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ABSTRACT

Privacy violations in online social networks (OSNs) often
arise as a result of users sharing information with unintended
audiences. One reason for this is that, although OSN capa-
bilities for creating and managing social groups can make
it easier to be selective about recipients of a given post,
they do not provide enough guidance to the users to make
informed sharing decisions. In this paper we present Pri-
vacy Dynamics, an adaptive architecture that learns privacy
norms for different audience groups based on users’ sharing
behaviours. Our architecture is underpinned by a formal
model inspired by social identity theory, a social psychology
framework for analysing group processes and intergroup re-
lations. Our formal model comprises two main concepts, the
group membership as a Social Identity (SI) map and privacy
norms as a set of conflict rules. In our approach a privacy
norm is specified in terms of the information objects that
should be prevented from flowing between two conflicting
social identity groups. We implement our formal model by
using inductive logic programming (ILP), which automati-
cally learns privacy norms. We evaluate the performance of
our learning approach using synthesised data representing
the sharing behaviour of social network users.
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1. INTRODUCTION

The number of active users of Online Social Networks
(OSNs) is now measured in millions [2]. As of November
2015, Facebook was ranked at the top with 1.55 billion ac-
tive users. There has also been a significant increase in the
users of LinkedIn, Twitter and Instagram since September
2014. Besides the growth in the number of users, the level of
user engagement with Facebook has significantly increased
compared to previous years [1, 2, 10]. As the use of OSNs
has grown, privacy violations due to inappropriate sharing
of information on OSNs have also become common. As a re-
sult of sharing posts with unintended audiences, many peo-
ple have lost their jobs [12, 28, 34] and some have lost their
health insurance [25], while some people experienced serious
damage in their relationships with their spouses, friends or
family members [14, 35].

Privacy violations are mostly due to the misalignment of
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users’ “imagined audience” with the “actual audience” [24].
A user’s “imagined audience” is the mental conceptualisation
of people with whom he/she is communicating [3, 24], which
is an essential feature of social media interactions because
with social media technologies the audience is not necessar-
ily physically co-located with the user at the time the infor-
mation is shared. For instance, on Facebook a user might
accidentally send a photo of himself drunk at a party to his
boss as well as his friends, since his “imagined audience” does
not contain his boss, while his actual audience does. In this
paper, we propose a solution that aims to provide guidance
to OSN users in order to minimise privacy violations result-
ing from such misalignment. One of the key concepts of our
proposed solution is the notion of conflicts that is used to
identify people who are in the actual audience and but not
in the imagined audience (i.e. the unintended audience).

In order to model the co-presence of multiple groups within
one context in OSNs irrespective of time and space, we em-
ploy Social Identity (SI) theory, which is a theoretical anal-
ysis of group processes and intergroup relations proposed
in the social psychology literature. Social Identity refers
to our sense of ourselves as members of a social group and
the meaning that group has for us [18]. According to SI
theory, people belong to multiple groups and social identi-
ties are created through group memberships. Being British,
being a researcher or being a student are all examples of
social identities. Lampinen et al. [22] empirically show
that multiple groups are co-present on Facebook users’ sites



and hence, multiple social identities corresponding to these
groups are salient to the users. This empirical study also
shows that Facebook users are aware of the co-presence of
multiple groups on their sites and in order to prevent privacy
violations users form implicit groups by mentally dividing in-
dividuals into subgroups. Therefore in addition to conflicts,
another key concept of our proposed solution is the SI map,
where each implicit group is modelled as a social identity
group. Users can employ current OSN features (e.g., Face-
book’s Friend List or Google+ Circle features) to explicitly
define groups so that certain posts can be shared within cer-
tain groups. However, to avoid privacy violations due to
misalignment of imagined and actual audiences, users need
help in maintaining the membership of the OSN groups. Our
solution provides guidance to users, based on an analysis of
their sharing behaviours, so that in the ideal case the defined
OSN groups converge to the groups in the user’s SI map.

In order to prevent privacy violations, which might arise
due to the dynamic nature of groups, we propose an adap-
tive architecture, that can provide sharing recommendations
to users as well as assisting them to re-configure the groups
they explicitly defined using OSN settings. The core of our
adaptive architecture uses a model based on social iden-
tity theory and is implemented by employing a logic based
learning system. Our use of logic based learning comple-
ments other techniques that use statistical learning [8, 29]
to achieve adaptive audience recommendations because it
can provide explanations for why certain individuals should
not be in the audience for a given information item. The
learned privacy norms are the conflicts between social iden-
tity groups, say A and B, indicating that a given informa-
tion type should not flow from group A to group B. The
information types defined in these norms are specified using
attributes of the information objects being shared. We ex-
plain how social identity theory informs the formal model
that underpins the core of our adaptive architecture in this
paper through a motivating scenario. We also explain how
we implemented the core of our adaptive architecture by
using a logic based learning system. The performance of
this learning system is evaluated through experiments us-
ing synthesised data representing the sharing behaviour of
social network users. The experimental results demonstrate
that our approach can learn privacy norms with 50 — 70%
specificity, depending on the number of conflicts present,
given at least 10 examples of user’s sharing behaviour. This
indicates the learnt norms cover the majority of instances
of inappropriate sharing actions. Additionally, we find that
if the user updates the group membership of their ST map
to be more closely aligned to the social identity groups with
whom they avoid sharing information, we can learn privacy
norms with high specificity given fewer examples.

The rest of this paper is organised as follows: Section 2
describes a motivating scenario explaining how we structure
the privacy violation problem in OSNs by using our key con-
cepts, which are conflicts and SI map. Section 3 explains the
Privacy Dynamics Architecture, which is the architecture of
our proposed privacy-aware adaptive system. Section 4 de-
scribes the logic based learning system we employed in order
to implement the core of our adaptive architecture. Section
5 is our evaluation of the performance of the core of our
privacy-aware adaptive architecture. In Section 5, we also
explain the design of our experiments and present the re-
sults. Section 6 covers related work and compares our ap-
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Figure 1: Structuring the privacy violation problem
using Social Identity Theory.
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proach with some of these studies. Finally, in Section 7 we
discuss our conclusions and future work.

2. MOTIVATING SCENARIO

In this section, we present a motivating scenario to explain
how social identity theory can help us understand privacy
problems in OSNs. In particular, this scenario focusses on
how the misalignment between “actual” and “imagined” au-
dience leads to privacy violations.

Our motivating scenario is as follows: Alice has Facebook
friends Carol, Bob and David. Alice knows Bob and David
from the university where they all graduated ten years ago
and they are close friends. Alice first met Carol at a par-
ents’ evening at her son’s school and they have become close
friends since then. Alice later finds out that Carol and David
are very close friends and Bob is Carol’s boss. They are all
aware of the mutual friendship through Facebook. While Al-
ice and Carol are at a party on a weekend, Alice takes some
photos and tells Carol that she is going to tag them and post
them on Facebook. Carol tells her to make sure they are not
seen by Bob because he is her boss and hence she does not
want Bob to know what she does on the weekends. Alice
duly removes Bob from the recipient audience for her post
and then shares the photos on Facebook. For the next few
weeks Alice remembers that Bob is Carol’s boss and makes
sure not to share posts about her weekend activities, which
involve Carol with Bob.

Some months later one weekend Carol and Alice go to
a rock concert together and Alice takes a photo of Carol
diving off the stage and posts it to Facebook, forgetting
that Bob is part of her default share group. The following
week Bob meets Carol at work and refers to the photos from
the concert. Carol is embarrassed by the exchange and is
annoyed with Alice for not respecting her privacy.

In our proposed solution (Figure 1), each user would have
a social identity map (SI map) and a set of social identity
conflict rules (SI conflicts). This knowledge would be used
to alert Alice of the potential privacy violation by learning
that information about Carol’s weekend activities should not
have been shared with Bob.



A user’s local SI map is their perception of social identi-
ties for themselves and the people they communicate with
on the OSN. In our example, multiple groups are co-present
on Alice’s Facebook account and some of these groups corre-
spond to Alice’s “parent”; “employer”, “university graduate”
and “close friend” social identities in her local SI map (Figure
1). This represents the knowledge that Alice thinks of her-
self as belonging to the “parents”, “employers”, “university
graduates” and “close friends” social identity groups. The
social identity group membership of Bob, David and Carol
according to Alice’s SI map can be seen in Figure 1. For
instance, Alice thinks that Carol belongs to “close friends”
and “parents” social identity groups, and that Bob belongs
to the “employers” group. On the other hand, according
to Alice’s conflicts list that is also shown Figure 1, SI con-
flicts specify norms, such as the one that “employers” social
identity group conflicts with the “close friend” social iden-
tity group, when the shared information was captured on
the weekend. This is equivalent to stating that information
that was captured on the weekend should not flow from the
“close friends” social identity group to the “employers” social
identity group.

In this section, we have explained how our proposed so-
lution detects privacy violations by referring to the user’s
SI map and SI conflicts through a motivating scenario. In
the next section, we explain details of the Privacy Dynamics
Architecture, that is designed to integrate our solution with
OSN platforms.

3. PRIVACY DYNAMICS ARCHITECTURE

Our goal is to support developers interested in integrat-
ing OSNs into an application, which we call a SocialApp,
to provide effective privacy management capabilities that
are adaptive to users’ behaviour. To this end we propose
the Privacy Dynamics Architecture as a layer of privacy
enhancing technologies that can be integrated between the
user interface of SocialApp and the OSN platform (Figure
2). The proposed architecture has at its core a Privacy In-
ference (PI) engine, which uses knowledge about the user’s
sharing history and social identity groups to learn privacy
norms as rules about information types that should not be
shared from one group to another. The focus of this paper
is to explain and evaluate how this component uses induc-
tive logic programming techniques to provide this adaptive
privacy capability.

The background knowledge required by the PD architec-
ture is stored in a Privacy Dynamics (PD) repository, hav-
ing been acquired from the OSN platform through a OSN
platform monitor; a content analysis module and the So-
ctalApp itself. When the user wishes to use the OSN inte-
gration features of the SocialApp to share an information
object, an audience recommendation engine queries the PD
repository for the user’s SI map and conflicts. The latter
are learned privacy norms to determine if the actual audi-
ence contains recipients who are members of conflicting so-
cial identity groups. The actual audience members who are
in such conflicting groups are reported to the SocialApp as
potentially unintended recipients of the object being shared.
Because the identification of these recipients is derived using
a logic program, our solution can provide a rationale for its
recommendation. This allows the user to decide whether or
not to change the audience of the shared object thus making
a final share decision and also updating their SI map.
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Figure 2: Privacy Dynamics (PD) architecture
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The organisation of the PD architecture is based on the
MAPE-K pattern for adaptive systems [21], and each com-
ponent architecture is described further below.

| Knowledge | PD repository data |

Person unique identifiers p; of the user and

user’s friends

SI Map SI group name, s;, and list of peo-
ple, p1,...,pn, in group

Object unique identifiers o; of objects be-
ing shared

Attribute attribute names and values associ-

ated with each object
identifier o; of objects and people,
p: with whom the object is shared
conflicting SI group names, sx, sy,
and attribute values of objects for
which conflict applies

Share History

Conflict

Table 1: PD repository data description

PI engine: This is the core of our proposed architecture;
it uses inductive logic programming techniques to learn the
conflicts in SI conflicts list. In order to learn the conflicts,
the PI engine takes as input the SI map, people list, list
of social identities, objects list and share history that are
stored in PD repository. The learning process will be trig-
gered whenever the user makes a sharing decision that is
inconsistent with the current conflict rules that have been
learned by the PI engine. The learning procedure used by
the PI engine is detailed in Section 4. PD repository: This
is another core component of the architecture, serving as the
knowledge base for the PI engine and audience recommenda-
tion engine. The repository stores observed attributes such
as people list, objects list, the history of the user’s sharing
actions and social identity groups list, which are described
in Table 1.



Content analysis module: This module takes the object to
be shared as input and outputs object attribute types and
values. The content analysis module executes at periodic
intervals by taking as input the objects in the share history
from the PD repository. It can also be triggered by the au-
dience recommendation engine, when the engine receives a
share request including an object with unknown attributes.
In such situations, it produces results at run time. The con-
tent analysis module could either use machine learning tech-
niques to identify the attribute types and values for shared
information objects, or use attributes assigned to the objects
by the OSN platform itself. In our current implementation
we have assumed the latter, where the PI engine only uses
attributes that can be extracted by using Facebook’s Graph
APIL

OSN platform monitor: This module periodically fetches
user’s friends lists (e.g., customised friends lists on Facebook,
circles in Google+) and share history. This component is
also used to bootstrap the system by using the retrieved
friends lists to populate the initial SI map in PD repository.

Audience recommendation engine: Our audience recom-
mendation engine generates the sharing recommendation in-
forming the user about potentially unintended receivers. The
recommendation engine is triggered by the user’s share re-
quest, which consists of information about the object to be
shared and the potential receivers of the object. In order to
generate a recommendation, the engine performs the follow-
ing steps:

e Extracts the information about the potential receivers
and the attributes of the object to be shared, including
the subject, from the share request;

e Queries the SI map in the PD repository to retrieve
the social identity groups that the subject belongs to;

e Uses the attribute values of the object being shared
to query the repository to determine if there are any
conflicts associated with the subject’s social identities
and the object. This results in a list of potentially
conflicting social identity groups;

e For each of the potentially conflicting social identities,
check if there is an overlap between members of the
social identity groups and the potential recipients se-
lected by the user. Any recipients who are in a con-
flicting social identity group are added to the set of
unintended recipients;

e Return the set of unintended recipients to the Social App
user interface.

The set of unintended recipients can be reported to the
user through the SocialApp user interface. The developer
of the application can allow the user to use the unintended
recipient information to modify the audience of their share
request before posting the object to the social media plat-
form. Additionally this user interface can be used to update
the SI map used by the PD architecture.

4. LEARNING PRIVACY NORMS

In this section, we describe our approach for learning pri-
vacy norms, based on conflicts between social identities,
from examples of shared and not shared information. These
norms are assumed to be expressed in a declarative language,
which can be more easily accessible to the user. We there-
fore make use of Inductive Logic Programming (ILP) [30]. In

ILP, the goal is to learn a logic program H, called a hypoth-
esis, which explains a set of positive and negative examples
(E* and E7) in the context of another logic program B
called the background knowledge.

Several recent frameworks for ILP [7, 4, 23] have en-
coded the search for hypotheses in ASP (Answer Set Pro-
gramming) [17], which is an efficient declarative logic pro-
gramming paradigm. The programs we present in this pa-
per use only a subset of the ASP language; specifically,
the programs are normal logic programs. A normal rule
is of the form h :- by,...,by,n0t bpti1,...,n0t by, where h
and by,...,b, are atoms. h is called the head of the rule
and by, ...,by,n0t bpyti1,...,n0t by is called the body. The
meaning of the rule is that if by, ..., by are true and bpy1, .. .,
b, are false then h must be true. A rule with an empty body
is called a fact. In this paper, the ASP programs we consider
consist entirely of normal rules. Given an ASP program,
each solution to the program is a full instance of the model,
called an answer set®.

We now describe the underlying decision model for deter-
mining the people with whom an object should be shared,
if social identities and conflicts among social identities were
known. We will then present how our learning approach can
automatically learn the conflicts between social identities
from user’s sharing behaviours.

Our model assumes a set of social identities (which are
sets of people), a set of objects, with given attributes, and a
set of rules defining the conflicts between social identities on
each of these objects. We formalise the sharing behaviours
of a set of social identities as an ASP program whose sin-
gle answer set specifies which objects should be shared with
whom, taking into account the conflicting social identities.
This program infers that an object can be shared with ev-
eryone who is in at least one of the sharer’s social identities
unless there is a reason not to share the object with them
(e.g., a conflict between a social identity of the subject of
the object and a social identity of the receiver). We assume
an object to be characterised by a set of attributes, given in
table 2, and that for each object, an attribute has a single
value. We can therefore write an object as a unique tuple of
attributes (subject,location, time, day).

Attribute Possible Values

subject Pi;---3Pn

location office, beach, gym, shop, bar,
night_club, cinema

time day_time, night_time, evening,
work time

day weekday, weekend

Table 2: The attributes of objects. Note that in the
case of subject, pi,...,p. refer to the people in the
user’s network

Example 1 shows, for a small set of social indentities, the
meaning of a simple conflict rule.

ExXAMPLE 1. Consider a simple social identity map with
two social identities s; = {alice,bob, charlie} and s, =
{charlie,david}. Also consider the single conflict rule:

conflict_si(0, s, s1) :- location(0,night_club).

'For the full semantics of ASP see [16].



The above rule states that any object with location night_club
causes a conflict if it is shared with a person in social identity
s> and the subject of the object is someone in si. Accord-
ing to this rule, the object (alice,night_club,night_time,
weekday) can be shared with alice and bob, but not with
charlie or david.

The ASP program that formalises our model is made of
four components: SI, Conf, Obj and Share, representing
the social identities, conflict rules, objects and a general pro-
tocol for sharing, respectively. ST is the program composed
of facts of the form in si(piq,siia). Each of these facts
states that person p, with unique identifier piq, is in social
identity si with unique identifier siiq. Conf is the pro-
gram containing the ASP conflict rules. For each object
obj = (s,1,t,d), Obj contains the facts subject(objia, s),
location(objig, 1), time(objia,t) and day(objia,d) (where
objiq is a unique identifier for obj). Share is a program
containing the following two rules:

conflict(0, P) :-
subject (0, P2),
in_si(P, S1), in_si(P2, S2),
conflict_si(0, S1, S2).

share(0, P) :-
person(P),
object(0),
not conflict(0, P).

The first rule means that sharing an object 0 with a person
P, who is in a social identity S1, could cause a conflict if the
subject of 0 is in another social identity S2 which is in conflict
with S1 for the object 0. The second rule means all objects
0 are shared with all people P, unless sharing 0 with P could
cause a conflict. Note that conflict rules do not contain
the subject attribute, as the definition of conflict(0,P)
depends on subject.

Given any social identity map, a set of conflicts and a set
of objects, the corresponding program SI U Conf U Obj U
Share has exactly one answer set. This answer set contains
the atom share(objia, pia) for exactly those objects obj and
people p such that obj could be shared with p given the
known conflicts and social identity map.

So far, we have presented a method for determining a
user’s sharing given a social identity map, a set of objects
and a set of known conflicts. In this paper, however, we
begin with the conflict rules unknown. The task is to learn
them from positive examples of objects being shared and
negative examples (those objects which are not shared with
certain people). Given a set of objects and a social identity
map, the background knowledge B in our task is the pro-
gram ST U Obj U Share. Note that we do not assume the
social identity map represented by SI to be complete (as if
it is given by a user, it is unlikely to be). The goal is then to
learn a hypothesis containing conflict rules which explain as
many of the (positive and negative) examples of sharing as
possible (in the case where the social identity map is incom-
plete, it is possible that not all examples can be explained
by the same hypothesis).

Hypotheses must be a subset of a search space Sy, defined
by a given language bias. This is a common feature of ILP
systems and can be used to guide the search towards inter-
esting hypotheses. In our case, the search space contains any

rule for conflict_si whose body contains conditions on the
attributes of a single object (for example, the single conflict
rule in example 1).

For each object obj, we encode each of the people p who
obj was shared with as a positive example share(objia, pia);
similarly, we encode the people who shouldn’t be shared with
as a negative example. The goal of our learning task is to
find a hypothesis H C Sy such that B U H has at least
one answer set? which contains every positive example and
contains no negative example. In the ILP literature, this is
known as brave induction [32].

In the case that not all examples can be explained by any
hypothesis, we aim to find a hypothesis which maximises
the number of examples which are explained. As is common
in ILP, we compute the smallest such hypothesis (where the
length of a hypothesis is calculated by counting the num-
ber of object attributes that appear in hypothesis). We call
a hypothesis optimal if no hypothesis explains more exam-
ples, and no smaller hypothesis exists that explains the same
number of examples.

Example 2 shows, for the small set of social identities in
example 1, how a conflict rule can be learned from examples
of sharing.

EXAMPLE 2. Recall the social identity map from exam-
ple 1. Consider the object o = (alice,night_club,
night_time, weekday) and o, = (alice,office,day time,
weekday) such that o1 was shared with alice and bob and
02 was shared with everyone.

The background knowledge in this case would be the pro-
gram Share, augmented with the following facts:

in si(alice,s;). in si(bob,s,). in si(charlie,s,).
in si(charlie,s;). in si(david, s;).
subject(o;1,alice). location(os,night club).
time(oi,night_time). day(o;,weekday).
subject(o,,alice). location(o,,office).
time(o1,day_time). day(oi,weekday).

The positive and negative examples would be as follows:

share(oy,alice),

share(o1, bob),
Bt = ::‘.hareEOQ7 alice), E-— { share(oy, charlie),
(
(

share(oz, bob), share(o1,david)

share(oz, charlie),
share(oz, david)

The positive examples each correspond to an object o and
person p such that o was shared with p. Similarly, negative
examples each correspond to an object o and a person p such
that o was not shared with p.

In this case, one optimal solution would be the single con-
flict rule:

conflict_si(0, s1,s,) :- location(0,night_club).

To compute conflict rules we have made use of a learning
approach based on the ASPAL algorithm for brave induc-
tion [7]. The learning task is translated into a meta-level
ASP program whose optimal answer sets can be mapped
back to the optimal inductive solutions of the given task. In
our experiments, we use the answer set solver clingo [15] to
solve the meta level representation.

2In fact, for any of our hypotheses H, B U H has exactly
one answer set.



S. EVALUATION

In this section, we evaluate our PI engine by testing how
well it learns conflicts from synthetically generated examples
of sharing. For each experiment, we randomly generated 100
social identity maps, each with a set of conflicts from our hy-
pothesis space and used these to generate examples of shar-
ing (described below). We then used the approach described
in section 4 to learn a set of conflicts which explained the
examples, given the (sometimes partial) social identity map
and the shared objects’ attributes as background knowledge,
and evaluated the predictive performance of the learned con-
flicts against the true conflicts.

5.1 Generation of the Synthetic Data

Our synthetic data consists of three components: the so-
cial identity map, the conflicts and the examples.

We based the structure of our social identity maps on
results from the literature. As the number of people in a
typical user’s social network, we used “Dunbar’s number”
which is the cognitive limit to the number of people with
whom one can maintain stable social relationships [11]. In
our experiments, we use the commonly used value, which
is 150 [19]. On the other hand, the parameters we used to
generate social identity groups are the number of social iden-
tity groups in a typical user’s social network, social identity
group size and finally pattern of a typical social network.
The values we used for these parameters are the results of
a survey conducted to social network users by McAuley and
Leskovic [26]. In their study, the authors obtained network
data of each user in order to construct user’s corresponding
social network graph and they asked each user to manually
identify all the circles his/her friends belonged on his/her
own social network graph. In this empirical study, on av-
erage users identified 19 circles in their social networks, the
average size of a circle being 22. We observed that although
users perceive circles as different social identity groups (e.g.,
school friends/university friends), the way they treat them
in terms of sharing is fairly similar. Therefore, during our
synthetic data generation, we set a range for the number of
social identity groups, so that minimum value is 2 and the
maximum value is 10. Taking the average number of friends
in a social identity group as 22 and given that minimum
group size can be 1, we set the range for a social identity
group size to be [1,43]. Regarding the typical pattern of so-
cial network, we also used findings of McAuley and Leskovic
who found that approximately, 25% of groups are completely
contained in another group, 50% overlap with another group
and 25% have no members in common with any other group.

As the notion of sharing rules represented by conflicts is
not studied in the literature, it is not possible to give a jus-
tification for how many conflicts a user is likely to have. We
therefore tested our approach with sets of 10, 20 and 40 con-
flicts. The conflicts were restricted to those that contained 1
or 2 attributes in the body, as conflicts with 3 or 4 attributes
in the body tend to have little effect (as they apply to fewer
objects).

Once we had generated the social identity map and the
conflicts, we could use this to decide, for each object, who
should and shouldn’t be shared with. We randomly selected
a set of objects (from the full set of objects described by
Table 2) and gave as positive and negative examples the
people whom the objects should and should not be shared
with, given the social identity map and conflicts.

5.2 [Estimating the Learning Performance

In order to measure the performance of our approach,
we tested with varying numbers of examples (1,...,20) and
using different numbers of synthetically generated conflicts
(10, 20,40). In this section, we will refer to the synthetically
generated conflicts, which were used to generate the exam-
ples, as Hactuar and the conflicts which are learned by our
system as Hicarned-

Learned Sharing

Behavior

share not share
Actual Sharing share | TP FN
Behavior not share | FP TN

Table 3: A ROC sheet for the assessment of learning
performance.

Using the synthetically generated social identity map, we
used the ASP approach defined in section 4 to compute the
group of people that should be shared with for both Hactuai
and Hiecarned, over the full set of objects defined by Table 2.
We then compared these two sets of “shares” to give a mea-
sure of the performance of the learned hypothesis Hiearned-

In order to compare actual sharing behaviour with the
learned shared behaviour, we use three different performance
measures, which are specificity, sensitivity and accuracy.
Specificity (i.e., true negative rate) measures the propor-
tion of not share instances (given by Hactuar) that are cor-
rectly identified as such (by Hicarned). Sensitivity (i.e., true
positive rate or recall) measures the proportion of positive
shares instances that are correctly identified. Finally, accu-
racy measures the proportion of correctly classified both pos-
itive and negative share instances. Table 3 presents a ROC
(Receiver Operating Characteristic) sheet, showing how the
actual and learned sharing behaviours are mapped against
each other to evaluate the performance of our inductive logic
programming approach. Each column in the ROC sheet rep-
resents learned sharing behaviors, while each row represents
the actual sharing behavior. Each cell {TP, FN, FP, TN}
shows the number of examples that fall into each cell of
this ROC sheet. TP, FN, FP and TN stand for true posi-
tives, false negatives, false positives and true negatives, re-
spectively. The formulation of each performance measure is
given in the following equations:

. TN
speci ficity = TN+ FP (1)
. TP
sensitivity = TPLFN (2)
accuracy = TP+ TN (3)
Y“TPYTN+FP+FN

5.3 Results

We conducted three sets of experiments, each specifying
the number of conflict rules in the Hgctuar set to be 10,
20 and 40. In each experiment set, we synthetically gener-
ated 100 social identity maps and sets of conflicts (ST and
Hctual, respectively). We tested the performance of our
learning approach with 0, ..., 20 examples. As in reality the
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social identity map is unlikely to be fully known, we also
tested the effect of giving a partial social identity map to
the learner (where SI was 50%, 90%, 95% and 100% com-
plete). The specificity, sensitivity and accuracy results for
each experiment are shown in Figures 3, 4 and 5, respec-
tively.

All three sets of experiments (with varying conflicts) show
a similar pattern. For 0 examples, sensitivity is perfect and
specificity is low - this is because our learned hypothesis
will contain no conflicts, meaning that everyone is shared
with, regardless of the attributes of the object; as the num-
ber of examples increases, the specificity increases rapidly
at first and sensitivity drops slightly. The drop in sensitiv-
ity is caused by the learner being too conservative with the
conflicts it learns, but sensitivity increases as the number of
examples increases.

The final specificity values are better for fewer numbers
of conflicts, as greater numbers of examples are needed to
be observed learn the more complicated sets of conflicts.
Interestingly, in every experiment, the specificity values are
slightly higher for the less complete social identity maps. We
believe this is because with an incomplete map, the learner
can learn conflicts which are too conservative, because some
of the people in the affected social identity who should be
shared with are missing, and hence, unaffected (as far as the
learner is concerned) by the learned conflict. This is also re-
flected by a significant drop in the sensitivity for experiments
with the less complete social identity maps.

These results suggest that although groups that are ex-
plicitly defined by users on OSNs (e.g., Facebook’s friend
lists or Google+ circles) represent only a portion of users’
actual SI maps, our learning system can still perform well
at catching the instances of objects, which should not be
shared. The idea is that the slight drop in detecting the
instances, which should be shared should cause the user to
revise their social identity map. This is safer than the al-
ternative, where the conflicts are less conservative and the
object is first shared with too many people.

5.4 Discussion

In this section, we discuss some of the limitations of our
current approach, and how these might be addressed in the
future.

Our current approach depends on the user providing us
with an accurate social identity map. We have shown that
our system still performs well with an incomplete map, but
further experiments are needed to investigate how it per-
forms with a noisy map (with some people incorrectly iden-
tified as being in a particular social identity). In future work
we could also consider extending our learning approach to
suggest revisions to the social identity map based on the
sharing examples.

In our experimental setup, we also used a timeout of 5
minutes on the learner. The learner returned the best hy-
pothesis that it found within the 5 minutes, but it is possible
that a larger timeout could lead to a more accurate result.
It was not feasible to run such large scale experiments with
large timeouts, but in reality, our system would not be ex-
pected to run in real time as there is often a large gap be-
tween instances of sharing by the user. If we were to deploy
the system in a real setting, we would therefore use a larger
timeout. The number of Facebook friends for a given user
will also have a bearing on the execution time of the learning

process, but the impact of this can be minimised by prepro-
cessing the sharing examples to treat groups of friends with
whom identical objects are shared as a single individual.

Another assumption made in our experiments is that the
user’s sharing decisions were always consistent with his/her
privacy norms, i.e. there is no noise in their sharing be-
haviour. Our learning approach would have been able to
handle such noise, by learning hypotheses that explained
an optimal number of examples. However, we did not in-
clude noise in our experimental data due to the difficulty
of estimating a realistic amount of noise to include when
generating our examples. Therefore, we plan to conduct
experiments using real data in order to further test the per-
formance of our current approach.

In the cases where some examples are not explained by the
learned hypothesis, we can report the set of examples which
have not been explained to the user to point out the incon-
sistencies in their sharing. The idea is that the user can
then decide whether this was really their usual behaviour
(and not just an exceptional case) and if so, modify their
social identity map to explain the examples. Additionally,
users can also update the knowledge to indicate which ex-
amples are irrelevant to help resolve inconsistencies and the
learning will take this into account on next iteration.

6. RELATED WORK

In the literature, there are a number of privacy manage-
ment solutions proposed for OSN platforms. Kafali et al.
developed a tool for the run-time detection of privacy vi-
olations on online social networks [20]. The tool proposed
by the authors employ model checking as a computational
method taking as input the privacy agreements of the users,
privacy properties, relations and content, which need to be
predefined. Mester et al. employ a negotiation protocol for
multi-agent systems in order to handle and resolve privacy
violations that occur on OSNs [27]. The authors evaluate
their solution, which aims multi-party privacy management,
against realistic privacy violation scenarios on Facebook. In
their proposed solution, privacy rules also need to be pre-
defined using Semantic Web Rule Language (SWRL). Our
solution also addresses multi-party conflict resolution; how-
ever, in our approach, privacy rules are learned over time
by observing the user’s sharing behaviour. Rules about the
conflicting social identities facilitate automatic detection of
privacy leakage and guides the user to ensure that items are
not accidentally shared by unintended audience that are out-
side the groups of interest. Another solution proposed for
multi-party privacy conflict resolution is by Such and Cri-
ado [33]. Here, the authors propose a computational mech-
anism that inspects individual privacy policies of all users
who are subjects of the object to be shared, in order to figure
out whether there are any contradictory access control de-
cisions. Their proposed mechanism proposes a solution for
each conflict detected based on the sensitivity of the shared
object for each subject by taking into account each subject’s
willingness for negotiation. This is based on a quantitative
negotiation model, in contrast to our logic based model. Al-
though our experiments used one subject per shared object,
our model also supports multiple subjects for a shared ob-
ject and this is possible by addition of multiple subject facts
for the object.

Barth et al. propose a logical framework for expressing
and reasoning about norms of transmission of personal in-



formation [5]. Their work is based on Helen Nissenbaum’s
“contextual theory”, which is a privacy theory conceptualis-
ing the appropriateness of information sharing based on the
contexts in which the information is shared [31]. This work
has inspired the development of quantitative computational
model of “contextual integrity”, where agents can infer users’
privacy norms from their sharing behaviour [9]. The authors
model the “context” in the form of a group of users, which
have similarities with our definition of social identity groups.
One important aspect of their model is that the agents can
infer privacy norms in the presence of malicious attackers.
Our logic-based computational model also learns users’ pri-
vacy norms through observing their sharing behaviour and
as future work, we plan to incorporate noise in user’s sharing
behaviour to simulate malicious attackers in our model.

There are also solutions proposed in order to decrease the
user burden on privacy management [8, 29, 35]. Wang et al.
propose privacy nudges in order to prevent users from mak-
ing online disclosures that they will later regret [35]. In their
study they focus on two types of nudges, one that reminds
users about the audience in their post and another that en-
courages users to use and think before posting an item on
social media. However, there is not an intelligent mechanism
at the background producing these nudges and the proposed
solution does not have any adaptive features. Our system,
being logic based, has the capability to provide informative
recommendations to the users, while guiding them in their
sharing decisions and as well as in the modification and cre-
ation of their defined OSN groups. This is also an advan-
tage of our approach over Criado and Such’s computational
model of contextual integrity [9]. The other techniques pro-
posed by Mugan et al. and Crenshaw et al. employ machine
learning techniques to enhance adjustment of complex pri-
vacy preferences. Mugan et al. employ statistical machine
learning techniques to decrease the complexity of privacy
settings for location sharing applications by generating user-
understandable privacy option [29]. Crenshaw et al. use a
classifier based on multi-variate Gaussian mixtures in order
to represent users’ location sharing preferences [8]. The so-
lution proposed by these authors can learn privacy policies
in a user-controllable setting. However, these models have
only been demonstrated with location sharing applications,
whereas our approach is designed to be more general.

Among other statistical machine learning based systems is
the adaptive information sharing system developed by Bilo-
grevic et al [6] for mobile social networks. Similar to our ap-
proach, Bilogrevic et al. also assume that users are privacy-
aware (i.e., their sharing decisions always comply with their
privacy norms). Another study, which assumes that all users
are privacy-aware is by Fang and LaFevre [13]. In their work,
the authors design a template of a Facebook privacy wizard,
which asks some users to label their friends who were ran-
domly selected as “share” and “not share”. The wizard uses
these labels to construct a classifier that can be used to as-
sign similar privacy privileges to users’ unlabelled friends
who are in the same communities. The authors employ ex-
isting techniques to extract communities from users’ social
network data. Fang and LaFevre claim that users in same
communities share similar privacy preferences. This claim is
in line with our claim that people in similar social identity
groups have common privacy norms. However, we need to
empirically investigate whether social identity groups over-
lap with communities in users’ social network data.

7. CONCLUSION AND FUTURE WORK

In this paper we presented a Privacy Dynamics architec-
ture inspired by social identity theory. This is based on a
formal model with two key concepts: firstly, group member-
ship information, represented as social identity maps; and
secondly, privacy norms, represented as a set of conflicts.
We have shown that we can use ILP to learn a user’s privacy
norms through examples of their sharing behaviour. The key
benefit of using ILP, rather than a statistical machine learn-
ing approach, is that our output is human readable, and can
therefore be explained to the user.

We have evaluated our approach with synthetic examples
of sharing, and shown that we are able to learn sharing
norms which can accurately predict the people with whom
an object can be shared, even with very few examples and
an incomplete social identity map.

Although in this paper we have made the assumption that
the user’s sharing behavior perfectly reflects their sharing
norms (i.e. their behaviour is not noisy), this may not be
the case in reality. Therefore, in future work we intend to
evaluate the approach with examples of real users’ sharing
behaviours.
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