of the
VFNS. However, it is only really a technical problem
rather than producing any fundamentally new features. In
the light-flavor sector there is no problem with ordering.
The light-flavor contribution to F2�x;Q

2� begins at zeroth
order in the FFNS and VFNS.

Furthermore, if one is being totally correct, the left-hand
type diagram and the soft parts of the right-hand type
diagram should contribute to the light-flavor structure
function, and the hard part of the right-hand type diagram
contributes to FH2 �x;Q

2� [21]. This can be implemented (it
depends on a separation parameter, determining ‘‘hard’’
and ‘‘soft’’), but each contribution is in practice tiny. At the
moment we include all such contributions in the light
flavors. This leads to a very small underestimate of the
heavy-flavor structure functions.
IV. CHARGED-CURRENT STRUCTURE
FUNCTIONS

The VFNS works, in principle, in much the same way
for charged currents. The zeroth-order coefficient function
for single (anti)charm production from a (anti)strange
quark is now

CVF;02;sc �Q
2=m2

c; z� � ��z	Q2=�Q2 �m2
c��; (29)

i.e. the threshold is now for a single heavy quark produc-
tion. The same is obviously true for (anti)charm production
from a (anti)down quark. This is far simpler than the
prescription in [8]. At higher orders the generalization is
-7
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again trivial. Using the ACOT(�) reasoning one simply
uses the light coefficient function with argument z replaced
by z=�1�m2

c=Q2�. However, there is a major problem in
defining the full VFNS, even at NLO. The FFNS coeffi-
cient functions are calculated at O��S� [22] but are not yet
calculated exactly at O��2

S� for the charged-current case.4

The generalization from the neutral current case is not
simple because the divergences in the final state are differ-
ent, i.e. one more particle is massless and regularized by
dimensional regularization, and one fewer is regularized by
the mass.

Hence, in defining the VFNS for the charged-current
case it is necessary to make an approximation. In practice
we have used the O��2

S� neutral current cross-sections but
altered the threshold dependence in all expressions so that
all dependence on Q2=�Q2 � 4m2

H� is replaced by depen-
dence on Q2=�Q2 �m2

H�. This guarantees that all terms
respect the true kinematic threshold. The approximation
occurs mainly at lowQ2 where the O��2

S� FFNS coefficient
functions are most important in the VFNS. This is not
peculiar to this definition of a VFNS, but will be present
in any current approach.5 There is an uncertainty at lowQ2

at O��2
S� that can only be removed by an explicit calcu-

lation. At higher Q2 the VFNS tends to the zero-mass limit
for all coefficient functions, so all expressions become
exact. Hence the HERA charged-current data are very
insensitive indeed to the approximation. The charged-
current data at low Q2 only exist down to x� 0:01, much
higher than for the neutral current HERA data, and at low
Q2 and high-x heavy-flavor production is very small.
Hence any errors in the approximation are not very im-
portant phenomenologically.
4They have been determined in the Q2 � m2
H limit in [23].

5This is except for the ZMVFNS, which will simply be
completely wrong by terms of O�m2

c=Q
2� and will have incorrect

kinematic thresholds, whereas the approximation here is guar-
anteed to have the correct general form.

054019
V. CONCLUSIONS

There are discontinuities in both the parton distributions
and the coefficient functions at NNLO. This makes a
variable-flavor number scheme more necessary than ever.
The ZMVFNS is badly discontinuous at the transition point
Q2 � m2

H, and the FFNS is only approximate at NNLO. A
generalization of the ACOT(�) prescription leads to a
physically sensible and simple VFNS, in principle defined
to all orders. One must still be careful about matching
when going across the transition point of Q2 � m2

H. If
this matching is done properly it guarantees the continuity
of the physical structure functions and maximizes the
smoothness of the function. We choose the Thorne-
Roberts method of matching above and below the transi-
tion, i.e. choose the correct order for the region of nf
flavors and add an additional, uniquely defined constant
for the region of nf � 1 flavors to guarantee continuity.
This choice is significant and leads to a much better match
to the lowQ2 data. We have devised an explicit, full NNLO
VFNS for F2�x;Q2� and FL�x;Q2�, with a small amount of
necessary modelling of NNLO fixed-flavor coefficient
functions. The NNLO variable-flavor number scheme
seems to improve the fit to lowest x and Q2 data greatly
and is not very sensitive to this modelling. It is essential to
use such an NNLO VFNS in NNLO global analysis of data,
and indeed the construction of the NNLO VFNS makes
such a precise analysis possible [20].
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