
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) S767–S776 doi:10.1088/0953-8984/18/21/S04

Time dependent quantum simulations of two-qubit
gates based on donor states in silicon

A Kerridge1, S Savory2, A H Harker1 and A M Stoneham1

1 Department of Physics and Astronomy, University College London, Gower Street,
London WC1E 6BT, UK
2 Optical Networks Group, Department of Electronic and Electrical Engineering,
University College London, Torrington Place, London WC1E 7JE, UK

E-mail: a.kerridge@ucl.ac.uk

Received 1 November 2005, in final form 22 December 2005
Published 12 May 2006
Online at stacks.iop.org/JPhysCM/18/S767

Abstract
Many quantum gate proposals make physical assumptions to ease analysis. Here
we explicitly consider the effect of these assumptions for a particular two-qubit
gate proposal, a cube-root-of-unity gate, in which the two qubits are donors
in a semiconductor coupled via an intermediate ‘control’ spin. Our approach
considers directly the electronic structures of the qubit and control impurity
systems. We find that such gates are highly sensitive to environmental factors
overlooked in analytically soluble models, but that there are regimes in which
simplifying assumptions are valid and lead to high fidelity gates.

1. Introduction: quantum computation

The successful implementation of any quantum computer is dependent on the realization of
quantum logic gates that manipulate quantum bits, or qubits. There are a diversity of proposals
for potential quantum computers, including the adaptation of NMR techniques [1, 2], ion
traps [3, 4], and a variety of solid-state devices [5, 6]. Here we consider one solid-state
proposal [7] in which the qubits are defined by a pair of electron spins. In this proposal, the
quantum entanglement required for any useful quantum computation is achieved by an effective
coupling of the two-qubit spins via their mutual interaction with a third, ‘control’ spin. In this
way, geometries can be conceived whereby there is no significant coupling in the ground state
of such a system (i.e. the qubit spins are effectively isolated), but in an excited state there is
sufficient overlap of the one-electron states to allow a controlled manipulation of the qubit
spins. An analytical model for a gate of this type has been given [8], where it has also been
shown that a variety of universal quantum gates can be constructed in this way. In this paper,
we consider a more physical model of this type of gate and study how the properties of such a
gate are affected by small interactions that were neglected in the previous treatment. Section 2
presents an idealized analytical model of the cube-root-of-unity (CRU) gate, and shows that
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the controlled NOT (CNOT) gate can be constructed from it, demonstrating its universality in
conjunction with one-qubit operations. Section 3 describes the quantum mechanical model of
the qubit–control system, with an explicit discussion of the electronic structure of the control
donor and of the donors embodying the qubits. This model is applied in section 4 to practical
considerations in the operation of the gate.

2. The cube-root-of-unity gate

2.1. An analytical model

The CRU gate may be formed from two qubits, which we label A and B, and a control bit, C.
Following [8] we define our basis as

b =
[

vg

ve

]
(1)

with

vs = ψAψBψ
s
C [|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉]T , (2)

where |iA jBkC〉 defines the spin components of the wavefunction, with |0〉 corresponding to
a spin up state, and |1〉 to a spin down state. The spatial component of the wavefunction is
assumed to be independent of the spin state, and the excited state to be considered is an optical
excitation of the electron with spatial wavefunction ψC, hence the additional label. An effective
Hamiltonian can be defined in terms of exchange couplings between the spins, allowing the
time dependence of this Hamiltonian [8] to be studied analytically. This analysis reveals that
the behaviour of the system can be defined in terms of two integers M and N that relate the
operation time of a quantum gate to the magnitude of the exchange couplings and Zeeman
energies of the spins. In the absence of an applied magnetic field the analysis simplifies, and
the gate proposed here can be defined in terms of a single integer N .

The free propagation of the system between laser pulses can be written in terms of the
unitary operator

U =
[

Ug 0
0 Ue

]
(3)

where Ug and Ue are 8 × 8 matrices, given in terms of the Hamiltonians H of the ground and
excited states by

Us = exp[−iHst]. (4)

The ground state is assumed to be one in which there is no coupling of the electrons (i.e. Hg

is diagonal) and, furthermore, there is assumed to be no coupling of the two qubit spins in the
excited state. This leaves only the coupling of each qubit spin to the control spin. In practice,
the only off-diagonal terms which are non-zero in this approximation are those which couple
states |1〉 to |2〉, |1〉 to |4〉, |6〉 to |3〉, and |6〉 to |5〉, where we have replaced the binary notation
with its decimal equivalent (|001〉 = |1〉, |010〉 = |2〉, etc). We assume a perfectly symmetric
system, with the qubits equally spaced either side of the control and in identical environments,
so that the strengths of their couplings to the control are identical and given by 2JC. It is evident
that for this system the energies of states |2〉 and |4〉 are identical, a fact which allows Ue to be
written in closed form (see [8] for details).

We require that the control bit C is disentangled from the qubits at the end of the gate
operation, and this is ensured by imposing one further condition, namely that the time between
pulses is given by

JCt = nπ

3
, (5)
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where n is an integer. Upon a permutation of the basis to [|0〉, |2〉, |4〉, |6〉, |1〉, |3〉, |5〉, |7〉]T,
we can express Ue as

Ue =
[

U+ 0
0 U−

]
, (6)

where U± defines the propagation for all states with control spin up/down. U+ is given by

U+ =




exp
[−i 2π

3

]
0 0 0

0 1
2 exp

[−iπ3
] √

3
2 exp

[−i 5π
3

]
0

0
√

3
2 exp

[−i 5π
3

]
1
2 exp

[−iπ3
]

0

0 0 0 exp
[−i 2π

3

]


 (7)

and similarly for U−. It can be seen here that the effect of the coupling of each qubit spin to the
control is to mix states |2〉 and |4〉, in a manner similar to that which would be observed if the
two spins were coupled directly. The CRU gate has the property that three applications of it to
a given three-spin system return the system to its initial state. For the remainder of this paper,
and with no loss of generality, we only consider the evolution of systems initially with control
spin up, i.e. UCRU = U+. Our calculations, however, do allow for the entangling of the control
spin, and we shall consider this in section 4.

2.2. Characterization of the CRU gate

We can characterize the entangling properties of the CRU gate in terms of the local invariants
G1 and G2 [9]. These local invariants uniquely characterize those properties of a gate that are
not modifiable by local transformations. Defining Q and UB as

Q = 1√
2




1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i


 , (8)

UB = Q†UQ, (9)

then, with m = UT
BUB, G1 and G2 are given by

G1 = tr2(m)
16 det U

, (10a)

G2 = tr2(m)− tr(m2)

4 det U
. (10b)

In principle, G1 and G2 can be used to reconstruct the eigenspectrum of m. For UCRU we obtain
GCRU

1 = (−13 + i3
√

3)/32,GCRU
2 = −3/2. For any local operation G1 = 1 and G2 = 3, and

so we immediately see that the CRU gate is a non-local gate, allowing the entanglement of the
qubit spins. The values of the local invariants of the CRU gate also allow us to identify this
gate with others with the same local properties.

We also define one further parameter,�(U), related to the entanglement fidelity F(U) [10]
by � = 1 − F(U) with

F(U) = |tr(U†
CRUU)|2/16. (11)

Here U is a calculated gate, and �(U) ≈ 0 for gates close to UCRU.
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2.3. Universality of the CRU gate

It has been shown (see, for example, [11]) that the CNOT gate in conjunction with one-qubit
operations is universal. Here we show that the CNOT gate can be constructed from the CRU
gate (more details are given in the appendix), and hence the CRU gate together with one-qubit
operations is universal. We first define an arbitrary single-qubit gate

U1(α, β, γ, δ) = Rz(α)Ry(β)Rz(γ ) exp[iδ], (12)

where

Ri (θ) = exp

[
−i
θ

2
σ i

]
, (13)

and σ i is a Pauli spin matrix. We form

Uint = UCRU · [I2 ⊗ Rz(π)] · UCRU, (14)

where I2 is the 2×2 identity matrix, and note that Uint is diagonal. We then construct the matrix
Uint · U1 · Uint and evaluate the local invariants G1 and G2. These are given by

G1 = 1
16 (3 cos(β)− 1)2, (15a)

G2 = 9
8 (1 + cos2(β))− 3

4 cos(β). (15b)

The local invariants of the CNOT gate are G1 = 0 and G2 = 1, conditions which are satisfied
for β = arccos( 1

3 ). Therefore the gate

UCNOTl = Uint ·
[
I2 ⊗ Ry

(
arccos

(
1
3

))] · Uint (16)

is locally equivalent to the CNOT gate, and so the universality of the CRU gate with one-qubit
operations is demonstrated. The CNOT gate is related to this gate by

UCNOT = k1 · UCNOTl · k2, (17)

where k1 and k2 are local transformations. Examples of such transformations that satisfy
equation (17) are given in the appendix.

3. The model system

We take as our model system shallow donor states in silicon, for which effective mass
theory (EMT) is well suited both for isolated impurities [12, 13] and for ‘molecular’
species [14, 15]. In its most basic form, EMT shows that a shallow donor state in a medium
of dielectric constant εr can be considered to be a product of a hydrogenic envelope, and an
oscillating Bloch-like function. If the envelope function is ‘smooth’ in comparison to the
oscillating term, then to a good approximation the oscillating term can be ignored. Then the
defect states are given by solutions to the hydrogenic Hamiltonian, given in atomic units by

ĤEMT = − ∇2

2m∗ − 1

εrr
. (18)

In more sophisticated formulations of the theory, ‘central cell’ corrections, which consider
the local electronic structure of the defect, are included to give more realistic energies
and wavefunctions. Here we present results of using a single-parameter model potential
which approximately incorporates this correction in a form that lends itself to straightforward
evaluation of Hamiltonian matrix elements. This model potential is fitted to give good
agreement with experimental data for phosphorus, arsenic, antimony, and bismuth donor
energies in silicon when used in scaled Hartree–Fock (HF) calculations, in which the standard
HF equations are solved, but with m replaced by m∗ and r−1 by this model potential. Note



Time dependent quantum simulations of two-qubit gates based on donor states in silicon S771

Table 1. Experimental and calculated energies in meV of donor states in Si. All experimental
data are taken from [20]. An asterisk indicates that experimental value was not available, and so
approximate values were taken from [21].

HEMT P (σ = 0.2343) As (σ = 0.2067) Sb (σ = 0.2669) Bi (σ = 0.1739)

Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.

1s −31.40 −45.59 −43.82 −53.76 −49.80 −42.74 −39.86 −70.98 −69.37
2s −7.84 −10.6∗ −8.70 −9.11 −9.13 −9.4∗ −8.35 −8.78 −10.64
2p0 — −11.48 — −11.50 — −11.51 — −11.44 —
2p± — −6.40 — −6.40 — −6.28 — −6.37 —
2p −7.85 −8.09 −7.85 −8.10 −7.85 −8.06 −7.85 −8.05 −7.85

that while we include this correction, we neglect properties particular to silicon, namely its
anisotropic effective mass, and its sixfold-degenerate conduction band minima. The effects of
these properties have been considered elsewhere [16–18]. We have not estimated the overlap
factors associated with the Bloch functions; these will give a factor that varies rapidly from one
site to another, but the key analysis will not be affected [13, 19].

3.1. The model potential

We take as our model potential, which replaces the (εrr)−1 term of equation (18),

V (r) = 1

εrr

[
1 + (εr − 1) exp[−σr ]] , (19)

and note that

lim
r→0

V (r) = 1

r
(20a)

lim
r→∞ V (r) = 1

εrr
, (20b)

as would be expected for a central cell correction. Table 1 shows the results of using this
model potential in scaled HF calculations for isolated donors in silicon, in addition to the
hydrogenic effective mass (HEMT) results obtained by the solution of equation (18). Here
we take m∗ = 0.3 a.u., and εr = 11.4. Note that since we are ignoring the anisotropy of the
effective mass, we do not obtain distinct p± and p0 states, and so we take a weighted average
of the energies of these states, Ep = (2Ep± + Ep0)/3, to compare to our calculated values. The
energies calculated here were obtained using a contracted Gaussian basis of seven primitives
per function, chosen to balance accuracy with efficiency in later calculations.

As can be seen, the model potential gives good agreement with experiment, i.e. a
significant lowering of the 1s state with significant electron density near r = 0, and little or no
effect on states such as 2s and 2p which have much lower amplitudes in this region. Figure 1
shows the 1s states for each of the donors. For each state the electron density is enhanced
near r = 0 due to the potential, but the ‘tails’ of the states are similar, as one might expect.
We note that an effect of these corrected states is a significant reduction in the donor–donor
exchange couplings, with an order of magnitude difference between the HEMT and Bi donor
couplings. As a result the variation of exchange coupling with separation is very different from
that assumed in [8].
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Figure 1. Variation of �, the deviation from perfect fidelity, with time for a selection of CRU
gates with different donor–donor separations. Note that the curve for the largest separation is barely
distinguishable from the horizontal axis.

4. ‘Realistic’ gate simulations

For our more realistic gates, we take our donor states to be Bi 1s states, and our control states
to be the ground and first optically excitable states of a deeper effective mass donor, with
the ground state energy of ∼150 meV. Note that although we obtain these isolated states via
scaled HF equations, there is currently no SCF cycle within our time dependent calculations.
In keeping with [8] we only consider the evolution of the spin states, and so in this sense our
simulations should be viewed as a time dependent configuration interaction calculation, with
the contributing configurations defined in terms of their spin components. Each configuration
has an identical spatial component, with the only degree of freedom being the choice as to
whether the control electron is in its ground or excited state. This in turn means that there is
some degree of non-orthogonality in our one-electron states, most notable at small control–
qubit separations.

There are four different extensions to the idealized model presented in section 2 which we
can consider. These are:

(i) donor–donor coupling during gate operation;
(ii) evolution of the ground state;

(iii) asymmetry in the system;
(iv) error in the interpulse time.

4.1. Donor–donor coupling during gate operation

We characterize the effect of this coupling in terms of the parameters G1, G2, and�, as defined
in section 2. With the inclusion of donor–donor coupling, we obtain off-diagonal terms in the
Hamiltonian connecting states |2〉& |4〉 and |3〉& |5〉, with this coupling given by 2JQ. Then
JQ and JC can be defined in terms of the total energies of the various spin states:

JC = 1
4 (E1 − E0) = 1

4 (E6 − E0), (21a)

JQ = 1
2 (E2 − E0 − 2JC). (21b)
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Table 2. A comparison of the ideal CRU gate with simulated gates that include donor–donor
coupling. Gate operation times are calculated using only JC.

rDD (nm) JC (GHz) JQ (GHz) τCRU (ps) δG �

4.0 437 322 0.762 2.98 0.749
5.0 565 97.0 0.590 1.45 0.0936
6.5 671 37.4 0.496 0.594 0.0101
7.5 750 16.6 0.443 0.246 1.60 × 10−3

8.5 803 7.37 0.415 0.104 2.74 × 10−4

10.5 829 4.85 0.403 0.0134 4.50 × 10−6

12.0 803 0.161 0.416 2.30 × 10−3 1.33 × 10−7

18.5 472 0.0730 0.706 1.77 × 10−3 7.82 × 10−8

26.5 157 4.73 × 10−3 2.12 3.38 × 10−4 2.44 × 10−9

Since we are considering the effect of neglecting JQ on the gate operation, we calculate our
gate operation time solely on the basis of our value of JC. At large separations, for which
|JC| 
 |JQ|, we would expect this to have little effect on the gate, but these calculations will
allow us to put a lower bound on donor–donor separations for high fidelity gate operation. Here
we consider high fidelity gates to be those for which � < 10−3, and measure the error in G1

and G2 using δG =
√
δ2

1 + δ2
2 with δ1 = |GCRU

1 − G1| and similarly for δ2. The results of our
simulations can be seen in table 2. These results show that a minimum donor–donor separation
of ∼8 nm is required to satisfy our criterion for a high fidelity gate, but for separations greater
than this, much higher fidelities are quickly achieved. This, of course, tells us nothing about
how the system evolves over longer timescales, only that over the gate operation time there is a
regime in which high fidelity gates can be constructed. The evolution of the system over longer
timescales will be considered in the following section.

4.2. Ground state evolution

Since any useful quantum algorithm will require a series of gate operations, we must consider
how the system evolves for time periods significantly longer than the gate operation time. Here
we study the system evolution over a period of 10τCRU after a gate operation has been performed
for a series of donor–donor separations. In the ground state, the qubit spins couple to the ground
state of the control spin in addition to each other, and since this coupling will be stronger than
the donor–donor coupling, it is expected that this will put further constraints on high fidelity
gates. Figure 1 shows the variation of � with time for several system geometries.

As can be seen, there is a rapid increase in � even for high fidelity gates after only a few
τCRU, suggesting that the minimum donor–donor separation for a useful gate is rDD � 13 nm, a
stronger constraint than that imposed by G1, G2, and � alone.

4.3. Asymmetry in the system

In this section we consider the effects of more realistic system geometries, moving away from
the symmetric model proposed in section 2. It should be noted that the parameters of the gate
were optimized for a symmetric geometry, and there may be methods for improving the fidelity
for asymmetric systems over that which we present here. We consider three systems with
fixed rAC, and set rBC = rAC + r ′, with r ′ varying over the range ±10% rAC. This results in
asymmetric coupling of the qubit spins to the control, and so we define our gate operation time
in terms of JAC. Figure 2 shows the results of these calculations. We find that our simulated
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Figure 2. Local invariant error, δG, and deviation from perfect fidelity, �, for several asymmetric
geometries.
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Figure 3. Errors in δG and � induced by errors in the interpulse duration.

gates are extremely sensitive to asymmetry, with the maximum error allowed to maintain high
fidelity being a single nearest neighbour spacing (r ′ = 0.235 nm). We note that this effect is
most significant for large donor–donor separations.

4.4. Inaccuracies in gate operation time

Finally, we consider the effect of errors in gate operation time. For the CRU gate, we have
JCτ = constant, and so the errors introduced here could be attributed to either inaccuracies
in the duration between excitation and de-excitation laser pulses or in the evaluation of the
exchange coupling itself. Figure 3 shows the results of variation in τ over a range ±0.05 ps,
for three symmetric systems: as shown in table 2, we expect the gate times to range from about
0.4 to 2 ps or more at large separations.

As can be seen, the gates with larger qubit–qubit separation are less sensitive to this error.
This is to be expected, since the absolute error in operation time corresponds to a smaller
relative error for larger qubit separations. Again, a high sensitivity of the systems to this
variation is observed, and this highlights the need for an accurate configuration process for
any future quantum processor based on this technology, a process that would identify exchange
couplings of qubit pairs to high accuracy.

5. Conclusions

We have shown that a universal quantum gate can be modelled using time dependent quantum
simulation methods. Under certain conditions, these simulated gates compare well to an
idealized analytical model of such a gate, but are highly sensitive to deviations from this
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idealized model due to interactions and inaccuracies present in a real physical system. We
have quantified the errors introduced by the inclusion of these terms, and this should be viewed
as a base on which to consider more sophisticated gates that are more robust against such
environmental factors. In particular, we highlight the need for a highly accurate configuration
procedure that would need to be applied to any high fidelity quantum processor constructed
using this technology.
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Appendix

Taking equation (7) as our starting point, we form Uint = UCRU · [I2 ⊗ Rz(π)] ·UCRU given by

Uint =




exp
[
iπ6

]
0 0 0

0 exp
[−iπ6

]
0 0

0 0 exp
[
i 5π

6

]
0

0 0 0 exp
[−i 5π

6

]


 (22)

and note that Uint remains diagonal when acted upon by I2 ⊗ Rz(θ), and in particular that
Uint ·I2 ⊗ Rz(θ) = I2 ⊗ Rz(θ) ·Uint. We then form Uint ·I2 ⊗ U1 ·Uint, where U1 is an arbitrary
one-qubit gate (equation (12)). We require Uint · I2 ⊗ U1 · Uint to be locally equivalent to the
CNOT gate, represented by the unitary operator

UCNOT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (23)

In order to achieve this we require the two operators to have identical local invariants G1 and
G2 as specified by equations (10a) and (10b). Uint · I2 ⊗ U1 · Uint can be written as

Uint · I2 ⊗ U1 · Uint = exp[iδ]Uint · (I2 ⊗ Rz(α))(I2 ⊗ Ry(β))(I2 ⊗ Rz(γ )) · Uint

= exp[iδ](I2 ⊗ Rz(α)) · Uint · (I2 ⊗ Ry(β)) · Uint · (I2 ⊗ Rz(γ )), (24)

and so, since I2 ⊗ Rz(θ) is a local operation, the local invariants of Uint · I2 ⊗ U1 · Uint are
independent of α, γ , and δ. Choosing α = γ = δ = 0 with β = arccos( 1

3 ) gives a gate locally
equivalent to the CNOT gate. This gate is specified by

UCNOTl = Uint ·
[
I2 ⊗ Ry

(
arccos

(
1
3

))] · Uint

=




√
2
3 exp

[
iπ3

] − 1√
3

0 0

1√
3

√
2
3 exp

[−iπ3
]

0 0

0 0
√

2
3 exp

[−iπ3
] − 1√

3

0 0 1√
3

√
2
3 exp

[
iπ3

]



. (25)

This gate can be made identical to the CNOT gate by applying local transformations, i.e.

UCNOT = k1 · UCNOTl · k2, (17)
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As an example, local transformations that satisfy equation (17) are given by

k1 = exp
[
i
π

4

]
Rz

(π
2

)
⊗

(
Ry

(π
2

)
· Rz

(−π
2

)
· Ry(− arctan[√2])

)

= 1

2



(1 + i) exp[−ia] (−1 + i) exp[−ia] 0 0
(1 + i) exp[ia] (1 − i) exp[ia] 0 0

0 0 (−1 + i) exp[−ia] −(1 + i) exp[−ia]
0 0 (−1 + i) exp[ia] (1 + i)[ia]


 ,

(26)

where a = 1
2 arctan[√2], and

k2 = I2 ⊗
(

Ry

(
arctan

[
1√
2

])
· Rz(π)

)

= −i




cos[b] sin[b] 0 0
sin[b] −cos[b] 0 0

0 0 cos[b] sin[b]
0 0 sin[b] −cos[b]


 , (27)

where b = 1
2 arctan

[
1√
2

]
and so the CNOT operation can be performed using four CRU

operations and local transformations.
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