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Abstract: Water front in concrete exposed to rapid heating is the layer where water 7 

vaporization and the subsequent pore pressure rise take place. Pore pressure is one of the main 8 

triggering factors in heat-induced explosive spalling (relevant for structures such as tunnels 9 

exposed to fire), while moisture migration influences concrete radiation shielding capability 10 

(important in containment shells of nuclear power plants and radioactive waste repositories). 11 

Hence, the experimental monitoring of water front in concrete at high temperature is a very 12 

interesting – though challenging – task. In a recent experimental campaign carried out at 13 

Politecnico di Milano, promising results have been obtained by coupling pore pressure-14 

temperature measurements and water front monitoring through Ground-Penetrating Radar. 15 

This technique was implemented in a fire test performed on a concrete slab heated at the 16 

bottom face and proved to be effective in detecting the position of the water front during 17 

heating. The combination with pressure measurement allowed to confirm that pressure peaks 18 

are achieved in correspondence of the water front. 19 

 20 
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1. Introduction 23 

1.1 Effect of water in concrete at high temperature: fire spalling and shielding capability 24 

Fire and, more generally, high temperature are extreme loads which need to be considered 25 

when strategic buildings and infrastructures are at issue, such as hospitals, tall buildings, 26 

nuclear power plants and tunnels. Even though concrete performs fairly well at high 27 

temperature, thanks to its low thermal conductivity and incombustibility, adequate fire 28 

resistance in structures can be achieved only if attention is paid to mix design, reinforcement 29 

arrangement and structural redundancy. In some cases, such as tunnels and nuclear power 30 

plants, not only the bearing capacity should be guaranteed, but also the performance regarding 31 

specific aspects such as fire- or heat-induced spalling and radiation shielding capability. 32 

Heat-induced spalling is the violent breaking-off of concrete pieces from the exposed face, 33 

leading to sectional reduction and direct exposure of the reinforcing bars to the flames, both 34 

aspects being detrimental to the overall fire resistance. 35 

Even though structural fire behaviour of tunnels is of concern just in extremely severe 36 

scenarios, avoiding spalling is a primary objective, since repair time and cost are critical 37 

issues together with the revenue loss because of traffic disruption. 38 

A full understanding of spalling phenomenon, however, is no simple matter because of the 39 

presence of different factors such as heating rate, concrete thermo-physical properties 40 

degradation, initial moisture content and saturation level, pore pressure and stress (Kalifa et 41 

al., 2000; Khoury, 2000 and 2008; Fu and Li, 2010). 42 

As sketched in Fig.1, the phenomenon can be ascribed to the mutual interaction between 43 

stress-induced cracking, ensuing from thermal gradients and external loads, and pore pressure 44 

rise, due to water vaporization and/or saturation (Khoury, 2000). 45 

Thermal stress is caused by the significant temperature gradients typical of heated 46 

insulating materials. 47 
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In particular, compression arises in the exposed hot layers and tension in the cold core, 48 

followed by cracking parallel to the exposed face in the former case and orthogonal to the 49 

heated face in the latter one. Kinematic incompatibility between aggregate and cement paste, 50 

and release of absorbed- and chemically-bound water, as well as cement dehydration, also 51 

favour cracking (Fu and Li, 2010). 52 

Pressure in the pores, on the other hand, is caused by water vaporization and vapour 53 

dilation. Pressure gradients cause moisture migration towards both the hot face and the inner 54 

core. In the latter case, moisture content can increase also due to vapour condensation, with 55 

possible saturation of the pores (Khoury, 2008). Especially in low-porosity concretes, such as 56 

High-Performance Concretes – HPC, water saturation in the pores can be attained, with the 57 

formation of a region characterized by very low permeability (the so-called moisture clog; 58 

Khoury, 2008). Consequently, very high values of pore vapour pressure can develop behind 59 

moisture clog (up to 5 MPa; Kalifa et al., 2000). 60 

On the contrary in high-porosity concretes, such as Normal-Strength Concrete – NSC, 61 

vapour can more easily flow through cement matrix, this reducing the pressure. This is the 62 

reason why spalling is a big concern in HPC, together with its higher heat-sensitivity 63 

compared to NSC (Felicetti and Gambarova, 1998). 64 

A well-established way to reduce spalling sensitivity is the addition of polypropylene fibre, 65 

whose beneficial effect comes from the further porosity induced by fibre melting at 160-66 

170°C (Khoury, 2008), accompanied by microcracking in the cement matrix due to thermal 67 

dilation of melting fibre (Khoury, 2008) and to the stress intensification around the edges of 68 

the melting fibre (Pistol et al., 2014). 69 

In spalling-sensitive structures like tunnels, the quantification of shard detachment via 70 

coupled hygro-thermo-mechanical or hygro-thermal numerical models can be useful in the 71 

design phase. Such analyses can be performed by means of available numerical codes able to 72 
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simulate heat and (fluids) mass transfer in concrete at high temperature (Gray and Schrefler, 73 

2001; Ichikawa and England, 2004; Tenchev and Purnell, 2005; Davie et al., 2006; Gray and 74 

Schrefler, 2007; Gawin et al., 2011a and 2011b). 75 

The main problem for such models is the definition of concrete properties (first of all, 76 

porosity and permeability), that can be hardly measured at high temperature. In this case, 77 

inverse analysis based on experimental fire tests is the most reliable means for preliminary 78 

calibration. Within this context, water front monitoring in lab tests may be very helpful. 79 

Water plays an important role also in the containment shells of nuclear power plants and 80 

radioactive waste repositories, thanks to its shielding property against α, β and neutron 81 

radiation. Consequently, knowing how water front migrates at high temperature is 82 

instrumental in assessing the time required by a containment shell to fully dry, as complete 83 

drying reduces its shielding capability (Ichikawa and England, 2004; USNRC, 2013). 84 

1.2 Ground-Penetrating Radar for water front monitoring 85 

Water front monitoring in concrete at high temperature is a challenging task, since the few 86 

techniques able to perform such measurement, as for example Neutron Radiography Imaging 87 

– NRI (Weber et al., 2013; Toropovs et al., 2015) and Nuclear Magnetic Resonance – NMR 88 

(van der Heijden et al., 2007; Erich et al., 2008; van der Heijden et al., 2011; van der Heijden 89 

et al., 2012) are very costly and strongly limit specimen geometry (100×100×25 mm for NRI 90 

in Toropovs et al., 2015; DxH = 80x100 mm for NMR in van der Heijden et al., 2012). 91 

Another technique able to monitor water content and saturation in concrete is based on 92 

Ground-Penetrating Radar – GPR (Laurens et al., 2005; Sbartai et al., 2012; Rodriguez-Abad 93 

et al., 2014; Bagnoli et al. 2015). 94 

GPR is a well-known and established non-destructive geophysical technique (Jol, 2008) 95 

commonly used in the field of structure inspections and building diagnosis (Lualdi and 96 

Lombardi, 2014a; Lualdi and Lombardi, 2014b; Benedetto and Pajewski, 2015), in addition to 97 
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a number of other high resolution subsurface imaging applications. It employs 98 

electromagnetic fields for the detection of buried objects and subsurface structures, and for 99 

material property characterization (Muller et a., 2016; Daniels, 2004). GPR relies on the 100 

principle that electromagnetic waves are reflected and scattered to some extent at boundaries 101 

separating different regions in the subsurface (Maierhofer, 2003; Yehia et al., 2014). 102 

Reflected and scattered waves are then collected by the receiver. 103 

Among all the parameters determining the overall electrical properties, water content is the 104 

most significant factor (Sbartai et al., 2006a; Lai et al., 2009). Water content variations 105 

produce amplitude changes of GPR data (Laurens et al., 2002; Sbartai et al., 2006b; Klys and 106 

Balayssac, 2007), and significant travel time shifts once the changes involve a large portion of 107 

the imaged subsurface. 108 

The amplitude of the reflections depends on the magnitude of the contrast between two 109 

contiguous regions, while the time shifts are caused by water slowing down the 110 

electromagnetic wave velocity. As reported in Laurens et al. (2005), the dielectric constant εr 111 

can be increased by more than two times going from dry (εr,dry ≈ 4) to saturated concrete 112 

(εr,sat ≥ 8). An even higher range is reported in IAEA (2002): εr,dry – εr,sat ≈ 4.5 – 15. 113 

As demonstrated by Laurens et al. (2005), Sbartai et al. (2012), Rodriguez-Abad et al. 114 

(2014) and Xiao et al. (2016), the above-mentioned mechanisms make GPR an effective 115 

method to characterize water content and transfer in concrete. GPR has also been used for 116 

assessing thermal damage in concrete after a fire, as shown in Abraham and Dérobert (2003). 117 

In the present study, the primary objective is to detect the water front position in concrete 118 

at high temperature, rather than to directly measure the water content. GPR technique has 119 

been implemented within a research project at Politecnico di Milano (Lo Monte and Felicetti, 120 

2017). Concrete slabs heated at the bottom face have been tested both in unloaded conditions 121 

and under biaxial membrane loading, as discussed in the following sections. 122 
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2. Experimental set-up and mix design 123 

2.1 Fire test on concrete slabs 124 

A test setup has been designed and built at Politecnico di Milano for assessing concrete 125 

spalling sensitivity in fire conditions (Lo Monte and Felicetti, 2017). The specimen is a square 126 

concrete slab with an 800 mm-side and 100 mm-thickness (Fig.2a), subjected to heating at the 127 

bottom face according to the Standard temperature-time curve defined by EC1 (EN 1991-1-128 

2:2004). During heating, a biaxial membrane load can be applied thanks to 8 hydraulic jacks 129 

restrained by a welded steel frame (Fig.2b). The fire load is applied by means of a horizontal 130 

furnace provided with a propane burner controlled by an active control system. 131 

In order to protect the hydraulic jacks from high temperature, only the central portion of 132 

the slab is heated (600x600 mm). As shown in Fig.2a, 16 slits have been cut in the peripheral 133 

region of the specimen in order to break the mechanical continuity of the external cold rim so 134 

as to minimize the confining effect. 135 

During the test, pressure and temperature can be monitored through the thickness via 136 

special embedded sensors (see also Felicetti et al., 2017) placed at 10, 20, 30, 40, 50 and 137 

60 mm from the exposed face (Figs.2c,d). 138 

2.2 Ground-Penetrating Radar – GPR 139 

In one of the slabs tested so far, GPR technique has been implemented at the cold face 140 

(Fig.2a), aimed at monitoring the water front position during fire exposure. The measurements 141 

have been performed by exploiting the reflection of the electromagnetic waves propagating 142 

through a continuum, when a sudden change in electric properties occurs (see Fig.3a). 143 

In the present case, the discontinuity is represented by the water front, namely the sharp 144 

gradient in water content separating dried and moist concrete (Fig.3a), while no or negligible 145 

influence is expected to be introduced by any possible fracturing process. Since, as 146 

abovementioned, concrete dielectric constant can increase by more than two times between 147 
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dry and saturated concrete, the aim of the present experimental study is to verify if the 148 

reflection due to such variation of electric properties allows to detect and monitor water front 149 

migration with sufficient accuracy. 150 

The equipment is an IDS georadar antenna with a central frequency of 3GHz (Fig.3b). The 151 

two dipoles are 60 mm-spaced and are oriented orthogonally to the acquisition direction. 152 

A series of profiles have been acquired at the cold face of the slab over the same scan line 153 

(Fig.2a and Fig.3b) during heating, with an almost constant time separation between 154 

subsequent scans. Profiles characteristics are reported in Table 1, while the processing steps 155 

(Yilmaz, 2001) applied on the datasets are described in Table 2. 156 

The location of the GPR has been studied in order to avoid boundary effects linked to 157 

thermal, electromagnetic or stress fields. Temperature and stress distributions have been 158 

previously analysed via thermo-mechanical numerical models performed via the finite 159 

element code Abaqus, while no disturbance in GPR measurements has been observed during 160 

the experimental test due to the presence of the hydraulic jacks (thanks to the distance 161 

between the antenna and the actuators, which was larger than 20 cm). 162 

Preliminarily, the wave velocity has been accurately computed by placing a metallic plate 163 

at the bottom face of the slab to plainly detect wave reflection. Time to depth conversion 164 

resulted in a velocity of 13.5 cm/ns, corresponding to a relative dielectric constant of 165 

approximately 5 and a vertical radar resolution λ/4 of about 1 cm. 166 

2.3 Concrete mix design and applied load 167 

The tested slab was made of HPC with 400 kg/m
3
 of CEM I, 200 kg/m

3
 of Ground Granulated 168 

Blast Furnace Slag, 1559 kg/m
3
 of silico-calcareous aggregates (maximum aggregate size 169 

16 mm) and water-to-cement ratio equal to 0.36.  170 

Monofilament polypropylene fibre was added (content = 2 kg/m
3
, L = 12 mm; Øeq = 171 

20 μm; extruded straight fibre treated with a surfactant agent). Membrane load was designed 172 
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to induce a constant mean compressive stress of 10 MPa, sufficient to avoid any tensile stress 173 

throughout the test. To authors‟ knowledge, this is the first fire test in which water front, 174 

temperature and pore pressure are simultaneously monitored under loading in fire conditions. 175 

3. Results and discussion 176 

Results from GPR scans are shown in Fig.4 for different values of fire duration. In each frame 177 

the geometrical limits of the slab (top and bottom faces) are indicated (solid triangles), as well 178 

as the rising water front position (black dots). The comparison among the accurate repeated 179 

GPR surveys reveals travel time shifts and amplitude variations among corresponding 180 

reflection events. Beside each frame of Fig.4, the spatial average trace is provided to facilitate 181 

the identification of the recorded events. In this way, for each time step, the information is 182 

synthesized by a single wave, in which the effects of concrete heterogeneity are minimized. 183 

While the amplitude at the top of the slab remains constant throughout the test, a 184 

significant blurring appears in the lower part after approximately 20 min of heating. This is a 185 

clear evidence of the presence of a highly absorbing thin layer of water moving from the 186 

heated surface towards the cold core of the slab. This effect ensues from the high absorption 187 

capability of water that reduces the amount of energy transmitted through the remaining 188 

portion of the slab and then collected at the receiver. 189 

The migration of the water front, together with the significant temperature rise in the hot 190 

layers of the slab, produces a variation in the electrical properties distribution. This appears as 191 

a change in the location of the bottom face as shown in the last frame of Fig.4 and highlighted 192 

in Fig.5. Considering the initial conditions of the slab, this modification induces an average 193 

increase in the velocity of about 10%, corresponding to a decrease of the average relative 194 

dielectric constant from 5 to 4. On the other hand, the thermal effect on the location of the 195 

water front is expected to be not significant. This depends on the fact that the region of the slab 196 

comprised between the cold face (where GPR is implemented) and the water front, experiences 197 



9 

 

limited temperatures (≤ 330°C, see Fig.8). For this thermal range, electric properties should be 198 

negligibly influenced by temperature, as demonstrated by the absence of any shift in the 199 

location of the bottom face of the slab in the first 50 min of heating. 200 

In order to clearly identify the migration of the water front during the test, the spatial 201 

average traces of Fig.4 have been arranged in the synthetic radargram shown in Fig.6a. 202 

The horizontal gradient has been then computed by subtracting to each spatial average trace 203 

the initial one (corresponding to concrete in virgin conditions), and the result is reported in 204 

Fig.6b. The subtraction of repeated GPR surveys produces an image in which the differences 205 

among time steps are enhanced, in order to more easily detect hygrally active regions.  206 

In Fig.6 the rise of a high reflective front is clearly detectable, as well as the bottom 207 

reflection. The result in terms of water front position as a function of time is finally reported 208 

in Fig.7. Once the water front position is known for any given fire duration, it is possible to 209 

evaluate the time at which the water front crosses the points where temperature and pressure have 210 

been measured, as shown in Fig.8. 211 

The measurements of temperature and pressure as a function of time for the 6 measuring 212 

points within the slab thickness are reported in Figs.8a,c, respectively. The coloured dots in 213 

the same plots represent the time at which the water front crosses those points. Temperature 214 

and pressure profiles in the depth for different values of fire duration are reported in 215 

Figs.8b,d, respectively. Also in these plots, coloured dots are used to show the position of the 216 

water front at the time step corresponding to each pressure and temperature profile. 217 

In Figs.8a,b it can be observed that the water front starts rising at 10 min, when 218 

temperature exceeds 200°C. After 20 min of heating, the temperature at the water front goes 219 

up to 322°C. Afterward, water front continuously rises, while the corresponding temperature 220 

decreases down to about 200°C after 110 min. In Figs.8c,d it is clear that the peak pore 221 

pressure (both in time and space domains) is reached in correspondence of the water front. 222 
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Such result is reasonable, since the highest vapour pressure is expected to develop where 223 

evaporation takes place, reaching its maximum value when almost all water is vaporized. 224 

The reason why temperature at the water front decreases with time can be found in Fig.9a, 225 

where the pressure at the measuring points is plotted as a function of temperature, together 226 

with the dots representing the time at which the water front crosses such points. At increasing 227 

depths, in fact, pore pressure-temperature rate increases, since the path that vapour has to 228 

travel to escape is higher and moisture migration is slower, as schematically described in 229 

Fig.9b (adapted from Mindeguia, 2009). Hence, moving towards the core of the slab, pressure 230 

development with temperature becomes closer to the vapour pressure saturation curve, which 231 

represents the pressure at which water vaporizes at a given temperature when no vapour 232 

leakage is allowed. This explains why higher pressure can be reached at lower temperature, 233 

for increasing values of water front distance from the heated face. 234 

4. Concluding remarks 235 

The use of Ground-Penetrating Radar (GPR) for monitoring water front migration in concrete 236 

during heating is discussed in the present paper. GPR has been implemented in a fire test 237 

based on one-side heated concrete slab, together with the continuous measurement of 238 

temperature and pressure along the thickness of the specimen. 239 

GPR proves to be able of detecting the water front position during heating with an 240 

accuracy comparable to other methods such as Neutron Radiography Imaging and Nuclear 241 

Magnetic Resonance. The big advantage of GPR is the possibility to be easily implemented in 242 

any concrete member heated on one side, which is the common configuration of fire tests for 243 

tunnel lining segments and concrete slabs. 244 

The combination of GPR and pressure measurement allows to better characterize the 245 

hygro-thermal behaviour of concrete, this being instrumental in investigating spalling 246 

mechanisms and radiation shielding capability in case of fire. 247 
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The experimental results highlight that water front cannot be directly related to a particular 248 

temperature, while it is evident that pore pressure peaks in both time and space domains are 249 

reached in correspondence of water front position. This is probably the first experimental 250 

evidence of such behaviour. 251 

Finally, it is worth noting that the most effective approach for the evaluation of fire spalling 252 

evolution in concrete is based on the combination between experimental testing and numerical 253 

analyses involving the hygro-thermo-mechanical behaviour. For such numerical models, fire 254 

tests in which temperature, pressure and water front are monitored represent detailed 255 

benchmarks instrumental for the calibration phase. This can be of big help when the design of 256 

strategic reinforced-concrete structures and infrastructures is at issue. 257 
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