
  

  

Abstract— We introduce the Intelligent Autopilot System (IAS) 

which is capable of autonomous navigation and landing of large 

jets such as airliners by observing and imitating human pilots using 

Artificial Neural Networks and Learning by Imitation. The IAS is 

a potential solution to the current problem of Automatic Flight 

Control Systems of being unable to perform full flights that start 

with takeoff from a given airport, and end with landing in another. 

A navigation technique, and a robust Learning by Imitation 

approach are proposed. Learning by Imitation uses human pilots 

to demonstrate the task to be learned in a flight simulator while 

training datasets are captured from these demonstrations. The 

datasets are then used by Artificial Neural Networks to generate 

control models automatically. The control models imitate the skills 

of the human pilot when banking to navigate between waypoints, 

and when performing final approach and landing, while a flight 

manager program generates the flight course, and decides which 

ANNs to be fired given the current flight phase. Experiments show 

that, even after being presented with limited examples, the IAS can 

handle such flight tasks with high accuracy. The proposed IAS is a 

novel approach towards achieving full control autonomy of large 

jets using ANN models that match the skills and abilities of 

experienced human pilots.     

I. INTRODUCTION 

Human pilots are trained to perform piloting tasks that are 
required during the different phases of the flight. Performing a 
complete flight cycle starts with a ground-run on the runway to 
gain speed, rotate after a certain airspeed is achieved, climb, 
cruise while navigating between waypoints, descend, prepare 
for final approach while intercepting the landing runway path 
line, touchdown, flare, and lower airspeed before coming to a 
full stop [1].     

In contrast, Automatic Flight Control Systems 
(AFCS/Autopilot) are highly limited, capable of performing 
minimal piloting tasks. Although modern autopilots can 
maintain or hold a desired heading, speed, altitude, and even 
perform auto-land, they cannot handle complete flight cycles 
automatically, and they must be engaged and operated manually 
by the human pilots to constantly change and update the desired 
parameters. In addition, modern autopilots cannot handle flight 
uncertainties such as severe weather conditions, or emergency 
situations such as system failures. The limitations of autopilots 
require constant monitoring of the system and the flight status 
by the flight crew to react quickly to any undesired situation or 
emergencies. The reason for such limitations of conventional 
 

 

AFCS is that it is not feasible to anticipate everything that could 
go wrong with a flight, and incorporate all of that into the set of 
rules or control models “hardcoded” in an AFCS.  

This work aims to address this problem by creating an 
Intelligent Autopilot System (IAS) with the capability to 
perform autonomous navigation, and to learn how to land from 
human pilots by applying the Learning by Imitation concept 
with Artificial Neural Networks. The IAS is a novel approach 
which introduces the possibility to transfer human intelligence 
and intuitions required to pilot an aircraft to an autonomous 
system. By using this approach, we aim to extend the 
capabilities of modern autopilots and enable them to 
autonomously adapt their piloting to suit multiple scenarios 
ranging from normal to emergency situations. This work builds 
on previous work by the authors [2][3] by adding navigation and 
landing capabilities to the IAS. 

This paper is structured as follows: part (II) reviews related 
literature on autonomous navigation and landing. Part (III) 
explains the Intelligent Autopilot System (IAS). Part (IV) 
describes the experiments, Part (V) describes the results by 
comparing the behaviour of the human pilot with the behaviour 
of the Intelligent Autopilot System, and part (VI) provides an 
analysis of the results. Finally, we provide conclusions and 
future work. 

II. BACKGROUND 

A.  Autonomous Navigation  

Autonomous navigation is the ability of the travelling vehicle 
to estimate the state of its trajectory automatically [4]. In 
autonomous aerial systems, such as UAVs or cruise missiles, it 
is common to estimate the state of trajectory by fusing data from 
multiple navigation systems such as the Inertial Navigation 
System (INS) and the Global Navigation Satellite System 
(GNSS) such as the Global Positioning System (GPS). It is also 
possible to fuse additional data from different types of systems 
such as vision-based navigation systems [4].  

In [4], an image matching system which uses aerial images 
acquired during flights in addition to aerial georeferenced 
images, is proposed to estimate the position of a UAV. The 
proposed image matching system applies image-edge detection 
algorithms to the acquired images, and the posterior automatic 
image registration to estimate the location of the UAV [4]. An 

Autonomous Navigation and Landing of Large Jets Using Artificial 

Neural Networks and Learning by Imitation  

Haitham Baomar, Peter J. Bentley 
 

Dept. of Computer Science, University College London, Gower Street, London, WClE 6BT, U.K. 
Email: {h.baomar, p.bentley} @ cs.ucl.ac.uk 



  

Artificial Neural Network (ANN) with an optimal architecture 
set by the Multiple Particle Collision Algorithm (MPCA) is used 
to detect the edges, while the automatic image registration is 
acquired through a cross-correlation process [4]. 

Different navigation and path planning approaches are being 
investigated as well. In [5], an algorithm based on inspection 
path planning is proposed, which is tailored inherently for 
structural inspection. The proposed algorithm is designed to 
compute full coverage and collision–free paths depending on a 
model of the UAV’s nonholonomic constraints [5]. A 
resampling of the viewpoint technique applies randomized 
sampling which allows the designed algorithm to achieve 
continuous enhancements of the path cost without affecting the 
desired area to be covered [5]. In addition, navigation with a 
collision avoidance capability is achieved by applying 
Boundary Value Solver and a motion planner [7] for the used 
UAV model [5]. 

Relying on GPS alone for autonomous navigation is proposed 
in [8], where a cost-efficient cruise control system is designed 
for a GT-500 recreational aircraft using affordable and off-the-
shelve components such as an Arduino system [8]. 

In [9], a GPS based generic trajectory prediction and 
smoothing algorithm is proposed. The algorithm is designed to 
be able to handle both accurate frequency legs, and inaccurate 
legs that are present in old flight procedures, that have not been 
updated using advanced Flight Management Systems (FMS) 
[9]. The estimation of the desired trajectory is calculated using 
numerical integration of the different states of the aircraft given 
the flight path [9]. 

B. Autonomous Landing  

Pilots operating Remotely Piloted Aircraft Systems (RPAS) or 
UAVs do not get to feel the aircrafts they are flying as onboard 
pilots do [10]. Feeling the forces of the surrounding 
environment such as the wind, and the aircraft itself, such as 
getting a feel of how the engines are behaving, the vibrations, 
motions, and so on, is not possible for ground pilots [10]. The 
lack of this onboard sensing affects the situational awareness 
which is a crucial factor that pilots depend on especially during 
the most difficult flight phases such as landing, therefore, most 
UAV accidents happen during landing [10]. In addition, 
performing an optimum landing all the time is important for 
maintenance cost reduction, and durability preservation [10]. 
So, investigating the possibilities of developing autonomous 
landing systems (Auto Land) for UAVs has been a significant 
challenge, and is being covered in recent research efforts [10].  

In [10], a landing sequence algorithms is proposed, which can 
either be initiated by the ground pilot, or automatically during 
emergency situations such as the loss of connection between the 
UAV and the ground command and control station. The 
proposed landing system utilizes the Global Positioning System 
(GPS) along with geometry to orient the UAV to a desirable 
point in space from which it can initiate the descend process 
[10]. The algorithm works by plotting multiple slopes via 
MATLAB, and are considered as potential descend paths that 
the UAV can follow, in a fashion like creating a virtual inverted 
cone, where the circular base of the cone can act as a potential 

point of descend, and the taper surface can be considered as the 
glide path [10]. 

To achieve higher levels of accuracy required for landing on 
significantly small, or moving landing runways such as aircraft 
carriers, some recent research efforts are focusing on fusing 
multiple guidance systems, such as the work presented in [11]. 
The proposed system works by fusing readings from multiple 
systems or sensors including GPS, the aircraft’s INS, the aircraft 
carrier’s INS, and a vision-based navigation system mounted on 
the aircraft [11]. The system computes the aircraft-ship relative 
position, while the acceleration and velocity of the ship are sent 
to the aircraft via a dedicated data-link [11]. The aircraft-ship 
relative position, and the relative velocity are added to the state 
vector, and the relative position information retrieved from 
GPS, along with the airborne INS, the carrier’s INS, and the 
vision-based navigation system are utilized to build the vector 
via a Kalman filter [11]. Finally, the relative position 
information having the same period as the one generated from 
the INS is calculated [11]. 

Introducing intelligent autonomy to the aviation industry 
through developing intelligent control techniques that fit into an 
overall flight management system capable of making the highest 
level of decisions, is expected to significantly enhance safety, 
and lower costs [12]. 

In addition of having limited capabilities, modern autopilots 
can contribute to catastrophes since they can only operate under 
certain conditions that fit their design and programming, 
otherwise, they cede control to the pilots, and with the lack of 
proper situational awareness and reaction, the result could be 
fatal [13]. Although the civil aviation sector that uses medium 
to large jets equipped with such autopilots, is the largest with 
the highest risk and costs, the current focus of the relevant and 
recent research efforts is on investigating and developing 
autonomous autopilots for Unmanned Aircraft Systems 
especially small and micro drones by introducing solutions that 
may not be suitable for Large jets such as airliners. Therefore, 
we propose a solution that can be applied to multiple aircraft 
categories including airliners and cargo airplanes. We believe 
that manned aircraft especially airliners require significant 
attention to enhance safety by addressing the limitations of 
modern autopilots and flight management systems, and the 
human error factor as well. 

A review of the Autopilot problem, Artificial Neural 
Networks, and Learning by Imitation for Autonomous Flight 
Control is presented in our previous work [2]. 

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this paper 
can be viewed as an apprentice that observes the demonstration 
of a new task by the experienced teacher, and then performs the 
same task autonomously. A successful generalization of 
Learning by Imitation should take into consideration the 
capturing of low-level models and high-level models, which can 
be viewed as rapid and dynamic sub-actions that occur in 
fractions of a second, and actions governing the whole process 
and how it should be performed strategically. It is important to 



  

capture and imitate both levels to handle different piloting tasks 
successfully. 

The IAS is made of the following components: a flight 
simulator,  an  interface,  a database,  a flight manager  program, 
and Artificial Neural Networks. The IAS implementation 
method has three steps: A. Pilot Data Collection, B. Training, 
and C. Autonomous Control. In each step, different IAS 
components are used. The following sections describe each step 
and the components used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 
data collection step. 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 
collect data from a pilot. This is performed using X-Plane which 
is an advanced flight simulator that has been used as the 
simulator of choice in many research papers such as [14] [15] 
[16]. 

X-Plane is used by multiple organizations and industries 
such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight 
Controls Incorporated, Japan Airlines, and the American 
Federal Aviation Administration.1 X-Plane can communicate 
with external applications by sending and receiving flight status 
and control commands data over a network through User 
Datagram Protocol (UDP) packets. For this work, the simulator 
is set up to send and receive packets comprising desired data 
every 0.1 second. 

2) The IAS Interface   

The IAS Interface is responsible for data flow between the 
flight simulator and the system in both directions. The Interface 
contains control command buttons that provide a simplified yet 
sufficient aircraft control interface which can be used to perform 
basic tasks of piloting an aircraft such as take-off and landing in 
the simulator while being able to control other systems such as 
fuel and fire systems. It also displays flight data received from 
the simulator.  

Data collection is started immediately before demonstration, 
then, the pilot uses the Interface to perform the piloting task to 
be learned. The Interface collects flight data from X-Plane over 
the network using UDP packets, and collects the pilot’s actions 
while performing the task, which are also sent back to the 
simulator as manual control commands.  

 

 
 

Fig.  1. Block diagram illustrating the IAS components used during the 
pilot data collection step. 

 
1 X-Plane 10 Global. http://www.x-plane.com 

The Interface organizes the collected flight data received 
from the simulator (inputs), and the pilot’s actions (outputs) into 
vectors of inputs and outputs, which are sent to the database 
every 1 second. 

3) Database   

An SQL Server database stores all data captured from the 
pilot demonstrator and X-Plane, which are received from the 
Interface. The database contains tables designed to store: 1. 
Flight data as inputs, and 2. Pilot’s actions as outputs. These 
tables are then used as training datasets to train the Artificial 
Neural Networks of the IAS.    

B. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 
Artificial Neural Networks are used to generate learning models 
from the captured datasets through offline training. Fig. 2 
illustrates the training step.  

Fourteen feedforward Artificial Neural Networks comprise 
the core of the IAS. Each ANN is designed and trained to handle 
specific controls and tasks. The ANNs that are relevant to this 
work are: Ground-run ANN, Rudder ANN, Takeoff ANN, 
Aileron ANN, Cruise Altitude ANN, Cruise Pitch ANN, Final 
Approach ANN, Final Approach Pitch ANN, Gear ANN, and 
Landing ANN. The other ANNs that handle emergency 
situations are discussed in our previous work [3]. The inputs and 
outputs which represent the gathered data and relevant actions, 
and the topologies of the ANNs are illustrated in Fig. 3. 

The method for choosing ANN topologies in this work is 
based on an implication [17] which indicates that direct mapping 
problems requiring more than one hidden layer are rarely 
encountered, and compared to Deep Learning, this approach 
means that the system is more understandable and easier to test 
and verify compared to single deep solutions which are black-
boxes unsuited for safety critical applications. 

Before training, the datasets are retrieved from the database. 
Then, the datasets are fed to the ANNs. Next, Sigmoid (1) [18] 
and Hyperbolic Tangent (Tanh) (2) [18] functions are applied 
for the neuron activation step.                 
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where	� is the exponential function, and x is the neuron output. 

  

 
 

Fig.  2. Block diagram illustrating the IAS components used during training. 
 



  

 
 
Fig.  3. Inputs, outputs, and the topologies of the ANNs relevant to this work. 

Each ANN is designed and trained to handle a specific task. 
 

The Sigmoid activation function (1) is used by the Ground-
run ANN, Takeoff ANN, Landing Gear ANN, and the Landing 
ANN, while (2) is used by the rest since their datasets contain 
negative values. 

Next, Backpropagation is applied. Based on the activation 
function, (3) [18], or (4) [18] are applied to calculate the 
derivatives of the relevant activation function:    
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where phi (�) of x is the result of the activation function. 
 

Finally, coefficients of models (weights and biases) are 
updated using (5) [18].  
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where � is the learning rate, 
"#
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 is the gradient,   is the 

momentum, and ����!�� is the change in the previous weight. 
 

 
Fig.  4. Block diagram illustrating the IAS components used during 

autonomous control. 
 
When training is completed, the learning models are 

generated, and the free parameters or coefficients represented by 
weights and biases of the models are stored in the database.  

C. Autonomous Control  

Once trained, the IAS can now be used for autonomous 
control. Fig. 4 illustrates the components used during the 
autonomous control step.  

1) The IAS Interface 

Here, the Interface retrieves the coefficients of the models 
from the database for each trained ANN, and receives flight data 
from the flight simulator every 0.1 second. The Interface 
organizes the coefficients into sets of weights and biases, and 
organizes data received from the simulator into sets of inputs for 
each ANN. The relevant coefficients, and flight data input sets 
are then fed to the Flight Manager and the ANNs of the IAS to 
produce outputs. The outputs of the ANNs are sent to the 
Interface which sends them to the flight simulator as 
autonomous control commands using UDP packets every 0.1 
second. 

2) The Flight Manager Program 

The Flight Manager is a program which resembles a 
Behaviour Tree [19]. The purpose of the Flight Manager is to 
manage the fourteen ANNs of the IAS by deciding which ANNs 
are to be used simultaneously at each moment. In addition, it 
generates a flight course to the destination airport of choice 
based on stored GPS waypoints as Fig.  5 illustrates, by applying 
(6) [20] to calculate the bearing (heading) between the GPS 
coordinates (latitude and longitude) of the waypoints.  

 
�	�	atan2�sin�Δλ�cos�Φ2�,	cos�Φ1�sin�Φ2�cos�Δλ��			(6)	

 
where Φ1 is the start point, Φ2 is the end point, and Δλ is the 
difference in longitude.  
 

The program constantly measures the deviation between the 
aircraft’s position and the current path line of the flight course 
represented by the angle between the line that starts at the 
location point of the aircraft and ends at the location point of the 
next waypoint, and the line that starts at the location point of the 
previous waypoint and ends at the location point of the next 
waypoint as Fig.  6 illustrates. 

 



  

 
 
Fig.  5. A flight course from a departure airport to a landing airport consisting 
of three path lines and their bearings/headings, which connect the three pre-

stored GPS coordinates waypoint. 
 

The Flight Manager calculates the difference between the 
bearing of the path line to be intercepted, and the aircraft’s 
current bearing, then, it adds the angle to the difference. As the 
aircraft’s current bearing becomes closer to the desired bearing, 
and as the angle becomes smaller, the difference becomes 
smaller as well, which leads to a gradual interception of the path 
line, and avoids undesired undershooting or overshooting as Fig.  
7 illustrates. 

The Top of Descent (TOD) is the point at which descending 
towards the destination airport is initiated. In this work, the 
Flight Manager calculates the TOD by multiplying the altitude 
by 0.003 2. If the result is less than the distance (in kilometers) 
to the landing runway, then the TOD is reached, and the 
descending process starts.  

The Glideslope is an altitude slope of a given degree, which 
leads to a touchdown on the landing runway. The Flight 
Manager generates a virtual altitude slope by dividing the 
distance to the runway by 10. The latter method is used based 
on preliminary empirical testing. Fig. 8 illustrates how the Flight 
Manager generates the glideslope.  

 
 

 
 

Fig.  7. An example illustrating how the Flight Manager updates the bearing to 
be followed based on the difference between the bearing of the path line to be 
intercepted, and the aircraft’s bearing. The angle between the aircraft and the 

path line is added to the difference to ensure a gradual interception.    

 
2 How to compute the TOD (Top of Descent) - Thumb rule. https://community.infinite-flight.com/ 

 
 
Fig.  6. The angle between the line from the aircraft’s location X and the next 
waypoint Y, and the line from the previous waypoint Z and the next waypoint 

Y. 
 

The Flight Manager starts by receiving flight data from the 
flight simulator through the interface of the IAS, then it detects 
the flight condition and phase by examining the received flight 
data, and decides which ANNs are required to be used given the 
flight condition and phase. 

The procedure used by the Flight Manager to handle 
emergency situations such as an engine fire/failure is discussed 
in our previous work [3]. Fig.  9 illustrates the process which the 
Flight Manager follows to handle the execution of complete 
flights. 

3) Artificial Neural Networks 

The relevant set of flight data inputs received through the 
Interface is used by the ANNs’ input neurons along with the 
relevant coefficients to predict control commands given the 
flight status by applying (1) and (2). The values of the output 
layers are sent to the Interface which sends them to the flight 
simulator as autonomous control commands. The design 
approach of the ANNs intends to breakdown the different tasks 
required for flying, that take place during the multiple flight 
phases. For example, the ground-run phase requires the task of 
gaining takeoff speed by releasing brakes and going to full 
throttle, and the task of keeping the aircraft on the centerline of 
the runway using the ruder. For the latter tasks, two ANNs were 
designed, which control the brakes and throttle (task 1), and the 
rudder (task 2).  To predict  the appropriate  control commands,  

 
 
 

 
Fig.  8. The Glideslope generated by continuously calculating the altitude 

during the final approach descent which leads to a touchdown on the landing 
runway. The desired altitude is the distance to the runway divided by 10. 

 



  

 
 

Fig.  9. A Flowchart illustrating the process which the Flight Manager program 
follows to decided which ANNs are to be used, and how to handle flight 

phases and navigation points transitions. 
 
the ANNs rely on the relevant flight data inputs as Fig.  3 
illustrates. Following the problem breakdown approach, it is 
possible to achieve a composition of small multiple control units 
represented by the task-dedicated ANNs that can be designed, 
integrated, and traced effortlessly compared to systems that rely 
on a single or few large ANNs designed to handle multiple task. 
In addition, when following the breakdown approach, it is 
possible to achieve higher levels of accuracy since each ANN is 
dedicated towards a single task of controls mapping as follows. 
Fig.  10 illustrates the ANNs used during the different flight 
phases.        

IV. EXPERIMENTS 

This work discusses the experiments conducted on the 
modified  Aileron  ANN  which  can now bank,  and intercept a 
path line, in addition to controlling the roll degree. This section 
also discusses the experiments conducted on the new ANNs that 
are used during the final approach, and landing phases. 

The experiments were conducted under calm weather 
conditions with nil wind speed.  

Our previous work [2], [3] provide detailed explanations of 
the experiments of autonomous ground-run, takeoff, climb, 
cruise, rudder control, maintaining a desired altitude and pitch, 
and handling emergency situations.  

  

 
Fig.  10. The ANNs used during the different phases of the flight. 

 
To assess the effectiveness of the proposed approach in this 

paper, the Intelligent Autopilot System was tested in three 
experiments: A. Banking turn and path line interception, B. 
Final approach, and C.  Landing. Each experiment is composed 
of 50 attempts by the IAS to perform autonomously under the 
given conditions. 

The human pilot who provided the demonstrations is the 
first author. The simulated aircraft used for the experiments is a 
Boeing 777 as we want to experiment using a complex and large 
model with more than one engine rather than a light single-
engine model. The experiments are as follows:  

A. Banking turn and path line interception  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when 
performing a banked turn, and to assess the path line 
interception technique. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 
change the aircraft’s heading by performing a banked turn 
through maintaining a roll of 25 to 35 degrees. While the pilot 
performed the demonstration, the Interface collected roll and 
difference values as inputs, and aileron control value as output. 
The Interface stored the collected data in the database as the 
training dataset for the Aileron ANN.  

2) Training 

For this experiment, the Aileron ANN was trained until a 
low Mean Squared Error (MSE) value was achieved (below 0. 
1).  

When the aircraft is close to the path line to be intercepted, 
a large banking turn of 25 to 35 degrees of roll can cause the 
aircraft to constantly overshoot the path line instead of 
intercepting it smoothly. So, instead of training an additional 
Aileron ANN that performs banking turns through smaller 
degrees of roll, the same generated ANN model can be 
stimulated differently to alter its behaviour, by feeding its 
difference input neuron with difference values that are much 
smaller than the difference values present in the training dataset. 
The latter exploits the generalization effect which causes the 
model to behave differently based on the unseen inputs. To 
achieve this in this experiment, before feeding the difference 
input neuron of the Aileron ANN with the difference value, the 
difference is reduced to just 30% of its actual value, which was 
found through extensive preliminary experiments. This 
approach was tested between two waypoints represented by a 
straight path line.   



  

3) Autonomous Control 

After training the ANN on the relevant training dataset, the 
aircraft was reset to the runway in the flight simulator to test 
autonomous banking turn and path line interception. After 
takeoff, when the Flight Manager updates the path sequence of 
the flight course, calculates the new heading, the angle, and the 
difference, the Aileron ANN performs a banked turn to 
minimize the difference, and eventually, intercept the path line 
gradually. Through the Interface, the ANN receives: 1. relevant 
flight data from the flight simulator as inputs, and 2. coefficients 
of the relevant models from the database to predict and output 
command controls that are sent to the flight simulator. This 
process allows the IAS to autonomously perform the learned 
task: autonomous banking turn and path line interception. This 
was repeated 50 times to assess performance consistency.    

B. Final Approach 

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot during 
the final approach phase. 

1) Data Collection  

 In this experiment, the human pilot used the IAS Interface 
to perform the following in the flight simulator: maintain a 
positive pitch of about 3 to 4 degrees during the final approach 
phase to decrease airspeed without causing a stall, and to ensure 
a flare immediately after touchdown, engage full flaps when the 
airspeed is less than 260 knots, and engage the landing gear 
when the altitude decreases to 1500 ftagl. The desired descent 
altitude is continuously updated by the Flight Manager as 
explained above in section C of part III, and the experiments 
conducted on the techniques followed by the ANNs to maintain 
a desired altitude, and a desired pitch are explained in our 
previous work [3]. For this work, while the pilot performed the 
demonstration, the Interface collected airspeed and altitude as 
inputs, and flaps as output. The Interface stored the collected 
data in the database as the training dataset for the Final 
Approach Altitude ANN. The Interface also collected altitude as 
input, and landing gear control data as output. The Interface 
stored the collected data in the database as the training dataset 
for the Landing Gear ANN. 

2) Training 

For this experiment, the Final Approach Altitude ANN, and 
the Landing Gear ANN were trained until low Mean Squared 
Error (MSE) values were achieved (below 0.01).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 
aircraft was reset to the runway in the flight simulator to test the 
autonomous final approach procedures. After entering the final 
approach flight phase, and when the desired airspeed is reached, 
the Final Approach Altitude ANN engages flaps, and when the 
desired altitude is reached, the Landing Gear ANN engages the 
landing gear. Through the Interface, the ANNs receives: 1. 
relevant flight data from the flight simulator as inputs, and 2. 
coefficients of the relevant models from the database to predict 
and output command controls that are sent to the flight 
simulator. This process allows the IAS to autonomously perform 

the learned final approach procedures. This was repeated 50 
times to assess performance consistency. 

C. Landing  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when 
performing landing procedures. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 
perform the landing procedures immediately after touchdown, 
by engaging reverse thrust, brakes, and speed brakes. While the 
pilot performed the demonstration, the Interface collected 
airspeed as input, and reverse thrust, brakes, and speed brakes 
control data as outputs. The Interface stored the collected data 
in the database as the training dataset for the Landing ANN. 

2) Training 

For this experiment, the Landing ANN was trained until low 
Mean Squared Error (MSE) values were achieved (below 0.01).  

3) Autonomous Control 

After training the ANN on the relevant training dataset, the 
aircraft was reset to the runway in the flight simulator to test the 
ability of performing the landing procedures autonomously, and 
the IAS was engaged. After the IAS took the aircraft airborne, 
navigated to the destination airport, and touched down, the 
system’s ability to perform the landing procedures of engaging 
reverse thrust, brakes, and speed brakes was observed. Through 
the Interface, the ANN receives: 1. relevant flight data from the 
flight simulator as inputs, and 2. coefficients of the relevant 
models from the database to predict and output command 
controls that are sent to the flight simulator. This process allows 
the IAS to autonomously perform learned landing procedures. 
This was repeated 50 times to assess performance consistency. 

V. RESULTS 

The following section describes the results of the conducted 
tests. 

A. Banking turn and path line interception 

One model was generated for the Aileron ANN with an MSE 
value of 0.0954. Fig.  11 illustrate a comparison between the 
human pilot and the IAS when performing a banked turn to 
change the aircraft’s bearing by 145 degrees over a period of 40 
seconds.  Due to high consistency and the lack of wind, the lines 
representing the 50 attempts by the IAS overlap. The Mean 
Absolute Deviation (MAD) results of the roll degrees over time 
(5.02 for the IAS (average) and 4.34 for the human pilot) show 
a close behaviour between the system and its teacher. Fig.  12 
illustrates the smaller roll degrees when intercepting a path line, 
after altering how the difference input neuron is stimulated, by 
reducing the input’s value to just 30% of its actual value. Since 
the experiments were conducted on 6 different segments of the 
same path line while being intercepted under the same weather 
conditions (nil wind speed), and due to the high consistency of 
the IAS, 6 different sets of overlapping lines are visible as Fig. 
12 illustrates. 



  

 
 
Fig.  11. (Banking turn and path line interception experiment). A comparison 

between the human pilot (orange line) and the 50 attempts by the IAS 
(overlapping lines) to perform a banked turn to change the aircraft’s bearing by 
145 degrees over a period of 40 seconds. The good fit of the generated model 
allowed the IAS to maintain a significantly steadier and consistent change of 

roll degrees compared to the human pilot.  
 

 
 

Fig.  13. (Banking turn and path line interception experiment). 50 attempts 
with strong consistency to gradually intercept and follow a path line (black 

arrow). The interception attempt is represented by the gradual decrease of the 
angle between the aircraft and the path line. 

 
Fig.  13 illustrates how applying the reduced degrees of roll 

when constantly banking (correcting bearing) to intercept a path 
line, ensure a steady and gradual interception. Fig.  14 illustrates 
the flight course that the IAS generated and followed 
autonomously. Due to high consistency and the lack of wind, the 
lines representing the 50 attempts by the IAS in Fig.  13 and 14 
overlap.  

B. Final Approach 

Two models were generated for this experiment, the Final 
Approach Altitude ANN model with an MSE value of 0.0034, 
and the Landing Gear ANN model with an MSE value of 
0.0046. Fig.  15 illustrate a comparison between the human pilot 
and the IAS when extending the flaps after the appropriate 
airspeed is reached. Fig.  16 illustrates a comparison between 
the human pilot and the IAS when engaging the landing gear 
after the appropriate altitude is achieved. Due to high 
consistency, the lines representing the human behaviour, and the 
50 attempts by the IAS in Fig.  15 and 16 overlap. Fig.  17 
illustrates the glideslope followed during the final approach 
phase in 50 experiments resulting in lines that overlap due to 
high consistency and the lack of wind.  

 
Fig.  12. (Banking turn and path line interception experiment). Smaller degrees 
of roll when banking continuously to intercept a path line. For the 50 attempts, 

the roll is below 9 degrees (suitable for small turns while intercepting) 
compared to a maximum of 31 (suitable for major bearing change) as Fig.  10 

illustrates. Due to the significant consistency, and similarity of the testing 
scenarios (location and weather), most of the lines are overlapped. 

 

Fig.  14. (Banking turn and path line interception experiment). The 50 flight 
courses (overlapped lines) with strong consistency flown autonomously by the 

IAS, starting with takeoff from London Heathrow airport, and landing at 
Gatwick airport. Since the distance between the two airports is short for an 

airliner, the generated flight course accounts for the distance required to 
perform the final approach phase, and therefore, follows an initial path away 

from Gatwick. 

C. Landing 

One model was generated for the Landing ANN with an MSE 
value of 0.003. Fig.  18 illustrate a comparison between the 
human pilot and the IAS when engaging the reverse thrust, 
brakes, and speed brakes immediately after touchdown. Due to 
high consistency, the lines representing the human behaviour, 
and the 50 attempts by the IAS in Fig.  18 overlap.  

VI. ANALYSIS 

As can be seen in Fig.  11 (banking turn and path line 
interception experiment), the IAS was not only able to imitate 
the behaviour of its human teacher when performing a banked 
turn by maintaining a certain degree of roll, it was also able to 
perform better by being able to maintain a steadier change of 
roll degrees, which is due to the good fit of the generated 
learning model. The new method of changing the stimuli of the 
ANN to cause it to alter its behaviour instead of having to retrain 
it or generate a different learning model, provided excellent 
results. Fig.  12 (banking turn and path line interception 
experiment) shows how changing the stimuli represented by the 

Heathrow 

Gatwick 



  

 
 
Fig.  15. (Final approach experiment). A comparison between the human pilot 

and 50 attempts by the IAS (overlapped lines) when extending flaps 
immediately after an airspeed of 260 (ktas) is reached. The behaviour of the 

human pilot and the IAS in the 50 attempts are significantly close with strong 
consistency. 

 

 
 

Fig.  17. (Final approach experiment). 50 attempts (overlapped lines) with 
strong consistency by the IAS to follow the final approach glideslope. The 

glideslope is adjusted by the IAS after descending to an altitude below 1000 
(ftagl) to compensate for the additional drag generated by the landing gear. 
  

difference value which passes through the input neuron of the 
Aileron ANN, through reducing it by a given percentage, caused 
the ANN to behave differently. The latter can be seen as the 
much smaller degrees of roll maintained by the Aileron ANN 
although its generated learning model was trained to maintain 
larger degrees of roll. The smaller degrees of roll maintained 
when banking or correcting the aircraft’s bearing to intercept a 
path line, allowed the IAS to gradually intercept and follow the 
path line while avoiding undershooting and overshooting as Fig.  
13 (banking turn and path line interception experiment) shows, 
and therefore, the IAS was able to strictly follow the generated 
flight course with excellent accuracy and consistency as Fig.  14 
(banking turn and path line interception experiment) shows, 
throughout all the experiments.  

The IAS was capable of identically imitating the human 
pilot’s actions and behaviour when performing the procedures 
of the final approach phase, by extending the flaps only when a 
certain airspeed is reached, and engaging the landing gear only 
when a certain altitude is reached as Fig.  15 and 16 (final 
approach experiment) show. The method covered in our 
previous work [3], which is followed by the ANNs that are 
responsible   for   maintaining  a  given  altitude,  proved  to  be  

 

Fig.  16. (Final approach experiment). A comparison between the human pilot 
and 50 attempts by the IAS (overlapped lines) when engaging the landing gear 
immediately after an altitude of 1500 (ftagl) is reached. The behaviour of the 
human pilot and the IAS in the 50 attempts are significantly close with strong 

consistency. 
 

 
Fig.  18. (Landing experiment). A comparison between the human pilot and 50 
attempts by the IAS (overlapped lines) when engaging reverse thrust, brakes, 
and speed brakes immediately after touchdown. The behaviour of the human 

pilot and the IAS in the 50 attempts are significantly close with strong 
consistency. 

 
adequate for handling a rapidly changing desired altitude which   
is continuously updated by the Flight Manager during the final 
approach phase.  The latter generated a glideslope that led to a 
touchdown on the landing runway, and was maintained by the 
IAS. However, as soon as the extra drag caused by the extracted 
landing gear generated a larger sink rate which could cause a 
premature touchdown (touching down before reaching the 
landing runway), the IAS was able to autonomously alter the 
glideslope by following a less steep degree towards the runway 
as Fig.  17 (final approach experiment) shows. 
 As can be seen in Fig.  18 (landing experiment), the IAS was 
capable of identically imitating the human pilot’s actions and 
behaviour when performing the procedures of the landing phase, 
by engaging the reverse thrust, brakes, and speed brakes 
immediately after touchdown to bring the aircraft to a rapid full 
stop. 

VII. CONCLUSION 

In this work, a novel and robust approach is proposed to 
“teach” autopilots how to perform complete flights from takeoff 
to landing with minimum effort by exploiting Learning by 



  

Imitation also known as Learning from Demonstration. This 
approach introduces the possibility to have an autopilot that 
behaves like a skilled human pilot rather than a machine with 
limited capabilities. 

The experiments were strong indicators towards the ability 
of Supervised Learning with Artificial Neural Networks to 
capture low-level piloting tasks such as the rapid manipulation 
of the ailerons to maintain a banked turn, and high-level tasks 
such as coordinating the necessary actions during the final 
approach and the landing phases. 

Breaking down the piloting tasks, and adding more Artificial 
Neural Networks allowed overcoming the black-box problem 
by having multiple small ANNs with single hidden layers that 
learn from small labelled datasets which have clear patterns. In 
addition, this approach enhanced performance and accuracy, 
and allowed the coverage of a wider spectrum of tasks. 

The aviation industry is currently working on solutions 
which should lead to decreasing the dependence on crew 
members. The reason behind this is to lower workload, human 
error, stress, and emergency situations where the captain or the 
first officer becomes incapable, by developing autopilots 
capable of handling multiple scenarios without human 
intervention. We anticipate that future Autopilot systems which 
make of methods proposed here could improve safety and save 
lives. 

VIII. FUTURE WORK 

Our work [21] covers navigation, landing, and go-around 
under severe weather conditions with the presence of high 
crosswind component, wind shear, gust, and turbulence.  

Since this work and our other work [1] [2] [21] proved the 
possibility of teaching an artificially intelligent autopilot how to 
perform complete flights while being able to handle multiple 
uncertainties, and since the performance of the Intelligent 
Autopilot System (IAS) is based on what it learned from its 
teacher (the first author) who has no real flying experience and 
know-how, we believe it is time to take this work to the next 
level which we anticipate would cover teaching the IAS by 
allowing it to observe new demonstrations from experienced 
pilots using professional equipment equipment such as CAA-
certified flight simulators. Next, we anticipate testing the IAS 
thoroughly in real-life scenarios by integrating it with a fixed-
wing Unmanned Aircraft System (UAS) before collaborating 
with the civil aviation industry.  
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