
AnNotify: A Private Notification Service

Ania M. Piotrowska

University College London, UK

Jamie Hayes

University College London, UK

Nethanel Gelernter

College of Management, Academic

Studies, IL

George Danezis

University College London, UK

Amir Herzberg

Bar Ilan University, IL

University of Connecticut, US

ABSTRACT
AnNotify is a scalable service for private, timely and low-cost on-

line notifications, based on anonymous communication, sharding,

dummy queries, and Bloom filters. We present the design and anal-

ysis of AnNotify, as well as an evaluation of its costs. We outline

the design of AnNotify and calculate the concrete advantage of

an adversary observing multiple queries. We present a number of

extensions, such as generic presence and broadcast notifications,

and applications, including notifications for incoming messages in

anonymous communications, updates to private cached web and

Domain Name Service (DNS) queries.

1 INTRODUCTION

A number of on-line applications require timely notifications. Mail

delivery protocols notify users when a new email can be retrieved,

social networking and instant messaging applications send updates

of presence, and broadcast notifications carry updates of DNS or

cached web records. Traditionally, notification services provide no

privacy vis-à-vis the notification service itself, that can observe

the routing of notifications from the publisher of the event to the

subscriber. The fact, that particular consumers are subscribed to a

particular pubisher or larger groups of publishers can revel sensi-

tive private information about them. Thus, the privacy preserving

systems, such as anonymous communication systems [7], or private

presence systems [5], rely on private notifications: an adversary

should not be able to observe what events a user subscribes to.

In this paper we present AnNotify, a private notification service,

leveraging an anonymous communication system, based on simple

cryptographic constructions. The AnNotify system is designed for

efficiency. Subscribers only retrieve small parts of the event data-

base, to which we refer to as shards. Simple and fast cryptographic

techniques, allow AnNotify to scale well, while providing rigorous

privacy guarantees.

AnNotify has numerous applications. Some only require pri-

vate notification to signal availability of a service or a peer (e.g.,

in instant-messaging systems), or events such as alerts. Other ap-

plications, e.g., blacklists, require public notifications with multi-

ple subscribers. Broadcast notifications may signal when a cached

value changes; this is especially important for privacy-preserving

storage mechanisms such as Oblivious RAM [21, 33] and PIR [8],

where each access involves significant overhead. Beyond these, the

broadcast notifications can improve the privacy of web and DNS

caches, and significantly improve the performance of such caches

when they are queried over anonymizing networks such as Tor;

see [16, 25, 32].

Contributions: This paper makes the following contributions:

• We introduce AnNotify, a new private and scalable notification

system, which guarantees relationship privacy at a low band-

width and performance cost.

• We present a security definition for AnNotify which allows for

some leakage, to flexibly accommodate efficient systems. We

also present a rigid proof of AnNotify security, delivering an

upper bound of the information leakage, which can be applied

to systems which security is based on sharding.

• We present an implementation of AnNotify as a web-server,

which can be scaled to millions of clients at a lower cost than

alternatives such as DP5 which we also evaluate.

2 MODEL AND GOALS
AnNotify is a service connecting notification publisherswith specific
notification subscribers that query for notifications. We describe the

system for a single subscriber per notification first and extend it

later to broadcast to multiple subscribers.

The AnNotify system consists of multiple shards that are man-

aged by a single untrusted server. Shards store information about

the presence of the notifications uploaded by the publishers, which

subscribers can then query from the system. AnNotify operates

in epochs. Each epoch publishers, who want to notify the sub-

scriber, connect directly to the system to upload the notifications,

whereas the subscribers, in order to subscribe or query for notifica-

tions, connect with the servers through the anonymous channels,

as illustrated in Figure 1. AnNotify uses anonymous channels for

communications, and leverages them to increase the efficiency of

private queries from a database of notifications. We consider these

channels to be perfect, namely to hide all meta-data about senders

and receivers of messages, and also the length of messages, as would

be expected from a robust mix-network [7].

Security Goals. The AnNotify system provides a number of pri-

vacy properties:

Subscriber privacy. Third parties, including the notifier and

the infrastructure, cannot tell whether a subscriber sought a

notification from a particular publisher.

Epoch unlinkability. An adversary cannot tell whether queries

across epochs were initiated by the same subscriber or concern

the same notification.

Broadcast privacy. Whenmultiple subscribers are authorized

to receive the same notification, corrupt subscribers cannot dis-

cover that other honest subscribers are subscribed to the same

notification as they are.

A

Server managing
shards

s0

s1

s2

s3

s4

s5

. . .

sS−1

SubscribersPublishers

Mixnet

Figure 1: The AnNotify architecture.

Threat Model. The AnNotify design assumes a global passive

adversary, who may observe any part or the whole network and

tries to infer the relationships between publishers and subscribers.

All servers that manage shards may be malicious and work with

the adversary.

Moreover, AnNotify considers that a fraction of users are mali-

cious: they collude with the eavesdropping adversary, servers or

other users to try to break the privacy properties of the system or

reveal some information about other users. However, we assume

that a large number of concurrent AnNotify users (publishers and

subscribers) are honest, and follow the protocol faithfully. We also

assume, that the adversary has a partial knowledge about the rela-

tionships among publishers and subscribers , and that the adversary

may chose to some extent which honest users participate in the

protocols at different times. We justify those assumptions further

in the paper.

All communications among the requesting subscribers and the

servers go through an anonymity network [7, 10, 28]. We assume

that this system is immune to traffic analysis. Namely, from the

point of view of the adversary, it provides a perfect secret permuta-

tion between its input and output messages.

3 THE DESIGN OF ANNOTIFY
In this section, we present the detailed description of AnNotify.

We first start with sketching the straw-man design based on triv-

ial Private Information Retrieval (PIR), and argue informally for

its security but also its inefficiency. We then present the detailed

description of AnNotify.

Straw-man Design. A single server acts as the infrastructure for

storing notifications. Publishers and subscribers privately agree on

a secret random identifier for a specific notification event. When

a publisher wishes to send a notification, she transmits the pre-

arranged random identifier to the server which stores it forever.

Subscribers of notifications access the single server, and periodically

download the full database of stored notification identifiers, looking

for identifiers they recognise as events. This naïve design is secure:

since subscribers always download the full database, an adversary

at the server cannot distinguish the notification they seek. However,

performance is poor: since the database grows continuously, and

downloading the full database becomes very expensive. Even using

procedure
N .GenSystem(n, S, κ, ∆)

Choose packet length l
for i = 0, . . . , S − 1 do

s0

i ← []

end for
▷ σ is the state of the system

σ ← {s0

0
, s0

1
, . . . s0

S−1
}

π ← {n, S, κ }
return σ , l, π

end procedure

procedure N .GenChannel(π)

ck
R
←− {0, 1}κ

return ck
end procedure

procedure N .Notify(cki , t)
µ ← PRFcki (t)
return (i , µ)

end procedure

procedure N .ProcNotify(µ, t, σ)
i ← µ mod π .S
if s ti not in σ then

s ti ← []

σ ′ ← σ ∪ {s ti }
end if
Add string µ to Bloom filter s ti
return σ ′

end procedure

procedure N .Query(cki , t, π)
µ ← PRFcki (t)
ϕ ← µ mod π .S

ϕ′
$

← {0, . . . , π .S }
return {ϕ, ϕ′ }

end procedure

procedure
N .ProcQuery(ϕ, t, σ , sk)

ρ ← (ϕ, s tϕ from σ)
return ρ

end procedure

procedure
N .ProcResponse(ρ, ck, t)

µ ← PRFck (t)
ϕ ← µ mod π .S
ϕ′′, s ← ρ
if µ in s and ϕ = ϕ′′ then

return True

else
return False

end if
end procedure

Figure 2: The concrete instantiation of all algorithms of AnNotify.

PIR [8], for more efficient private download causes a scalability

bottleneck and has performance limitations, as the DP5 presence

service [5] illustrates (more in Section 6.2). AnNotify provides an

efficient and scalable solution to this problem, at the cost of some

privacy leakage, which we evaluate carefully.

3.1 The AnNotify Protocols
Figure 2 presents the concrete algorithms of AnNotify, which we

discuss informally below.

Setup.We consider a population of n users, distinguished as pub-

lishers and subscribers, using the AnNotify system to exchange

notifications. We denote S as the number of shards used by AnNo-

tify for sharing notifications, and each shard is denoted as si , i ∈
{0, . . . , S −1}. To increase the capacity and scalability of the system,

the shards can be distributed among multiple untrusted servers,

however, the number of servers does not impact security. Thus, we

consider a single untrusted server managing all shards.

AnNotify uses Bloom filters [3], an efficient data structure used

for representing set membership, in order to compress the repre-

sentation of the shards. We note that Bloom filters are not used in

AnNotify as privacy mechanism, and could be replaced by any other

(succinct or not) data representation. As N .GenSystem(n, S,κ,∆)
we denote the system setup procedure, ran by the server to initialize

all parameters of the system, where κ ∈ 1
∗, ∆ > 0 are the security

parameters.

A publisher who wishes to send a notification to a subscriber,

simply provides themwith a secret channel key (ck) – either directly

or derived through a public key cryptographic scheme. We denote

the channel establishing procedure asN .GenChannel(π), where π
is the public information.

For publishing and querying notifications clients use a crypto-

graphic Pseudo-Random Function (PRF : {0, 1}∗ × {0, 1}∗ → {0, 1}∗)

that is indistinguishable from a true random function to a compu-

tationally bound adversary not knowing the secret key [23]. The

AnNotify system operates in sequential epochs, like Apres [24],

denoted by t for time. For simplicity we assume that the length of

all notifications, queries and responses, is always a fixed value l .

Publishing notifications. To publish a notification the publisher

runs N .Notify which derives an epoch specific notification iden-

tifier IDt
ck for a particular event using a PRF. For each single no-

tification the publisher computes the event notification identifier

for epoch t using the shared channel key ck as IDt
ck = PRFck (t).

The publisher then computes the index of shard si in which the

notification should be stored as i ← IDt
ck mod S . Finally, the pub-

lisher sends IDt
ck directly to the server managing shard si . This

process spreads different notifications across shards. The server

may optionally perform some authentication and authorization of

publishers before accepting to store the notification. Our scheme

does not impede this, but details around authenticity are outside

the scope of this work.

Storing notifications. The server manages a set of shards, mod-

eled as Bloom filters, for a given time epoch t . Upon receiving a

notification IDt
ck at epoch t server runs procedure N .ProcNotify,

which adds the notification to a Bloom filter Bi,t [18] for shard si ,
which includes all received notifications for a particular epoch. The

server makes all shards available for download in the next epoch.

Querying for notifications.To check for notifications, subscribers
repeatedly poll, in every epoch, the server for notifications by down-

loading the shards of interest via an anonymous network. At the

beginning of epoch t + 1 each subscriber reconstructs the epoch

event identifier IDt
ck for the notifications they wish to check for

the previous period t by computing IDt
ck = PRFck (t). Next, they

recompute the shard identifier i ← IDt
ck mod S , in which IDt

ck
might be stored. We denote this querying procedure as N .Query.
Alongside the query for the ‘real’ shard of interest each honest user

anonymously sends a ‘dummy’ indistinguishable and unlinkable

query to a random shard. These dummies ensure that no matter

what side information is available to the adversary, each honest

user contributes some uncertainty to the pattern of queries for the

epoch. The notification service runs next theN .ProcQuery in order
to process the received queries and returns the obtained results to

the subscribers. Each subscriber then anonymously, through a mix

network, downloads the Bloom filter Bi,t for shard si .

Processing the reponse. Upon receiving a response from the

server, the subscriber triggers the procedureN .ProcResponse(ρ, ck, t),
which checks whether IDt

ck is present in the filter or not. This pro-

cedure may yield a false positive match, misleading the subscriber

into thinking that a particular notification was present when it

was not. However, selecting proper Bloom filter parameters rela-

tive to the number of notifications allows us to minimize the error

probability [6].

4 SECURITY OF ANNOTIFY
In this section, we first discuss an Indistinguishable-Notification
Experiment, a challenge game between an adversary and the sys-

tem, which we use to measure the security. Next, we construe the

security definition resulting from it, to quantify the privacy prop-

erties guaranteed by the notification systems. Finally, we present

the main security theorem of our system and the degree of security

obtained for concrete parameters.

4.1 Game between the adversary and the
AnNotify system

In this section, we describe an Indistinguishable-Notification Experi-
ment (IndNotExp), defined in details in Figure 7 in appendix A.1,

addressing the threats identified in section 2. In this experiment, the

adversaryA observes the system over many epochs. There exists a

target subscriber, that may be subscribed to one of two publishers (A

or B) that are controlled by the adversary. The goal of the adversary

is to infer to which publisher a target user is subscribed.

At the beginning of time, the experiment flips a bit b at random,

and decides which of the two publishers the target subscriber sub-
scribes to. Over multiple epochs the adversary schedules multiple

notifications and queries to be executed, and has a full control over

which honest publishers notify and which honest subscribers query

for their respective notifications. We assume, that at least u honest

subscribers query every epoch. A observes the query patterns of

the subscribers, including the target subscriber requesting the target
notifications, possibly over multiple epochs, and tries to guess b.
The threat model captured by the Indisitinguishable-Notification
Experiment is very generous to the adversary: A has a full visibil-

ity into the processing of all notifications and all query requests

at all shards of the system for as many epochs as they wish. The

adversary is also assumed to know the relationship between all

honest publishers-subscriber pairs
1
and is given the secrets associ-

ated with the notifications of the two potential target notifications

–modelling corrupt notifiers or other subscribers in a broadcast

group. Figure 7 in Appendix illustrates the detailed IndNotExp

experiment as a game in which the adversary controls, for a num-

ber of epochs, notifications (A (i, t , ‘notify?’) = 1) and queries

(A (t ,u, ‘GetSubscribers?’)) from users. The adversary is given

all the above information including the challenge notification keys

ckA and ckB (through invocations to A (·)). In r rounds, the adver-
sary may chose to trigger the target subscriber to query by setting

A (t , ‘TargetQuery?’) to 1. Finally, the adversary tries to guess a

challenge bit b with A (‘Guess?′), i.e., tries to decide which target

notification was queried by the target subscriber in the protocol

run with full knowledge of the secrets it shares with notifiers. The

game returns 1 if the adversary guessed correctly.

Based on the presented challenge experiment we now define a

∆−private notification system.

Definition 4.1. A notification system N is (u,n,∆)-private if for
any PPT adversary A holds:

Pr [IndNotExp(N ,A,n, S,κ,∆,u) = 1] ≤
1

2

+ ∆ + negl(κ)

1
It is inevitable to model a private notification system that leaks information. Since

the adversary may observe the system for a polynomial number of past epochs she

may learn all other mappings except the challenge one.

The probability is taken over all coin tosses, including uniform

choice of bit b, and where negl(·) is a negligible function; the in-

equality should hold for sufficiently large security parameter κ
and depends on the number of epochs r the target subscriber was
activated to query. For simplicity, we call such a system ∆-private.
Intuitively, ∆ defines the advantage of the adversary, in successfully

guessing which notification the target subscriber repeatedly queried,
over a random guess. If the adversary would be guessing randomly,

she has a 50% chances of a correct guess. Thus, ∆ quantifies how

much additional information the observed system leaks to A.

This definition ensures that AnNotify provides privacy even

when the adversary knows the shared key – allowing notification

privacy even when the notifier or another subscriber in a broadcast

group, is dishonest and working with the adversary.

4.2 The Security of AnNotify

In this section, we present the security theorem showing An-

Notify to be a secure ∆-private notification system, as defined in

Definition 4.1 (Section 4.1). We highlight, that the presented secu-

rity theorem is very general, thus is not limited to the AnNotify

system but also can be applied to other systems, which distribute

the information among many entities and base there security prop-

erties on an set of honest participants. Examples of such systems

are presented in section 7.

We recall, that S denotes the number of shards, u denotes the

minimum number of honest subscribers querying in every epoch

and r denotes the number of epochs the adversary observes the

target subscriber querying for a notification.

In order to quantify the security properties of AnNotify, we

want to compute the advantage of the adversary in winning the

IndNotExp game, thus the chances to break the privacy of a target

subscriber. We start by proving a differentially private [13] secu-

rity bound ϵ for the privacy loss in IndNotExp, where the target

subscriber only sends a single query.

Let us first define the following notation

Definition 4.2. Let

A = {(xA,xB) : Pr[XA = xA,XB = xB |IA]

≤ eϵ Pr[XA = xA,XB = xB |IB]}

We say that Pr[XA,XB |IA] ≤ eϵ Pr[XA,XB |IB] holds for ϵ > 0 with

probability at least 1 − δ to mean that Pr[(XA,XB) ∈ A] ≥ 1 − δ .

In the following lemma, we quantify all the possible scenarios

in which the queries sent by the subscribers are distributed among

shards in such a way, that the adversary can easily link the target
subscriber to the notification.

Lemma 4.3. Let XA, XB denote the query volumes observed by the
adversary at shards sA, sB in a single round assuming that queries
map to shards following uniform multinomial distribution, and let
IA, IB define events when a particular challenge notification is queried
in the final round. An (ϵ,δ)-differential privacy bound by which:

Pr[XA,XB |IA] ≤ eϵ Pr[XA,XB |IB]

holds for ϵ > 0 with probability at least 1 − δ , where

δ ≤ exp

(
−
(u − 1)

4S

)
+ exp

(
−
(u − 1)

2S
tanh

2

(ϵ
2

))
. (1)

The probabilities are taken over all coin flips of honest notification
not observed by the adversary.

Proof. For proof see appendix B.

Intuitively, in the presented lemma ϵ is a measure of a flexible

leakage, and δ sums up the probabilities of scenarios in which the

adversary is easily winning the challenge game.

Since we know how to quantify δ , we need additionally to com-

pute the amount of leakage due to ϵ . To derive the adversary advan-
tage for r observed queries we use a generic composition theorem.

In the following lemma we derive an overall bound of adversary’s

advantage, in guessing to whom the target user subscribes, after

r rounds when the adversary sees the target subscriber querying

for the notification. As Sb=0
, Sb=1

we denote the events that the

subscriber queries a particular shard, where the target notification

was uploaded. As Oi = (X i
A,X

i
B) we denote the observation of the

number of queries observed coming to shard sA and sB respectively

in round i .

Lemma 4.4. Let Oi be an (ϵ,δ)-differentially private observa-
tion in round i , on two private inputs Sb=0

and Sb=1
, for which

Pr[Oi |Sb=0
] ≤ eϵ Pr[Oi |Sb=1

] with probability at least 1 − δ .
If the adversary A is provided with a set of observations over r

rounds denoted as Ō = (O1, . . . ,Or) resulting from either Sb=0
or

Sb=1
, and tries to guess the input bit b, she succeeds with probability:

Pr

[
A (Ō, Sb=0

, Sb=1
) = b | Ō

]
≤

1

2

+
1

2

tanh

(rϵ
2

)
+ rδ + negl(κ),

where A (Ō, Sb=0
, Sb=1

) denotes the guess of the adversary.

Proof. For proof see appendix B.

Based on the above lemmas we derive the security theorem,

proving that AnNotify is a ∆-private notification system.

Security Theorem 1. The AnNotify system is a ∆-private notifi-
cation system, for ∆ > 0 satisfying the following inequality. For any
ϵ > 0,

∆ ≤
1

2

tanh

(rϵ
2

)
+ r exp

(
−
(u − 1)

4S

)
+ r exp

(
−
(u − 1)

2S
tanh

2

(ϵ
2

))
Proof. The detailed proof is presented in Appendix A.1.

Security Theorem 1 presents a bound on ∆ that provides insight

about the adversary’s advantage based on the security parameters

of the system. The bound for ∆ depends proportionaly on the ratio

u−1

S and ϵ .2 However, this bound is very loose. A tighter bound on

∆ is less elegant.

2
Note, that the upper bound on δ in lemma 4.3 is constant as long as the ratio

u−1

S is

constant. In theorem 1, because δ depends on ϵ , we obtain a uniform bound for ∆ for

all values of δ , when ϵ is fixed.

200000 400000 600000 800000 1000000
Number of users

10 4

10 3

10 2

Va
lu

es
 o

f

No. shards 1000
No. shards 10000
No. shards 100

Figure 3: The empirical adversary’s advantage for a single round, av-
eraged over 10

6 samples, as a function of the number of subscribers
and the number of shards. The advantage is presented on a log
scale.

Lemma 4.5. The AnNotify system is a ∆-private notification system
for

∆ ≤
1

2

tanh

(rϵ
2

)
+ rCDF

[
u − 1,

2

S
,C

]

+ r
u−1∑
i=C

CDF
[
i,

1

2

,α
] (

u − 1

i

) (
2

S

)i (
1 −

2

S

)u−1−i
,

where ϵ > 0.

where CDF[n,p,x] is the cumulative distribution function for a

binomially distributed variable. We can compute this bound on ∆
using Monte-Carlo integration though importance sampling.

4.3 Empirical adversary advantage
Our security theorems bound the advantage ∆ of the adversary

through a number of upper bounds and a generic composition the-

orem. This upper bound is correct but extremely loose: it assumes

that in each round the worst possible observation will occur; it dis-

counts totally cases where the adversary observes too few queries

to target shards – even though they may hide information; and

takes a number of loose upper bounds to yield an insightful ex-

pression. To get a more accurate view of ∆̂, the advantage of the
adversary, we compute it empirically through sampling.

For fixed parameters u and S we draw a large number of samples

from a Multinomial(θ ,n) distribution with parameter vector θ =
[(s − 2)/s, 1/s, 1/s] and n = u − 1, each in effect simulating a single

observed epoch.We denote as x⃗A and x⃗B the sample values falling in

the second and third bucket respectively. Without loss of generality,

we assume that bucket A always gets at least one message. We first

compute an empirical
ˆδ as the fraction of values in x⃗B that are

zero, thus allowing the adversary to perfectly win the IndNotExp

experiment. Given the security parameters used in the evaluation

this condition is very rare and has never occurred. Next, we estimate

ϵ̂ as the mean leakage the adversary observes for all samples with

positive x⃗B :

ϵ̂ =
1

I
·
∑
i

log

xA[i]

xB [i]
,

where I denotes the number of samples. This is the log of the

Geometric mean of the leakage for each epoch. From the Law of

Large numbers [17], we know that for a large number of repeated

experiments, the average of the results is close to the expected

value, and the more trials we run, the closer the expeted value we

are. Hence, the computed value of ϵ̂ for a large number of samples

I quantifies the expected leakage of an observed round. The overall

advantage after r epochs can then be computed as:

∆̂ = tanh(rϵ̂/2)/2 + r ˆδ

This empirical advantage is the mean advantage of the adversary

after observing a very large number of AnNotify epochs. And given

low leakage in every round it is a more accurate depiction of the

security of the system under multiple observations than the bound

from our theorems. Figure 3 depicts the empirically computed ad-

versarial advantage for a single round, over the AnNotify system

composed of 10
2, 10

3, 10
4
shards and a varying number of sub-

scribers querying for notifications.

Further in thework, we use the empirical evaluation to accurately

compare security and performance with DP5.

4.4 Other security arguments
Our main proof of security of AnNotify concerns the subscriber
privacy property, under a very strong threat model. We argue

informally in this section that other security properties also hold,

but defer their formal definition and proof to a longer version of

this work due to lack of space.

The Epoch Unlinkability property ensures that queries in dif-

ferent epochs cannot be linked with each other or a specific sub-

scriber. It is a simple result of the use of keyed pseudo-random

function to derive unlikable identifiers within each epoch.

The Broadcast Privacy property ensures that a malicious sub-

scriber, with knowledge of the notification key, is not not able

to determine whether another query (or subscriber) is querying

the same known notification. This property is implied by the very

strong IndNotExp definition and game. Since the adversary in this

game has knowledge of the notification shared key they are exactly

in the same position as another subscriber of the same notification,

and thus they both enjoy at most the same advantage.

5 ANALYTICAL PERFORMANCE
EVALUATION

Bandwidth.We evaluate the bandwidth cost of multi-shard AnNo-

tify against the naïve design using a multi-server IT-PIR [8] scheme

inspired by DP5 [5]. Let the number of shards in AnNotify be S , and
the number of servers in the PIR scheme be S ′. Since in AnNotify all
shards are of equal size, denoted as l , the number of bits transferred

is nl ·mx where n is the number of subscribers that downloaded the

Bloom filter andmx is the cost of using a mix network to transport

data (to be fair we assumemx = S ′). For the IT-PIR scheme the cost

is nS ′
√
v , where v is the number of bits in the server’s database.

Additionally, since AnNotify may yield false positives, we must

consider the bandwidth cost of a subsequent action of a subscriber

given that they received a notification, which we denote as a. We

intentionally do not specify what this action is, as AnNotify could

be used in a variety of applications. Let k ≤ n be the number of

subscribers who received a notification and f be the error rate of

the Bloom filter. Then h = nf subscribers will incorrectly think

they have received a notification. Hence the cost of performing

actions in AnNotify is a(k +h), whereas in the PIR scheme the cost

is ak since no false positives occurs.

The total cost of AnNotify isnl ·mx +a(k+h) = nl ·mx +a(k+nf).
The total cost of the PIR scheme is nS ′

√
v +ak . We want to estimate

the cutoff costa for AnNotify to be less expensive than a PIR scheme,

hence we require nl ·mx + a(k + nf) < nS ′
√
v + ak . This gives

a <
S ′
√
v−(l ·mx)
f .

We note that the false positive rate f and the size of the Bloom

filter l are related by f ≈ (1/2)l log 2/m
, wherem is the number of

messages in the filter, that we assume is approximately N /S where

N is the total number of notifications. Similarly, the database in an

IT-PIR system would need at least v = N logN bits to store a list

of up to N distinct notifications. Thus, it is preferable to use the

AnNotify system over IT-PIR when the cost of an action a is lower

than the following threshold: a < (S ′
√
N logN − (l ·mx))2

lS
N log 2

.

Latency. In the AnNotify system, a notification sent by a publisher

in epoch ei becomes available to a subscriber in epoch ei+1. The

time between a notification being sent and when it can be read is

|e | + t , where t is the round trip time taken by the notification to be

routed through the mix network and |e | denotes the server epoch
length. Note, that this time t is dependent on the amount of traffic

passing through the mix network, and the mix networks flushing

mechanism.

Refresh rate, epoch length, cost and privacy.
In AnNotify system publishers and subscribers must decide on

an epoch length, based on which their notification identifiers will

change. There is a clear trade-off: shorter epochs mean shorter

waiting times but result in the subscribers requesting more often.

Publisher-subscriber epoch lengths are entirely context dependent,

for example a social network presence notification system will

likely have much shorter publisher-subscriber epoch lengths than

a storage system.

6 EXPERIMENTAL EVALUATION
Three key advantages of AnNotify over previous works [5, 8] are

efficiency, extremely low infrastructure cost (even at large scale),

and ease of implementation. In this section, we describe a prototype

implementation of AnNotify, based on web technologies for the

server components, and Tor as an anonymity system. Next, we

compare it with DP5.

6.1 Implementation & Infrastructure
We implement AnNotify as a web-server that subscribers may easily

access through themost popular anonymity network today, Tor [12].

We note, that even though we use Tor, the anonymous channels

might be implemented using other design, for example [28]. We are

aware that Tor only provides anonymity properties against a local

or limited passive adversary, and thus the experimental system

inherits this limitation. Since we are concerned with performance

we focus on supporting as many clients as possible, and decreasing

the connection time between the client and the server.

Our implementation of AnNotify consists of two servers: a front-

end server with whom the clients communicate to download shards,

and a back-end server that maintains the Bloom filters. We design

AnNotify so that queries are served as requests for a static resource:

since those only need to retrieve the Bloom filter corresponding

to a previous epoch. The task of the front-end server is simply to

serve medium to large static resources; since servers are untrusted,

caching and content distribution network may be used to speed

this up – and this is a feature of AnNotify. We expect the size of the

Bloom filter served to be similar to the size of an image, between

several kilobytes to a few megabytes.

To perform a query and retrieve the Bloomfilter, AnNotify clients

just send an HTTP GET requests to the front-end server. To op-

tionally register a notification, the clients can additionally send the

notification identifier for the current epoch as a parameter to the

HTTP request. The front-end server immediately responds with

the relevant current Bloom filter, that is stored as a static file, and

forwards the request to the back-end server to update the next filter.
At the beginning of every epoch, the back-end server sends the

next Bloom filters, one for each shard, to the front-end server, and

the front-end server replaces the current Bloom filter with it.

We used Nginx
3
for the front-end server due to its high perfor-

mance in serving static resources. We implemented the back-end

server in Java, relying on Netty
4
, a non-blocking I/O (NIO) client-

server framework. We relied on Google Guava’s implementation of

Bloom filter
5
. The front-end implementation simply consists of the

Nginx configuration file, and the back-end is 300 lines of Java code.

6.2 Performance Evaluation
To evaluate AnNotify, we run an AnNotify server on a single Win-

dows 7 OS, 8GB RAM machine. The back-end and the front-end

servers run as two processes. From another machine, we run our

client program from several processes to simulate 100K requests in

epochs of 5 minutes. We tested the system for shards from 10Kb

to 100Kb. Larger shards imply larger Bloom filters to retrieve and

higher bandwidth.

A single machine served 100K clients when the shard size was up

to 30Kb. For larger shards we encountered sporadic failures for some

clients, and had to add additional servers to handle some shards.

The design of AnNotify allows distributing the shards among sev-

eral machines without overhead. The yearly cost of an Amazon

EC2 m4.large instance (in April 2016), which is equivalent to the

machine we used, is $603. Dividing the cost of additional machine

by 100K clients implies minimal additional cost of less than a single

cent per client. Our measurements indicate an additional server is

required for each 30Kb increase of the shard size.

We estimated the cost of running AnNotify in the Amazon cloud.

The main factor in the cost calculation was the bandwidth that

increases linearly as a function of the shard size. However, the

bandwidth cost per byte decreases as the system consumes more

bandwidth, e.g., for larger shards and for more clients. Figure 4

3
The NGINX Web Server https://www.nginx.com/

4
The Netty Framework http://netty.io/

5
Guava: Google Core Libraries for Java https://github.com/google/guava

https://www.nginx.com/
http://netty.io/
https://github.com/google/guava

10
Kb

20
Kb

30
Kb

40
Kb

50
Kb

60
Kb

70
Kb

80
Kb

90
Kb

10
0K

b

Shard size

0

10

20

Co
st

 (c
en

ts
)

(a) Yearly cost (cents) per client for different shard sizes

10
Kb

20
Kb

30
Kb

40
Kb

50
Kb

60
Kb

70
Kb

80
Kb

90
Kb

10
0K

b

Shard size

0

100

200

Co
st

(M
B)

(b) Yearly bandwidth (MB) per client for different shard sizes

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K 1M

Number of clients

0

10

20

Co
st

 (c
en

ts
)

(c) Yearly cost (cents) per client using 10Kb (circles) and 100Kb

(triangles) shards, for different numbers of clients

Figure 4: AnNotify’s implementation evaluation summary. The system scales perfectly for the increasing number of clients. Larger shards
imply higher bandwidth and cost per client. The cost evaluation was done based on Amazon EC2 m4.large instances.

illustrates our costs estimation, extrapolated from measurements

using our experimental setup, for a full year of operation in the

Amazon cloud. The costs are illustrated in monetary values, on the

basis of the cost of an Amazon EC2 m4.large instances. The results
show that AnNotify is indeed very efficient, and extremely cheap

to operate in the real world. Figure 4(a) shows that the yearly cost

per client ranges from a few cents (shards of 10Kb) to less than a

quarter (shards of 100Kb). Figure 4(b) shows the linear growth in

the yearly bandwidth used by AnNotify client as a function of a

shard size. However, as depicted by Figure 4(c), the AnNotify scales

perfectly in the number of clients, such that the cost per client even

decreases as there are more clients in the system. For a shard of size

10Kb, yearly costs per client is around 3 cents for both 100K and 1

milion users. In comparison, in DP5 the monthly cost per-user for

bandwidth is about 0.05 cent, which results in 60 cents per year for

100K users, and around 120 cents for 1 milion users.

6.3 Comparison to DP5
Compared to the thousands of lines of C++ and Python used to build

DP5 [5], AnNotify was significantly easier to implement and does

not require PIR services or Pairing-friendly libraries. Despite being

implemented in Java, it efficiently supports a hundred thousand

clients, and can be parallelized to scale to millions of clients easily

(see Figure 4(c)) with significantly lower yearly cost than DP5, of a

few cents per client.

Given the different threat models and functionality it is delicate

to provide a fair comparison between DP5 and AnNotify calibrated

in terms of security. To do so we compare the second phase of DP5,

with each user having a single friend, and the status communicated

being a single bit notification. Thus, for u users DP5 would have to

serve through PIR a database of at least u bits using IT-PIR over ℓ

servers, acting as the security parameter. We configure AnNotify to

also serve a database of u bits over S shards, using a mix network

with path length ℓ. Both ℓ and S < u are the security parameters

of AnNotify for a fixed number of users u. We do not use Bloom

filters to avoid making assumption on notification utilization, thus

presenting a very costly variant of AnNotify.

We consider that either IT-PIR servers or mix servers may be

corrupt with a fixed probability f . In that case the advantage of the

adversary in DP5 is f ℓ , namely the probability that all PIR servers

are corrupt. For AnNotify the advantage of the adversary is the

4 6 8 10 12 14
Bandwidth Overhead bytes (log)

25

20

15

10

5

Ad
ve

rs
ar

y
Ad

va
nt

ag
e

(lo
g)

S = 103S = 104S = 107 S = 105S = 106
Bandwidth vs. Security for DP5 and AnNotify

AnNotify
DP5/IT-PIR

Figure 5: Security versus Bandwidth comparison for AnNotify and
DP5/IT-PIR, for different parameters ℓ ∈ {2, . . . , 11} and S ∈

{10
3, . . . , 10

8 }. Database of u = 10
9 bits and users, and fraction of

corrupt nodes f = 10%. We observe that AnNotify is orders of mag-
nitude cheaper when some leakagemay be tolerated (adversary ad-
vantage e−5 . . . e−10). (Smaller is better on both axes.)

leakage ∆, that we compute empirically (to get a tight estimate, see

appendix 4.3), added to the probability f ℓ that all mix-servers are

corrupt.

Bandwidth. Figure 5 illustrates the trade-off between security and

bandwidth for AnNotify compared to DP5 using the above con-

figuration, for differing security parameters S (shards) and ℓ (mix

or PIR servers). We vary S ∈ {10
3, . . . , 10

8} and ℓ ∈ {2, . . . , 11}.

The measurements are for one billion notifications (u=10
9
) and a

fraction f = 10% of corrupt servers. We observe that AnNotify

requires many orders of magnitude (log scale x axis) lower band-

width per query than DP5 for moderate adversary advantage (e.g.,

e−5 . . . e−11
). This advantage is comparable to using ℓ ≤ 5 PIR

servers. For each value of S we observe that at first the advantage is

dominated by the probability of the mix network failing (for low ℓ)

before stabilizing and being dominated by the leakage of AnNotify.

Processing.We implement the DP5 second phase IT-PIR scheme

using 64 bit numpy matrix multiplication, to compare the CPU

costs of AnNotify versus DP5. We note that IT-PIR is CPU bound,

while the untrusted servers of AnNotify are purely network bound,

15 16 17 18
CPU Overhead sec. (log)

25

20

15

10

5

Ad
ve

rs
ar

y
Ad

va
nt

ag
e

(lo
g)

CPU cost vs. Security for DP5 and AnNotify

AnNotify
DP5/IT-PIR

Figure 6: Security versus CPU cost comparison for AnNotify and
DP5/IT-PIR, for different parameters ℓ ∈ {2, . . . , 11} and S ∈

{10
3, . . . , 10

8 }. Database of u = 10
9 bits and users, and fraction of

corrupt nodes f = 10%. We observe that AnNotify requires less pro-
cessing time than IT-PIR for comparable security levels. (Smaller is
better on both axes.)

since no processing takes place on them aside from serving static

shards of data. However, the anonymity network used by AnNotify

may become a CPU bottleneck. To estimate this cost we measured

the total CPU overhead per mix message using the Sphinx
6
packet

format [10] for appropriate payload sizes and path lengths ℓ.

Figure 6 illustrates the total CPU costs for u = 10
9
queries

and f = 10% for both DP5/IT-PIR and AnNotify. We vary S ∈
{10

3, . . . , 10
8} and ℓ ∈ {2, . . . , 11}. We observe that for equivalent

security levels the CPU cost of mixing messages in AnNotify is

always orders of magnitude (log scale x axis) lower than the equiv-

alent CPU cost of processing IT-PIR queries in DP5.

7 ANNOTIFY EXTENSIONS

AnNotify as a presence system.AnNotify can be used as a privacy-
friendly presence system, to transmit a small amount of information

from the publisher to the subscriber. A presence system allows to

indicate an online presence of the users. For example, when a single

user connects to the network the presence system informs which

friends are online.

In this variant, each shard stores the received notifications as a

list within each shard, instead of Bloom filter. Two users who would

like to use AnNotify share a secret channel key ck . Alice wants to
notify Bob of message m on this channel. To do so, she computes

the value of a pseudo random function keyed with ck based on

the current time stamp as IDt = PRFck (t) and the shard index

i = PRFck (t) mod S . She then encrypts the selected message with

an Authenticated Encryption Scheme with Associated Data (AEAD)
(such as AES-GCM) with a secret key ck to obtain the ciphertext

ct = AEADck (ID
t
;m). In order to notify, Alice sends the tuple

(IDt , c) to the corresponding shard si based on IDt
. The server

adds it to the stored values within that shard.

At the beginning of the next epoch, Bob queries the servers for

shard si and downloads the full set of values stored within it. To

check for the presence notifications, the subscriber searches in the

6
Using the Python sphinxmix package.

list the tuple with the identifier PRFck (t), and checks and decrypts

the attached ciphertext and tag using secret key ck in order to

recover the notification message m.

We note that the shard compression achieved through Bloom

filters is sacrificed in order to transmit the message m. However,

the subscriber-publisher privacy of Alice and Bob are maintained.

A rigorous proof of this would have to adapt the security definition

based on the IndNotExp experiment to provide the adversary with

the IDt
A and IDt

B identifiers for the target messages instead of

the raw keys ckA and ckB to preserve the secrecy of the message.

However, the rest of the proof and Security Theorem 1 do not need

major modification to show query privacy and message secrecy.

We note this scheme is in effect a leaky PIR scheme [34], based on

a secure anonymity infrastructure, and untrusted servers holding

shards. Given our evaluation results, relating the adversary advan-

tage to performance, such designs may be a competitive alternative

for other PIR related applications.

Broadcast AnNotify. The Security definitions and IndNotExp se-

curity game assumes that the adversary knows the notification key

used by a target subscriber. Yet, they are still unable to determine

whether they seek a specific notification. As a result, AnNotify can

be extended to support broadcast notifications to a group, without

difficulties.

In a broadcast scheme, the notifier distributes the secret notifica-

tion key amongst a group of subscribers. Access control is required

when publishing a notification to ensure it is genuine. This may

be achieved using any authentication or non-repudiation scheme,

since notifiers are not anonymous. All subscribers in the group

share that key, and query each epoch on the basis of it.

Due to the security guarantees of Security Theorem 1, even if

one of the subscribers in the group is corrupt – and shares the key

with the adversary – they are not able to break subscriber privacy

of another target user with greater advantage than the one-on-one

AnNotify design.

8 APPLICATIONS
Notification-onlyApplications.The first application is a privacy-
preserving version of event-notification services, such as the popu-

lar Yo application [36]. Yo and similar applications allow one user

to send a content-free notification to peer(s). In Yo, the receiving

applications notify the user by transmitting the word “Yo”, in text

and audio. Such event notification services can be used for social

purposes, as well as to provide simple information about events,

e.g., Yo was used to warn Israeli citizens of missile strikes [1].

As each message is only a single bit, applying Bloom filter is

ideal for this kind of communication. The Anonymous Yo server

will maintain a Bloom filter, and an anonymous Yo message will

be sent by turning on a few bits according to the shared keys. The

client side application will periodically retrieve the Bloom filter

and will prompt Yo from another client, if this client turned on the

relevant bits.

The second application is Anonymous Presence Services. The goal
of anonymous presence services is to allow users to indicate their

‘presence’, i.e., availability for online communication to their peers.

It is one of the functionalities usually provided by social networks

such as Skype and Facebook. A privacy-preserving presence pro-

tocol, providing presence indications to users while hiding their

relationships, was presented in [5]. Their solution relies on expen-

sive cryptography and is rather complex to implement, whereas

AnNotify provides an easier-to-implement and more efficient solu-

tion.

The third application is privacy-preserving blacklists, e.g., of
phishing domain names. The goal is to allow a relying party, e.g.,

a browser or email server, to check if a given domain name (or

other identifier) is ‘blacklisted’, without exposing the identity of

the domain being queried. In particular, all major browsers use

some ‘safe browsing’ blacklist to protect users from phishing and

malware websites. Google Safe Browsing (GSB) alone accounts

for a billion users to date [22]. To protect users privacy, clients do

not lookup the suspect URL or domain-name, instead the query is

for a cryptographic hash of the domain-name or URL. However,

as already observed [19], providers can still identify the query.

AnNotify provides an alternative which strongly protects privacy,

and with comparable overhead. We note that Bloom filters are

already widely used to improve efficiency of blacklists, e.g., see [18,

27].

In all applications, AnNotify allows preserving the privacy of

users, by hiding the relationships between users and the notifica-

tions they receive. The use of AnNotify is easy, and has insignificant

performance overhead in addition to the use of anonymous chan-

nels. However, notice that AnNotify exposes the total number of

clients currently connected to the system. We believe this is not a

concern in many applications. Indeed, many services publish an

estimate of the number of online clients, e.g., see Tor metrics [29].

Privacy-Preserving Caching and Storage Services. A classical

use for Bloom filters, is to improve the efficiency of caching and

storage mechanisms, by allowing efficient detection when cached

items were updated (or not). In particular, Bloom filters were used

to improve the efficiency of web-caches [6, 15].

AnNotify can similarly improve the efficiency of caching and

storage mechanisms, while also protecting privacy. This is espe-

cially important for privacy-preserving storage mechanisms such

as Oblivious RAM [21, 33] and PIR [8], where each access involves

significant overhead, hence avoiding unnecessary requests has a

large impact on performance.

Due to its high efficiency, AnNotify can also be used to improve

the privacy of web and DNS caches. In particular, web-users may

use AnNotify to improve the efficiency of anonymous-browsing

mechanisms such as Tor [29] and the use of AnNotify seems to

offer significant performance improvements compared to existing

proposals for protecting privacy of DNS users, see [16, 25, 32].

9 RELATEDWORK

Bloom Filters. Extensions of Bloom filters support additional fea-

tures, like deletion [4, 15, 30] or representing multisets [9]. In [2]

authors presented metrics as K-anonymity and γ−deniability to

measure the privacy and utility of Bloom filters but the resulting

privacy properties are weak. RAPPOR [14] allows the private collec-

tion of crowd sourced statistics as randomized responses in Bloom

filters, while guaranteeing ϵ-differential privacy. RAPPOR uses

input perturbation locally on the client side, however extracting

results requires sophisticated statistical techniques.

Anonymity. The most widely deployed anonymity system is Tor

[12]. In Tor, communications are routed through a network of relays

using onion routing, which hides the senders location and ensures

unlinkability between the user and the visited website. Although

Tor is popular it is vulnerable to traffic analysis attacks, and for

stronger anonymity properties mix networks have to be used [7, 10]

and as recent research showed, without sacrificing the latency [28].

Receiver anonymity systems, such as nymservers [26], may also be

used to route notifications to users. Pynchon Gate [31] proposes

a pseudonymous message retrieval system based on a distributed

PIR scheme.

Privacy in Remote Storage. Private information retrieval (PIR)

allows a client to retrieve privately a single record from a remote

public database. The naive solution retrieves all records from the

database, but PIR protocols are more efficient in terms of bandwidth

[8, 11, 20]. IT-PIR is a multiple server PIR variant, where each server

stores a replicated copy of the database. IT-PIR guarantees perfect

privacy, as long as one server is honest, but requires all servers

to process each query and operate on the whole database, which

increases both the computational and communication costs.

Toledo et al. [34] present variants of IT-PIR based schemes com-

posed with an anonymity systems, which reduce the computational

costs by allowing some information leakage. The key difference

between [34] and this work, is that AnNotify servers are entirely

untrusted and it wholly relies on an anonymity system for privacy.

Social applications require private presence notifications. Tradi-

tional implementations of presence give a central server the social

graph of users. Protocols like Apres [24] and DP5 [5] offer privacy-

preserving notification services. Apres splits the time into epochs

and hides the correlation between the connectivity of the clients in

every two epochs. DP5 offers stronger privacy guarantees, however

this design uses multi-server IT-PIR to look up other users presence

without revealing information about the social graph. We compare

this work with DP5 in our evaluation section.

The anonymous messaging system presented in Vuvuzela [35]

also introduces an auxiliary scheme for notifying users, that some-

one wants to contact them, by sending invitations. AnNotify has

a lower bandwidth and operational cost than Vuvuzela, since in

that scheme the users have to download and try to decrypt all the

invitations, including cover ones.

10 CONCLUSIONS

AnNotify provides efficient and private notifications in a scalable

manner, compared with previous approaches like DP5 [5] that

struggles to scale past 1million users. AnNotify benefits from amass

of users: its key security parameters depend on the number of shards

and anonymity set size of the underlying anonymity system. These

may be tuned to provide meaningful privacy protection despite

some leakage.

AnNotify lowers the quality of protection to achieve scalabil-

ity, but does so in a controlled and well understood manner: the

concrete security theorems presented indicate the advantage of the

adversary. The tighter bounds and empirical estimates of leakage

under repeated queries provide even stronger evidence that AnNo-

tify can provide strong protections. This is particularly relevant for

large-scale deployments and applications requiring notifications,

that today benefit from no protections at all.

Besides securing notifications, the AnNotify design, provides a

couple of important insights into general privacy engineering. We

show that anonymous channels may be important building blocks

to implement schemes, such as notifications, that are not entirely

related to messaging per se. Their study should expand to provide

robust and efficient schemes for such applications.

PIR schemes inspired from the AnNotify design and anonymous

channels, may be more competitive in terms of performance that

those proposed so far, despite leakage and required large anonymity

set. Pursuing this research direction would allow wider deployment

of private querying in general.

11 ACKNOWLEDGEMENTS
Acknowledgements.The authorswould like to acknowledge their
financial support: George Danezis and Ania Piotrowska are sup-

ported in part by EPSRC Grant EP/M013286/1 and H2020 Grant

PANORAMIX (ref.\653497). Jamie Hayes is supported by the UK

Government Communications Headquarters (GCHQ), as part of

University College London’s status as a recognised Academic Cen-

tre of Excellence in Cyber Security Research. Amir Herzberg is

supported by EPSRC Grant EP/M013286/1.

REFERENCES
[1] BBC. 2014. “Yo app warns Israeli citizens of missile strikes”. Online. (July 2014).

[2] G. Bianchi, L. Bracciale, and P. Loreti. 2012. Better Than Nothing. Privacy

with Bloom Filters: To What Extent?. In Privacy in Statistical Databases - PSD
2012, Palermo, Italy, September 26-28, 2012. 348–363. http://dx.doi.org/10.1007/
978-3-642-33627-0

[3] B. Bloom. 1970. Space/Time trade-offs in hash coding with allowable errors.

Commun. ACM 13, 7 (July 1970), 422–426.

[4] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. 2006. An

Improved Construction for Counting Bloom Filters. In Algorithms âĂŞ ESA. UK.
https://doi.org/10.1007/11841036_61

[5] N. Borisov, G. Danezis, and I. Goldberg. 2015. DP5: A Private Presence Service.

PoPETs 2015, 2 (2015), 4–24. http://www.degruyter.com/view/j/popets.2015.2015.

issue-2/popets-2015-0008/popets-2015-0008.xml

[6] A. Broder and M. Mitzenmacher. 2004. Network applications of Bloom filters: A

survey. Internet mathematics 1, 4 (2004), 485–509.
[7] D. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–88. https://doi.org/10.1145/358549.

358563

[8] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. 1998. Private information

retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.
[9] S. Cohen and Y. Matias. 2003. Spectral Bloom Filters. In Conference on Man-

agement of Data (SIGMOD) (SIGMOD ’03). ACM, New York, NY, USA, 241–252.

https://doi.org/10.1145/872757.872787

[10] George Danezis and Ian Goldberg. 2009. Sphinx: A Compact and Provably Secure

Mix Format. In 30th IEEE Symposium on Security and Privacy (S&P 2009), 17-20
May 2009, Oakland, California, USA. 269–282.

[11] C. Devet, I. Goldberg, and N. Heninger. 2012. Optimally robust private informa-

tion retrieval. In USENIX Security 12. 269–283.
[12] R. Dingledine, N. Mathewson, and P. F. Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security. USENIX, 303–320. http://www.

usenix.org/publications/library/proceedings/sec04/tech/dingledine.html

[13] C. Dwork. 2006. Differential Privacy. ICALP (2006).

[14] Ú. Erlingsson, V. Pihur, and A. Korolova. 2014. RAPPOR: Randomized Aggre-

gatable Privacy-Preserving Ordinal Response. In CCS. ACM, USA, 1054–1067.

https://doi.org/10.1145/2660267.2660348

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. 2000. Summary Cache: A Scalable

Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8, 3 (June 2000),
281–293. https://doi.org/10.1109/90.851975

[16] H. Federrath, K.P. Fuchs, D. Herrmann, and C. Piosecny. 2011. Privacy-Preserving

DNS: Analysis of Broadcast, Range Queries and Mix-Based Protection Methods.

In Computer Security - ESORICS 2011, Leuven, Belgium, September 12-14, 2011.
http://dx.doi.org/10.1007/978-3-642-23822-2

[17] William Feller. 1968. An introduction to probability theory and its applications:
volume I. Vol. 3. John Wiley & Sons New York.

[18] S. Geravand and M. Ahmadi. 2013. Bloom filter applications in network security:

A state-of-the-art survey. Computer Networks 57, 18 (2013), 4047–4064. http:

//dx.doi.org/10.1016/j.comnet.2013.09.003

[19] T. Gerbet, A. Kumar, and C. Lauradoux. 2015. A Privacy Analysis of Google
and Yandex Safe Browsing. Technical Report Research Report RR-8686. INRIA.

https://hal.inria.fr/hal-01120186v4

[20] I. Goldberg. 2007. Improving the robustness of private information retrieval. In

Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 131–148.
[21] O. Goldreich and R. Ostrovsky. 1996. Software protection and simulation on

oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[22] Google. 2014. Google Transparency Report - Making the web safer. (June 2014).

[23] Jonathan Katz and Yehuda Lindell. 2014. Introduction to modern cryptography.
CRC press.

[24] B. Laurie. 2004. Apres-a system for anonymous presence. (2004).

[25] Y. Lu and G. Tsudik. 2010. Towards Plugging Privacy Leaks in the Domain Name

System. In Peer-to-Peer Computing. IEEE, 1–10. http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=5569876

[26] D.Mazières andM. F. Kaashoek. 1998. TheDesign, Implementation andOperation

of an Email Pseudonym Server. In Conference on Computer and Communications
Security (CCS ’98). 27–36. https://doi.org/10.1145/288090.288098

[27] S. Di Paola and D. Lombardo. 2011. Protecting against DNS Reflection Attacks

with Bloom Filters. In DIMVA, Thorsten Holz and Herbert Bos (Eds.). http:

//dx.doi.org/10.1007/978-3-642-22424-9

[28] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. 2017. The Loopix Anonymity System. USENIX Security Symposium
(2017). https://github.com/UCL-InfoSec/loopix

[29] The Tor project. 2016. Tor Metrics. https://metrics.torproject.org/. (April 2016).

[30] C. E. Rothenberg, C. Macapuna, F. L. Verdi, and M. F. Magalhães. 2010. The

Deletable Bloom filter: A new member of the Bloom family. CoRR abs/1005.0352

(2010). http://arxiv.org/abs/1005.0352

[31] L. Sassaman, B. Cohen, and N. Mathewson. 2005. The Pynchon Gate: A

Secure Method of Pseudonymous Mail Retrieval. In Proceedings of the 2005
ACM Workshop on Privacy in the Electronic Society (WPES ’05). 1–9. https:

//doi.org/10.1145/1102199.1102201

[32] H. Shulman. 2015. Pretty Bad Privacy: Pitfalls of DNS Encryption. In Workshop
on Privacy in the Electronic Society, WPES 2014.

[33] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.

2013. Path oram: An extremely simple oblivious ram protocol. In Computer &
communications security (ACM CCS). ACM, 299–310.

[34] Raphael R Toledo, George Danezis, and Ian Goldberg. 2016. Lower-Cost ϵ -Private
Information Retrieval. Proceedings on Privacy Enhancing Technologies 2016, 4
(2016), 184–201.

[35] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 137–152.

[36] Wikipedia. 2016. Yo (app). https://en.wikipedia.org/wiki/Yo_(app). (April 2016).

A PROOFS
A.1 Proof of Security Theorem 1

Proof. To prove the main security theorem, and ultimately

show that AnNotify is∆-private, we need to show that the adversary

can only win the Indisitinguishable-Notification game, showed in

Figure 7 with an advantage ∆, defined in Definition 4.1, over a

random guess. We do so by first arguing that the adversary learns

nothing new
7
from rounds not including the target subscriber, and

then computing the advantage given the information about the

rounds when the target subscriber was active.

We proceed through a sequence of hybrid games, with slight

modifications over the initial security Definition 4.1, including the

IndNotExp experiment (Game0). We first note that in the concrete

protocolsN .Notify andN .Query act on notification IDs generated

using a pseudo-random function (PRF) keyed with an unknown key
to the adversary and the epoch number (IDt = PRFck (t)). Thus,

7
Remember that the adversary already is assumed to know the correspondence between

honest subscriber-publisher pairs, besides the target query in the challenge round.

http://dx.doi.org/10.1007/978-3-642-33627-0
http://dx.doi.org/10.1007/978-3-642-33627-0
https://doi.org/10.1007/11841036_61
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0008/popets-2015-0008.xml
http://www.degruyter.com/view/j/popets.2015.2015.issue-2/popets-2015-0008/popets-2015-0008.xml
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/872757.872787
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1109/90.851975
http://dx.doi.org/10.1007/978-3-642-23822-2
http://dx.doi.org/10.1016/j.comnet.2013.09.003
http://dx.doi.org/10.1016/j.comnet.2013.09.003
https://hal.inria.fr/hal-01120186v4
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5569876
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5569876
https://doi.org/10.1145/288090.288098
http://dx.doi.org/10.1007/978-3-642-22424-9
http://dx.doi.org/10.1007/978-3-642-22424-9
https://github.com/UCL-InfoSec/loopix
https://metrics.torproject.org/
http://arxiv.org/abs/1005.0352
https://doi.org/10.1145/1102199.1102201
https://doi.org/10.1145/1102199.1102201
https://en.wikipedia.org/wiki/Yo_(app)

procedure IndNotExp(N , A, n, S, κ, ∆, u)
(σ , l, π) ← N .GenSystem(n, S, κ, ∆).
▷ Generate two challenge Publishers.

ckA ← N .GenChannel(π)
ckB ← N .GenChannel(π)
A (ckA, ckB, n, S, κ, ∆, π)

b
$

← {0, 1}

ckT ← (if b = 0 then ckA else ckB)
▷ Generate all other Publishers & Subscribers.

for i = 0, . . . , n do
cki ← N .GenChannel(π)

end for
▷ Perform many rounds of the protocols.

for t = 0, . . . do
Ψt , Φt ← {}, { }
▷ Trigger some Publishers.

for i ∈ {0, . . . , n } ∪ {A, B } do
▷ Adv. chooses notifications.

if A (i, t, ‘notify?’) = 1 then
µi ← N .Notify(cki , t)
σ ← N .ProcNotify(µi , t, σ)
Ψt ← Ψt ∪ {(i, µi , σ) }

end if
end for
▷ Adv. sees all notifications and server state.

A (t, Ψt)
▷ Trigger at least u honest Subscribers.

Qt ← {}

Ut ← A (t, u, ‘GetSubscribers?’)
Ut ← Ut ∩ {0, . . . , n }
if |Ut | < u then

return 0

end if
▷ Challenge the target Subscriber.

if A (t, ‘TargetQuery?’) = 1 then
Ut ← Ut ∩ {T }

end if
for all j ∈ Ut do
Qt ← Qt ∪ N .Query(ckj , t, π)

end for
for all ϕj ∈ Qt do

ρ j , σ ← N .ProcQuery(ϕj , t, σ)
Φt ← Φt ∪ {(ϕj , ρ j , σ) }

end for
▷ Adv. sees all queries and server state.

A (t, Φt)
end for
return A (‘Guess?′) = b

end procedure

Figure 7: The Indistinguishable-Notification Experiment.

from the adversaries point of view, the IDs and the shards selection
look random and the adversary cannot learn the notification or

shard number of any other entity. Hence, we can replace all in-

stances of the first invocation of the PRF by true random functions

(Game1). Thus, the adversary can only distinguish between the

original experiment Game0 and Game1 with negligible advantage

due to the properties of secure PRFs.
In Game1 the information within each epoch not including the

target subscriber is statistically independent from the challenge b.
Based on this observation, we define Game2, that consists only of

rounds in which the target subscriber is activated to query. Thus,

the advantage of the adversary winning Game2 is equal to winning
Game1.

In each of the remaining rounds of Game2 the security defini-

tion dictates that a number u of honest users (including the target

subscriber), query for their sought notification and a dummy shard.

In Game2 the adversary can observe the IDt
for all notifications

that have been seen in each epoch. However there remainu ′ queries
(u ≤ u ′ ≤ 2u) for which the adversary does not know the corre-

sponding IDt
. These are indistinguishable from a random string,

and the corresponding queries are distributed uniformly among

the shards S . Thus, we define Game3 in which we simply remove

all notifications and queries for which the adversary knows the

IDt
from all epochs – and that does not increase the adversary

advantage.

Following this, Game3 consists of epochs within which the un-

certainty of the adversary is whether notification A or notification

B was queried (depending on the challenge bit b), and the volumes

of at least u randomly distributed queries across all shards. Thus,

for every epoch, the adversary knowing the secret keys ckA, ckB
now has to decide on the basis of the query volumes XA and XB ob-

served in the shard sA, sB corresponding to µA and µB respectively,

what the challenge b was.

We compute the adversary advantage in Game3 directly. We

denote as SA, SB the events that the target user queried shards sA, sB
corresponding to notificationsA,B. Lemma 4.3 then shows that in a

single epoch given two known shards andu−1 queries to uniformly

random shards we can find ϵ,δ such that for notifications A and B
and all query volumes observed by the adversary: Pr[XA,XB |IA] ≤

eϵ Pr[XA,XB |IB] with probability at least 1 − δ . Lemma 4.4 then

concludes the proof by showing this differentially private property

can be translated to a concrete adversary advantage ∆ gained by

observing many epochs. □

B PROOFS OF LEMMAS
B.1 Lemma 4.3 from Section 4.2
The proof is presented in the full version of the paper https://eprint.

iacr.org/2016/466

B.2 Lemma 4.4 from Section 4.2
The proof is presented in the full version of the paper https://eprint.

iacr.org/2016/466

https://eprint.iacr.org/2016/466
https://eprint.iacr.org/2016/466
https://eprint.iacr.org/2016/466
https://eprint.iacr.org/2016/466

	Abstract
	1 Introduction
	2 Model and Goals
	3 The Design of AnNotify
	3.1 The AnNotify Protocols

	4 Security of AnNotify
	4.1 Game between the adversary and the AnNotify system
	4.2 The Security of AnNotify
	4.3 Empirical adversary advantage
	4.4 Other security arguments

	5 Analytical Performance Evaluation
	6 Experimental Evaluation
	6.1 Implementation & Infrastructure
	6.2 Performance Evaluation
	6.3 Comparison to DP5

	7 AnNotify Extensions
	8 Applications
	9 Related Work
	10 Conclusions
	11 Acknowledgements
	References
	A Proofs
	A.1 Proof of Security Theorem 1

	B Proofs of Lemmas
	B.1 Lemma 4.3 from Section 4.2
	B.2 Lemma 4.4 from Section 4.2

