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Abstract 

 
 
Solid organ transplant (SOT) patients are at risk of end-organ diseases such as 

pneumonitis, hepatitis or enteritis caused by HCMV. HCMV infection can occur via 

primary infection of a seronegative recipient or upon reinfection or reactivation in a 

seropositive transplant recipient. Seronegative recipients have the greatest risk of 

viraemia and disease, showing that pre-existing natural immunity provides 

substantial protection. This, in turn, underpins vaccination as a viable strategy to 

control HCMV in the transplant setting. To test this, a clinical trial with a vaccine 

based on HCMV glycoprotein B (gB) antigen plus MF59 adjuvant was performed 

in SOT awaiting transplantation. The study showed that antibody titres against the 

gB antigen were significantly increased in both seropositive and seronegative 

recipients of the vaccine in comparison to the patients who received placebo, and 

importantly, higher titres correlated directly with reduced viraemia post-transplant. 

The aim of my thesis was to identify the component of the specific humoral 

response responsible for this effect. In comparison with placebo recipients, I could 

find no evidence for the protection being due to induction of antibodies that 

mediate neutralisation, antibody dependent cellular cytotoxicity, or prevent cell to 

cell spread of virus in culture. In contrast, analysis of antigenic domains of gB 

bound by the antibodies revealed that vaccination of seropositive individuals 

enhanced antibody responses against antigenic domain 2 and that these 

correlated with reduced viraemia post-transplant. Antibodies against three other 

antigenic domains were induced by the vaccine, but did not correlate with 

protection. These results suggest that antigenic domain 2 should be an important 

component of future HCMV vaccines to boost pre-existing immune responses that 

protect from HCMV infection. The protection afforded to seronegatives remains 

unidentified, but could be explained if another antigenic domain on gB remains to 

be discovered. 
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https://en.wikipedia.org/wiki/Marguerite_Vogt
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1. Introduction. 

 

1.1. The history of human cytomegalovirus discovery. 

 
Early observations on the histopathological alterations caused by HCMV were 

made in 1881 by a German clinician, Prof Ribbert. The examination of a stillborn 

suspected to be infected with T. pallidum (syphilis) puzzled the clinician, as he 

could not find an explanation for the unusual looking, enlarged cells in the kidney. 

A few years later (1904), similar observations were made following 

histopathological examination of organ biopsies from babies born premature; 

including salivary glands of these children. The researchers reported finding the 

enlarged 20-30µm in diameter altered “owl’s-eye” cells with intranuclear 

inclusions. Nevertheless, these cellular pathologies were thought to be associated 

with bacterial or protozoal infection [1, 2]. In 1921 two researchers Ernest 

Goodpasture and Fritz Talbert suggested for the first time, that the cellular 

alterations that they called: ‘Cytomegalia infantum’ may be a result of a viral 

infection [3]. This hypothesis was based on the observation that the ‘cytomegalia’ 

that they noticed displayed similarities to the pathologies in skin lesions caused by 

varicella [4]. The development of new histopathological methods; such as, e.g.: 

exfoliative cytology in the 1950’s facilitated progress in the field of cellular 

pathology. Then, for the first time, murine CMV was isolated and propagated in 

murine fibroblasts (by Margaret Smith in 1954) [5]. Shortly after, three groups of 

researchers independently reported isolation of the human virus: Smith in 1956 [6] 

Rowe and co-workers in 1956 [7], and Weller and co-workers in 1957 [8]. The 

term “cytomegalovirus" was coined in 1960 by Weller and co-workers to describe 

the cytopathic effect of human CMV (HCMV). 
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1.2. Classification of human cytomegalovirus. 

 

HCMV belongs to the Herpesviridae family, Betaherpesvirinae subfamily, genus 

Cytomegalovirus and species Human herpesvirus 5 (HHV-5). The Herpesviridae 

family members have characteristics distinct from other viruses; herpesviruses 

possess a linear, dsDNA genome packaged in an icosahedral capsid. Their capsid 

is surrounded by tegument (a protein matrix); and the outer membrane consists of 

the lipid bilayer with membrane-associated proteins (glycoproteins). Historically, 

the herpesviruses were assigned into one of the three categories: α, β, γ based on 

their biological properties such as growth kinetics or host and tissue tropism.  

β herpesviruses have the largest genome amongst the Herpesviridae family, 

ranging from 145kbp for HHV-7 to approximately 241kbp for chimpanzee 

cytomegalovirus. The viruses that belong to this subfamily are generally cell-

associated and do not cross host-species barriers. Such a high species-specificity 

indicates a long period of co- evolution with the host. Interestingly, the base of the 

phylogenetic tree of the Herpesviridae family has been estimated at 400 million 

years ago (based on detailed tree-building models); (Figure 1.1; [9]). Moreover, 

due to the fact that the herpesviruses co-evolved with their mammalian hosts; they 

have been used as surrogates to track mammalian – including human – evolution 

and migration [10]. 
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Figure 1.1. Phylogenetic tree for the family Herpesviridae. 
 
A phylogenetic tree was constructed based on an alignment of amino acid sequences for 
six shared genes from 40 different herpesviral species within all three subfamilies. The 
genes included the orthologs of VZV ORF28, ORF29, ORF30, ORF31, ORF40, and 
ORF42. Initial tree evaluation utilized a Bayesian Monte Carlo Markov chain process. The 
root of the tree was estimated as the midpoint between the mean tip positions of terminal 
branches in the alphaherpesviruses (α) and those in the betaherpesviruses (β) plus 
gammaherpesviruses (γ). The mean tip position is marked with a vertical dashed line. A 
divergence scale is shown at the bottom of the figure. Abbreviations for the 40 viruses are 
as follows: HSV-1, herpes simplex virus 1; HSV-2, herpes simplex virus 2; SA-8, simian 
agent 8; HVB, herpesvirus B; BHV-1, bovine herpesvirus 1; BHV-5, bovine herpesvirus 5; 
PRV, pseudorabies virus; EHV-1, equid herpesvirus 1; EHV-4, equid herpesvirus 4; VZV, 
varicella-zoster virus; SVV, simian varicella virus; MDV-1, Marek's disease virus type 1; 
MDV-2, Marek's disease virus type 2; HVT, herpesvirus of turkeys; ILTV, infectious 
laryngotracheitis virus; PsHV-1, psittacid herpesvirus 1; GTHV, green turtle herpesvirus; 
HCMV, human cytomegalovirus; CCMV, chimpanzee cytomegalovirus; SCMV (a) and 
SCMV (b), simian cytomegalovirus; RhCMV, rhesus cytomegalovirus; THV, tupaiid 
herpesvirus; MCMV, murine cytomegalovirus; RCMV, rat cytomegalovirus; HHV-6, human 
herpesvirus 6; HHV-7, human herpesvirus 7; EBV, Epstein-Barr virus; RLV, rhesus 
lymphocryptovirus; MarLCV, marmoset herpesvirus; HHV-8, human herpesvirus 8; RRV, 
rhesus rhadinovirus; HVA, herpesvirus ateles; HVS, herpesvirus saimiri; MuHV-4, murid 
herpesvirus 4; BHV-4, bovine herpesvirus 4; EHV-2, equid herpesvirus 2; AHV-1, 
alcelaphine herpesvirus 1; PLHV-1, porcine herpesvirus 1. Reprinted from Virus Research 
[9]. 
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1.3. Structure of HCMV. 

 

The human cytomegalovirus virion is very large in comparison to other viruses 

measuring approximately 300nm in diameter. The outer membrane-lipid bilayer 

contains glycoprotein complexes that play important roles in viral entry. Enclosed 

within this lipid bilayer is an icosahedral capsid consisting of 162 capsomers that 

encapsidate the genetic material. Electron cryomicroscopy at 18Å resolution 

coupled with computer reconstruction demonstrated that the icosahedral capsid 

consists of 12 pentons, 150 hexons and 320 triplexes arranged on a T=16 

icosahedral lattice which resembles the organisation of other, distant 

herpesviruses such as HSV (an alpha herpesvirus) [11].  

The tegument is located between the icosahedral capsid and the envelope. 

Electron cryomicroscopy analyses revealed that this structure consists of 960 

copies of filamentous densities that form a thin, net-like shell, enclosing the 

icosahedral nucleocapsid and interacting with the capsid proteins. The structure of 

the tegument is also ordered icosahedrally [11]. 

 

Another virus-like particle was detected during in-vitro cell culture. These so-called 

dense bodies (DB) are spherical particles surrounded by a membrane similar to 

the viral envelope. Their most important feature is lack of nucleocapsids, therefore 

containing little or no DNA. However, DB had most, but not all of the structural 

polypeptides of HCMV (Figure 1.2 D) [12, 13].  
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Figure 1.2. Characterisation of HCMV particles and dense bodies (DB).  

 
(a) Electron cryomicrograph of intact HCMV particles embedded in vitreous ice; 
the electron micrographs of ice-embedded HCMV particles were recorded at 400 
kV in a JEOL 4000 electron cryomicroscope at 30,000 magnification using a 
dosage of; 6 electrons/Å2. The underfocus value of this image was determined to 
be 1.8mm. (b) Shaded surface representation of the 18-Å resolution 3D 
reconstruction of the icosahedrally ordered portion of the intact HCMV particles as 
viewed along a three-fold symmetry axis. The map is contoured at 0.8 s (standard 
deviation). Reprinted from [11]. Electron microscopy of negatively stained HCMV 
virion (c) and dense body (d) preparations. Magnification, ×8,400 (c,d). Reprinted 
from [13]. 

c d 
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1.4. The genetic sequence of the HCMV genome.  

 
The first annotated sequence of an HCMV strain was reported for the laboratory-

adapted strain AD169 [14]. The genome of this strain contained 208 non-

overlapping open reading frames (ORFs) A subsequent comparison with the 

Toledo genome revealed that the AD169 strain was missing around 30kb of 

genome [15]– now referred to as ULb’. The loss of this region is likely due to the 

extensive passage of AD169 in culture. Furthermore, the depletion of these genes 

contributed to its attenuation, which in turn allowed its development as a vaccine 

strain [16, 17].  

 

However, the coding potential of HCMV is constantly revisited using newer 

sequencing approaches as they become available. These modern techniques 

have resulted in the deletion of 37 previously annotated ORFs from the genome 

map with at least nine previously unrecognized ORFs being added into the map of 

the AD169 genome. In total, the presence of 192 ORFs in this clinical strain was 

reported by E. Murphy and his co-workers in follow up study [18].  

 

Also, viral genomes of four clinical isolates (Toledo, FIX, PH, and TR) and two 

laboratory strains (AD169 and Towne) were cloned as infectious bacterial artificial 

chromosomes (BAC) and subsequently sequenced [18]. DNA of the 5th clinical 

strain Merlin was sequenced uncloned [19]. This extensive and comparative 

sequencing analysis showed that the clinical strains might contain 252 ORFs 

(maximum predicted number) that potentially encode functional proteins and are 

conserved amongst these isolates [20], although more recent prediction suggests 

that only approximately 150 ORFs are likely to encode proteins [21]. Moreover, the 

alignment of the sequences between laboratory and clinical strains revealed that 

these clinical strains possess additional sequence spanning the region UL133- 

UL155 and an additional IRL sequence in comparison to the laboratory adapted 

strains [20].  
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As stated above, the difference in the number of ORFs between laboratory strains 

and clinical isolates is consistent with the fact that these laboratory adapted strains 

of the virus have undergone considerable genome re-arrangements. Most of the 

missing genes encode immune-evasive proteins and factors that determine 

cellular tropism, both of which are unnecessary for growth in vitro in fibroblasts. 

Thus, selective pressure results in the mutation and elimination of these genes. 
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Table 1.1. List of HCMV strains.  

Both clinical and laboratory adapted strains of the virus have been identified and 

isolated.  

Clinical isolates 

passaged minimally in fibroblasts 

Laboratory strains  

highly passaged and adapted to grow in 

cell-culture 

Toledo 

Isolated from urine of a 

congenitally infected child 

[22]. 

AD169 

Attenuated due to extensive 

passaging in vitro; first HCMV 

strain to be sequenced [16]. 

FIX 

(derivate of VR1814)- 

isolated from a pregnant 

woman with primary HCMV 

infection [23]. 

Towne 

Recovered from the urine of a 

congenitally infected new born, 

was attenuated through 125 

passages in human embryonic 

lung fibroblast [24]. 

PH 
Isolated from a bone marrow 

transplant patient [25]. 
  

TR 

Ganciclovir and cidofovir- 

resistant ocular isolate from 

an AIDS patient with retinitis 

[26].  

  

Merlin 

Isolated from the urine of a 

congenitally infected child 

[19]. 
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1.5. Genome organization.  

 

The genome size of HCMV is approximately 235kbp. The genome organisation is 

characterized by the presence of long (L) and short (S) genome segments that 

can be inverted relative to each other. Each of these genome segments contains a 

unique region (UL and US) that is flanked by repeated segments internally (IRL and 

IRS) or at the ends (TRL and TRS). These regions contain: TRL: multiple repeats of 

a (an) and b, TRS multiple repeats of a (an) and c; and IRL-IRS –b’a’n c’ 

Therefore the whole genome is organized as: 

 

anb-UL- b’a’n c’-US-anc  

 

The general organisation of the genome is thus: TRL-UL-IRL-IRS-US-TRS [27]; 

(Figure 1.3). The an sequences can recombine with the internal a’ sequences 

therefore this complex organisation (E genome) enables four different isomers of 

the genome to form with equal frequency. However, the significance of this 

genome organization is not fully understood yet [28-31]. The terminal regions “a” 

contain repetitive ‘head to tail’ motifs [32] which include the cis-acting sequences 

pac-1 and pac-2 [31].These short sequences contain an AT rich core flanked by 

GC rich motifs that are recognized by DNA cleavage and encapsidation machinery 

[31]. The cleavage of the sequences adjacent to pac-1 and pac-2 leaves a single 

3’ base overhang; which in turn facilitates subsequent circularization of the linear 

dsDNA upon the entry. 
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Figure 1.3. Schematic representation of the HCMV genome organization. 
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1.6. Genetic diversity and antigenic polymorphism in HCMV.  

 
 

Infection and reinfection with multiple cytomegalovirus (CMV) strains is shown to 

occur frequently in immunocompromised individuals, sexually transmitted disease 

clinic attendees, and children attending day care centres [33-36]. Therefore there 

have been an increasing number of studies that have attempted to address 

whether strain variation and re-infection is a major route of morbidity in previously 

infected individuals. Despite this research emphasis there is still only limited 

evidence on such putative correlations.  

 

Sijmons et al., conducted high-resolution analysis of inter-host genome diversity, 

providing an unbiased insight into cytomegalovirus variability and evolution. This 

study concluded that “cytomegalovirus is significantly more divergent than all other 

human herpesviruses. Importantly, “75% of strains are not genetically intact but 

contain disruptive mutations in a diverse set of 26 genes, including the 

immunomodulatory genes UL40 and UL111A” [37]. The implication of divergence 

has been challenged by other studies. For example, Lassalle et al. suggested that 

diversity was restricted to specific loci – with the RL13 locus being particularly 

heterogeneous between strains [38]. Similarly, other large-scale analysis of HCMV 

sequences sampled from human hosts revealed the existence of hot and cold 

spots of genetic variability [39]. The estimates of HCMV genome-wide mutation 

rates reported in this study was approximately an order of magnitude higher than 

those reported of a closely related herpesvirus, HSV-1 [39]. However, the high 

level of mutation for HCMV reported in this work remains highly controversial. 

Indeed, it has been speculated that such analyses could be confounded by events 

such as superinfection with different strains of HCMV that frequently happen in 

seropositive individuals. Whilst the major claims of this manuscript still remain to 

be corroborated; this report did demonstrate that viral genetic diversity is 

“unevenly distributed across three host compartments and show that HCMV 

populations of vascular compartments are genetically constrained while enriched 

for polymorphisms of glycoproteins and regulatory proteins” [39].  
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Other studies also confirm high HCMV diversity in healthy seropositive individuals; 

with one report showing that 93.7% of the seropositive individuals in their cohort 

contained multiple gN and/or gB genomic variants [40]. Reasons for such high 

rates of genetic polymorphism of glycoproteins of HCMV remain unknown. It is 

tempting to speculate that genetic variation in genes encoding glycoproteins may 

play a role in modifying HCMV tropism in vivo and/or could be driven by adaptive 

responses of the host and subsequent attempts to evade them [39, 41].  

 

The genotypes of gB are classified into four different categories, based on 

sequence variation observed in the UL55 gene (that encodes gB). Differentiation 

into four distinct gB genotypes was based on the nucleotide sequence of variable 

region of gB that is known to encompass the protease cleavage site [42-44]. One 

study reported the distribution of HCMV gB in a cohort of immunocompromised 

patients, including both transplant recipients and non-recipients to be as follows: 

gB1, 28.9% of patients; gB2, 19.6%; gB3, 23.7%; gB4, 2.0%; and mixed infection, 

25.8%. In contrast to patients infected with a single gB genotype, patients infected 

with multiple gB genotypes developed progression to HCMV disease, had an 

increased rate of graft rejection, had higher HCMV loads, and were statistically 

more likely to be infected with other herpesviruses [45, 46]. Similarly, a vast 

number of studies with seropositive pregnant women and HIV patients co-infected 

with HCMV looking at the relationships between gB serotypes and the 

development of HCMV syndrome were conducted. However, while some reports 

show correlation between particular gB serotypes and worse outcome, others 

indicate no association [47-54]. Due to these conflicting results it is impossible to 

draw a firm conclusion on whether the genotype of gB is correlated with the 

clinical outcome of the patients and this subject should be further investigated.   
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1.6.1. Potential impact of genetic diversity and antigenic polymorphism in 

HCMV on vaccine development.  

An increasing body of evidence indicates that it is very important to consider that 

these high rates of polymorphism and mutation in glycoproteins could impact on 

the development of successful antivirals and vaccine strategies based on the 

targeting of these viral components. In the context of this increasing evidence it 

has to be considered that a vaccine strategy based on a single strain of HCMV or 

subunit genotype may not be completely effective. For example, the humoral 

response elicited to vaccine antigens might not be sufficient to cover the broad 

range of highly polymorphic gB and genetically variable strains of the virus, as 

even the point mutations may completely alter presentation of the protective 

epitopes. Consequently, it will be important to determine whether immune 

responses against conserved domains of viral glycoproteins provide better 

protection from HCMV infection.  

 

 

1.7. The virus entry process. 

 

The entry process is usually divided into two phases: tethering and post 

attachment/fusion events [55].  

The initial entry step is tethering of the virions to heparan sulfate proteoglycans 

(HSPG). This helps stabilize the virion on the cellular surface and is mediated by 

electrostatic forces (under physiological conditions the ester and amide sulphate 

groups of HSPG are deprotonated and attract positively charged amino acid motifs 

on the glycoproteins (gB, gM/gN). Following this first phase, virions are promptly 

re-located to the heparin-resistant binding site [56], where the entry of the 

pathogen occurs. The experimental data suggest that gB mediates fusion of 

plasma membranes (pH independent) in fibroblasts, however the exact 

mechanism is not fully understood yet. Recently, a set of analyses with 

recombinant virus in which the UL55 gene was replaced with galK 

(pAD/Cre∆UL55) demonstrated that the null gB mutants (∆UL55) were unable to 

enter the cells, however this was rescued by the addition of membrane fusion 

agent- polyethylene glycol (PEG). This clearly indicates that HCMV glycoprotein B 

https://en.wikipedia.org/wiki/Ester
https://en.wikipedia.org/wiki/Amide
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is essential for entry of the virus into cells and dissemination of the virus from cell-

to-cell. However, it is not essential for virion attachment, assembly and egress 

[57].  

 

So far, several different binding interactions were proposed in this second post–

attachment step, with most evidence suggesting interactions between gB-β1 

integrin (α2β1, α6β1, αVβ3) [58, 59], gB-EGFR [60]- still more data needed to 

confirm this finding (the latest reports suggest that EFGR is not the crucial entry 

receptor for HCMV- [61-63]) and most recently proposed- platelet-derived growth 

factor-alpha receptor PDGFR-alpha [64]. Other receptors have also been 

identified (such as Annexin II) and it is proposed that they may play an auxiliary 

role in the entry of the virus [65-67].  

 

Generally, such a wide cellular tropism of HCMV is consistent with the virus either 

using multiple/and or variable receptors and/or entry targets that are ubiquitously 

distributed cell-surface molecules. It seems likely that the entry mechanism of this 

pathogen might vary depending on the cell-type and more data are needed to fully 

understand this process. However, gB is unquestionably one of the key proteins 

that mediate viral entry and contributes to the pathogenicity of this virus.  

 

1.8. HCMV lytic life cycle. 

 
As with all the herpesviruses, HCMV has two distinct life- cycles: lytic and latent. 

Lytic infection is associated with the release of progeny virus from the infected cell 

and it is accompanied by cell death. Herpesviruses also establish latent infection 

within specific tissues, which are characteristic for each virus reflecting the unique 

tissue tropism of each member of this family [68]. 
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1.8.1. Organization of HCMV-expressed genes. 

 

The gene expression of HCMV occurs in a distinct temporal manner [69]. The 

genes are grouped according to the time of their transcription [70]: Immediate- 

early genes- (IE), Early genes- (E) and Late genes- (L). The expression of the IE 

group is initiated by tegument proteins pp71 (ppUL82) and ppUL69 that act as 

trans- activators of viral gene expression [71-75]. The pp71 protein is known to 

enhance the transcription of the major immediate early (MIE) gene region via 

degradation or/and relocalization of transcriptional repressors such as: Daxx and 

ATRX [76]. The ppUL69 protein shuffles between cytoplasm and nucleus and its 

function is to enhance expression of MIE region [77]. Also, the pp65 protein 

(ppUL82) enhances activation of the MIE promoter via its interaction with the IFI16 

protein [78]. These events take place prior to de novo viral protein synthesis, as 

shown in experiments with cyclohexamide (used to block de novo viral protein 

synthesis) or in the presence of phosphonoformate or ganciclovir (GCV) that are 

used to block HCMV DNA synthesis [79].  
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These genes encode multiple proteins that are crucial for:  

 

1) Viral DNA synthesis and regulation of replication [80, 81]:  

 UL122-123 (IE1/IE2) gene region- different splicing of this region produces 

trans-activator proteins: 

-The IE72 (IE1) - protein is crucial for efficient replication of viral DNA in 

vivo; has anti- apoptotic and regulatory effects; facilitates immune- evasion 

and promotes cell cycle progression to facilitate viral expression [82-87];  

-The IE86 (IE2) - is an essential, multifunctional viral protein that auto-

regulates the MIE enhancer-containing promoter. The role of this protein is 

absolutely crucial as it trans- activates the expression of the early genes, 

binding to- and activating the UL54 promoter that controls expression of the 

viral polymerase, inactivates the Rb repressor, thereby promoting transition 

of the cell cycle from G0/G1 to G2/M and interfering with the activation of 

innate antiviral mechanisms; reviewed in [88];  

 TRS1/IRS1- take a role in viral replication [89, 90].  

 

2) Immune-evasion: 

 US3- non-regulatory protein that binds and sequesters major 

histocompatibility complex class I (MHC I) heavy chains in the endoplasmic 

reticulum leading to inhibition of antigen presentation [79, 80]. 

3) Inhibition of apoptosis: 

 UL36- 38: trans- activator proteins, the UL36 and UL38 gene products have 

a crucial role in the inhibition of apoptosis [79, 91]. 

 

Next, the early- phase genes (E genes) are expressed at approximately 4– 48hpi. 

These mainly encode proteins that are involved in DNA replication and further 

transcriptional regulation [70].  

 

Subsequently, late genes are expressed. This occurs strictly after the onset of 

replication (shown in the experiments with GCV and phosphonoformate- that block 

DNA replication) up to viral egress (usually detectable at approximately 72-96hpi). 

These genes mainly encode structural components of the virions [70, 92].  

https://en.wikipedia.org/wiki/Transcriptional_regulation
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1.8.2. Replication of the viral genome. 

 

The HCMV lytic replication is an extremely complex and well- regulated process 

that is not fully understood yet. It is observed that this pathogen replicates 

dynamically in the human host with a doubling time of approximately 24h [93]. 

 

The genome of HCMV contains cis-acting elements that direct DNA replication; 

packaging and transcription. The HCMV replication origin- oriLyt is mapped to an 

approximately 1500bp domain that is located in the middle of the UL region 

(between ORFs 57 and 69). The core of this replication origin consists of multiple 

various repeated elements and sites that 1) respond to UL84 and IE2; 2) enable 

RNA/DNA contact [94, 95].  

 

Although the exact mechanism of the initiation of replication is unknown, it is well 

established that the protein encoded by UL84 plays a key role in this event. This is 

a unique (no known homolog), multifunctional protein that governs regulation of 

the transcriptional activation mediated by IE2 by associating with it and supressing 

its transcriptional activation function. The binding of UL84-IE2 complex to the 

promoter (found in the essential region I within oriLyt) initiates the replication 

process. However, at least six additional core proteins are involved in this process 

as well: 

-UL44- DNA processivity factor (dsDNA binding protein pUL44); 

-UL54- DNA polymerase;  

-UL57- a single stranded DNA binding protein; 

-a helicase-primase complex encoded by the genes UL70 (primase), UL102 

(primase-associated factor) and UL105 (helicase). 

 

The interaction of the pUL84 protein and IE2 is believed to influence activity of 

both proteins. As mentioned above the pUL84/IE2 complex binding to the oriLyt is 

the first step of the lytic replication process; this is followed by subsequent binding 

of the helicase-primase complex and auxiliary protein pUL57 (unwinding the 

helical DNA at the replication fork, priming for synthesis of the lagging strand and 
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preventing the re- anneling of the unwound single stranded DNA sequences). This 

creates a so-called “bubble” at which the polymerase itself (product of UL54 gene 

expression) attaches and proceeds to unwind the double-stranded DNA and 

continues replicating single stranded DNA [96]. Interestingly, current therapies for 

HCMV infection are mostly based on antivirals that target this polymerase and 

therefore prevent replication of this virus. Interestingly, although the virus encodes 

its own DNA polymerase (UL54), it uses the RNA polymerase II (Pol II) of the host 

[97]. DNA replication of herpesviruses is thought to proceed as a biphasic process 

involving theta followed by rolling circle mechanisms [98, 99]. Origin-specific 

initiation on a circularized input genome leads to an early, theta mechanism that 

later undergoes a switch to a rolling-circle type of replication [98, 100-104]. It is 

proposed that viral DNA production during lytic infection is achieved mostly though 

the latter mechanism- the rolling-circle replication. Moreover, the switch between 

these two modes of replication may be a key step that governs this process, 

however this is not fully elucidated yet [98]. 

 

1.8.3. DNA packaging and virion egress. 

The assembly of betaherpesviruses, specifically cytomegaloviruses, is extremely 

complex and poorly understood. The elaboration of this process was even 

compared to “that of some cellular organelles” [105]. Much of the information on 

HCMV virion maturation was originally based on the studies of the assembly of 

alphaherpesviruses (especially HSV) [105, 106]. Later studies indicated that 

although most of the structural proteins of CMVs and other betaherpesviruses 

share extensive structural and functional homology with the HSV capsid proteins, 

there are also significant differences between these subfamilies. The cryoelectron 

microscopic data indicated that although HCMV capsid structure is similar, it is not 

identical to HSV (or other herpesviruses) [105, 107-109]. More recent analyses 

showed that tegument is the most variable compartment amongst herpesviruses 

and it contains many betaherpesvirus- and HCMV-unique proteins [105, 110]. One 

of the most significant functional differences between these subfamilies of 

herpesviruses is that betaherpesviruses do not abrogate host cell protein 

synthesis even at late phases of replication, which is in contrast to 
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alphaherpesviruses. It is predicted that the assembly of betaherpesviruses may 

either compete with host cell protein synthesis and/or target and modulate host 

cellular pathways to optimize viral protein synthesis and transport [105]. 

 

The process of viral egress can be divided into phases: 

 

 Assembly of the capsid 
 

The initial steps of capsid assembly involve formation of a scaffold for the 

generation of the capsid subunit and the pre-capsid structures. The major 

components of the capsid are: major capsid protein- MCP (UL86) and small 

capsid protein- SCP (UL48A) and the scaffolding proteins. The scaffolding 

proteins of HCMV have been identified as gene products of UL80a and UL80.5 

ORFs and contain MCP-binding domain. Interactions between the MCP and 

UL80a and UL80.5, and possible interactions between MCP and SCP were 

reported (Table 1.2). These interactions take place in the cytoplasm, followed by 

translocation of these complexes (MCP-SCP and SCP/MCP/UL80a/80.5) to the 

nucleus. 

 

Once the complexes are translocated from the cytoplasm to the nucleus, the 

interaction between the domains of the products of the UL80a (assemblin 

precursor) or the UL80.5 (assembly protein) leads to formation of pentons and 

hexons and, as a consequence, generation of the capsid scaffold [105, 111-113]. 
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Table 1.2. Proteins of the capsid of β-herpesviruses (HCMV). 

 
The ∗ indicates capsid proteins that have been demonstrated in infectious virions. 

Pre-capsids are thought to contain products of both the UL80a and UL80.5 ORFs, 
mature virions contain products of the UL80a ORF, but not UL80.5. Modified and 
reprinted from [105]. 

Protein HCMV 

Major capsid protein MCP (UL86)∗ 

Small capsid protein SCP (UL48A)∗ 

Minor capsid protein MnCP (UL85)∗ 

Minor capsid protein MnCP-bp (UL46)∗ 

Assembly protein Assembly protein (UL80.5) 

Assembly protein precursor Assemblin precursorCOOH (UL80a) 

Assembly protein precursor Assemblin (UL80a)∗ 

Portal protein UL104 
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 Capsid maturation and DNA packaging 

 

In this next step the immature form of the capsid undergoes various modifications. 

For HSV, capsid maturation takes place in the absence of viral DNA, and it is 

predicted that the same holds true for betaherpesviruses. The final stages of 

capsid maturation involve proteolytic cleavage of the C-terminal MCP-binding 

domain of UL80.5 and UL80a. Next, the pentons and hexons interact with the 

triplex formed between MnCP/MnCP-bp and create the pre-capsid.  

Moreover, the depletion of the UL80.5 encoded scaffolding structures appears to 

be coupled to viral DNA packaging [105, 113, 114]. Once the pre-capsid is 

formed, the unit length of viral DNA is packed into this structure. This process is 

facilitated mainly by virus-encoded proteins (products of UL56 and UL89 ORFs; 

these proteins govern packaging and cleavage of viral DNA) and the crucial point 

is the recognition of two conserved motifs, the pac-1 and pac-2 sequences 

(located in the terminal repeat “a” sequences at each end of the viral genome) 

[110]. These proteins interact together with the UL104 portal protein and as a 

consequence, viral DNA is inserted into the capsid [105, 115-117]. However, this 

process is not fully understood yet and it is very likely that other viral and cellular 

proteins may also play an important role.  

 

 Nuclear tegumentation and nuclear egress  

 

The nuclear tegumentation of HCMV is a poorly understood process. As 

mentioned before tegument is the least conserved compartment among 

herpesviruses, that contains many betaherpesvirus- and HCMV-unique proteins 

[105, 110]. Therefore, it seems very likely that the nuclear egress of this pathogen 

may vary from the mechanisms that were described for alphaherpesviruses (these 

involve three phases: nuclear tegumentation, de-tegumentation, and a final 

tegumentation) [105, 113, 118].  
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Two models of nuclear egress of the HCMV capsid have been proposed: 

1) The first model predicts that the accumulation of the intra-nuclear capsids 

surrounded by domains containing viral proteins encoded by UL50 and UL53 

occurs in proximity to the inner nuclear membrane. Concomitantly, the 

cellular protein kinase C is recruited for phosphorylation and dissolution of the 

nuclear lamina. These events evoke the transient disruption of nuclear 

membrane that is followed by nuclear cytoplasmic mixing and ultimately, viral 

capsid release into the cytoplasm. However, it is predicted that the nuclear 

envelope rapidly reseals, resulting in only transient nuclear/cytoplasmic 

mixing [119]. 

 

2) The second model predicts that the newly-assembled and aggregated 

capsids interact with yet unidentified cellular- or virus-encoded proteins. Such 

an interaction would potentially cause a fusion with the inner nuclear 

envelope. This is followed by a secondary event- budding of the capsids into 

the cytoplasm. This mechanism is strongly supported by the reports 

describing the assembly of alphaherpesviruses [58, 66, 71] [120]. 

 

 

 Cytoplasmic tegumentation and envelopment 

 

It is well established that the final stages of tegumentation, envelope glycoprotein 

trafficking and envelopment of the virons take place exclusively in the cytoplasm of 

the infected cell [105]. This is confirmed by several studies that demonstrated the 

presence of both tegument and envelope proteins- including processed 

glycoprotein-B (gB, UL55) in this cellular compartment [121-123]. However, the 

exact mechanisms that regulate tegumentation and envelopment of the infectious 

betaherpesvirus particles are not fully understood yet [105].Unfortunately, there 

are no existing models of HCMV tegument assembly. 
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However, several studies described some features of intracellular trafficking of the 

structural tegument protein pp28 (UL99). In virus infected cells, pp28 is 

transported to the assembly compartment, where it localizes with envelope 

glycoproteins and with other tegument proteins including pp150 [105, 123, 124]. It 

seems that the correct trafficking and incorporation of this tegument protein into 

viral particles is crucial, as the deletion of UL99 gene produced exclusively non-

infectious particles [124]. It remains to be established what are the actual roles of 

this and the remaining tegument proteins in the assembly of the HCMV particle. 

 

1.9. Latency and reactivation.  

 

One of the most important characteristics of herpesviruses is their ability to 

establish both lytic infection in majority of cell-types and life-long latency in specific 

host cells (reviewed in [125]).  

Primary infection (productive- lytic cycle) of a healthy immune-competent 

individual is usually asymptomatic due to the quick and robust immunological 

responses of the host and is followed by the establishment of life-long latency. 

These periods of latency are broken by periodic reactivation events, which enable 

the spread of the virus within the population. This strategy aids the evolutionary 

success of these viruses, as it allows the life-long carriage of this pathogen within 

the host, despite the constant challenge with multiple immune control measures 

for productively infected cells. 

As well as with primary infection (especially in congenital HCMV, described in 

1.15.2.1), a profound burden of HCMV disease is also associated with reactivation 

of infectious virus within latently infected individuals. Despite the fact that the 

latent virus does not cause the HCMV-associated disease itself, due to the high 

prevalence of the virus within the populations (up to 100% in developing countries) 

it is re-activation events that mainly cause the increase in the rates of HCMV-

related mortality and morbidity; particularly in allograft bone marrow transplant 

patients [126] and also in congenital HCMV. Although it is estimated that pre-

existing immunity substantially lowers the risk of congenital infection (by 69% 

[127]), the recent meta-analysis of congenital CMV infection rates in developing 
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countries identified that the “CMV birth rates prevalence ranged from 0.6% to 

6.1%, which is higher than the range of 0.2–2.0% (average of 0.65%) most often 

reported for developed countries” [33]. 

This finding is extremely important because the world's largest populations and 

highest birth rates are reported in developing countries. Although the exact 

numbers are unknown, it is very likely that “the aggregate number of children born 

with congenital HCMV infection in these regions is likely to be enormous” [33]. 

Due to the high seroprevalence in these underprivileged regions it is predicted that 

practically all congenital HCMV infection cases are caused by non-primary 

maternal infection [33, 125].  

 

Progress in the development of highly sensitive and specific molecular techniques 

enabled researchers to adequately address this phenomenon of 

latency/reactivation [128]. Examples include nested-PCR; establishment of an in 

vitro model of latency (isolation and propagation the progenitor cells of the myeloid 

lineage such as CD34+ cells and their CD14+ derivatives primary cells in cell 

culture) and reactivation (ex vivo differentiation of latently infected primary myeloid 

cells to dendritic cells and macrophages). Due to the fact that a large number of 

studies on this topic were conducted in the past decade, the mechanisms that 

govern the fate of the viral infection and progression towards either lytic or latent 

infection are now becoming clearer [129].  
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1.9.1. Establishment of latency. 

The initial steps in this process involve repression of viral lytic gene expression. 

This is achieved by repression of MIEP and blockage of expression of early genes 

that are crucial for viral replication. It is now well established that regulation of the 

MIEP during latency is a complex process that “involves multi- faceted integration 

of viral and cellular functions that act concomitantly to generate a phenotype that 

promotes latent infection” [125]. One of the crucial steps to repress this promoter 

is sequestration of pp71 (potent viral trans activator) in the cytoplasm by yet 

unknown cellular factor(s), as well as the epigenetic repression of chromatin in the 

MIEP region. The heterochromatization is believed to be mediated by cellular 

transcription repression factors such as: YY1 (ying-yang-1) [130], EFF (ets-2 

repressor) [131] and Gfi-1 (growth factor independent-1) [132]; as well as 

heterochromatic modifications of the histones (binding of HP1 protein) [133], 

enzymes that mediate these modifications, and some adaptor proteins that may 

recruit co-repressor complexes [129, 134, 135]. 

1.9.2. Maintenance of latency. 

Once latency is established, certain strategies are employed by the virus to 

maintain this “status quo” and effectively hide from immune-surveillance of the 

host. Latent infection is associated with a restricted viral transcription programme 

with expression of only a small number of viral genes in comparison to the lytic 

cycle [136-138]. However; many viral transcripts, long non-coding RNAs, were 

detected recently during latent infection, such as: 

-beta 2.7- predominant transcript in naturally latent CD14+ cells; its function is to 

modulate the metabolic viability of the infected host and it is also hypothesized to 

be important for the protection of neuronal progenitor cells from cell stress [139, 

140]; 

-Inc.4.9- is hypothesized to interact with members of polycomb repressor complex 

2 (PRC2) that is involved in histone binding and histone methylation, which in 

consequence would enhance the epigenetic silencing of the MIEP promoter [139, 

141, 142]. 
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Many virally encoded micro RNAs (miRNAs) were also identified in latently 

infected cells, however the exact role of these latent transcripts is still unclear 

(reviewed in [125] and [143]). It is hypothesized that these miRNA have mostly 

regulatory functions, as they have both viral and cellular targets [101]. Perhaps the 

most studied latently expressed miRNA is: miR-UL112.1- that inhibits the 

expression of IE72 expression- one of the major activators of MIEP by targeting 

the UL123 mRNA [125, 144].  

Additionally, few virally encoded proteins are expressed during latency [136-138]; 

these are mainly immune-modulators (Table 1.3).  

 

Interestingly, a product derived from the MIE region was also detected in latently 

infected cells- the IE1ex4 (exon 4 of the MIE). Most importantly, the expression of 

its transcript is under the control of a cryptic promoter (distinct from the MIEP). It is 

hypothesized that the IE1ex4 gene product has an important tethering function 

(similarly to IE72 in lytic infection) [125, 145].  

 

1.9.3. Reactivation. 

 
One of the key characteristics of the herpesvirus family is that the latent viral 

genome can be reactivated and re-enter a replicative cycle if the right conditions 

are met [146]. A key event for reactivation is the induction of lytic gene expression 

from previously silenced promoters. Differential regulation of IE gene expression is 

considered central to latency and reactivation and, consequently, many studies 

have focused on the mechanisms that regulate these promoters. In the case of 

HCMV, it has been demonstrated that MIEP activity is regulated by higher order 

chromatin structure whereby on reactivation there is marked increase in histone 

acetylation at the MIEP - a correlate of transcriptional activity. This model is true of 

all herpes viruses and thus the key question was what drives the post-translational 

modification of histones required to allow viral gene expression [133, 141, 146]. 
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With HCMV it appears two events are critical: the activation of cell signalling 

pathways in response to cytokines and cellular differentiation of the myeloid 

progenitor to a mature DC or macrophage. Specifically, it has been demonstrated 

that IL-6 activation of ERK-MAPK signalling in DCs is central to this process. 

Importantly, it was demonstrated Il-6/ERK activity triggered the activation of a 

specific cellular kinase MSK family [147] which, in turn, was responsible for the 

phosphorylation of two proteins; CREB and histone H3. The phosphorylation of 

histones was demonstrated to be crucial for reactivation as it acted as a key 

intermediate in the transition from a methylated promoter to an acetylated 

promoter [148]. It has subsequently been hypothesised that the reactivation of 

HSV and KSHV is dependent on the same mechanisms although HSV utilises 

stress activated JNK, and not MSK, to mediate histone phosphorylation [149].  

 

It remains to be determined why the activation of Il-6/ERK does not trigger HCMV 

reactivation in myeloid progenitors since this pathway is ubiquitous in all cell types. 

Clearly, myeloid cell differentiation induces changes in the cell proteome which 

dictates a response that is pro-reactivation. One possibility is the concomitant 

activation of multiple pathways. Indeed, recent work from the Goodrum laboratory 

suggests that two viral gene products work antagonistically to regulate EGFR 

signalling which may be crucial for controlling HCMV reactivation [150]. It is not 

inconceivable that the IL-6 and EGFR pathways are acting in concert in DCs to 

promote a cellular milieu supportive of viral reactivation.  
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Table 1.3. List of proteins expressed during latency.  

Latently expressed 

protein: 

Function: 

US28 enables modification of the chemokine environment of the cell by 

sequestration of CC chemokines [151]; 

ORF94 
involved in downregulation of cellular innate responses by inhibition 

of 2’,5’-oligoadenylate synthetase expression and function [152]; 

UL144 Activator of NFκB-induced expression of the chemokine CCL22. 

Upregulation of CCL22 attracts Th2 and regulatory T cells, which are 

believed to lower the host Th1 immune responses [153]; 

UL138 upregulates TNFR1 surface expression to sensitize latently infected 

cells to TNF-α-mediated reactivation of HCMV [154]. 
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Figure 1.4. Human cytomegalovirus natural latency in cell lineages. 

Viral latency is established in the haematopoietic progenitor’s resident in the bone 
marrow, and the carriage of viral genomes has been defined in the 
monocyte/myeloid lineage with reactivation occurring in the terminally 
differentiated myeloid macrophages and DCs (Orange cells). In contrast, the viral 
genome is not carried in the lymphocyte population nor is there any evidence for 
viral latency in venous endothelial cells (grey cells). Experimental infection data 
suggest that endothelial and neuronal progenitor cells may also be sites of 
latency, although no data from natural latency currently exists (blue cells). 
Reprinted from [125]. 
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1.10. Glycoprotein B. 

 

One of the major components on the envelope of HCMV is glycoprotein B (gB). 

This protein is a major target of humoral and cell-mediated immune responses. gB 

is a disulphide linked glycoprotein complex consisting of a component of Mr 

116,000- and a component of Mr 55,000 termed gp116 and gp55 respectively 

(with the latter sometimes called gp58). The protein has high homology with gB in 

HSV and EBV and thus is a conserved gene throughout the Herpesviridae. The 

sequence of the gB gene was published in 1986 [155], soon after it was proposed 

that the viral glycoproteins might serve as targets of protective responses due to 

their high immunogenicity. Consistent with this, immunological responses evoked 

by this protein were reported [155, 156]. All these data indicated that it is 

necessary to investigate the actual role of this protein in virus infectivity as well as 

host derived protective immunity. 

  

1.10.1. The immunogenicity of glycoprotein B. 

 

In order to reveal the immunological characteristics of this envelope protein and its 

role in virus infectivity, two approaches were employed; expression of this protein 

in prokaryotic (E.coli) and in mammalian cells infected with a recombinant vaccinia 

virus. These studies demonstrated that the function of gB is strongly influenced by 

the presence of carbohydrate modifications (pattern of glycosylation). The analysis 

of the gB expressed in E. coli indicated that this protein is present in its non-

glycosylated form, however the epitopes recognized by the anti-gB monoclonal 

antibodies were conserved in the prokaryote-derived protein [157]. Production of 

this protein in both prokaryotic and eukaryotic systems allowed preliminary 

characterization of the relative immunogenicity of both preparations in animal 

models. Both prokaryotic and eukaryotic derived recombinant gB induced virus-

binding antibodies in animals. However, quantitative (higher titre of virus binding 

antibodies by 3-4 fold) and qualitative (significantly higher levels of complement 

dependent neutralizing antibodies) differences were detected in the animals that 

were vaccinated with the protein expressed in the eukaryotic cells. The results 
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indicated that, in the absence of post-translational modifications such as 

glycosylation, only complement-independent neutralizing antibodies were induced, 

likely due to the lack of proper conformation. The expression of this major 

envelope protein in both systems allowed researchers to begin the 

characterization of its antigenic properties and its role in the pathogenesis of 

HCMV infections. Nevertheless, at that stage it was still impossible to directly 

determine the influence of immunization of mice with gB of HCMV on resistance to 

disease. Further studies extended the immune response to HCMV gB at the clonal 

level from the immunized mouse system to the naturally infected human host [157-

161].  

 

The aim of one of these pioneering studies on humoral responses to gB was to 

investigate the antibody profiles against gB in healthy seropositive individuals. 

These analyses demonstrated that there are no qualitative differences in the anti-

gB antibody repertoire and the responses were stable over time. However, 

quantitative alterations were noticed in some of the seropositive donors. Moreover 

the investigation of humoral responses following primary infection with the virus 

revealed that there is a delay of 50-100 days in the synthesis of antibodies specific 

for this glycoprotein, in contrast to the antibodies that were elicited towards other 

HCMV-specific antigens that appeared shortly after infection. Additionally, both 

reactivation and reinfection resulted in the concomitant synthesis of the antibodies 

[162]. Importantly, some of the later studies revealed that the majority of the 

serum-neutralizing activity against HCMV was directed towards gB: 40-70% [161]. 

It was hypothesized that this biased response towards gB might be a result of the 

abundance of this protein within the envelope in comparison to other 

glycoproteins, its expression on the surface of the infected cells and its 

immunogenicity, which might be connected with the extensive glycosylation as it 

was shown that the gB expressed in prokaryotic cells was less immunogenic [161] 

[157]. Nevertheless, this finding indicated that gB may be the major target of 

humoral responses elicited towards HCMV following infection. Therefore many 

extensive analyses of this protein have been conducted in order to fully 

understand the functions of this protein and ultimately utilize the immunogenic 

properties of gB in the development and production of vaccines and therapeutic 

monoclonal antibodies. 
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1.10.2. The synthesis of glycoprotein B. 

 

The mounting evidence about the importance of this glycoprotein complex in the 

structure of the envelope, its abundance and its immunogenicity in vitro and in 

vivo, indicated that a complete understanding of its structure, including its 

intracellular transport, is essential to define the native forms of this protein 

complex as well as to identify novel targets of future vaccines. In addition, such 

studies were fundamental to understand the morphogenesis of the complex 

envelope structure of HCMV. 

 

Human immune responses to HCMV have been characterized by use of virus-

infected cells expressing gB protein on their surface and the gp55, gp116 and 

gp170 components were reported to be present on the surface of the infected cell. 

Most importantly, gp170 represented a minor component within preparations of 

extracellular virion proteins. Therefore its relative abundance on the cell surface 

indicated that its transport to the surface was more efficient than its incorporation 

into virions. Moreover, the presence of uncleaved protein indicated that proteolytic 

cleavage was unnecessary for cell surface transport [163]. 

 

Additionally, studies on the kinetics of the protein post-translational modifications 

were conducted. It has been estimated that the first, rapid step of processing this 

protein is the glycosylation of the approximately Mr 105,000 polypeptide (non-

glycosylated form) to Mr 150,000 precursor protein (gp150) containing only simple, 

high-mannose sugars. This precursor form is then transported from the 

endoplasmic reticulum (ER) into the Golgi apparatus where terminal sugar 

modifications are made, and finally this gp150 is processed to Mr 165,000-170,000 

species (gp165-170) [163, 164]. The fully glycosylated form, gp165-170 

possesses simple and complex carbohydrates, which indicate that transport 

through the Golgi complex is essential for complete processing of this protein. 

Moreover, this process was also described as ‘relatively slow’; this step is followed 

by the endoproteolytic cleavage into the gp116 and gp55 components (Fig. 1.5) 

[161, 163, 165].  
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Previous studies of other herpesviruses, e.g. HSV, described the oligomerization 

of the gB envelope glycoprotein as a mechanism of delayed transport of this 

molecule [166]. The analysis of gB from HCMV revealed that this protein 

undergoes similar processing- The half maximal time of the gp150 formation was 

only slightly faster than the estimated half-maximal time of oligomerization (20 vs 

25min), suggesting that the oligomerization occurred nearly coincidentally with 

synthesis of gB.  

 

The experiments with conformation-specific monoclonal antibody demonstrated 

that the folding of this protein takes place shortly after oligomerization. This post-

oligomerization folding appeared to be necessary for transport to the cellular 

membranes of the virally infected cells and the half maximal-time of formation of 

this form was estimated to be up to 8 times longer than that of oligomerization. 

Moreover, oligomerization and folding were not absolutely dependent on 

glycosylation of the precursor polypeptide, suggesting that all the necessary 

information for the oligomerization and folding of HCMV gB was represented 

within the primary sequence.  

 

The precursor was processed into the mature products (between 80 and 160 min). 

This event was indicated by the initial appearance of the cleavage products gp55-

116. This process of folding was relatively slow and was consistent with the 

previously reported prolonged processing time required for transport, terminal 

glycosylation and cleavage of the precursor gp150 to the final components of the 

gp55-116 complex (Fig. 1.5) [167]. 
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Figure 1.5. Schematic representation of synthesis and processing of glycoprotein B.  
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1.10.3. The role of glycoprotein-B in virus entry, broad tissue tropism and 

pathogenesis.  

 

Membrane bound glycoproteins are important mediators of entry of the virus into 

cells. So far around 19 different glycoproteins have been identified on the viral 

envelope [13]. It is proposed that of those, only five of them are necessary for viral 

entry: gM/gN (UL100/UL73); gB (UL55); gH/gL (UL75/UL115).  

 

The gM protein was found to be the most abundant, accounting for ten percent  of 

the total virion mass [13], and, in complex with gN, acts as an attachment receptor 

[168-170]. Glycoprotein H is a fusion receptor, while glycoprotein L acts as a 

chaperone and most likely facilitates localization of receptors on the cellular 

membranes [171-173]. gH/gL acts together with gO (entry to fibroblasts) or 

UL128-UL131A (together called the ‘five member-complex”; entry to endothelial 

and epithelial cells) [174]. Glycoprotein B -the second most abundant glycoprotein 

[13] plays crucial role at the entry events as it mediates the fusion [56, 168, 175]. 

 

The virus can only replicate in living cells of the host; therefore it is the range of 

permissive cell and tissue types that is crucial for efficient spread of the virus 

within the host and within population. Importantly, one of the most important 

characteristics of HCMV is its exceptionally broad cellular and tissue tropism [176, 

177]. It has been shown that HCMV can enter nearly every single cell-type of the 

host such as: 

-fibroblasts (standard cell culture system for propagation of HCMV replication); 

epithelial, endothelial and smooth muscle cells are the predominant sites of viral 

replication [178-180]; 

-epithelial cells support inter-host transmission of the pathogen [177, 181]; 

-endothelial cells and hematopoietic cells facilitate systemic spread of the virus 

within the host [177, 182]. 
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The only cell types that are known to block HCMV replication are lymphocytes and 

polymorphonuclear leukocytes [183]. Therefore, as a consequence of such a wide 

spectrum of susceptible cells we can observe an array of clinical manifestations of 

this viral infection. Due to the strictly host-specific nature this pathogen, it is only 

possible to examine the pathological changes of the tissue and organs of the 

infected individuals from diagnostic samples of the patients or autopsies (post-

mortem analyses). The only easily accessible site is the blood compartment, thus, 

majority of the assessment of viral kinetics were done with blood samples 

collected from patients [184]. Thus, broad cellular tropism of the virus is inevitably 

linked to its evolutionary success, as it allowed the virus to be easily transmitted 

and therefore widely spread within populations. On the other hand; and most 

importantly from the medical point of view- the cellular tropism of the virus 

determined its pathogenicity. 
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Figure 1.6. Working model for human cytomegalovirus (HCMV) entry into cells.  
 
HCMV initially attaches in a tethering step to heparan sulfate proteoglycans (HSPGs) through gM/gN and/or gB glycoproteins. In 
a stable docking step, gB interacts with the epidermal growth factor receptor (EGFR) on many HCMV-permissive cell types or 
with as yet unidentified receptors in hematopoietic cells. Other interactions between the glycoproteins of the HCMV envelope and 
cellular integrins promote receptor clustering. At least one of these interactions triggers fusion that leads to the internalization of 
virion components. Signal transduction events are initiated through EGFRs and/or integrins and these events are hypothesized 
to prime and facilitate downstream steps in the virus lifecycle such as nuclear translocation of the capsid and efficient viral gene 
expression. Toll-like receptors (TLRs) detect an HCMV-displayed pathogen-associated molecular pattern during the entry of the 
virus leading to distinct signalling events and the activation of innate immunity.  
Reprinted from: T. Compton; http://dx.doi.org/10.1016/j.tcb.2003.10.009 [185]. 
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1.11. Targets of humoral responses to HCMV.  

 

Although gB represents an immuno-dominant target of the humoral response it is 

quite clear that during primary infection with HCMV a broad spectrum of antibodies 

specific for multiple viral antigens are elicited in the host. The role of antibodies in 

conferring protection against and control of this common pathogen has long been 

debated. However, a mounting body of evidence suggests that humoral immunity 

plays a crucial role in restricting viral dissemination and most likely contribute to 

minimizing the clinical manifestations of the disease [127, 186-188].  

The spectrum of humoral responses against HCMV includes: 

 structural tegument proteins (e.g., pp65 and pp150),  

 envelope glycoproteins (predominantly gB and gH and gH/gL, pentameric 

complex), 

 non-structural proteins (such as the IE1 protein).  

 

Interestingly, one of the pioneering studies on the humoral response to HCMV has 

shown a delay of 50-100 days for the appearance of glycoprotein-specific antibodies 

during primary HCMV infection. Conversely antibodies specific to antigens other than 

glycoproteins were synthesized quickly following the infection. In contrast, a 

synchronized production of antibodies was reported during reactivation or reinfection 

of this pathogen [162].  

 

Historically, gB has been a major focus of studies of the humoral immune response 

as antibodies specific to this antigen could be easily detected in nearly all naturally 

infected individuals [162, 189]. An early study on neutralization demonstrated that 

approximately 40 to 70% of the total serum virus-neutralizing activity of a group of 

seropositive individuals was directed against this single envelope glycoprotein [161]. 

This was demonstrated by using HeLa cells infected with the gp55-116 recombinant 

vaccinia virus as a specific immunosorbent that allowed the depletion of gB antigen 

specific antibodies from seropositive sera [161]. The antibody response to gB is 
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polyclonal and thus further analyses sought to investigate whether there were 

immune- dominant epitopes that predominated the anti-gB humoral response. The 

AD1 domain was recognized as a major target of humoral responses towards gB 

since nearly 100% of sera from HCMV healthy seropositive donors had antibodies 

directed towards this region [162, 189, 190]. Subsequently, a wide range of 

neutralizing capacity amongst the antibody responses against AD-1 that developed 

after natural infection with HCMV was reported [158, 191]. Potential competition 

between non-neutralizing and neutralizing antibodies was also noticed in the early 

1990s [158, 161, 192] (see chapter 6.1). Indeed, the recognition of gB as a dominant 

target of humoral immune responses [161] led it to be considered the candidate most 

suitable for a vaccine antigen and the work on subunit vaccine using gB as a single 

antigen was initiated in the beginning of the 90’ [165].  

 

However, more recently, subsequent work does not support the immune- dominance 

of gB reported by previous studies. One Korean study reported in 2000 that only “19-

50% of the total virus-neutralizing activity of sera with past HCMV infections was 

derived from anti-gB antibody” [193]. It remains to be further investigated whether 

the substantial differences between this study and the previous ones could be due to 

differences in methodology or perhaps are reflecting distinct populations. The results 

showing much lower level of neutralization by antibodies specific to gB are more in 

line though with latter analysis of the B-cell specific repertoire to this viral antigen. 

Furthermore, Potzch et al. revealed that the vast majority (>90%) of gB-specific 

antibodies secreted from B-cell clones do not have virus neutralizing activity [160].  

Although the reasons for these discrepancies remain largely unknown it is a 

consideration that historically, the determination of the neutralizing activity of human 

sera from HCMV-infected individuals has been carried out in in vitro assay systems 

using exclusively human fibroblasts and laboratory adapted strains of this virus. 

More recently, this conventional experimental methodology has been challenged. 

Many groups have demonstrated that the entry pathway in fibroblasts differs from 

that in endothelial, epithelial and myeloid cells [194]. In particular, the pentameric 

glycoprotein complex (pentamer) formed between gH/gL and the UL128, UL130, and 

UL131A proteins complex has been shown to be required for infection of both 
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endothelial and epithelial cells [174, 195], while the glycoprotein complex gH/gL/gO 

is required for infection of human fibroblasts (described in detail in chapter 4.1) [169, 

196-198]. Given that the majority of studies of humoral responses in the past were 

solely focused on potent anti-gB antibodies using laboratory adapted strains of the 

virus (that do not possess functional pentameric complex) and fibroblasts coupled 

with the discovery of the role of pentameric complex, it is now clear that such an in 

vitro setting could not adequately reflect much more complex situation in vivo. 

Therefore, the true extent of neutralization by HCMV-neutralizing antibodies must be 

carefully revaluated as the full impact of neutralizing antibodies against HCMV 

remains relatively poorly characterized and requires further investigation [199].  

 

HCMV is a highly complex virus harbouring more than 20 different glycoproteins in 

its envelope [13]. Although a large percentage of the antibodies elicited by natural 

infection is directed towards gB, other antigens such as: the gM/gN complex, the 

gH/gL complex and the pentameric complex have also been identified as highly 

immunogenic.  

Britt et al. reported in 2000 that gM-gN complex is highly immunogenic. This study 

revealed that while most sera failed to react with either gM or gN when expressed 

alone, 62% of sera from HCMV seropositive individuals were positive for the gM-gN 

complex [170]. Also, studies with a murine monoclonal antibody against gN in the 

gM-gN complex showed that this antibody could effectively neutralize infectious 

virus. Therefore, based on these results, it seems likely that the gM-gN complex may 

also represent a major antigenic target of antiviral antibody response [170]. Other 

researchers focused on immunogenicity of gH/gL complex as it is well established 

that those glycoproteins are essential for the entry of the virus into all cell-types and 

are also abundant on cellular membranes of the cells infected with this pathogen. 

Consistent with this, antibodies against gH have been reported in 96% of sera from 

HCMV seropositive individuals. Moreover, the decrease of total virus neutralizing 

activity between 0% and 58% was reported in the sera depleted of the antibodies 

against this glycoprotein. Such a result strongly argues that gH must be one of the 

major antigens for the induction of neutralizing antibodies during natural infection 

[200]. 
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However, the discovery of the crucial role of the pentameric complex in the entry of 

the virus to the endothelial, epithelial and myeloid cells as well as the role in the cell- 

associated spread of the virus (described in detail in chapter 4.1); suggests that this 

pentameric complex might be also an important target of functional and neutralizing 

antibodies.  

Indeed, studies in past decade revealed that sera from infected individuals possess 

very potent antibodies against this complex that were capable of neutralizing HCMV 

infection of epithelial and endothelial cells [201]. Highly potent HCMV-neutralizing 

monoclonal antibodies that were isolated from the HCMV specific memory B-cell 

repertoire were reported to be specific for this pentamer complex. Also it was shown 

that this complex is the main target of the neutralizing humoral response to HCMV 

infection in epithelial/endothelial cells [202, 203]. Lanzavecchia et al., reported that 

those “unusually potent neutralizing antibodies might be used for passive 

immunotherapy and identifies, through the use of such antibodies, novel antigenic 

targets in HCMV for the design of immunogens capable of eliciting previously 

unknown neutralizing antibody responses” [201]. The preliminary studies with animal 

models confirmed these in vitro studies, as the immunization with the pentameric 

complex elicited a strong neutralizing antibody response in mouse, rabbit, and 

rhesus macaque models [204-206]. Several studies with soluble pentamers are 

currently ongoing to investigate whether the vaccine based on this complex would be 

capable in conferring protection against this pathogen [207]. 

 
 

1.12. Mechanisms of acquired immunity to HCMV and mechanisms that the 

virus evolved divert these immune responses.  

 

HCMV is sometimes considered the master of immune evasion. A substantial part of 

its genome is dedicated to the expression of proteins that subvert the immunological 

responses of the host. Thanks to this elaborate mechanism of immune-evasion this 

pathogen managed to achieve extraordinary evolutionary success, as it is able to 

persist indefinitely within the host and has been reported to infect almost 100% of the 

population in developing countries. Although the host is eliciting very potent 
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immunological responses, both humoral and cellular, the virus is clearly able to 

evade them sufficiently to persist.  

It is likely that the enormous success of this pathogen is a result of a long co- 

evolution with its host. As the new mechanisms of immunological responses were 

evolving within host, the virus was co-evolving to produce new or refined 

mechanisms of evasion/ countermeasure of those host responses or, alternatively, 

by hijacking those new immunological mechanisms for its own benefit. Due to the 

nature of evolution itself- selection of better adjusted and well adapted progenies, the 

virus has upper hand over its human host, as doubling time of the virus is 

approximately 24h (once it is replicating) [184] in comparison to decades between 

new generations in human population.  

 

1.12.1. Humoral responses of the host. 

The 235kb HCMV genome encodes approximately 200 open reading frames [208]. 

Therefore, unsurprisingly, the spectrum of antibodies specific for multiple viral 

antigens is very broad (as described in greater detail in section: 1.11). The majority 

of antibody responses are directed against viral glycoproteins. Although historically 

the glycoprotein B (gB) has been implicated as principal target of virus neutralizing 

antibody [161, 192], more recent data points to the humoral response against the 

pentameric complex being important, as it elicits very potent neutralizing antibodies 

(described in 4.1 and 1.11) [199, 201-203]. Also antibodies against gM/gN complex 

[170] and phosphoproteins e.g.: phosphoprotein 65 (pp65) are abundant in the sera 

of seropositive individuals [209]. Proteins recognized in healthy individuals, 

furthermore, include the tegument proteins, such as e.g.: pp28 (UL99) [210] and 

pp150 [211, 212]. 

 

Although it is clear that humoral immunity plays a crucial role in restricting viral 

dissemination and alleviates severity of the disease [127, 186-188] the actual extent 

of the role of antibodies in conferring protection is still contentious. HCMV, unlike 

other congenitally transmitted viruses (e.g.: Rubella virus) may be transmitted to the 

fetus of already seropositive mothers. Therefore, it is clear that naturally occurring 
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antibodies do not completely interrupt transmission of the virus [36]. This study, 

although controversial at that time implied that the natural immunity may not be 

sufficient to completely prevent the infection. However, the subsequent data form 

that laboratory has shown substantial reduction in the rate of transmission of the 

virus to the fetus (67%) in seropositive mothers [127] arguing thathumoral immunity 

could play an important role. Similarly, in studies of transplant patientsit has been 

demonstrated that there is a clearbenefit when pooled Ig from HCMV seropositive 

donors is administered [213]. Furthermore, the newest report from a clinical trial 

testing infusion of monoclonal antibodies against gH plus UL131 in SOT showed 

significant protection in a treated cohort in comparison to placebo patients [186]. All 

these data clearly suggest that the antibody responses against HCMV do have 

important roles albeit it is unclear why the relatively abundant antibody response that 

develops following the infection with HCMV is not sufficient to prevent re-infection or 

re-activation.  

 

1.12.2. Evasion of humoral responses. 

HCMV has evolved many ways to avoid host humoral responses.. One of the most 

important mechanisms is the route of transmission and systemic spread of the virus. 

During the course of my own studies Murrell et al., [194] shows that genetically wild 

type virus spreads mainly in a cell associated form in vitro. They propose that, if this 

was recapitulated in vivo, this way of transmission allows the virus to effectively 

avoid contact with neutralizing antibodies present in the sera of seropositive 

individuals, as the viral particle will not leave the cell to the extracellular 

compartment. Thus preventing exposure to the antibody response provides a 

mechanism of evasion.  

Another way of evading humoral immunity includes the expression of Fc-like decoy 

receptors on the surface of infected cells. This allows binding and subsequent 

internalization of antibodies which, as a consequence, incapacitates these host 

humoral responses. This clever way of evading IgG responses of the host is 

common for both alpha and beta herpesviruses and was discovered in early 70’s 

[214-217]. Recognition of IgGs by surface receptors (FcγRs) for the Fc domain of 
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IgG (Fcγ) can trigger both humoral and cellular immune responses. Two human 

cytomegalovirus (HCMV) - encoded type I transmembrane receptors with Fcγ-

binding properties (vFcγRs): gp34 and gp68, have been identified on the surface of 

HCMV-infected cells [218, 219]. gp34 and gp68 were recently demonstrated to be 

encoded by independent genes, TRL11/IRL11 and UL119-UL118 respectively. Both 

vFcγRs, gp34 and gp68, were shown to be cell surface proteins that bind to Fcγ 

[219, 220]. gp34 and gp68 share binding properties with gE-gI, the HSV-1 vFcγR, in 

that each is specific for human IgG but not human IgA or IgM. The HCMV vFcγRs, 

however, bind all four human IgG subclasses (IgG1, IgG2, IgG3, and IgG4) [219, 

221]; whereas gE-gI does not bind IgG3 [222].  

Although these virally encoded Fc receptors were extensively studied in the past, 

their exact role still remains debated. It seems that apart from evading potent 

humoral responses, such as e.g.: neutralization, they may also enable the infected 

cells to avoid or modulate antibody effector functions, such as, for example, Antibody 

Dependent Cellular Cytotoxicity (ADCC) - which is discussed in more detail in 

chapter 5.  

 

Lastly, it remains a consideration that the virus might also influence the fine 

specificity of the antibodies elicited shortly after the infection so that they will become 

less effective in combating the infection. HCMV may achieve that though multiple 

mechanisms, such as altering the exposition of protective epitopes in the way that 

they are less available for recognition by host immunity. Whether this could be 

achieved via heavy glycosylation or partial masking of those regions by highly 

immunogenic but not protective antigenic domains, is still unclear. This subject was 

also studied in this thesis, and the detailed description is in chapter 6.  
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1.12.3. Cellular responses of the host. 

 

Cellular immunity to HCMV is a topic of extensive research for more than three 

decades now. The early studies on this subject were almost solely focused on the 

“classic” cytotoxic alpha/beta (α/β) CD8+ T cells recognizing lytic-phase HCMV 

antigens. Therefore, for a long time the prevalent opinion was that those classical T 

cell responses are the most important effector responses against HCMV [223, 224]. 

However this view is constantly being challenged with numerous reports focusing on 

other cells, most importantly CD4+ T cells, but also gamma/delta (γ/δ) T cells and 

natural killer cells. It is clear now that a vast spectrum of different subsets of T cells 

is critically involved in the cellular immune response to HCMV [225].  

A pan-genomic evaluation of HCMV immunogenicity determined the overall T-cell 

responses to HCMV. This cytokine flow cytometry based analyses utilized 13,687 

overlapping 15mer peptides comprising 213 predicted HCMV open reading frames 

(ORFs) - the entire genome of this pathogen. The results showed that “151 HCMV 

ORFs were immunogenic for CD4+ and/or CD8+ T cells, more specifically: CD4+ T 

cells recognized 125 proteins, CD8+ T cells recognized 107 proteins, and 81 proteins 

were recognized by both and that ORF immunogenicity was influenced only 

modestly by ORF expression kinetics and function”. Interestingly, the HCMV- specific 

T cell responses were mainly targeting regions that are highly conserved between 

different HCMV strains [226]. This robust analysis revealed that total HCMV- specific 

T cell responses in seropositive subjects “were enormous, comprising on average 

∼10% of both the CD4+ and CD8+ memory compartments in blood” [226]. This 

landmark report demonstrated the extreme complexity and breadth of the T cell 

responses that are elicited by the human host in response to natural infection [226]. 

This discovery was in contrast to precedent literature, as it was previously thought 

that two T cell responses VLE (IE72) and NLV (pp65) were immuno- dominant. 

However, this report [226] and the follow up studies demonstrated the diversity of T 

cell responses is variable for different people and actually changes all the time in 

percentage of T cells directed against different epitopes [227]. 
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Thus, it seems very likely that such an enormous cellular response elicited by the 

host could have some clinical implications. Indeed, much of a current focus on 

cellular immunity is directed towards understanding the impact of a long-life infection 

with HCMV on the profile of the immune system. It is clear that the long-term control 

of HCMV requires considerable effort from the host immune system [228, 229]. One 

hallmark of HCMV infection is the maintenance of large populations of CMV- specific 

memory CD8+ T cells — a phenomenon termed memory inflation [230]. Recent data 

suggest that HCMV infection is associated with impaired immunity in the elderly, 

mainly due to large, biased HCMV- specific T cell responses that are neither 

required nor beneficial but actually cause significant damage [230-234]. Despite 

having clear correlation between memory inflation and worse clinical outcomes in 

elderly, it is still unclear to what extent this is related to HCMV-specific immunity 

[230]. 

 

Although huge efforts from the scientific community have revealed many 

characteristics of these cellular responses to HCMV, far less is still understood about 

the nature and threshold level of HCMV-specific T cell responses required for long-

term HCMV control [225]. However, it is clear that cellular immunity is crucial for 

containment of HCMV, as it is well documented that the adoptive T cell transfer 

therapy is successful in preventing acute HCMV-related complications after bone 

marrow transplantation [235-237]. Therefore full understanding of viral control by 

cellular immunity would be extremely beneficial as it would allowed identifying 

susceptible individuals and provide a specific target for immunotherapeutic 

approaches. 
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1.12.4. Evasion of cellular responses.  

 

Host cellular responses to HCMV are countered by many virally encoded proteins. 

The role of those viral immuno-evasive mechanisms, although still not fully 

understood, is to effectively disrupt the recognition of this pathogen by CD8+ and 

CD4+ T lymphocytes and consequently, allows the pathogen to “hide” from these 

robust cellular host responses [238].  

One of the most important features of cellular immunity is priming of CD8+ and 

CD4+ T cells for future recognition of endogenous and exogenous antigens. Those 

antigens, such as virally encoded proteins, are presented by MHC I and MHC II 

molecules at the cell surface of either infected cells or antigen-presenting cells. 

The presentation of those viral antigens via MHC I and MHC II molecules 

promotes either direct killing the infected cells or initiates other specific immune 

responses. Therefore, processing of viral antigens via MHC I and MHC II pathway 

and recognition of MHC proteins by CD4+ and CD8+ lymphocytes became the 

most important targets for HCMV to evade effective clearance from the host [238, 

239]. 

Viral immunoevasins exploit diverse cellular processes to interfere with host 

antiviral functions (discussed in detail in: [240]). One of the strategies employed by 

HCMV to achieve this goal is targeting the central components of the antigen 

presentation machinery, especially at the earliest stages of assembly and 

intracellular trafficking in the biosynthetic pathway. It is well documented that every 

cellular protein that resides in the membranous system of the cell has specific 

features that determine its intracellular localization. Therefore the disruption of 

these elaborate cellular trafficking mechanisms, specifically perturbation of the 

endosomal route of molecules that participate in immune recognition, may 

effectively inhibit antigen presentation to T cells (reviewed in [47-50]). Some of the 

immune-evasive proteins that act at multiple stages of this process are encoded 

within the US2-US11 region [241]. These proteins disrupt various aspects of the 

major histocompatibility complex (MHC) class I and class II antigen presentation 

http://onlinelibrary.wiley.com/doi/10.1002/path.4437/full#path4437-bib-0047
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pathways, functioning in cytoplasmic membranes to cause retention, degradation, 

or mislocalization of MHC proteins (discussed in [242]).   

 

 Inhibition of the MHC class I pathway: 

An effective mechanism for detection of putative pathogens by the immune system 

is crucial as it facilitates control of the infection.. A key event in the adaptive 

immune response is the detection and presentation of virus-derived peptides at 

the cell surface by MHC I molecules and subsequent elimination of those virally 

infected cells by cytotoxic T lymphocytes (CTLs). Therefore, unsurprisingly, MHC I 

antigen presentation pathway is a prime target for viral immune evasion, as it is an 

efficient way of displaying foreign and potentially dangerous antigens to the 

immune system of the host.  

In this pathway, the viral antigens loaded onto surface of MHC I molecules are 

products of the proteasomal degradation of viral proteins that were present in the 

cytosol. Subsequently, those viral peptides are translocated by the Transporter 

associated with Antigen Processing (TAP) into the endoplasmic reticulum (ER), 

where they are loaded onto newly synthesized MHC I molecules. Peptide-loaded 

MHC I proteins are displayed at the cell surface and monitored by TCR/CD3 

complexes on CD8+ T lymphocytes. Alternatively, specialized antigen presenting 

cells, such as dendritic cells can also uptake the viral peptides from their 

environment upon specific recognition and then present those antigens to CTLs 

(reviewed in [242, 243]). However, HCMV evolved in a way to tackle this 

mechanism of adaptive response of the host. It is well established now that the 

product of the HCMV US6 gene attacks the TAP complex and blocks peptide 

loading onto MHC I molecules in the ER [244], while products of the US3 and 

US11 genes dislocate newly synthesized MHC I heavy chains from the ER into the 

cytosol for degradation [245, 246]. Additionally, the remaining MHC I proteins that 

managed to escape the recognition by US3 and US11 and then destruction are 

captured by the US3 gene product and retained in the ER [247, 248]. The 

cooperative activity of HCMV immune evasive molecules would result in a gradual 

loss of MHC I from the cell surface [239] (Fig. 1.7).  
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Thus, viral products inhibit MHC class I antigen processing and presentation via 

three major pathways [243]:  

-inhibition of major histocompatibility complex (MHC) class I expression on cells, 

-blockade of peptide trafficking and loading on MHC class I molecules,  

-inhibition of peptide generation in host cells. 

 

 Inhibition of the MHC class II pathway: 

 

In addition, HCMV has also evolved mechanisms that disrupt presentation of 

antigens via MHC II pathway. This immune evasion strategy is based on 

remodelling of the endosomal route of MHC II molecules that sample exogenously 

derived peptide antigens. Peptide-loaded MHC II proteins are exposed at the cell 

surface and constitutively cycle in the endosomal system (Reviewed in [239]). Lee 

et al., demonstrated that infection with HCMV does not alter the early stages of 

endosomal transport (including recycling), entry of the MHC II into a peptide-

loading compartment and assembly and peptide loading of MHC II. However, the 

blockage in the transport of those MHC II molecules was seen at the latest stages 

of their transport. Peptide-loaded MHC II is retained in the perinuclear area and 

sequestered in an enlarged peptide-loading compartment with defective trafficking 

of MHC II-loaded vesicles toward the periphery [249, 250]. Indeed, the 

downregulation of the expression of MHC II molecules was then subsequently 

reported for many different HCMV infected cell types: in dendritic cells [251]; 

monocytes/macrophages [252, 253] and professional antigen presenting cells 

(mature Langerhans cells) [250]. 
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Figure 1.7. Mechanisms used by HCMV to interfere with cell-mediated 
immunity.  

Synthesis of a protein on a ribosome (RIB) is shown, followed by digestion in the 
proteasome (PRO), transport of peptides into the endoplasmic reticulum (ER) by 
the transporter associated with antigenic peptides (TAP) and display, together with 
class I HLA molecules, at the plasma membrane. HCMV proteins pp65, UL97, 
US3, US6, US2 and US11 reduce display of mature class I complexes. HCMV 
proteins UL18 and UL40 present decoy signals to prevent immune attack. HCMV 
proteins UL16, UL141, UL142 plus micro-RNA UL112-1 block the display of stress 
ligands, which would otherwise precipitate immune attack. Reprinted from [254].  
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1.13. Passive immunity. 

 
Passive immunity refers to the process of providing IgG antibodies to protect 

against infection. It gives immediate, but short-lived protection—several weeks to 

3 or 4 months at most. Passive immunity is usually classified as natural or 

acquired [255]. 

 

Nnatural passive immunity occurs, for example,when maternal antibodies (mainly 

IgG) cross the placenta and provides some level of protection for the fetus and 

then new born baby for several weeks/months until such antibody is degraded and 

lost. In contrast, “acquired passive immunity refers to the process of obtaining 

serum from immune individuals, pooling this, concentrating the immunoglobulin 

fraction and then injecting it to protect a susceptible person” [255].  

 

HCMV can be transmitted from mother to fetus even when the mother is known to 

have been infected prior conception, as well as when primary infection occurs 

during pregnancy [127]. However, in congenital HCMV infection there is plenty of 

evidence that maternal immunity offers some level of protection to the fetus. 

Fowler at al. has shown 67% reduction of fetal transmission in seropositive 

mothers’ cohort in comparison to seronegative mothers. Additionally, although the 

pre-existing antibody responses do not completely prevent the transmission of 

HCMV, their presence lessens the severity of congenital disease once the 

infection happens [127]. These observations alone demonstrate that there is a 

clear benefit of passive immunity in this cohort of the patients. Because of this, 

many studies addressed this clinical problem. Interestingly, in 2005, the first study 

(non-randomized) suggested that the administration of HCMV-specific hyper 

immune globulin to pregnant women with primary infection resulted in a significant 

decrease in the rate of mother-to-fetus transmission from 40% to 16% (P=0.04), 

and the risk of congenital disease also decreased significantly, from 50% to 3% 

(P<0.001) [256]. However, despite these positive results, subsequent randomized 

studies have not confirmed these findings - no significant reduction in the rate of 

transmission of HCMV infection among women receiving hyperimmune globulin as 

compared with women receiving placebo has been reported since [257]. Currently 



73 
 

there are two randomized, phase 3 studies of the prevention of congenital 

infection ongoing.  

 

The possibility that preformed antibodies present at the time of transplant could 

reduce transmission of HCMV from the donor organ has also been evaluated in 

multiple randomised controlled trials comparing placebo with the infusion of anti-

HCMV monoclonal antibodies (mAbs) or pooled IgGs preparations. Available data 

suggests that CMVIG, when associated with antiviral therapy, may provide an 

additional benefit in preventing HCMV disease and manifestations of chronic 

rejection in transplant recipients [258]. One meta-analysis of several clinical trials 

testing the efficacy of immunoglobulins demonstrated a beneficial effect following 

the prophylactic use of CMVIG on total survival [RR (95% confidence interval; CI): 

0.67 (0.47-0.95)] and prevention of HCMV-associated death [RR (95% CI): 0.45 

(0.24-0.84)] in solid organ transplant recipients except kidney transplant recipients 

[RR (95% CI): 0.35 (0.12-1.04)]. HCMV disease was significantly reduced in all 

recipients receiving prophylactic CMVIG [RR (95% CI): 0.697 (0.57-0.85)]. 

However, CMVIG had no impact on HCMV-infections [213, 259]. The benefit of 

the prophylactic use of CMVIG appears particularly apparent in the highest-risk 

group D+/R− SOT transplant patients [258-263].  

Importantly, such results again clearly demonstrate that humoral immunity can 

reduce the severity of the disease caused by this virus.  
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1.14. Cytomegalovirus vaccine vectors. 

 

Viral vectors have been developed and intensely studied as potential tools to 

deliver vaccines as they present many advantages over traditional vaccines in a 

way that they stimulate a broad range of immune responses including cell 

mediated immunity [264]. Novel HCMV vectors have “emerged during the past 

several years as promising vectors for HIV-1 and other pathogens, owing to their 

immunogenicity and protective efficacy in stringent non-human primate challenge 

studies” [265].  

 

Despite the extensive number of immune-evasive mechanisms that are encoded 

by HCMV which enable the virus to persist throughout the lifetime of its host (as 

described in section 1.12); it is very interesting to note that HCMV based vaccines 

themselves are highly immunogenic. This clearly suggests a model where  HCMV 

infection triggers potent humoral and cellular responses of the host and thus, in 

turn, requires has to encode a repertoire of countermeasures to evade them 

However, utilizing the natural immunogenicity of this virus as a HCMV based viral 

vector approach has been hypothesized to be a clever way to stimulate the 

immune system of vaccine recipients.  

 

One of the most important characteristic of this HCMV vaccine vector approach is: 

 high immunogenicity;  

 can maintain systemic high-frequency, circulating and tissue-resident 

effector memory T cell (TEM cell) responses that have immediate antiviral 

effector activity and thereby clear and control viral challenges in 50% of 

vaccines early after exposure [265];  

 can be repeatedly used in individuals with pre-existing immunity to HCMV; 

 can be programmed to elicit unusually broad CD8+ T cell responses that 

recognize conventional and/or unconventional epitopes (including major 

histocompatibility complex class II (MHC II)-restricted CD8+ T cells);  

 can be modified to express multiple vaccine inserts, of 6kbp (or more) of 

exogenous sequence, using endogenous promoters to control insert 

expression;  

 can be greatly attenuated without loss of immunogenicity or efficacy. 
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This is generally in contrast to conventional T cell-targeted vaccines as they have 

only limited ability to manifest effective antiviral effector T cell activity immediately 

after the onset of viral infection; before systemic spread of the virus. Thus, HCMV 

vectors have clear advantages over the conventional approaches as they are able 

to maintain systemic high-frequency of TEM cells [266].  

 

Some researchers believe that this original HCMV based approach may greatly 

facilitate the development of a successful HIV/AIDS vaccine. This HCMV-based 

HIV/AIDS vaccine is currently being investigated and the preliminary results are 

very promising [266-268].  

 

1.15. Vaccines against HCMV.  

 
The discovery of highly immunogenic regions and the major targets of humoral 

responses in the late 1980’s [157, 161] provided a rationale and facilitated the 

development of the first vaccines against this common human pathogen. Such 

vaccines might be administered to high risk groups to lessen the severity of HCMV 

disease, as well as to the general population to interrupt transmission of the virus 

within the population that might ultimately lead to the elimination of this virus.  

 

Over the last four decades many efforts have been made to produce such 

vaccines, some of them were evaluated in pre-clinical studies and then in clinical 

trials. First attempts were made with live attenuated vaccines (based on laboratory 

passaged HCMV strains: Towne and AD169 [16, 24, 269-272]. Apart from the 

unsatisfactory immunogenicity levels reached by these vaccines, one of the major 

concerns over the use of attenuated-whole-virus vaccines is the possibility of 

establishment of latency post-vaccination in vaccine recipients. Therefore, to 

overcome this obstacle, new vaccination strategies, including subunit and 

vectored vaccines, were  developed as reviewed elsewhere [273]. Despite many 

attempts, there is no CMV vaccine available yet for clinical use. Several vaccine 

formulations are currently under phase-2 clinical development, including 

cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) triplex vaccine 

(NCT02506933) and CMVpp65-A*0201 peptide vaccine (NCT02396134); 
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(described in this section). To date, one vaccine candidate has reached phase-3 

clinical trials- the ASP0113 vaccine (NCT01877655).  

 

1.15.1. The rationale for vaccine development.  

 
Infection with HCMV is very common. It has been estimated that approximately 

60% of the population in developed countries and up to 100% of the population in 

developing countries is infected with this virus [274]. Although the infection with 

this pathogen is usually asymptomatic and the immune system in healthy 

individuals is able to control the virus; it has been estimated that life-expectancy 

for the seropositive population is shorter than for seronegative individuals [275]. In 

some settings though, the virus might impose a high risk for HCMV disease 

development. The consequence of the infection with this virus may be very 

severe, even life threatening in several subgroups of a population: 

immunocompromised individuals such as SOT and haematopoietic stem cell 

transplants (HSC), infants infected in utero and late stage HIV patients (AIDS 

sufferers). The socioeconomic burden associated with HCMV disease is 

enormous, so a vaccine is predicted to be cost-effective and even cost-saving 

[276]. Therefore the importance of vaccine development is widely recognised and 

it has been called ‘a top priority’ and a very important health problem by the World 

Health Organisation (WHO) [277].  

1.15.2. The target populations. 

 
 

It is well known that the burden associated with this congenital infection is 

extremely high: infection during pregnancy may damage the central nervous 

system (CNS) of the fetus and cause life-long neurodevelopmental sequelae, such 

as sensorineural hearing loss (SNHL), mental retardation, cerebral palsy and 

many other pathologies [278]. It is well established that the presence of maternal 

anti-HCMV immunity partially alleviates the severity of disease, as it reduces 

transmission of the virus from mother to the fetus. Interestingly, one study reported 

that naturally acquired immunity results in a 69% reduction of the risk of congenital 

1.15.2.1. Women of childbearing age. 
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HCMV infection in future pregnancies [277]. Although the protective effect of pre-

existing immunity is widely recognized, many of the congenitally infected babies 

are born to seropositive mothers due to their high abundance in the population 

[187, 279]. However primary infection in pregnant mothers is associated with more 

severe sequelae of congenital HCMV infection [127]. 

 

Although some of these infants are treated with antiviral drugs such as 

valganciclovir to reduce progressive deterioration of SNHL, such therapy is 

associated with adverse effects and, in general, damage done by the virus prior to 

antiviral drug administration is irreversible [280, 281]. Thus, this should not be 

seen as a cure for congenital HCMV disease. Furthermore, there is no available 

medical intervention that could decrease transmission of the virus from the 

infected mother to the infant [282]. Therefore development of a vaccine that could 

be administered to adolescent girls and women of childbearing age remains an 

urgent need. To complement this, a vaccine is needed for toddlers to reduce 

exposure of their mothers to HCMV [283]. 

 

 

Historically, primary infection, re-infection and re-activation of HCMV were a major 

cause of mortality in transplant patients; however, the introduction of anti-viral 

drugs resulted in a significant decrease of the risk associated with HCMV disease, 

such as death, rejection of allograft, viremia, pneumonitis, retinitis [284-290]. 

Although nowadays the mortality rate in transplant patients is much lower than in 

the past, in the HSC setting we can still observe a higher number of deaths in 

HCMV seropositive transplant recipients. Similarly, in SOT patients we can also 

observe an increase in the number of patients who develop viraemia and HCMV 

disease when seronegative transplant recipients receive an organ from a 

seropositive donor (primary infection). The same is true when seropositive patients 

receive an organ from a seropositive donor (re-infection) or from a seronegative 

donor (re-activation) as compared with seronegative patients who received grafts 

from seronegative individuals [188, 291].  

 

1.15.2.2. Solid Organ Transplant and Haematopoietic Stem Cell Transplant 
patients. 
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Moreover, the infection of transplant patients with HCMV increases the risk of 

opportunistic fungal and bacterial infections as well [289, 292]. Therefore an 

HCMV vaccine that could be administered to these patients is very important.  

 

 
 

 
Reactivation of HCMV in HIV carriers is a serious medical problem, as the 

prevalence of HCMV in the population is very high– up to 100% in developing 

countries. In addition, patients may be re-infected. Many studies suggested that 

the vast majority of HIV patients are co-infected with HCMV [293, 294]. The most 

common disease is retinitis, affecting up to 85% of these patients [295] [296], 

encephalitis [297], pneumonitis [298, 299] and many other complications. 

Fortunately, the introduction of highly active antiretroviral therapy (HAART) 

decreased the mortality rate and the disease disadvantage amongst AIDS 

sufferers in such way that their reconstituted immune system prevents HCMV 

disease. Despite such a promising outcome of HAART, the problem has not yet 

been solved, as many of the HIV patients have no- or restricted access to this 

antiviral therapy. Thus, undoubtedly, a vaccine that could be administrated to the 

general population to prevent HCMV exposure of this high risk group would be 

enormously beneficial [293].   

 

1.15.3. The vaccine candidates. 

 
The vaccine candidates that were already evaluated and are currently being 

investigated in clinical trials can be generally divided into two categories: 

-live, attenuated vaccines (whole attenuated viruses), 

-subunit vaccines (targeting only one particular protein, or protein complex of 

interest) 

However, recently the repertoire of the vaccines against this pathogen that are 

under development became even more diverse. The lack of a licensed vaccine 

fuelled the development of new technologies and new vaccine administration 

strategies such as: 

 dense body vaccines 

1.15.2.3. Patients co-infected with HIV. 
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 peptide based vaccines 

 DNA vaccines expressing gB and pp65 

 alphavirus replicon particles (VRPs) expressing gB; pp65 and IE-1. 

 Whole virus, non-replicating vaccine  

 self-replicating RNA 

 soluble pentamer 

 

-novel administration strategies, such as: 

 prime-boost regimen  

 

 

 

Live attenuated strains of HCMV were utilized in the production of the pioneering 

vaccine candidates against HCMV. The first vaccine against this pathogen that 

was used in studies with humans was based on the laboratory adapted strain 

AD169 [16]. Although this vaccine elicited some humoral responses in 

seronegative recipients, adverse effects were reported as well, such as significant 

injection-site and systemic reactogenicity. Thus, the development of this vaccine 

was abandoned.  

 

Next, vaccines against HCMV were constructed with the attenuated Towne strains 

[24]. The Towne vaccine was given to kidney transplant patients and seronegative 

women that were at higher risk of acquiring primary infection (in comparison to the 

general healthy population). The studies on these vaccines revealed that both 

humoral and cellular immunity were elicited against this pathogen and moreover, 

the safety profile of this vaccine was very good. Although a correlation between 

immune responses and decreased risk of severe HCMV disease development in 

SOT patients was found (in fact a reduction of ~85% in severe disease was 

achieved, similar to the protection provided by prior natural infection) [300], the 

vaccine failed to protect renal transplant recipients from infection itself- vaccinees 

acquired HCMV infection at the same rate as did placebo control subjects [301]. 

Similarly, vaccination did not protect women from primary infection with the virus 

[270]. Due to this rather disappointing result with the live attenuated vaccine in 

1.15.3.1. Live attenuated HCMV vaccines. 
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women of childbearing age this vaccine was no longer the major focus of the 

HCMV vaccinology field. Subsequent studies with this vaccine aimed to reveal the 

cause of this low immunogenicity. Latter phase I studies with healthy volunteers 

suggested that the relatively low immunogenicity of this vaccine was caused by 

the impaired responses of CD4+ and CD8+ T-cells in antigen-specific IFN gamma 

production [271] [269, 300, 301]. 

 

Several different approaches have been subsequently proposed to increase the 

immunogenic properties of this vaccine; one of them was co-administration of the 

Towne vaccine with recombinant IL-12. In order to address this hypothesis a 

phase-1 clinical study was conducted and it has shown better immunogenicity 

profiles in vaccines who also received IL-12 [272]. Another solution that was 

proposed was to replace some of the regions of the genome of the attenuated 

Towne strain with the corresponding regions of the genome from the less 

attenuated Toledo strain. To date, four independent vaccines with such chimeric 

structures have been manufactured and tested in clinical trials. This approach 

demonstrated an increase in immunogenicity in comparison to the vaccine 

constructed on the backbone of the attenuated Towne strain only. Moreover these 

vaccines proved to be relatively safe and are currently being further analysed 

[302, 303].  

 

ALVAC vaccine: 

The phase-1 study of the canarypox-HCMV pp65 recombinant vaccine aimed to 

investigate whether this vaccine elicits potent cellular (HCMV pp65-specific CTL, 

helper T lymphocytes) and humoral responses. The vaccine was given at three 

different doses to healthy seronegative adults.  

 

The analyses of immunogenicity revealed that pp65 specific cellular responses 

were present following administration of the third dose of the vaccine. This study 

demonstrated for the first time that the recombinant vaccine elicited cellular 

immune responses towards HCMV. This vaccine was not further developed due to 

the low immunogenicity [304]. 
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The vast majority of the efforts to develop a subunit vaccine are focused on the 

dominant humoral target on the envelope gB and the molecules IE1 and pp65 that 

induce T-cell responses. Recombinant subunit vaccines based on these proteins 

are currently being tested in clinical trials.  

 

1.15.3.2.1. pp65 subunit vaccines. 

 
The recovery from HCMV disease is correlated with the development of HCMV-

specific cytotoxic T lymphocytes (CTL). Therefore the major viral target antigens 

that induce cellular immunity were evaluated as attractive candidates for vaccine 

development. The majority of the efforts to induce cellular immunity though 

vaccination has been so far focused on pp65 tegument protein. pp65 is known to 

be a significant target antigen for CD8+ class I major histocompatibility complex 

(MHC)-restricted HCMV-specific CTL. One study revealed that between 70% and 

90% of all CTL recognizing HCMV-infected cells were pp65 specific [305, 306]. 

Moreover, the studies conducted with bone marrow transplants revealed that 

passive transfer of T-cell clones specific for pp65 is correlated with better 

prognosis in this group of patients. This therapy was pronounced to be a ‘safe and 

effective way to reconstitute cellular immunity against HCMV’ following 

transplantation [307]. 

1.15.3.2. Subunit vaccines. 
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Pp65 peptide vaccine: 

 

A recent, small study with healthy adult volunteers evaluated two candidate HCMV 

peptide vaccines composed of the HLA A*0201 pp65(495-503) cytotoxic CD8(+) 

T-cell epitope fused to two different universal T-helper epitopes (either the 

synthetic pan DR epitope [PADRE] or a natural tetanus sequence) for safety and 

ability to elicit pp65 T cells in HLA A*0201 healthy volunteers. This vaccine proved 

to be safe and evoked the expansion of pp65 (495-503) specific T cells in 30% of 

healthy volunteers when administered with the adjuvant. Most importantly, the 

safety profiles were generally good, although the addition of PF03512676 (1mg) 

adjuvant substantially raised reactogenicity [304]. This vaccine is currently being 

evaluated in phase 2 clinical trial.   

 

1.15.3.2.2. IE subunit vaccines. 

 
IE1 gene product has been recognized as a very important target of CD8+ 

responses against HCMV. The analysis of T-cell responses in seropositive healthy 

individuals revealed that approximately 40% of them have CD8+ T cells specific to 

IE1, but no CD4+ -IE1 specific responses [308]. The vaccine with IE1 only as a 

target has never been investigated- this antigen has been used in combination 

with other potent antigens: gB and pp65 proteins as a trivalent vaccine 

formulation. 
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1.15.3.2.2. Combined vaccines. 

 

DNA vaccines: 

 

-Bivalent DNA vaccine: 

 

The effects of the bivalent DNA vaccines that are encoding gB and pp65 of HCMV 

were tested in animal models. Both DNA constructs proved to be highly 

immunogenic when delivered separately. However, when these constructs were 

administrated together (in PBS), the immune responses elicited by this vaccine 

formulation were less prominent. The outcome was improved when this bivalent 

vaccine was formulated with the poloxoamer adjuvant (VF-P1205-02A) [309]. 

Based on encouraging data from pre-clinical studies and good safety profiles, this 

bivalent DNA vaccine entered human clinical trials. The phase -1 clinical trial 

aimed to investigate safety and immunogenicity of this vaccine formulation. In total 

44 healthy seropositive and seronegative individuals were enrolled in the study 

and different dosages and immunisation schedules were applied. In general the 

vaccine proved to be safe; only mild and moderate adverse effects were seen, all 

of which were short-term [310]. The immunotherapeutic effect of this vaccine was 

studied in a randomised, double-blind, placebo-controlled phase-2 clinical trial with 

haematopoietic stem-cell transplant (HSCT) patients, as they are at very high risk 

of HCMV reactivation due to their compromised T-cell responses. Although the 

percentage of patients who required antiviral therapy following transplantation was 

similar between placebo and vaccine group of patients, follow-up studies revealed 

that the occurrence and recurrence of cytomegalovirus viraemia as well as the 

time-to-event for viraemia episodes improved compared with placebo [311]. This 

vaccine was generally well tolerated and is now undergoing a phase-3 study.  

 

-Trivalent DNA vaccine: 

 

This vaccine formulation resembles the bivalent DNA vaccine except that this 

vaccine contains an additional plasmid that encodes IE1. Moreover, PBS was 

used instead of poloxomer. This formulation was tested in a prime-boost regime 
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together with the live attenuated Towne strain vaccine in seronegative healthy 

volunteers that were divided into three groups. Different immunization schedules 

(with or without boost with Towne strain) and different dosages of the vaccine 

were administered to patients in each of these groups. Regardless of the 

approach applied, the vaccine did not elicit potent immune responses. It has been 

reported that not more than 20% of vaccine recipients in each group responded to 

the vaccine. Interestingly though, differences in the time of immune response 

developments were noticed. The time to mount a positive anti-HCMV gB IgG 

antibody response and a positive ELISPOT response to HCMV pp65 and/or gB 

antigen stimulation was much shorter amongst the patients who received a boost 

with the live-attenuated Towne strain approximately a year after administration of 

the DNA priming [312].  

 

-Trivalent Alphavirus replicon particles expressing gB and pp65-IE1: 

 

The vaccine based on an alphavirus replicon particle with gB or a pp65/IE1 fusion 

protein was evaluated in a randomized, double-blind phase-1 clinical trial with 

healthy seronegative volunteers. The vaccine was delivered at two different doses. 

The analyses of the clinical material from the individuals involved in this study 

revealed that this vaccine induces both humoral and cellular immunity. 

Neutralizing antibody responses were found in all recipients of the high dose and 

93% of recipients of the low dose of the vaccine. Moreover, the peak titres of 

these neutralizing antibodies in the patients who received high dose of the vaccine 

were on average 2-fold lower than the average titre of neutralizing antibodies in 

seropositive sera from patients following natural infection with this pathogen. The 

neutralizing antibody responses decreased over time and this effect was more 

profound in the recipients of the low dose. Peak cellular responses were found 

after administration of the second dose of the vaccine and it has been estimated 

that approximately 90% of vaccine recipients elicited T-cell specific responses to 

all three antigens. Detailed analysis of cellular responses revealed that the 

majority of the CD8+ T cells were specific for pp65 following vaccination. 

Conversely, CD4+ T cells targeted all three antigens with similar frequencies. This 

vaccine was assessed to be relatively safe and may be further developed [313]. 
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1.15.3.2.3. gB-subunit vaccines. 

 
This protein has been recognized as a major target of humoral responses-nearly 

100% of individuals infected with the virus produced antibody against this protein 

and 40-70% of these antibodies had neutralizing properties [161]; moreover this 

protein is very abundant on the surface of infected cells and viral particles. The 

prototype vaccines with this glycoprotein were studied in animal models; 

administration of the recombinant gB-vaccine decreased the rate of virus 

transmission in pregnant guinea pigs and, as a result, a decline in mortality 

amongst the new-borns was seen. This study indicated for the first time that 

vaccination with this recombinant protein could be effective in preventing 

congenital HCMV (reviewed in [314]). Such results provided a rationale to further 

develop this vaccine and test its efficacy in clinical trials.  

 

Over the past two decades one of the gB vaccine formulations has been studied 

extensively in several clinical trials with different target populations.  

 

The protein used in the production of this vaccine was expressed in the 

eukaryotic- Chinese Hamster Ovary (CHO) cell line and the gB gene that was 

utilized in the production of this protein was derived from Towne strain of HCMV 

(Chiron) [315, 316]. Some alterations were introduced to this gB in comparison to 

the native protein in order to ease the expression and purification gB protein in 

vitro (Figure 1.8); [317]: 

-the cleavage site was mutated in order to prevent the cleavage of this protein; 

-a stop codon was introduced prior to the hydrophobic region of this protein in the 

transmembrane domain. 

 

Such changes produced a truncated protein that, although closely resembling the 

native protein, could potentially induce a different repertoire of humoral responses 

(Figure 1.8). There are no available data on those potential differences and the 

extent of them between the immunogenicity of the native gB and the recombinant 

protein that was used as a vaccine antigen. It is very difficult to predict to what 

level the modification introduced to the recombinant gB could alter epitope 

presentation and glycosylation patterns. Although it is highly speculative; it seems 
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important to consider that those differences in immunogenicity may at least partly 

influence the antibody profiles of seropositive and seronegative vaccine recipients.  

 

Safety profiles, immunogenicity and the immunisation schedule of this vaccine 

were evaluated in several studies that involved the participation of women of 

childbearing age in the late 90’s. The optimal antigen dose and immunization 

regimens of this recombinant subunit were investigated in phase I study with 

healthy individuals [318]. Another phase I study, a randomized, double-blind, 

placebo-controlled trial, was designed to study the effect of the adjuvants alum 

and MF59; the results indicated that the vaccine formulation with MF59 was more 

immunogenic than that with alum [319]. Most importantly though, a randomized, 

double-blind, placebo-controlled phase 1 trial in seronegative toddlers determined 

the reactogenicity and immunogenicity of this vaccine. The researchers 

demonstrated that immunization with this vaccine formulation (subunit, 

recombinant gB with MF59) was generally safe as no serious side effects were 

seen following the administration of the vaccine. It was speculated that vaccination 

with this formulation could possibly result in the decline of child-to-child and child-

to-adult transmission of the virus [320].  

 

These findings prompted the initiation of Phase II randomized, placebo-controlled 

studies to test the efficacy of this vaccine that were performed with young 

mothers, solid organ transplant patients (chapter 1.16) and adolescents. The 

study with young women was initiated in 1999 and approximately 400 participants 

were involved in the studies. After a minimum of 1 year of follow-up, there were 49 

confirmed infections, 18 in the vaccine group and 31 in the placebo group. Kaplan-

Meier analysis showed that the vaccine group was more likely to remain 

uninfected during a 42-month period than the placebo group (P=0.02). Vaccine 

efficacy was 50% (95% confidence interval, 7 to 73) on the basis of infection rates 

per 100 person-years. One congenital infection among infants of the subjects 

occurred in the vaccine group, and three congenital infections occurred in the 

placebo group. Although more side-effects were reported in the vaccinated group 

in comparison to the placebo, generally these symptoms were mild and had short 

duration [321]. These studies show the potential of this vaccine to decrease 

transmission of the virus from the infected mother to the fetus; however the 
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efficacy was estimated to be only 50%. Nevertheless, although the effect observed 

in this study is only modest, such an outcome may still be appealing, especially for 

prevention of HCMV infection in future mothers at high risk of HCMV infection, as 

no other alternative therapies are accessible at the moment [322]. Moreover, the 

researchers speculated that this result could be biased by the choice of this 

particular population that was characterised to have an intense exposure to HCMV 

and a high rate of congenital HCMV infection.  

 

More recently the same vaccine formulation was administered to adolescent girls 

in a phase 2 clinical trial (197 vaccine and 207 placebo recipients). Although the 

vaccine was proven to be safe, immunogenic and generally well-tolerated, the 

efficacy was lower than expected as the protection did not reach conventional 

level of significance [323]. Phase 3 clinical trials with congenital infection as the 

primary endpoint might be conducted in the future [324]. The major goal of such 

study would be to address whether the efficacy of this vaccine could be higher in a 

population that has less exposure to the virus [321, 322]. 

 

Another phase-2 study of this vaccine enrolled 150 seropositive women who were 

at increased risk of reactivation of the virus or reinfection with a different strain. 

The aim was to investigate whether this recombinant gB vaccine with MF59 

adjuvant is able to boost both cellular and humoral immune responses. The 

analyses revealed that the vaccine is capable of stimulating both arms of the 

immune system; induction of CD4+ T-cell responses and boosting of gB-specific 

antibodies, were reported. However, these responses were transient. It seems 

plausible that the CD4+ T-cells that were generated in response to the vaccination 

facilitated the increase in the level of gB-specific antibody [325].  
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1.16. The soluble recombinant subunit glycoprotein B (gB) with MF59 

adjuvant Vaccine Study in SOT. 

 

Prior to my studies a phase-2 clinical trial with the soluble recombinant subunit 

glycoprotein B (gB) with MF59 adjuvant was conducted at the Royal Free Hospital 

in London, UK [188] which I describe in this section.  

 

SOT patients are at risk of end-organ diseases such as pneumonitis, hepatitis, 

enteritis or retinitis caused by HCMV. The patients can be assigned into four 

different categories based on their donor- and recipient serostatus for HCMV: 

D+R-; D+R+; D-R+; D-R-. In SOT the highest incidence of HCMV viraemia and 

disease occurs in the D+R- followed by the D+R+ patients. In the D+R- subset, 

seronegative recipients lacking pre-existing immunity towards the virus acquire 

HCMV from positive donors causing primary infection in these individuals. 

Seropositive recipients in the D+R+ category are also at risk of developing HCMV 

infection due to reinfection from a different strain of the virus acquired from the 

donor or reactivation of latent virus; however, the incidence of the disease is lower 

in these groups. Seropositive recipients in the D-R+ category are only at risk of 

developing HCMV infection due to reactivation of latent virus and have the lowest 

incidence of disease. Thus, in the context of SOT, pre-existing natural immunity 

provides substantial protection from HCMV viraemia and disease, supporting 

vaccination as a viable strategy to control HCMV in the transplant setting [35].  

 

In order to provide the dynamic and quantitative measurements of viremia 

(number of genome copies per mL) and other virological parameters, such as 

peak HCMV load in donor/recipient groups, HCMV replication kinetics and antiviral 

therapy, a natural history study was performed prior to vaccine clinical trial. The 

consecutive blood samples that were collected from 689 solid organ transplant 

patients (liver and renal) were analysed and the levels of HCMV DNA were 

measured by quantitative PCR. All the patients that were enrolled into this analysis 

were managed by pre-emptive antiviral therapy and no patient received antiviral 

prophylaxis. All the transplants were performed and/or followed up at the Royal 

Free Hospital, London, between July 2002 and the end of January 2010 [35].  
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This study was crucial to establish the necessary virological parameters that could 

enable the interpretation of the results from the subsequent vaccine clinical trials. 

These natural history analysis provided very useful data on the indicators of risk of 

HCMV primary infection (D+R-); reactivation (D+R+; D-R+) and reinfection 

(D+R+); and associated kinetics of replication (Figure 1.9; Table 1.4). 

 

Most importantly, these quantifications were used as a reference point for the 

phase-2 vaccine trial with subunit, recombinant gB vaccine [2]. Once the 

virological parameters were established, it was possible to investigate whether the 

vaccination could block transmission of the virus from the donor and confer 

protection in this group of patients. 
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To test this, a clinical trial with a vaccine based on HCMV glycoprotein B (gB) 

antigen plus MF59 adjuvant was performed in patients awaiting kidney or liver 

transplantation. 67 patients received the vaccine and 73 received placebo, all of 

whom were evaluable for the analysis (Figure 1.10). Following administration of 

the vaccine or placebo, gB antibody titres were measured by enzyme 

immunoassay.  

 

In order to perform the pharmacodynamic assessment of the clinical samples 

obtained from the patients who participated in this clinical trial, the glycoprotein B 

antibody titres were measured and correlated with the virological parameters that 

were established in the natural history studies described above. Antibody titres 

against the gB protein were significantly increased in both seropositive and 

seronegative recipients of the vaccine in comparison to the patients who received 

placebo (Figure 1.11). The viral load was evaluated by PCR in those who 

proceeded to transplant. The duration of viraemia and number of days of 

ganciclovir treatment were inversely correlated with gB antibody titres in the group 

of vaccinated patients who developed viraemia suggesting that vaccine was 

having a protective effect (Figure 1.12); [188]. Although not all of the differences 

observed between vaccinated and placebo patients reached statistical 

significance, due the fact that numbers of the patients in each groups were very 

small (Figure 1.13; Table 1.5), the glycoprotein-B antibody titres correlated 

inversely with duration of viraemia in both seropositive and seronegative patients 

(Figure 1.12). Such a result strongly suggests that the vaccination had a protective 

effect as all the values of virological parameters were reduced in vaccine 

recipients [188]. 
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Figure 1.8. Schematic representation of the differences between the native gB and the recombinant gB.  
 
The recombinant protein was used in the production of the subunit vaccine with MF59 adjuvant used in the phase-2 clinical trial 
(NCT00299260) [293]. 
* TM-transmembrane domain.  
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Figure 1.9. Frequency distribution plots of the values of peak viral load 
among the three DR groups of patients at risk of HCMV infection.  

 
Bin size is 0.2 Log 10 genomes. P-Values indicate difference from Gaussian 
distribution and were calculated with the D’Agostino & Pearson omnibus K2 
normality test. Reprinted from [35].  
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Table 1.4. HCMV viraemia and treatment in subgroups of transplant patients 
with defined donor and recipient serostatus [35].  

HCMV 
donor/recipient 

status 

% of patients who 
developed viremia 

% of patients who 
required treatment 

D+R- 78% (58/74) 69% (51/74) 

D+R+ 54% (147/270) 23% (62/270) 

D-R+ 40% (89/222) 13% (29/222) 

D-R- 0% (0/123) 0% (0/123) 
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Figure 1.10. Trial profile at the time of analysis.  
 

Disposition of the solid organ transplant patients who participated in the phase-2 
clinical trial (NCT00299260) with subunit glycoprotein-B vaccine with MF-59 
adjuvant [188]. 
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Figure 1.11. Geometric mean (95% CI) antibody titres measured by glycoprotein-B enzyme-linked immunoassay.  

(A) Seronegative recipients. (B) Seropositive recipients. Tx indicates the geometric mean titres found at the time of 
transplantation. Reprinted from [188]. 
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Figure 1.12. Inverse correlation of titre of antibodies against glycoprotein B present at the time of transplantation with 
duration of viraemia after transplantation.  
 
The titre of anti-gB antibodies were measured by ELISA. Only patients with viraemia at any time were selected for this analysis. 
D−=cytomegalovirus seronegative donor. R−=cytomegalovirus seronegative recipient. D+=cytomegalovirus seropositive donor. 
R+=cytomegalovirus seropositive recipient. Reprinted from [188].  
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Figure 1.13. Proportion of days that patients in the three subgroups at risk of 
CMV infection spent with viraemia or received antiviral treatment. 

A,B, and C show the duration of viraemia. D,E, and F show the duration of 
antiretroviral therapy. D+R−, D+R+, and D−R+ are three groups at risk of primary 
infection, reinfection, and reactivation, respectively. The numbers below each 
column indicate the number of patients with viraemia (or treatment) divided by the 
number in the subgroup. Note the different values on the Y-axes of panels A and 
D compared with panels B, C, E, and F. D−=cytomegalovirus seronegative donor. 
R−=cytomegalovirus seronegative recipient. D+=cytomegalovirus seropositive 
donor. R+=cytomegalovirus seropositive recipient. Reprinted from [188]. 
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Figure 1.14. Vaccine administration schedule.  
 
Upper panel: vaccination and placebo administration schedule (months). Lower panel sample collection time points months (prior 
to transplantation; days (following the transplantation).  

VISIT #                 V#1  V#2   V#3    V#4  V#5 
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Table 1.5. Cytomegalovirus viraemia and treatment in subgroups of transplant patients with defined donor and recipient 
serostatus. Reprinted from [188]. 
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Aims of the thesis: 

 

The pharmacodynamic approach described above allowed evaluation of the 

efficacy of the gB/MF59 vaccine despite the lack of information on the correlate of 

protection. 

Therefore, the remit of my studies was to identify the component of the specific 

humoral response that appears responsible for improving HCMV outcomes in SOT 

recipients.  
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2. General Materials and Methods. 

 

2.1. Patient population. 

 
The population from whom samples have been evaluated and described in this 

work are the cohort of solid organ transplant patients who were enrolled in the 

phase-2 randomised and double-blinded placebo controlled cytomegalovirus 

glycoprotein-B vaccine with MF59 adjuvant trial [188]. In total 140 adult renal and 

liver transplant patients participated in the study; 73 of them received vaccine and 

67 received placebo for HCMV (Figure 1.10). The vaccine or placebo was given in 

three doses: at day 0 (baseline), 1 month and 6 months later (Fig.1. 14). Following 

vaccination, the blood samples from patients were obtained consecutively. The 

first five blood samples were collected in order to measure the antibodies 

(qualitatively and quantitatively) at baseline, and after 1, 2, 6 and 7 months. The 

patients who subsequently underwent transplantation were followed up for 90 

days during which serial blood samples were obtained around days 0, 7, 35, 63, 

90 (Figure 1.14). The level of viral DNA was also tested by measuring HCMV DNA 

by real-time quantitative PCR (RT-qPCR) [188]. Exclusion criteria included: 

pregnancy (a negative pregnancy test was required before each vaccine dose); 

receipt of blood products (except albumin) in the previous 3 months, and 

simultaneous multi-organ transplantation [188].  

 

All the patients that were enrolled into this analysis were managed by pre-emptive 

antiviral therapy and no patient received antiviral prophylaxis. For the strategy of 

pre-emptive therapy, no patient receives prophylaxis and drug is only administered 

to those where surveillance samples detect viraemia above a threshold value 

defined by real time polymerase chain reaction (PCR) [326]. Pre-emptive therapy 

is typically stopped when a patient has two consecutive blood samples where 

HCMV DNA is undetectable [326]. Surveillance for infection continues and some 

patients develop a second episode of viraemia which is again treated until 

viraemia becomes undetectable. 
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The study was approved by the Research Ethics Committee and all patients gave 

written informed consent [188] (Appendix). 
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Table 2.1. Baseline characteristics according to patients’ cytomegalovirus 
status and randomisation group. Reprinted from [188].  
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2.2. Processing of the blood samples from the clinical trial with 

cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant. 

 

Blood samples (5ml) were collected in sterile tubes (without anticoagulant) and 

then left in a standing position for approximately half an hour in order to allow 

enough time for blood to clot, then the samples were centrifuged at RT at 1500g 

for 15min. Following centrifugation, the serum fraction was separated from the 

clot. Serum samples were stored at -78°C prior to analysis.  

 

2.3. Isolation of Peripheral Blood Mononuclear Cells (PBMCs). 

 
PBMCs were retrieved from venous blood samples by centrifugation (20mins 

850g, brake off in 20°C) on Histopaque-1077 (Sigma Aldrich). After centrifugation, 

the top blood plasma layer was removed and discharged. The interface created 

between the plasma layer and the lymphocyte separation medium was carefully 

removed to avoid contamination with adjacent layers and placed into fresh tubes. 

The volume was made up to 30ml by addition of RPMI 1640 and the cell 

suspension was centrifuged at 550g for 10min. The supernatant was discarded 

and the pellet was re-suspended in RPMI 1640. Cells were washed twice by 

centrifugation at 450g for 5mins. 

Cellular pellet was finally re-suspended in 20ml of PBS and cells were counted 

using haemocytometer.  

 

2.4. Detection of viraemia. 

 
Blood samples after SOT were tested by real-time quantitative PCR (RT-qPCR) 

for cytomegalovirus DNA. HCMV PCR was done on a routine basis with an in-

house TaqMan (ABI)–based method as described in detail in [327] and [328]. 

HCMV viraemia was defined as one or more positive HCMV PCR results (cut-off, 

200 genomes/mL of whole blood, equivalent to 168 IU/mL). If viraemia higher than 

3000 genomes per mL was detected (equivalent to 2520 IU/mL), the patient was 

treated with antiviral drugs as described in [188].  
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2.5. Cell culture.  

 
Human Foreskin Fibroblast cell line. 

 

Human foreskin fibroblasts (HFF) were maintained in DMEM media (Dulbecco) 

supplemented with 10% fetal bovine serum (FBS) (Gibco by Life Technologies) 

2mM L-Glutamine, 50UI/ml penicillin (Sigma-Aldrich) and 50UI/ml streptomycin 

solution (Sigma-Aldrich). Cells were passaged as follows: the cell monolayer was 

washed with 10ml of PBS pH 7.7 (IX) [-] CaCl2[-]MgCl2 (Gibco by Life 

Technologies) and incubated with 5mL of trypsin (0.25% Trypsin-EDTA (IX) Gibco 

by Life Technologies) to detach the monolayer and then either used for 

experiments or split, typically, into 3x T175 flasks. The cells were incubated at 37°, 

5%CO2 with 100% humidity.  

 

2.6. Virus.  

 
The low passage strain of the virus Merlin was utilized in the experimental part of 

this thesis and is the clinical reference strain for the sequence of HCMV [329].  

Low passage HCMV strain Merlin (a gift of Dr Richard Stanton, University of 

Cardiff) was cultured in HFF cells. The cells were grown to 80% confluency in 

30ml of DMEM media in T-175 flasks. The medium was removed and the 

monolayer of cells was washed with PBS. Cells were inoculated with Merlin (0.05 

MOI) and virus allowed to adhere to the cells for 1h at 37°C. The viral inoculum 

was removed, and the cell monolayer was washed and replaced with fresh DMEM 

media. The cells were incubated at 37°C until the formation of cytopathic effect 

was observed (approximately 12 days). The supernatant containing the virus was 

then removed and centrifuged at 1000g for 5 minutes in order to remove 

remaining cellular debris. The supernatant was stored in 1mL aliquots at -78°C. 

 

2.7. Staining of the HFF cells for immediate early proteins.  

 
To stain for IE protein expression, 100µl of ice-cold 100% ethanol (Sigma-Aldrich) 

was added to each well and plates were left in -20°C for 30 min. Following the 

incubation, ethanol was discarded, plates were washed 3x with PBS (200µl of 
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PBS to each well) and incubated with PBS at RT for 5min. 100µl of primary 

antibody: (mouse anti-CMV IE antigen monoclonal antibody MAB8131, Millipore, 

1:1000 dilution in PBS) was added to each well and incubated for 1h at RT. 

Following the incubation, plates were washed twice with PBS. Then 100µl of 

secondary antibody- goat anti-mouse Alexa Fluor-568 (Life Technologies; 1:1000 

dilution in PBS) plus DAPI (Life Technologies, 10ng/ml) was added to each well 

and plates were left in the dark for 1h at RT. After the incubation, the dilution of 

secondary antibody and DAPI was discarded, plates were washed 3x with PBS 

(200µl of PBS to each well) and incubated with PBS at RT for 5min. 100µl of fresh 

PBS was added to each well. Plates were covered with plastic lids and stored at 

4°C prior to analysis.  

 

2.8. Cell imaging. 

 
WiScan®- plates were analysed by the Hermes WiScan® 3.4 cell-imaging system 

developed by IDEA Bio-Medical Ltd. and The Medical University of South Carolina 

(MUSC) This high throughput screening system consists of WiScan (data 

generator) and WiSoft (analysis software) and enables cell imaging under 

physiological conditions. Multiparametric analysis of multicolour data was 

performed using this method. 

  

-IE positivity and nuclear staining (chapter 3 and 4, 6 and 7); 

-GFP positivity and nuclear staining (chapter 4), 

 

In these experiments the focus speed was slow and the lens magnification was 

10x and 20x. 

Leica DMI4000B- Microscopic analysis was performed by Automated Inverted 

Microscope Leica DMI4000B with motorized excitation manager and FIM 

(Fluorescence Intensity Manager) and Leica DFC365 FX Fluorescence Camera. 

The system was particularly designed to work efficiently even with weakly 

fluorescing or rapidly fading specimens. The lens magnification used in these 

experiments was 10x and 20x. 
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2.9. Analysis of the results.  

 
The analysis of the results in chapters 3 and 4 was performed by MetaMorph® 

Microscopy Automation & Image Analysis Software v7.8. This software provided a 

tool to: 

- count the number of IE72/86 positive cells and total amount of cells (nuclear 

staining) in chapter 3;  

- count the number of IE86-GFP positive cells and total amount of cells (nuclear 

staining) in chapter 4.   

 
The raw data were analysed then by Graph Pad Prism®-software. This programme 

provided the statistical analysis and graphs for all chapters. 

 

2.10. Statistical analysis of the results.  

 
The analysis of the results from the cohort of patients who participated in a phase-

2 clinical trial (NCT00299260) of subunit glycoprotein-B vaccine with MF-59 

adjuvant was performed by Graph Pad Prism®-software. An overview of the 

statistical tests used and why they were chosen is given below. 

 

Wilcoxon signed ranks test- this is a non-parametric test used when data are not 

normally distributed. The comparison is made between matched observations on a 

single sample. Secondly, each pair is chosen randomly and independently. The 

data are measured at least on an ordinal scale (cannot be nominal). This test was 

used to calculate the statistical differences between the mean value of the 

percentage of infection between the samples obtained from the patients at the day 

of vaccine/placebo administration and their corresponding samples collected at 

the day of transplantation in the neutralization assays (chapter 3) and in the viral 

spread assay (chapter 4). This test takes into account the magnitude of the 

differences within the analysed specimen instead of just assessing whether some 

value is less or greater than the median value (in comparison to the Sign test) 

therefore it has been chosen for this analyses.  

https://en.wikipedia.org/wiki/Ordinal_scale
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Mann-Whitney U test also called the Mann–Whitney–Wilcoxon (MWW):  

Wilcoxon rank-sum test (WRS), or Wilcoxon–Mann–Whitney test- this test 

measures the differences between groups of observations that are not related to 

each other. The Mann-Whitney test was developed to evaluate data that are 

measured on a continuous scale, but do not follow a Gaussian distribution. The 

Mann-Whitney calculations convert the values to ranks and then the sum of ranks 

(U) is computed by Graph Pad Prism® software. The smallest value in these 

populations is assigned the number “1” and the highest value in these two 

compared groups receives the rank “n” (n is the total number of values in the two 

groups). The software calculates then the mean of the ranks in each group, and p 

value reflects the difference between the means in these populations. Statistical 

differences were obtained from the Mann Whitney test between the mean value 

of the percentage of infection between the samples obtained from the vaccinated 

and placebo patients at the time of transplantation in the neutralization assays 

(chapter 3) and in the viral spread assay (chapter 4). This test was also used to 

calculate the statistical differences in the level of CD107a expression between 

groups of patients and healthy donors and to calculate the statistical differences 

between the percentage of infection between cells infected with the virus and the 

cells infected with the virus and incubated with either monoclonal antibodies or 

sera (in chapter 5); and in chapter 6 to calculate the statistical differences 

between the mean value of optical densities (ODs) for particular antigenic 

domains (ADs) between the populations of patients: vaccinated vs placebo and 

viraemia vs no viraemia.  
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3. Neutralizing antibody responses. 

 

3.1. Introduction. 

 

Neutralization can be defined as a biological phenomenon whereby antibodies can 

inhibit the infectivity of a pathogen or toxicity of a toxin molecule. Neutralizing 

antibodies (Nab) usually work by blocking site(s) on bacteria or viruses that are 

used during the entry process into the target cell [330, 331]. In addition, 

neutralization can occur following internalisation of virion- antibody complexes. For 

example, the recently discovered cytosolic IgG receptor- tripartite motif-containing 

21 (TRIM21), was shown to have higher affinity for the Fc portion of antibodies 

than any other IgG receptor in the human body. Importantly, this receptor binds to 

antibody-virus complexes in the cytoplasm and delivers them to the proteasome 

via its E3 ubiquitin ligase activity where it is degraded. This recently discovered 

mechanism of adaptive immunity provides protection against pathogens by 

blocking the transcription of virally encoded genes and extends our understanding 

of the role of neutralizing antibodies in conferring protection not only to the 

extracellular but also to the cytoplasmic compartment [332]. 

 

It has long been considered that the neutralization of pathogens by antibodies is 

the major mechanism of protection following vaccination [333, 334]. Indeed, for 

many licensed vaccines the correlate of protection (if known) is a robust 

neutralizing antibody response. For example, the first vaccine that was developed 

(against smallpox) conferred protection though neutralizing antibody responses 

with the data from animal and human studies indicating that the protective titre of 

neutralizing antibody was approximately 1/20 [333, 335, 336]. Similarly, 

neutralizing antibodies provided the best correlate of immunity after administration 

of other successful vaccines such as: inactivated (IPV) and oral (OPV) polio 

vaccine [337] and MMR (measles [338, 339], mumps, and rubella) vaccine [333, 

334, 337, 339-341]. Therefore, inducing a neutralizing antibody response that 

prevents initiation of infection is highly desirable and it is one of the most important 

goals of vaccination [342]. It has even been said that ‘A vaccine that generates 

http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Virus
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broadly neutralizing antibodies (bnAbs) has been the 'holy grail' of HIV vaccine 

research’ [343].   

 

Several vaccine candidates against HCMV have been evaluated in clinical trials in 

the past three decades, including live attenuated (based on laboratory-adapted 

AD169 strain and laboratory adapted-clinical strain Towne), subunit vaccines (gB) 

and plasmid vaccines (pp65, gB). Although live attenuated vaccines may elicit 

neutralizing antibody responses, protection against infection with the virus was not 

as potent as that following natural infection [344]. However, in the phase-1 trials of 

subunit gB with MF59 adjuvant it was observed that neutralizing antibody titres, 

measured by standard plaque-reduction assay, were significantly higher in the 

sera following vaccination in comparison to the titres of neutralizing antibodies in 

the serum samples obtained prior to vaccination [318, 319]. 

 

The aim of the current study was to investigate the correlate of protection 

associated with the gB MF59 vaccine delivered to solid organ transplant 

candidates in a phase II trial. Preliminary studies of the neutralizing antibody 

responses in the sera from the solid organ transplant patients who took part in this 

randomised study have been already investigated and the results published 

(Table 3.1); [188]. In those experiments sera from the patients were heat 

inactivated and serial dilutions of the specimen were prepared prior to analysis. 

The HCMV strain Towne RC256, which expresses β galacatosidase was used 

and the target cells were human fetal foreskin fibroblasts. Guinea pig complement 

(5% volume/volume) was included in the protocol and incubated with heat-

inactivated and diluted sera. The final read-out in these assays was infectivity, 

determined colourimetrically with X-gal as a substrate for β galacatosidase. Final 

results were shown as a geometric mean of the neutralising antibody titre for each 

group of patients (patients were grouped based on the categories: day of sample 

collection; vaccine/placebo status; HCMV serostatus); (Table 3.1); [188]. 



111 
 

Using this approach, limited evidence of a functional Nab response was detected 

in vaccinated seronegative recipients. The Nab response in seropositive recipients 

was boosted significantly but the response was only transient, because the 

antibody titres declined quickly with time.  

 

Objectives: 

 

The aim of the current study was to extend these observations and investigate in 

more detail, utilising the wild type Merlin strain, whether Nabs were a critical 

component of the protective immune response elicited by gB vaccination in this 

trial. 
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Table 3.1. Titre of neutralising antibody according to time from first dose of vaccine.  

*Insufficient variation to compute a 95% CI. 50% neutralising titres were calculated by graph pad prism. A dilution of 1 in 8 was 
the lowest used: for this analysis, negative sera were assigned a titre of 4 (Griffiths et al., 2011[188]).
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3.2. Materials and Methods. 

3.2.1. Patient population. 

The neutralizing antibody responses were measured in solid organ transplant 

patients who participated in a phase-2 clinical trial with gB/MF59 (described in 

chapter 1.16). Samples evaluated in these assays were obtained from the patients 

at the day of administration of the first dose of the vaccine (seronegative patients: 

n=26; seropositive patients n=18) or placebo (seronegative patients: n=16; 

seropositive patients n=24); and at the day of transplantation (challenge with the 

virus). Some of these patients developed HCMV viraemia post-transplant. 

 

3.2.2. Neutralisation Assay. 

Confluent HFF cells were detached from the surface of culture flasks by addition 

of trypsin (0.25% Trypsin-EDTA (IX) Gibco by Life Technologies). The cell 

suspension was centrifuged at 400g for 5 min, trypsin and media were discharged 

and the cellular pellet was re-suspended in fresh DMEM (with 10%FBS, 

5%pen/strep) media. Cells were plated at the density of 104 HFFs/well (96-well 

plate format). All serum samples were heat inactivated (1h at 56°C) and diluted in 

the ratio 1:10 in DMEM media (with 10%FCS, 5%pen/strep). 30µl of each heat 

inactivated serum sample was added to 270µl of media and aliquoted into 100µl. 

All samples were stored at -78°C prior to analysis. 

 

To study the impact of sera on HCMV infection, the Merlin strain of HCMV was 

incubated with either the aliquoted serum samples (100µl) or characterised 

antibodies that recognise the gB protein: ITC88 (Ohlin) [345]; 2F12 (Abcam), 

HCMV37 (Abcam), or isotype matched controls: IgG1 (Abcam) and IgG2a 

(Abcam);or with DMEM medium only (negative control), for 1h at 37°C and then 

used to inoculate HFFs at the MOIs ranging from 0.5-1 as indicated in figure. Cells 

were then incubated with the mix of antibodies (or serum) and virus for 3h at 37°C; 

5% CO2. Following incubation, the DMEM media with serum and low passage 

HCMV strain (Merlin) was removed and replaced with fresh DMEM media (100µl 

per well/96-well plate). Plates were incubated for 24h in 37°C (for IE staining) or 
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96h in 37°C (for pp28 staining). Following the incubation, media was discarded 

and plates were washed twice with PBS, then the cells were fixed with 70% 

ethanol (Sigma-Aldrich) for 1 hour at -20°C and subsequently washed twice with 

PBS. Cells were stained either for IE72/86 expression (Mouse Anti-CMV IE 

Antigen Monoclonal antibody, clone 6F8.2 (1:1000; Millipore)) or pp28 expression 

(Mouse Anti-CMV pp28 Antigen Monoclonal antibody 1:500, Santa Cruz Biotech) 

for 1 hour, washed in PBS and then incubated with secondary antibody (goat anti-

mouse alexa fluor-568, LifeTechnologies1:1000 dilution). Nuclei were 

counterstained using DAPI- 1:1000 (Sigma-Aldrich) in the secondary antibody 

incubation. Wells were washed with PBS and plates were stored at 4°C prior to 

analyses. 

 

All the error bars shown on the graphs in this chapter representing patients 

indicate standard deviation (SD) and the error bars shown on the summary graphs 

(representing the groups of patients indicate standard error of mean (SEM)). 

 

3.2.3. Cell imaging and analysis of the results.  

Cells were visualised by WiScan® 3.4 cell-imaging system (described in chapter 

2.8). 20 images were captured per well. Each experimental condition was 

repeated three times, and the mean value was calculated from these images by 

Metamorph software. These mean values are represented on the figures: 3.4- 

3.12. The summary graphs show the mean of the values representing each 

patient in the given population (Fig. 3.13).  

The pp28- positive cells were counted manually by randomly selecting fields of 

view, twenty for each well and counting 100 cells and taking an average (Figures: 

3.9- 11).  
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3.3. Results. 

3.3.1. Establishing experimental conditions to detect neutralising antibody 

activity. 

 
In order to test the sera for neutralising antibodies, I first established an assay that 

would allow me to measure neutralizing activity. To do this, a panel of 

commercially available antibodies, 2F12 and HCMV37 which recognise gB of 

HCMV, were tested at different concentrations for their ability to neutralise 

infection (100µg/ml- 0.1µg/ml), when compared with their respective isotype 

controls (IgG1 and IgG2a) at corresponding dilutions. Analysis of infection by IE 

staining showed that the antibody 2F12 proved to be a very potent neutralizing 

antibody- completely blocking the infection at 100µg/ml concentration and was still 

highly effective at 10µg/ml. In contrast, the HCMV37 antibody failed to neutralize 

HCMV infection (Figures 3.1 A and 3.2).  

 

Next, I tested antibody ITC88– a known neutralising antibody- in my assay 

alongside 2F12 antibody. Again the antibodies were tested at different 

concentrations: 10 µg/ml; 1 µg/ml; 0.1µg/ml; together with isotype control- IgG1 at 

corresponding dilutions.  

Both antibodies were confirmed to effectively block infection in a dose dependent 

manner; the highest neutralization was observed with the highest concentrations 

of antibodies (Figures 3.1.B. and 3.3).  

 

These data show that neutralization of HCMV infection can be effectively 

measured using this assay and that for future assays the anti-gB antibody ITC88 

at the concentration 10µg/ml was used as a positive control.  
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A) B) 

 

Figure 3.1. Commercially available antibodies display different abilities to block HCMV infection.  

A) Merlin (MOI=1) was incubated with 2F12, HCMV37 or the isotype controls IgG1 and IgG2a, respectively; at the 
concentrations: 100µg/ml; 10µg/ml; 1µg/ml; 0.1µg/ml. After 24 hours cells were stained for IE to quantify infection. B) Merlin 
(MOI=1) was incubated with 2F12, ITC88 or isotype control IgG1 at the concentrations: 10µg/ml; 1µg/ml; 0.1µg/ml. After 24 
hours cells were stained for IE to quantify infection. The differences in the decrease of % of infection between groups were 
assessed by Mann-Whitney U test. ns (not significant):p>0.05; **:p<0.01; ***p<0.001.  
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Figure 3.2. The HCMV37 antibody does not block HCMV lytic infection.  
 
Merlin was incubated with either HCMV37 or IgG2a isoptye control at different concentrations (10- 0.1ug/ml) for 1 hour and then 
used to infect HFFs (MOI=1). Cells were then fixed and immuno-stained for IE gene expression 24hpi (green). Nuclei were 
counterstained with DAPI (blue). 
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Figure 3.3. ITC88 antibody blocks HCMV lytic infection.  
 
Merlin was incubated with either ITC88 or IgG1 isoptye control at different concentrations (10- 0.1ug/ml) for 1 hour and then used 
to infect HFFs (MOI=1). Cells were then fixed and immuno-stained for IE gene expression 24hpi (green). Nuclei were 
counterstained with DAPI (blue). 
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3.3.2. Testing neutralizing antibody responses in sera from the patients 

enrolled in the phase-2 clinical trial with recombinant subunit glycoprotein-B 

vaccine with MF59 adjuvant. 

 

Having established a protocol and controls for studying the ability of antibodies to 

block HCMV infection as a surrogate measure of neutralisation, I next tested 

whether similar activity could be measured in serum samples from liver and renal 

transplant recipients who participated in the phase-2 clinical trial.  

 

 

 

My first experiments analyzed the sera from the seropositive patients. Merlin virus 

was pre-incubated with sera from seropositive patients pre vaccination (baseline) 

and at post vaccination (day of transplant) and then used to infect HFFs. The data 

show that pre-incubation with sera from seropositive individuals reduced the level 

of infection (Figures 3.4 and 3.5) which, in many instances, was comparable with 

the ITC88 control. Specifically, sera from the majority of the patients were able to 

neutralize virus as effectively as the positive control- ITC88 at the concentration 

10µg/ml; although I did observe that sera from some seropositive patients were 

less effective (e.g. 003-0008; 003-0003, 003-00015, 001-00046, 001-00051); 

(Figures 3.4, and 3.5). However, the data also show that no differences were 

observed between paired sera pre and post vaccination (Figure 3.13). There were 

also no statistical differences in the mean value of percentage of infected cells 

between placebo and vaccinated patients who did and did not develop viraemia 

after transplantation (Figure 3.12).  

3.3.2.1. Sera from seropositive patients display variable levels of neutralizing 

activity but this is independent of vaccination status. 
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Moreover, there were no differences between the mean value of the percentage of 

infection between the serum samples obtained from the patients at the day of 

vaccine administration (pre-vaccination) and at the day of transplantation in the 

seropositive group of solid organ transplant patients (Figure 3.12). Thus, although 

HCMV seropositive individuals display a neutralizing antibody response against 

HCMV, vaccination with gB conferred no increased protection versus those 

administered the placebo control. Furthermore, no correlation between 

neutralizing activity and protection from viraemia was observed. Both groups 

(viraemia vs non-viraemia) responded similarly in this assay which suggests that 

the neutralizing antibody responses that were evoked mainly by natural infection 

and possibly boosted with the vaccine (Table 3.1; [188]) may not confer protection 

against the onset of viraemia. 
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Figure 3.4. Sera from seropositive renal transplant patients reduces HCMV infection in vitro but is not enhanced by 
vaccination. 
 
Merlin was incubated with sera from seropositive renal patients, or an ITC88 positive control, and used to inoculate HFFs in vitro 
(MOI=1). Infection was assayed by IE immunostaining 24hpi and the proportion of infected cells calculated by counterstaining 
nuclei with DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day of transplant – red bars) was 
tested in triplicate. Sera from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who 
went onto display evidence of viraemia post-transplant.  
 



122 
 

Neutralizing Antibody Responses.

Seropositive Liver Transplant Patients.

in
fe

ct
ed

 c
el

ls

IT
C
88

00
3-

00
01

00
3-

00
09

00
3-

00
01

1

00
3-

00
02

3

00
3-

00
02

4 

00
3-

00
04

00
3-

00
01

5

00
3-

00
02

2

0

10

20

30

40

50

no viraemiacontrols viraemia

vaccinated patients

Day of Transplantation

Pre-vaccination

%
 o

f 
in

fe
c
ti

o
n

Neutralizing Antibody Responses.
Seropositive Liver Transplant Patients.

in
fe

ct
ed

 c
el

ls

IT
C
88

00
3-

00
01

0

00
3-

00
01

6

00
3-

00
01

8

00
3-

00
01

9

00
3-

00
05

00
3-

00
02

1

00
3-

00
02

5

00
3-

00
02

0

00
3-

00
08

00
3-

00
03

0

10

20

30

40

50

no viraemiacontrols viraemia

placebo patients

Pre-vaccination

Day of Transplantation

%
 o

f 
in

fe
c
ti

o
n

 
Figure 3.5. Sera from seropositive liver transplant patients reduces HCMV infection in vitro but is not enhanced by 
vaccination.  
 
Merlin was incubated with sera from seropositive liver patients, or an ITC88 positive control, and used to inoculate HFFs in vitro 
(MOI=1). Infection was assayed by IE immunostaining 24hpi and the proportion of infected cells calculated by counterstaining 
nuclei with DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day of transplant – red bars) was 
tested in triplicate. Sera from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who 
went onto display evidence of viraemia post-transplant. 

 B) A) 
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A. Neutralization measured as decrease in the percentage of IE positive cells. 

 

Next, I performed analysis of the seronegative cohort sera samples. As before, 

neutralization assays measured the decrease in the proportion of infected cells (by 

IE gene expression). Here I could find only minimal evidence to support the 

hypothesis that a neutralizing antibody response directed towards gB in sera from 

seronegative patients could be mediating the protective effect seen following 

vaccination. Specifically, the percentage of HCMV infected cells incubated with 

sera from seronegative patients was comparable with the percentage of HCMV 

infected cells in negative controls (Figures 3.6 and 3.7). The data show no 

differences in the percentage of infection between vaccinated and placebo 

patients. Moreover, there is no distinction between the levels of neutralizing 

antibodies in patients who developed viraemia and those who did not. Finally, 

there are no observable changes between the percentage of infected cells using 

virus that had been pre-incubated with sera harvested pre- placebo/vaccine 

administration and with sera harvested at the time of challenge with the virus 

(transplantation); (Figures 3.6, 3.7 and 3.12).  

3.3.2.2. Sera from the seronegative patient cohort display minimal evidence of 

neutralizing antibody activity after vaccination. 
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Importantly, repetition of the study showed that the observations were consistent. 

A combined analysis of patient sera based on vaccination status and transplant 

outcome of either renal or liver transplant patients showed no differences in the 

level of neutralization between pre-vaccination (depicted in blue) and the day of 

transplantation (depicted in red) samples in these vaccinated seronegative 

patients (Figures 3.8A and 3.8C). The level of neutralization in vaccinated 

individuals was similar to placebo group in both renal (Figures 3.8A and 3.8B) and 

liver (Figures 3.8C and 3.8D) patients. Additionally, no differences in the level of 

neutralization were found between patients who experienced viraemia and those 

who did not following challenge with the virus at time of transplantation.  

 

B. Neutralization measured as decrease in the percentage of pp28 expressing 
cells. 

 

Previously, phase-1 studies with this vaccine formulation clearly indicated that 

neutralising antibodies were generated based on plaque assays that were used in 

those analyses. To address this discrepancy, I investigated whether my readout of 

IE gene expression could be an explanation. I investigated the pp28 positivity of 

cells infected with the virus because pp28 is a late protein and therefore a marker 

of the ability of the virus to complete the viral lifecycle. Any observed difference in 

the level of expression of the early and late genes would suggest that the 

neutralization may be occurring post-infection. In these sets of experiments sera 

from seronegative renal transplant patients (vaccinated n=12, placebo: n=8) were 

incubated with virus (Merlin) and subsequently added to confluent fibroblasts. 

Cells were stained 96h post infection and the proportion of pp28 positive cells was 

counted manually. The vaccinated cohort was compared to the corresponding 

placebo group and respective controls (Figures 3.9 and 3.11).  

This analysis showed that the number of pp28 positive cells was generally 

comparable to the number of IE positive cells in corresponding samples from this 

seronegative renal transplant group (Figure 3.10). Importantly, the level of pp28 

did not change following the administration of the vaccine (Figures: 3.9-3.11) 

supporting my previous finding with IE that vaccination did not elicit neutralizing 

antibody responses in seronegative vaccine recipients.  



125 
 

 

Figure 3.6. Sera isolated from seronegative liver transplant recipients do not reduce HCMV infection in vitro.  
 
Merlin was incubated with sera from seronegative patients, or an ITC88 positive control, and used to inoculate HFFs in vitro 
(MOI=1). Infection was assayed by IE immunostaining 24hpi and the proportion of infected cells calculated by counterstaining 
nuclei with DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day of transplant – red bars) was 
tested in triplicate. Sera from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who 
went onto display evidence of viraemia post-transplant. 

in
fe

ct
ed

 c
el
ls

IT
C
88

00
4-

00
01

5

00
4-

00
01

6

00
4-

00
02

2

00
4-

00
02

4 

00
4-

00
02

8

00
4-

00
03

0

00
4-

00
03

00
4-

00
01

2

00
4-

00
01

7

00
4-

00
02

1

00
4-

00
02

5

0

20

40

60

80

100

Pre-vaccination

Day of Transplantation

no viraemiacontrols viraemia

vaccinated patients

%
 o

f 
in

fe
c
ti

o
n

in
fe

ct
ed

 c
el
ls

IT
C
88

00
4-

00
02

00
4-

00
07

00
4-

00
01

4

00
4-

00
02

0

00
4-

00
02

5

00
4-

00
04

00
4-

00
05

00
4-

00
01

9

0

20

40

60

80

100

Pre-vaccination

Day of Transplantation

no viraemiacontrols viraemia

placebo patients

%
 o

f 
in

fe
c
ti

o
n

A) B) 



126 
 

 
Figure 3.7. Sera isolated from seronegative renal transplant recipients do not reduce HCMV infection in vitro.  
 
Merlin was incubated with sera from seronegative patients, or an ITC88 positive control, and used to inoculate HFFs in vitro 
(MOI=1). Infection was assayed by IE immunostaining 24hpi and the proportion of infected cells calculated by counterstaining 
nuclei with DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day of transplant – red bars) was 
tested in triplicate. Sera from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who 
went onto display evidence of viraemia post-transplant. . 
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Figure 3.8. No difference in the level of neutralization (measured as a 
decrease in % of infectivity) between the sera isolated from seronegative 
transplant recipients who did and did not experience viraemia post-
transplant.  
 
Merlin was incubated with sera from seronegative renal transplant patients 
(vaccinated=12; placebo: n=7), sera from seronegative liver transplant patients 
(vaccinated=10; placebo: n=9) or an ITC88 positive control, and used to inoculate 
HFFs in vitro (MOI=1). Infection was assayed by IE immunostaining 24hpi and the 
proportion of infected cells calculated by counterstaining nuclei with DAPI. Sera 
isolated pre-vaccination (baseline – blue bars) or post vaccination (day of 
transplant – red bars) was tested in triplicate. Sera from patients vaccinated with 
gB (A,C) or placebo (B,D) are shown and are subdivided into patients who went 
onto display evidence of viraemia post-transplant. The differences in the level of IE 
positivity between patients who developed viraemia and those who were protected 
post-transplant were not statistically significant as p-value for differences in the 
level of infection at the day of transplantation were P>0.05; *: p<0.05; ***: p<0.001. 
Results were obtained from the Mann Whitney test.  

A) 

C) 

B) 

D) 
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Neutralizing Antibody Responses.
 Solid Organ Transplant Patients who participated in phase-2 clinical trial with

 soluble, recombinant human glycoprotein-B vaccine with MF59 adjuvant.
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Figure 3.9. Pre-incubation of HCMV with seronegative sera generally does 
not reduce the detection of pp28 positive cells.  
 
Merlin was incubated with sera from seropositive renal patients, or an ITC88 
positive control, and used to inoculate HFFs in vitro (MOI=1). Infection was 
assayed by pp28 immunostaining 96hpi and the proportion of infected cells 
calculated by counterstaining nuclei with DAPI. Sera isolated pre-vaccination 
(baseline – blue bars) or post vaccination (day of transplant – red bars) was tested 
in triplicate. Sera from patients vaccinated with gB (A) or placebo (B) are shown 
and are subdivided into patients who went onto display evidence of viraemia post-
transplant.  

A) 

B) 



129 
 

 
 
Figure 3.10. Sera isolated from seronegative renal transplant patients do not 
display differential activity against HCMV when IE positivity is measured or 
minimal differences when pp28 positivity is measured. 
 
A) and B) represent IE staining; and C) and D) represent pp28 staining in 
corresponding groups of seronegative renal transplant patients. The differences in 
the level of IE and pp28 (vaccinated=12; placebo: n=7) positivity between patients 
who developed viraemia and those who were protected post-transplant were not 
statistically significant (at the day of transplant) as p-value for differences in the 
level of infection at the day of transplantation were ns: P>0.05; *. Results were 
obtained from the Mann Whitney test.   

A) 

C) D) 

B) 
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Figure 3.11. Vaccination has no significant impact on the number of pp28-positive cells post infection.  
 
Merlin was incubated with sera from seropositive renal patients (vaccinated=12; placebo: n=7), or an ITC88 positive control, and 
used to inoculate HFFs in vitro (MOI=1). Infection was assayed by pp28 immunostaining 96hpi and the proportion of infected 
cells calculated by counterstaining nuclei with DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day 
of transplant – red bars) was tested in triplicate. Sera from patients vaccinated with gB or placebo are subdivided into patients 
who went onto display evidence of viraemia post-transplant. Positivity between patients who developed viraemia and those who 
were protected post-transplant were not statistically significant (at the day of transplant) as p-value for differences in the level of 
infection at the day of transplantation were ns: P>0.05; *: p<0.05; **: p<0.01. Results were obtained from the Mann Whitney test.  
  

Neutralizing Antibody Responses
in seronegative liver transplant patients- measured by pp28 positivity .
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Figure 3.12. Summary of neutralizing antibody responses in Solid Organ 
Transplant Patients.  
 
Merlin was incubated with sera from seropositive renal patients, or an ITC88 
positive control, and used to inoculate HFFs in vitro (MOI=1). Infection was 
assayed by IE immunostaining 24hpi and the proportion of infected cells 
calculated by counterstaining nuclei with DAPI. Sera isolated pre-vaccination 
(baseline – blue bars) or post vaccination (day of transplant – red bars) was tested 
in triplicate. Sera from patients vaccinated with gB or placebo are subdivided into 
patients who went onto display evidence of viraemia post-transplant; vaccine: 
(seronegative patients: n=26; seropositive patients n=18); placebo (seronegative 
patients: n=16; seropositive patients n=24). The differences in the level of IE 
positivity between vaccinated and corresponding placebo groups were not 
statistically significant as p-value for differences in the level of infection 
(Vaccinated vs. Placebo) at the day of transplantation were P>0.05. seronegative, 
no viaremia (vaccinated vs placebo) p=0.6513; seronegative, viaremia (vaccinated 
vs placebo) p= 0.345; seropositive, no viraemia (vaccinated vs placebo) p=0.76; 
seropositive, viraemia (vaccinated vs placebo) p=0.53. Results were obtained 
from the Mann Whitney test.   
  

Neutralizing Antibody Responses.
 Solid Organ Transplant Patients who participated in phase-2 clinical trial with

 soluble, recombinant human glycoprotein-B vaccine with MF59 adjuvant.
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3.4. Discussion. 

 
Neutralization is commonly defined as the ability of antibodies to prevent infection. 

The mechanism can involve neutralizing antibodies binding to the pathogen and 

promoting the recruitment of complement to lyse the virus. Alternatively, and 

importantly for the assays I performed here in the absence of complement, they 

can also function to block the attachment of the pathogen and subsequent entry 

into susceptible cells. Therefore, evoking neutralizing antibodies through 

vaccination is highly desirable. It has been demonstrated that in the case of many 

licensed vaccines neutralization is the major immunological mechanism that 

confers protection [334, 342]. Thus I asked whether this gB/MF59 vaccine elicited 

neutralizing antibodies and whether the protection seen in vaccinated patients 

correlated with the high titres of these Nabs.  

 

These studies support the findings published before [188]. Although the 

methodology (immunostaining) and materials (strain of the virus) used in these 

experiments were different, I now demonstrate in a separate assay that the 

glycoprotein-B vaccine did not evoke protective neutralizing antibody responses in 

seronegative vaccine recipients. Importantly, my assay utilized the wild type strain 

of HCMV, Merlin, which represents the HCMV strain used in vitro which most likely 

represents the virus circulating in vivo [329]. The proportion of infected cells 

following incubation of the inoculum virus with sera from vaccinated seronegative 

patients was very high, comparable with the negative control, cells infected with 

virus alone. Such a result suggests that the vaccination did not elicit potent 

neutralizing antibody responses that could inhibit the entry of the HCMV into the 

fibroblasts in these seronegative vaccine recipients.   

 

These observations are consistent with those previously published by our group, 

where neutralization in sera from the same cohort of vaccinated/placebo 

seronegative transplant patients [188] showed only minimal level of Nabs in 

seronegative patients (Figure 3.1, Table 3.1). However, this is in contrast to a 

previous phase-1 study with seronegative children vaccinated with this soluble 

recombinant gB with MF59 vaccine by Mitchell et al. [320]. According to that report 

the pediatric group mounted much higher levels of neutralizing antibodies in 
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comparison to the level of these antibodies in naturally infected individuals and 

adult populations who participated in other phase-1 trials with this vaccine 

formulation [318, 319]. 

 

It is worth noting that these vaccinated populations are very diverse which could 

potentially explain some of the differences in the level of neutralization- it is well 

known that the immune system of young children is more efficient and able to 

produce much higher levels of neutralizing antibodies than the immune system of 

adults, and this ability maybe further decreased in generally unwell transplant 

populations who are aged around 50 years on average. There is a precedent, in 

that patients receiving renal dialysis (and so may be candidates for renal 

transplantation) mount poor responses to hepatitis B vaccine [346, 347]. 

 

These apparent discrepancies between previous studies and my own led me to 

investigate further. My original assay measured whether IE gene expression 

(which occurs within 3hpi) was detectable as a means to assess lytic infection. 

Thus we could not exclude possible effects on post-IE gene expression. 

Therefore, I performed additional analysis for pp28 positivity in cells infected with 

HCMV (Merlin) that was pre-incubated with seronegative renal transplant patients’ 

sera obtained at time of vaccine/placebo administration and time of 

transplantation. This protein (pp28) is known to be expressed in late stages of viral 

life cycle and is indicative of successful viral replication. The aim was to formally 

rule out the possibility that HCMV antibodies could promote abortive viral 

infections which would leave cells as IE positive but unable to produce infectious 

virus (as measured by a plaque assay). 

 

The results showed no difference in the expression of pp28 between vaccinated 

and placebo cohort and also no differences in the level of expression of pp28 

between pre-vaccination and day of transplantation in vaccinated patients. These 

results correspond well to the levels of IE positivity which suggests that the viral 

particles that are not neutralized are able to undergo all phases of lytic cycle gene 

expression and thus likely produce new progeny which subsequently infect other 

cells.  
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In contrast to the seronegatives, the read-outs in vaccinated seropositive solid 

organ recipients are far more complex to analyze due to the pre-existing 

neutralizing antibody responses. It is interesting to note that the level of 

neutralization is variable amongst the seropositive patients. Although serum from 

the majority of patients was very effective in neutralizing the virus and preventing 

infection, sera from others were less efficient. However, when I analyzed the 

combined data from all seropositive patients only small differences were seen 

between placebo and vaccinated patients. Most importantly, I found little evidence 

to suggest that the vaccine increased the pre-existing neutralizing immune 

responses in seropositive patients that would be still present at the day of 

transplantation (when analyzed at the population level- no differences in the 

proportion of infected cells were observed between the day of vaccination and the 

time of challenge with the virus -transplantation). Anti-gB antibodies with 

neutralizing capacity are presumably present in most of these individuals following 

natural infection with the virus; however their efficiency in neutralizing the virus 

may differ significantly.  

 

Furthermore, although the vaccine was based on gB, seropositive individuals may 

have pre-existing Nabs directed against the pentameric complex of HCMV. This 

complex consisting of gH/gL and UL128/130/131A is a major target of the 

neutralizing antibody responses due to the potency of antibodies against these 

antigens, shown in both human and animal studies [203, 348-350]. The 

pentameric complex is necessary for viral entry into endothelial, epithelial cells, 

dendritic cells and presumably some other cell types as well. However, the 

infection of fibroblasts requires only the presence of the heterotrimer gH/gL/gO 

[197, 351, 352]. One study demonstrated that antibodies that target the 

UL128/130/131A failed to block infection of fibroblasts but have exceptionally high 

potency in neutralizing HCMV infection of endothelial, epithelial cells and myeloid 

cells [201]. Nevertheless, many recent studies have demonstrated that antibodies 

against gH/gL are very effective in neutralizing the virus and preventing infection 

of fibroblasts. It has been hypothesized that gH might be ‘a universal’ antigen if 

anti-gH antibodies could effectively interfere with binding to the conformational 

epitopes on the pentameric complex and inhibit the infection of epithelial and 

endothelial cells as well as inhibit the infection of fibroblasts [201]. In my assays, 
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where I have not used complement, it is likely that in the seropositives, the 

presence of antibodies against gB and the gH/gL/gO trimer are likely mediating 

the effects we are observing given the importance of these glycoproteins for 

HCMV entry into fibroblasts [203, 350, 353, 354]. 

 

It is likely that effective neutralization seen in some seropositive individuals could 

be due to antibodies targeted against antigens other than gB (e.g.: gH). To test 

this hypothesis I would incubate the sera with the gB vaccine protein prior to the 

neutralization assay in order to deplete the anti-gB antibodies from seropositive 

sera: if under these conditions no impact on the ability of sera to neutralize HCMV 

infection was observed it would provide further supporting evidence that the 

vaccine induced gB responses are not important for the neutralization phenotype 

we observe in vitro.  

 

Our analyses of seropositive sera illustrate that it is possible to boost neutralizing 

antibodies directed against HCMV using our assay. Thus it remains difficult to 

explain why the vaccination failed to induce potent neutralizing antibody 

responses in seronegative individuals. One well-known mechanism that is utilized 

by many viruses is the glycosylation of the highly protective antigenic domains and 

epitopes and shielding them from our immune system (preventing antibody 

binding due to steric hindrance). This common strategy of immune-evasion was 

noticed and well described in other viruses, such as: influenza [355] and HIV [356, 

357]. The recently published crystal structure of HCMV gB gives us a first insight 

on how the antigenic domains might be presented on this protein [358]. Based on 

this crystal structure it became clear that the antibody domains: AD4, AD5 and site 

1 of AD2 that are believed to elicit potent neutralizing responses are heavily 

glycosylated, which is in contrast to the ADs that do not elicit potent neutralizing 

antibody responses- especially AD1 [158, 161, 191] (described in chapter 6). As 

mentioned before, this recombinant vaccine protein was expressed in mammalian 

cell line (CHO). Therefore the patterns of glycosylation on this recombinant gB 

should remain similar to those observed with the native protein. Consequently, 

future experiments should investigate whether the protective antigenic domains 

that are present on this recombinant vaccine protein are also heavily glycosylated, 

in a similar manner to those described on the crystalized gB. Such a strategy 



136 
 

would impede the immune surveillance of the host and could, at least partly, 

explain poor neutralizing antibody responses in these seronegative vaccine 

recipients.  

 

Other documented ways to evade the immune system of the host include:  

-selective exposure of domains to prevent recognition of protective epitopes and 

subsequent binding of potent neutralizing antibodies during entry (strategy used 

by HIV, reviewed elsewhere [359]);  

-using sequential multiple receptors that shorten the exposure of protective 

epitopes (e.g.: HCV);  

-virus-specific neutralizing antibody- driven sequence evolution of glycoproteins  

(observed during acute HCV infection in vivo [360]). 

 

Alternatively, antibodies that are able to effectively neutralize virus might be 

targeting only the pre-fusion form of this protein and be partly/completely 

inefficient in neutralizing the post-fusion form. Indeed, it is possible that the 

vaccine antigen is presented as the post-fusion form of this protein as the 

modifications that were introduced to this vaccine antigen in order to increase 

stability and solubility, as well as facilitate expression in CHO cells, were very 

similar to the modifications reported on the crystallized gB protein structure which 

represents the post-fusion state [358]. Therefore, the antibody responses that 

were elicited or boosted by vaccination may have decreased efficacy in 

comparison to those that were elicited following natural infection as only the post-

fusion form of the protein would be exposed to the immune system of 

seronegative, vaccinated patients. If this holds true, then this could potentially 

explain poor responses of the seronegative patients towards these antigenic 

domains although the overall antibody response to gB does not appear to be 

impaired [188]. It remains to be further investigated to what extent the virus 

presents the pre-fusion form of this antigen to the immune system and whether the 

exposure of antigenic domains from the post- fusion state might be an immune-

evasive strategy used by the virus to effectively avoid protective immunological 

responses. 
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To conclude: in the case of this vaccine antigen (recombinant gB protein) it is 

difficult to predict the actual conformation of this protein, how known antigenic 

domains are presented on this recombinant gB and the potential differences from 

the native protein. Without having a resolved crystal structure of this recombinant 

protein it is impossible to predict the accuracy of the presentation of the antigenic 

domains. However, potential alterations of the structure and antigen presentation 

of this recombinant protein (in comparison to the native one) could, at least partly, 

explain why the vaccine induced only minimal neutralizing antibody responses in 

these seronegative patients.  

 

One of the biggest limitations of this study is the small number of analyzed 

samples which has an impact on the power of statistical analyses. Although there 

were some statistically significant differences detected in the assay between the 

day of vaccination and the day of transplantation in the groups of placebo 

seronegative and placebo seropositive patients (figure 3.12) the confirmation of 

biological relevance would require the study of further samples. 

 

Nevertheless, although classically neutralisation has been thought to be the major 

mechanism that protects vaccinated individuals, recent data published by many 

groups suggest that non-neutralizing antibodies (nNab) that do not possess 

neutralizing activity in vitro may be crucial in conferring protection against 

pathogens in vivo [342]. The dogma that the induction of a potent neutralizing 

antibody response is the pre-requisite of protective immunity following vaccination 

has been challenged by data published recently on HIV-1. These results suggest 

that other functional, but non-neutralizing, antibodies may also play an important 

role and contribute to the protection afforded by vaccines against the pathogen 

[342, 343]. A pharmacodynamic assessment of sera from the patients who 

participated in the RV144 HIV vaccine trial demonstrated the presence of 

antibodies that bind to the HIV envelope protein whereas, in contrast, the cytotoxic 

T cell responses evoked in the vaccinated patients were weak. Although this was 

consistent with the humoral response being important for protection, in-depth 

analysis of the clinical material revealed that the antibodies that were elicited by 

the vaccine failed to neutralize varied strains of this virus- and thus did not 

possess broadly neutralizing activity [342, 361] leading to the hypothesis that the 
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modest efficacy seen in this clinical trial was afforded by other immune responses, 

either alone or in combination with neutralizing antibodies [362].  

 

In order to investigate this concept of non-neutralising antibodies further, detailed 

analysis of the robust antibody response generated by this HIV vaccine was 

performed. These data revealed subtle differences in the immunoglobulin 

subclasses amongst the patients. Specifically, there was an increase in the level 

of IgG3 in vaccine recipients and an inverse correlation between the IgG3-

mediated non-neutralising antibodies (nNab) against the first and the second 

variable domain (V1 and V2) of the surface glycoprotein envelope (Env) and the 

risk for HIV acquisition. However this was a short-term effect and the level of IgG3 

decreased rapidly after administration of the vaccine [363-365]. The IgG3 antibody 

subclass is well known to have a high affinity for the Fcγ receptor and IgG3 can fix 

complement. It has already been shown that IgG3 had a role in mediating 

protection against some pathogens [366] [367].Thus, it was postulated that these 

binding, but non-neutralizing, antibodies were capable of inhibiting the 

transmission of the virus and decreasing infectivity via alternative mechanisms, 

e.g. using effector cells to kill infected cells such as Antibody Dependent Cellular 

Cytotoxicity (ADCC), Antibody Dependent Cellular Phagocytosis (ADCP) or 

opsonisation [368, 369]. Moreover, a direct correlation between IgA-mediated 

antibodies and increased risk for infection with the virus was reported. Follow-up 

studies of humoral responses showed that ADCC was inversely correlated with 

risk when the plasma IgA Env-specific antibodies were at low level [370] [371, 

372].Thus, these studies of immune correlates argue that functional antibodies 

that do not possess neutralizing abilities in vitro might still contribute to protection 

following administration of the vaccine [342, 343]. 

 

To conclude, my data, supported by findings published before [188], provides no 

strong evidence that a potent neutralising antibody response is responsible for 

mediating the protection afforded by this vaccine. Consequently, this suggests that 

additional humoral effector functions are important.  
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4. Antibody mediated inhibition of viral spread. 

 

4.1. Introduction. 

 
Human cytomegalovirus infection produces cell-free and cell associated virus. It 

can be hypothesised that viral spread in cultures could be inhibited by humoral 

responses through three distinct mechanisms [373]: 

 

-by direct neutralization of cell-free virus,  

-by interruption of cell-to-cell transmission of the virus,  

-by the induction of antibody effector functions that eliminate virally infected cells. 

It is hypothesised that a large proportion of HCMV in vivo is disseminated by the 

transmission of cell associated virus (Figure 4.1) [195]. Arguably, virus that 

transmits from cell to cell could be effectively hidden from neutralising antibody 

responses providing further support for a role for alternative mechanisms of the 

humoral response being important for controlling HCMV in vivo. In 1992 Navarro β 

galacatosidase reported for the first time that monoclonal anti-gB antibodies that 

were able to neutralize cell-free herpes simplex virus in a complement 

independent manner were also capable of blocking the cell-to-cell spread of 

infection in HSV [374]. Parallel studies on humoral responses against HCMV gB 

found that a vast majority of antibodies that exerted very potent neutralizing 

activities in in vitro assays, some of them were also able to block dissemination of 

the virus from cell-to-cell [175]. Follow up studies by another group showed that 

the ability of antibodies to block the spread of HCMV was not correlated with their 

neutralizing capacities [375]. In contrast to these observations, a further study 

suggested that sera from seropositive HSC transplant patients failed to block 

spread of the virus [376] suggesting that in vivo observations may not reflect data 

obtained in vitro. Moreover, more recent detailed analysis of a panel of 

monoclonal anti-gB antibodies and CMV-Ig demonstrated that they failed to 

control the spread of the virus in epithelial and fibroblast models in vitro [373, 377]. 

Although the reasons for these discrepancies are unknown, it is clear that the 
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understanding of viral cell-to-cell spread and the immune responses of infected 

individuals that target this route of viral transmission are very important.  

In order to model the impact of the sera on the long term culture of HCMV in vitro 

a viral spread assay was developed. In principle, HFFs are infected at a low MOI 

(0.05) and then the growth of the virus is monitored over time. As the virus 

replicates it will infect an increasing number of cells with each replication cycle I 

can assess the level of infection by monitoring plaque formation or use IE 

immunofluorescence to quantify more precisely the number of infected cells. 

Furthermore, I can manipulate the growth kinetics of the HCMV strains via genetic 

modification. Recent studies have shown that genetically wild type HCMV that 

encodes a functional pentameric complex (the pentameric complex comprising the 

products of 5 genes: gH/gL, UL128-131A that are required for entry into non-

fibroblast cells [174]) exhibits a greater percentage of cell associated virus [194]. 

Under laboratory conditions, growth in HFFs selects for mutations in this region 

that favours production of cell free virus. To control for this, I used genetically 

modified Merlin-IE2 GFP (4.4.2) that grows mostly as cell associated virus unless 

the virus is grown in specialised HFFs expressing the Tet repressor protein. 

 

 

Objectives: 

 

The objectives for this chapter were to investigate whether sera from the patients 

who participated in this clinical trial (described in chapter 1.16) possess antibodies 

that can effectively inhibit the spread of the virus from cell-to-cell.  
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Figure 4.1. Schematic representation of possible routes of HCMV infection. 

A) via the production of extracellular virus which can then infect new cells, B) direct spread of the virus from cell to cell. The 
clinical isolates use both routes of infection and this is represented by: i) and iii) scenario; laboratory adapted strains are 
predominantly the cell-free, represented by: ii) scenario.  

Neutralizing 

antibodies 

Neutralizing 

antibodies 

i) 
 

ii) 
 

iii) 
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4.2. Materials and Methods. 

4.2.1. Patient population. 

The serum samples from SOT patients (chapter 1.16) were examined in these 

novel viral spread assays. Samples that were tested in this experiment were 

obtained from the patients at the day of first vaccine (seronegative patients: n=25; 

seropositive patients n=17) or placebo (seronegative patients: n=14; seropositive 

patients n=23) administration and the corresponding samples collected on the day 

of transplantation (equivalent to challenge with the virus). 

 

4.2.2. Viruses. 

Two viruses were used for these analyses. Firstly, the Merlin clinical isolate was 

used (a gift of R. Stanton, University of Cardiff) – this virus is considered the 

reference strain in HCMV [329]; (described in chapter 2.6). The Merlin strain, 

when extensively passaged through fibroblasts, will grow as a cell free virus due to 

an accumulation of mutations in the UL128-131 locus of the virus. Therefore, a 

second strain of Merlin was used. This virus was also Merlin but contained two key 

features that allowed me to use and analyse it as a cell associated virus: (an IE2-

GFP virus) which was less accessible to neutralizing antibody mediated responses 

(Figure 4.1) [174].  

 

To allow analyses of cell associated virus in real time we used an IE2-GFP virus 

that was constructed in the Merlin backbone (a gift of Dr R. Stanton, University of 

Cardiff). Importantly, this virus contains a Tet repressor sequence upstream of the 

UL128 promoter. The UL128 gene along with gH/gL/UL130 and UL131A forms the 

pentameric complex that is required for the infection of epithelial and endothelial 

cell types [174]. However, the expression of the pentameric complex in HFFs is 

also considered to block the release of cell-free virus. Thus, infection of HFFs with 

a virus expressing wild type pentamer will result in a predominantly cell associated 

infection. Importantly, the inclusion of the Tet repressor allows the growth of the 

virus as a cell free virus through propagation of the virus in HFF-Tet expressing 

cells and prevents the selective pressure that forces the mutation of this region 
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when grown in vitro. This generates a virus that is phenotypically a lab strain (due 

to a lack of pentamer) but retains the genetic sequence of wild type Merlin in the 

UL128-131A locus. However, infection of normal HFFs will allow the expression of 

the UL128-131A locus which (due to no pressure to mutate in culture) is 

essentially wild type in sequence at this locus. This results in a highly cell-

associated viral infection. Additionally, the presence of the GFP-tag allows 

tracking of infection in real time (Figure 4.2). Thus we now have a system to 

assess the impact of serum on cell free and cell associated viral spread in my 

assays. 

 

To propagate cell free stocks of IE2-GFP virus it was cultured in HFF-tet cells for 

12-14 days. Briefly, the HFF-tet cells were infected with Merlin IE2-GFP at low 

MOI (0.25) and incubated at 37°C for 24h in order to establish an infection. 

Following this incubation period the media was discarded and replenished with 

fresh media. Approximately 5 days post infection, the supernatant containing cell-

free virus was aspirated and replenished with fresh media. Once cytopathic effect 

(CPE) was observed (using confocal microscopy), usually 10-12 days post 

infection, the supernatant containing cell-free virus was collected, stored in 

aliquots and fresh media added to the culture. This step was repeated four times 

(every second day following day 10 post infection). All the viral stocks were stored 

in -78°C. In order to assess the concentration of the virus the TCID50 value (the 

tissue culture infectious dose which will infect 50% of the cell monolayers 

challenged with the defined inoculum) was determined. 
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Figure 4.2. Schematic representation of the genome expression of IE2-GFP tagged virus.  
 
A) Expression of viral genome of predominantly cell-free virus in HFF that constitutively express tet protein, the pentameric 
complex is not expressed, the virus remains genetically wild-type. B) Expression of viral genome of predominantly cell-
associated virus in HFF (lack of tet expression), the pentameric complex is expressed, and due to the selective pressure the 
mutations in this region might occur.   

A. 

B. 
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4.2.3. Viral spread Assay. 

Confluent HFF cells were detached from the surface of culture flasks by addition 

of trypsin (0.25% Trypsin-EDTA (IX) Gibco by Life Technologies). The cell 

suspension was centrifuged at 700g for 5 min, trypsin and medium were aspirated 

and the cellular pellet was re-suspended in fresh DMEM (supplemented with 10% 

FBS, 5% pen/strep) media. Cells were plated at the density of 104 HFFs/well (96-

well plate format).  

 

All patient serum samples were heat inactivated (1h at 56°C) prior to use and 

diluted at 1:10 in DMEM media (with 10% FCS, 5% pen/strep). 30µl of each heat 

inactivated serum sample was added to 270µl of media and stored in 100µl 

aliquots at -78°C prior to analysis. 

 

The HFF cells were then infected with Merlin IE2-GFP at low MOI (0.05) or low 

passage Merlin strain at low MOI (0.05) and incubated at 37°C for 24h in order to 

establish an infection. Following this incubation period the cells were incubated in 

fresh DMEM and supplemented as described in results with serum or antibodies. 

Routinely, serum samples and antibodies were added 24hpi and replenished 

7days post infection. Cells were fixed with 2% PFA (paraformaldehyde, Sigma-

Aldrich) solution in PBS prior to automated numeration of infected cells.  

 

4.2.4. Cell imaging and analysis of the results.  

Cells were visualised and counted by WiScan® 3.4 cell-imaging system described 

in 2.8. 20 images were captured per well and the average proportion of infection 

was calculated. Each experimental condition was repeated three times, and the 

mean value was calculated from the percentage of infected cells. These mean 

values are represented on the figures: 4.4- 4.12. 
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4.3. Results. 

4.3.1. Establishment of the viral spread assay.  

To investigate the bioactivity of the sera against HCMV undergoing multiple cycles 

of replication and infection I established a viral spread assay. The data in Figure 

4.3 show a typical assay with Merlin HCMV set up in multiple wells to allow IE 

staining at different time-points of culture. An analysis at 24hpi reveals very few 

cells are IE positive consistent with a low multiplicity of infection. However, as the 

infection proceeds we see an increase in IE positive cells in the cultures over time. 

By 14dpi I observed a substantial increase in the number of infected cells which 

reflects multiple rounds of viral replication and infection.  

 

4.3.2. Experimental validation of the assay with low passage Merlin strain.  

I next asked whether a neutralizing antibody could block the spread of low 

passage Merlin HCMV in this assay. We tested the anti-gB antibody ITC88 at a 

concentration where we observed significant neutralization previously (100µg/ml). 

As shown before, fibroblasts infected with HCMV showed high levels of IE 

positivity at 14 dpi consistent with the spread of virus in the culture. In contrast, 

addition of the ITC88 antibody reduced the mean value of the percentage of 

infection in the cells incubated with the antibody in comparison to the infection 

control (Figure 4.4). Next we tested whether sera could also block viral spread in 

this assay. To do this, serum from a healthy HCMV seropositive donor was diluted 

at 1:10, 1:100 and 1:1000. This study showed that serum from a healthy 

seropositive could significantly reduce the number of infected cells when used at a 

1:10 dilution – an effect that could be diluted so that no effect was seen with the 

1:1000 dilution. Importantly, this effect was specific to seropositive serum as 

parallel analysis of serum from a seronegative healthy donor revealed that no 

control on viral spread was exerted (Figure 4.5). 
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4.3.3. Experimental validation of the assay with the genetically engineered 

GFP tagged Merlin strain.  

The low passage Merlin virus that was used in these initial analyses is able to 

infect the cells via at least two different mechanisms (described in chapter 4.1), 

(Figures 4.1 and 4.2). Therefore we next investigated the effect of the sera and 

antibodies on the growth of Merlin strain (Merlin IE2-GFP) engineered to grow 

predominantly via cell to cell spread. Firstly, two neutralising antibodies (described 

in chapter 3): 2F12 and ITC88 were tested at different concentrations: 100µg/ml; 

10µg/ml, 1 µg/ml. These antibodies are known to have a very good neutralizing 

activity against gB in in vitro assays including my own (Figure 3.1B); (described in 

chapter 3). Additionally, antibody ITC88 proved to be highly effective in inhibition 

of the low passage Merlin strain at high concentration in my viral spread assay 

(described in section 4.3.1.).  

 

I first asked whether neutralising antibodies ITC88 and 2F12 could block the 

spread of cell-associated GFP-tagged Merlin. The data show that the percentage 

of infection (as measured by IE2-GFP positivity) was not significantly affected by 

the antibodies (Figure 4.6). Specifically, the antibody 2F12 exhibited no effect on 

the level of infection at the lowest dose -1 µg/ml a result comparable with the 

negative control-cells infected with the virus only. Although at higher doses 

(100µg/ml 10 µg/ml) some block to spread was observed. Similarly, ITC88 also 

failed to inhibit spread of the virus at the lower doses, but caused some decline in 

the percentage of infected cells at the highest dose: 100µg/ml. Although both 

antibodies appeared to be inefficient in blocking the spread of the cell associated 

GFP tagged virus, some degree of protection was observed and this effect was 

dose dependent (Figure 4.6) but, importantly, far less effective than observed 

against Merlin (Figure 4.4). 

 

Next, the sera from healthy donors were tested in this viral spread assay with the 

GFP tagged Merlin strain with serum from a seronegative donor used as a 

negative control for the assay. As observed with the monoclonal antibodies, a 

decline in the percentage of infected cells following incubation with sera from 
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healthy individual was observed although not as high as in the assay with low 

passage Merlin (Figure 4.7). Although the sera diluted at 1/5 inhibited the spread 

of the virus quite efficiently, the dilution of 1/100 did not have any impact on the 

inhibition of the GFP-tagged Merlin. Sera from a seropositive donor diluted at 1/10 

had a moderate effect on the inhibition of the spread of the virus (Figure 4.7), but 

again the decrease in the percentage of infected cells was less prominent than 

observed with the low passage Merlin strain (Figure 4.5). 
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Figure 4.3. Example of the spread of the low passage strain of HCMV virus-Merlin thought the cell culture (HFFs).  
Lower panel: cells were stained for IE positivity 24h, 6, 9, and 14 days after the infection. Upper panel: nuclear staining-DAPI.  
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A) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.4. The neutralizing antibody ITC88 blocked spread of the virus in in vitro assays.  

A) Immunostaining of the cells infected with the virus (Merlin) and incubated with the commercially available anti-gB ITC88 at the 
concentration: 100 µg/ml, 14 days post infection. The left panel represents DAPI (nuclear) staining and the right panel represents 
IE staining B) Testing the commercially available anti-gB ITC88 at the concentration 100µg/ml. The control is fibroblasts infected 
with the virus (Merlin). The mean values of the percentage of infection are presented with the error bars indicating the standard 
deviation. Statistical significance obtained from the Mann Whitney test, p value=0.008. 
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Figure 4.5. Serum from a healthy HCMV seropositive donor blocks spread of the Merlin strain of the virus.  
 
HFF cells were infected with low passage HCMV strain-Merlin and the proportion of infection was calculated based on IE 
positivity 14 days post infection. Serum was diluted: 1/10, 1/100 and 1/1000. Control was infected cells only. The mean values of 
the percentage of infection are presented with error bars indicating the standard deviation. Statistical significance was obtained 
from the Mann Whitney test, ns: p value>0.05; **: p=0.004; *: p=0.018.  

Titration of healthy donor sera-viral spread assay with 
Merlin strain of HCMV  
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Figure 4.6. Neutralising anti-gB antibodies 2F12 and ITC88 have only limited ability to block the dissemination of the 
GFP-tagged HCMV virus (Merlin).  
 

The antibodies were used at the concentrations: 100 µg/ml 10 µg/ml, 1 µg/ml. The negative control is fibroblasts infected with the 

GFP-tagged HCMV virus. The mean values of the percentage of infection are presented with the error bars indicating the 
standard deviation. Statistical differences –two tailed p-values were obtained from the Mann-Whitney U test; ns: p>0.05. 

The ability of comercially available anti-gB  antibodies
to block dissemination of the GFP-tagged HCMV virus (Merlin).
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Figure 4.7. Serum from a healthy HCMV seroposive donor can block spread of the virus at low dilutions.  
 
The serum samples from HCMV seropositive and seronegative individuals were used at the dilutions: 1/5; 1/10 and 1/100 to 
block dissemination of the GFP-tagged Merlin. The negative control is fibroblasts infected with the virus- GFP-tagged Merlin. The 
mean values of the percentage of infection are presented with the error bars indicating the standard deviation. Statistical 
differences –two tailed p-values were obtained from the Mann-Whitney U test; ns: p=0.83; **: p=0.007; ***: p=0.0004.  

Titration of healthy HCMV seropositive and seronegative donor sera.
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4.3.4. Testing capability of sera from the patients in the gB/MF59 clinical trial 

to inhibit spread of the virus though cell culture.  

 

Having established an assay I next tested the sera from patients who participated 

in the gB/MF59 trial (described in section: 1.11). The samples that were analyzed 

in this assay were collected on the day of first vaccine (seronegative patients: 

n=25; seropositive patients n=17) or placebo (seronegative patients: n=14; 

seropositive patients n=23) administration and their corresponding samples 

obtained at the day of the transplantation- time of the challenge with the virus. 

Controls for this assay were cells infected with the GFP-tagged HCMV virus 

(Merlin) to allow us to establish a baseline for the spread of HCMV. To control for 

non-specific serum effects, cells infected with the GFP-tagged HCMV virus 

(Merlin) were incubated with serum from a HCMV seronegative healthy individual 

diluted 1/10. As a positive control for these assays, cells infected with the GFP-

tagged HCMV virus (Merlin) and incubated with sera from HCMV seropositive 

healthy individual at the dilution of 1/10 were used since I have assessed their 

impact on viral spread previously (Figure 4.7).  

 

My first analysis was of the sera from seronegative SOT patients. Generally, I did 

not detect any consistent block to viral spread with any of the donors’ sera. The 

analysis of patients as vaccinated versus placebo revealed no differences in the 

ability of sera to block viral spread. Finally, the analyses of individual donor serum 

pairs pre- and post- vaccination again revealed no evidence to suggest that 

vaccination improved the control of viral spread by these donor sera (Figure 4.8. 

and Figure 4.9).  

 

The joint analysis of these data was performed which confirmed that indeed, there 

were no differences in the percentage of the infected cells between vaccinated 

and placebo patients and that the level of the infection in these groups was similar 

to those observed in the negative controls. Moreover, there was no distinction 

between the viral spread observed when the cultures were incubated with sera 

from patients who developed viraemia and those who did not. Lastly, no 
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differences in the percentage of infected cells were seen in assays which 

compared sera collected pre- placebo/vaccine administration and the sera 

harvested at the day of transplantation (Figure 4.12). 

 

Next I analyzed the more complicated samples from the seropositive recipients. In 

this cohort I observed that the incubation of sera from seropositive renal and liver 

patients with the cells that were infected with this cell-associated virus decreased 

the percentage of infected cells in comparison to the negative controls. Again, the 

responses measured in this group of patients differed significantly between 

individuals whereby the incubation of serum samples from some of those 

individuals had a greater impact on viral spread than others (Figure 4.10 and 

Figure 4.11). However, a joint analysis of this set of data showed that no 

difference in the activity of the sera against HCMV viral spread was observed 

when comparing sera from vaccinated and placebo patients. Similarly, no 

differences in the mean value of the percentage of infection were found between 

the sera obtained from the patients at the day of vaccine/placebo administration 

and at the time of the challenge with the virus. Moreover, no differences were 

found between the groups of patients who developed viraemia versus those who 

did not. Interestingly, the mean value of the percentage of infection of the cells that 

were incubated with the sera from these seropositive patients is very similar to the 

mean value of the percentage of infection seen in the positive control (Figure 

4.12).  
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Figure 4.8. Sera from seronegative liver transplant recipients had minimal impact on the inhibition of viral spread.  

GFP-tagged HCMV virus (Merlin) was incubated with sera from seronegative liver transplant patients, healthy donor sera 
(seronegative and seropositive individual) or an ITC88 positive control, and used to inoculate HFFs in vitro (MOI=0.25). Infection 
was assayed by GFP positivity 14dpi and the proportion of infected cells calculated by counterstaining nuclei with DAPI. Sera 
isolated pre-vaccination (baseline – red bars) or post vaccination (day of transplant – blue bars) was tested in triplicate. Sera 
from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who went onto display evidence 
of viraemia post-transplant.  

A) B) 
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Figure 4.9. Sera from seronegative renal transplant recipients had minimal impact on the inhibition of viral spread.  
 
GFP-tagged HCMV virus (Merlin) was incubated with sera from seronegative renal transplant patients, healthy donor sera 
(seronegative and seropositive individual) or an ITC88 positive control, and used to inoculate HFFs in vitro (MOI=0.25). Infection 
was assayed by GFP positivity 14dpi and the proportion of infected cells calculated by counterstaining nuclei with DAPI. Sera 
isolated pre-vaccination (baseline – red bars) or post vaccination (day of transplant – blue bars) was tested in triplicate. Sera 
from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who went onto display evidence 
of viraemia post-transplant. .

A) B) 
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Figure 4.10. Sera from seropositive liver transplant recipients inhibit spread of the virus. 
 
GFP-tagged HCMV virus (Merlin) was incubated with sera from seropositive liver transplant patients, healthy donor sera 
(seronegative and seropositive individual) or an ITC88 positive control, and used to inoculate HFFs in vitro (MOI=0.25). Infection 
was assayed by GFP positivity 14dpi and the proportion of infected cells calculated by counterstaining nuclei with DAPI. Sera 
isolated pre-vaccination (baseline – red bars) or post vaccination (day of transplant – blue bars) was tested in triplicate. Sera 
from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who went onto display evidence 
of viraemia post-transplant. . 

A) B) 
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Figure 4.11. Sera from seropositive renal transplant recipients inhibit spread of the virus.   
 

GFP-tagged HCMV virus (Merlin) was incubated with sera from seropositive liver transplant patients, healthy donor sera 
(seronegative and seropositive individual) or an ITC88 positive control, and used to inoculate HFFs in vitro (MOI=0.25). Infection 
was assayed by GFP positivity 14dpi and the proportion of infected cells calculated by counterstaining nuclei with DAPI. Sera 
isolated pre-vaccination (baseline – red bars) or post vaccination (day of transplant – blue bars) was tested in triplicate. Sera 
from patients vaccinated with gB (A) or placebo (B) are shown and are subdivided into patients who went onto display evidence 
of viraemia post-transplant. 
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Figure 4.12. Vaccination failed to induce humoral responses that would inhibit 
spread of the cell-associated virus in the in-vitro assay in seronegative Solid 
Organ Transplant Patients (de novo) and did not boost these responses in 
seropositive vaccine recipients. 

Seronegative patients: n=25; seropositive patients n=17) or placebo (seronegative 
patients: n=14; seropositive patients n=23) administration (Pre-vaccination, depicted 
in blue) and at the time of the challenge with the virus (day of the transplantation, 
depicted in orange). All patients’ serum samples were diluted 1/10. The inhibition of 
the spread of the virus as the decrease in the % of the cells infected with the virus. 
The error bars indicate the standard error of mean. Negative control are cells 
infected with the GFP-tagged HCMV virus (Merlin) and the cells infected with the 
GFP-tagged HCMV virus (Merlin) and incubated with sera from HCMV seronegative 
healthy individual (dilution 1/10) the and positive control are the cells infected with 
the GFP-tagged HCMV virus (Merlin) and incubated with sera from HCMV 
seropositive healthy individual at the dilution of 1/10. No statistically significant 
differences were observed between the mean value of the percentage of infection 
between the samples obtained from the vaccinated and placebo patients at the time 
of transplantation. Statistical differences were obtained from the Mann Whitney test; 
seronegative, no viraemia (vacciated, n=13 vs placebo, n=8) p=0.9549; 
seronegative, viraemia (vacciated, n=7 vs placebo, n=6) p=0.3420; seropositive, no 
viraemia (vaccinated, n=11 vs placebo, n=13) p=0.2941; seropositive, viraemia 
(vacciated, n=6 vs placebo, n=10). 

 

Solid Organ Transplant Patients who participated in phase-2 clinical trial
 with soluble recombinant HCMV vaccine with MF59 adjuvant.
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4.4. Discussion. 

 

The understanding of viral cell-to-cell spreading and the immune responses of the 

infected individuals that target this route of viral transmission is important, however 

many aspects of viral dissemination remain still unclear. The detailed knowledge 

about this phenomenon could be used to develop new therapeutic strategies that 

could block spread of the virus in vivo. The results presented in the literature are 

inconsistent: some reports showed reduction of the viral spread in culture by 

seropositive sera while others showed no impact of the antibodies on cell-to-cell 

spread. The reasons for these discrepancies are unclear but one possible 

explanation is the identity of the virus isolate used – many studies have utilised 

laboratory strains which grow more efficiently as cell free viruses. Potentially, this 

cell-free growth phase renders the virus more sensitive to neutralization and other 

effector responses that require direct binding to the virus particle. Therefore, for 

the purpose of this research I have used more clinically relevant Merlin strain 

(Chapters: 2.6; 4.2.2) and, furthermore, utilised a genetically modified version of 

Merlin that enhances the growth of the virus as a cell associated virus.  

 

The sera from the patients participating in the gB/MF59 trial were assayed for their 

ability to impact on viral spread in my in vitro assay. Similarly to the neutralization 

assays, the majority of the sera samples from seronegative patients had minimal 

impact on HCMV growth in this assay. Furthermore, no protective effect could be 

observed using the sera of patients post vaccination. Thus no evidence was found 

that this vaccine elicited gB antibody responses in seronegative patients that could 

interfere and block the spread of the cell associated, genetically engineered GFP 

tagged Merlin strain because the mean value of the percentage of HCMV infected 

cells incubated with sera from seronegative patients was comparable with 

percentage of HCMV infected cells in control wells.  

 

In contrast, the percentage of infected cells (which is a measure of viral spread in 

my assay) is highly variable amongst the different seropositive patients’ serum 

samples tested; the majority of sera displayed anti-HCMV activity in the assay 
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whereby spread of HCMV appeared to be impaired when compared to the 

negative control sera. However, when the data from all seropositive patients were 

analyzed and the mean value for the percentage of infection of the cells was 

calculated for the placebo and vaccinated group, no differences were observed. 

Additionally, no differences in the rate of spread of the virus were observed when 

sera collected from the patients prior to vaccination were compared with the 

corresponding patients’ samples obtained at the time of challenge with the 

pathogen (day of transplantation). Finally, there was no correlation between the 

decrease in the percentage of infected cells and viraemia development. In 

summary, this analysis provided no evidence that the vaccine induces antibody 

responses in seropositive patients that would be capable of blocking 

dissemination of the virus over and above those that already exist. Although I 

could observe that the HCMV seropositive patients possess antibodies in their 

sera that interfere with the spread of the virus to some extent, the controls show 

that these antibodies were developed as a response to the natural infection and 

that vaccination with gB/MF59 failed to boost these pre-existing antibody 

responses.  

 

Taken together, these data show that vaccination of individuals with the gB/MF59 

vaccine did not elicit humoral immune responses sufficient to effectively control 

the spread of HCMV alone in this assay. Although it is clear that prior natural 

infection with HCMV (e.g.: the seropositive recipients) does elicit an immune 

response that is partially effective in this assay, the decrease in the infectivity of 

the virus I observe in these individuals is independent of any vaccine induced 

responses but instead, is due to endogenous responses present in seropositive 

individuals’ serum. 

 

Importantly, I observed that the anti-viral effect seen was more effective against 

the Merlin rather than the GFP-Merlin virus. A plausible explanation for this 

difference is that the endogenous antibody response neutralizes the cell-free 

component of HCMV in the viral spread assay which would be consistent with the 

neutralization data.  
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The question remains whether there are components of the humoral immune 

response that are elevated in vaccinated individuals that make them better 

equipped to control viral dissemination of cell-associated virus. Glycoprotein B is 

expressed on the surface of infected cells and therefore is a target for anti-gB 

antibody binding. Whether antibodies can bind to gB on the plasma membrane 

and direct immune responses against infected cells remains to be determined. For 

example, rather than through a direct impact on virions it is possible that binding of 

plasma membrane gB by antibodies can recruit further immune functions to these 

cells i.e. NK cells and complement fixation. Alternatively, there is some debate 

over the role glycoproteins B, H and L play in the fusion of cells in culture – with a 

potential role in the transmission of cell associated virus between cells. Thus if 

antibody binding to gB on the cell surface could impede this fusion process it 

could also impact on the spread of a cell associated virus under these culture 

conditions. Additionally, it would also be interesting to investigate whether the sera 

from vaccinees could block the spread of the virus in other cell lines; especially 

epithelial and endothelial cells. The viral entry into these cells requires the 

presence of pentameric complex and as stated before it has been shown that 

clinical strains that do express functional pentameric complexes are predominantly 

cell-associated.  

 

In summary, I have established a mechanism to analyze the viral spread of HCMV 

in culture and to define whether the spread is via cell associated or cell-free virus. 

Thus, these data now position me to interrogate other aspects of the humoral 

immune response that may be important for controlling HCMV in vivo. Clearly, the 

serum from vaccinated patients does not control viral spread alone suggesting that 

it, if it is the source of protection in the vaccinated patients, might need to act in 

concert with other facets of the immune response. 
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5. Antibody Dependent Cell Mediated Cytotoxicity. 

 

5.1. Introduction. 

 

Natural killer (NK) cells are crucial components of the innate immune system that 

comprise approximately 15% of all circulating lymphocytes. A significant feature of 

NK cells is their ability to lyse target cells without prior sensitization (natural 

cytotoxicity) [378].  

 

Antibody-dependent cell-mediated cytotoxicity (ADCC) is a distinct immunological 

mechanism that relies on both NK cell-mediated immune defence as well as 

humoral immunity. Inhibition of infection, decrease in disease incidence and 

severity are conferred via ADCC through antibodies (humoral immune response) 

that bind to and activate the effector cells (NK cell-mediated immunity). Moreover, 

this type of response depends on prior existence of antibodies, thereby linking the 

innate and adaptive immune responses. 

 

In this immunological mechanism, antibodies bind to foreign antigens expressed 

on the surface of a target cell. Subsequently, the Fc receptor of the effector cell of 

the immune system binds to the Fc portion of antibody-coated target cells. This 

event induces the degranulation of the effector cell, release of cytolytic granules 

such as perforins and granzymes and inflammatory mediators such as cytokines 

and chemokines (Figure 5.1); [379, 380]. This immunological mechanism is 

predominantly mediated by NK cells; however it has also been reported that 

neutrophils, macrophages and eosinophils can act via ADCC as well [381-384].  
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Human NK cells are a subpopulation of lymphocytes characterized by the 

expression of the cell adhesion marker CD56 and lack of the T-cell receptor CD3 

(CD56+CD3−) [385]. Based on their phenotypic properties, human NK cells are 

divided into two subsets as follows [378]: 

-CD56dim CD16bright (>95% of CD56dimNK cells are CD16bright)  

-CD56bright CD16low (approximately ≈50–70%of CD56bright do not express CD16 

and the remaining cells exhibit a low-density expression of this receptor). 

 

Along with this phenotypic characterisation, functional studies show that the 

CD56dimNK-cell subset is highly cytotoxic. In contrast, the CD56bright subset has 

the capacity to produce abundant cytokines following activation by monocytes, but 

has low natural cytotoxicity [378].  

 

Three different Fcγ receptor classes have been discovered in humans: the high 

affinity FcγRI (CD64), medium-low affinity FcγRII (CD32), and FcγRIII (CD16). 

NK cells express exclusively FcγRIII and none of the other activating FcγRs; 

FcγRIII (CD16) receptor class is believed to be the most important mediator of 

ADCC [380]. Thus, the level of expression of CD16 is strongly correlated with the 

level of ADCC. Consistent with this, the subset of CD56dimNK cells characterized 

by high-level of CD16 expression, exhibit much higher level of ADCC than the 

CD56bright subset [378]. 

 

The subset of CD56dimNK cells (cytotoxic NK cells) contain high numbers of 

secretory granules in their cytoplasm which have the characteristics of lysosomes 

and are sometimes referred to as “secretory lysosomes”. One of their functions is 

to store and release pro-apoptotic proteins, amongst which perforin and granzyme 

are the most abundant. Indeed, human NK cells are known to express perforin 

and granzymes A and B constitutively [386].  These lytic proteins are released into 

the immune synapse in an exocytic way in a process known as degranulation. 

 

The major role of the membrane-disruptive protein perforin is to form a pore either 

on the endosome or plasma membrane of the target cell. Such an event promotes 

the delivery of serine proteases known as granzymes into the target cell [387, 
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388]. Eleven granzymes have been reported so far, all of them are lymphocyte 

granule serine proteases belonging to the trypsin family. The function of this 

protein family is to initiate apoptosis of the target cell [389-392]. 

 

In order to elicit cytotoxic functions, NK cells must be activated from their resting 

state. The integration of multiple signals from both activating and inhibitory 

receptors on the surface of NK cells can promote degranulation of the secretory 

granules [378, 393]. The granule core is surrounded by a lipid bilayer containing 

lysosomal-associated membrane glycoproteins (LAMPs) including CD107a 

(LAMP-1), CD107b (LAMP-2), and CD63 (LAMP-3)- ubiquitous, highly 

glycosylated, integral membrane proteins of largely unknown function [394]. These 

proteins account for about 50% of the total protein content in the lysosomal 

membrane [394] and are transiently expressed on the NK cell surface following 

degranulation [395]. Recent studies reported that LAMP-1(CD107a) is significantly 

upregulated on the surface of stimulated NK cells. Moreover, a correlation 

between CD107a expression and NK cell-mediated lysis of target cells was found 

[395]. Other studies revealed that the expression of CD107a on the cell surface 

was strongly upregulated following stimulation in concordance with a loss of 

perforin. Despite a clear understanding of the phenotypic changes associated with 

CD107a localisation, the actual role of this membrane protein in NK-cell biology 

remains largely unknown. Inhibition of expression of this protein blocks NK-cell 

cytotoxicity, due to the failure in granzyme B delivery to target cells. Moreover, 

decreased expression of CD107a impaired movement the lytic granules and 

reduced levels of perforin inside these cellular structures [396]. Despite the limited 

understanding of the functions of this protein, transient CD107a expression at the 

membrane surface was concluded to be a good indicator of ADCC activity [395].  

 

Given the wealth of evidence, CD107a (LAMP1) is widely used as an indirect 

marker for NK-cell degranulation [395, 397-399] and a positive correlation 

between CD107a expression and NK cell cytotoxic activity has been recently 

described in many reports [400-403].  
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The functional impact of NK cytotoxic activity has been extensively studied in the 

past decade. An increasing body of evidence indicates that ADCC contributes to 

the control of HIV and SIV infection and inversely correlates with progression of 

the disease [404-409]. Studies on seasonal influenza trivalent inactivated vaccine 

revealed that infection with a seasonal influenza virus elicits ADCC-mediating 

antibodies that can target conserved regions of influenza virus proteins and 

recognize a broad spectrum of influenza strains. The authors concluded that 

cross-reactive ADCC may provide a contributory mechanism for reducing the 

severity of divergent influenza virus infection [397-399, 402].  

 

As well as being important for controlling viral infections, ADCC might be an 

important mechanism of action of therapeutic monoclonal antibodies against 

malignantly transformed cells. The activation of apoptosis and effector-cell-

mediated cytotoxicity were studied in an experimental mouse model with the use 

of therapeutic agents: trastuzumab (Herceptin®) and rituximab (Rituxan®). The 

anti-tumor activities of such therapeutic antibodies are related to the engagement 

of Fcγ receptors on effector cells and this mechanism is believed to be the 

dominant component of the in vivo activity of antibodies against tumours [410]. 

 

In light of the evidence that ADCC plays a role in the clearance of viral infections 

and confers protection after vaccination, I investigated whether any ADCC 

humoral immune responses were generated in patients who participated in the 

HCMV gB/MF59 trial [188]. In order to do this, CD107a activation marker on NK 

cells in the presence of anti-HCMV antibodies was measured as an indirect 

assessment of the ADCC response. In preliminary experiments, the level of 

CD107a expression on activated NK cells in whole PBMC and isolated NK cell 

samples was measured and no significant differences between samples were 

found [401, 402]. Therefore in these experiments total PBMCs from healthy 

donors were utilized in the majority of the assays.  
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Objectives: 

 

The objectives of this chapter were to: assess NK cell effector function in 

seropositive and seronegative SOT patients who received placebo (natural history 

data); study whether vaccination elicited ADCC responses in seronegative 

patients and boosted pre-existing ADCC responses in seropositive patients; 

correlate ADCC antibody levels with decrease in the incidence of viraemia; 

investigate potential differences in the level of ADCC responses between total 

PBMCs and purified NK cells. 
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Figure 5.1. Schematic diagram of ADCC.  
 
IgG Abs (IgG1/IgG3 in humans or IgG2a/IgG2b in mice) bind to viral Ags expressed on the surface of virus-infected cells (left panel). Effector 
cells, such as NK cells (also neutrophils and monocytes), bind to the Ab Fc-region using their FcγRIII receptor (in mice FcγRIV, middle panel. 
Upon Ab ligation, cytotoxic granules are released and antiviral cytokines are expressed. This results in apoptosis of the infected cells and a 
reduction of viral replication. Reproduced from reference: Jegaskanda, S., P.C. Reading, and S.J. Kent, Influenza-specific antibody-dependent 
cellular cytotoxicity: toward a universal influenza vaccine. J Immunol, 2014. 193(2): p. 469-75. 
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5.2. Materials and Methods. 

 

5.2.1. Patient population. 

Control sera were obtained from healthy seropositive and seronegative HCMV 

donors, whose HCMV serostatus had been confirmed by standard NHS diagnostic 

serology procedures (Chapter 2.1. and 2.2.). All samples were anonymous.  

 

In addition, samples were used from the cohort of HCMV- seropositive and 

seronegative renal and liver transplant patients enrolled in the gB/MF59 trial 

(described in 1.16), who had undergone transplantation. These patients had given 

written consent to use their serum samples for research purposes.  

These blood samples were obtained from the patients prior to transplantation (five 

samples) and the blood sample collected at the day of transplantation or 7 days 

after transplantation (Figure 1.14). 

 

Details of the sample processing were described in chapter 2.2. In principle, all 

samples were heat-inactivated (56°C for 1h) prior to analysis to destroy 

complement. Depending on the assay, serum samples were either used neat or 

diluted in PBS-pH 7.7 [-]CaCl2 [-]MgCl2 (Gibco by Life Technologies) at the ratio 

1/5, 1/10, 1/20. 
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5.2.2. Isolation of Peripheral Blood Mononuclear Cells (PBMCs) and NK 

cells. 

 

Donor PBMCs were retrieved from venous blood samples by centrifugation 

(20mins 850xg, brake off at 20°C) on Histopaque-1077 (Sigma Aldrich). After 

centrifugation, the top blood plasma layer was removed and discarded. The 

interface created between the plasma layer and the lymphocyte separation 

medium was carefully removed to avoid contamination with adjacent layers and 

placed into fresh tubes. The volume was made up to 30ml by addition of RPMI 

1640 and the cell suspension was centrifuged at 550g for 10min. The supernatant 

was discarded and the pellet was re-suspended in 20ml of RPMI 1640. Cells were 

washed twice by centrifugation at 450g for 5mins. After the last wash, cells were 

re-suspended in 10ml of RPMI medium (Dulbecco) supplemented with 10% fetal 

calf serum (FCS). Viable cells were stained with 4% trypan-blue and counted 

using a haemocytometer. Cells were stored at -78°C. NK cells were isolated from 

PBMC fraction by use of the NK Cell Isolation Kit (Miltenyi Biotec) according to the 

manufacturer’s instructions. The principle of this isolation kit is to isolate 

untouched NK cells by depletion of non-target cells that are indirectly magnetically 

labelled with a cocktail of biotin-conjugated antibodies against lineage specific 

antigens and a cocktail of MicroBeads prior to a separation step. Isolation of the 

NK cell fraction occurred in the magnetic field of the separator. Labelled cells were 

retained on the magnetic column and the flow-through contained the unlabelled 

NK cells. Cells were stored at -78°C. 

5.2.3. Thawing of frozen PBMCs and NK cells. 

Vials of frozen PBMCs and purified NK cells were thawed in a 37°C water bath for 

approximately 30secs (until they began to thaw but there was still ice visible). The 

cells were transferred to 40mL pre-warmed RPMI medium (Dulbecco) 

supplemented with 20% FCS and thawed quickly. The cell suspension was 

centrifuged at 450g for 5mins (brake off) at 20°C and the supernatant discarded. 

The cellular pellet was re-suspended in 10mL of RPMI medium (Dulbecco) 

supplemented with 10% FCS.  
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5.2.4. Cell culture. 

 
The highly undifferentiated K562 human erythroleukemic cell line (Sigma-Aldrich) 

was used in some of the assays (5.3.1.2). The major feature of this cell line is the 

lack of expression of MHC class I molecules. It is well established that NK cells 

mediate non-major histocompatibility complex (MHC)-restricted cytotoxicity and 

antibody-dependent cytotoxicity [411-413]. The loss or down-regulation of self-

MHC class I molecules triggers the activation of NK cells. This phenomenon was 

described in the 1980’s and termed the ‘missing-self hypothesis’‘[414, 415]. 

However, it has recently been discovered that there are also other MHC class I 

molecule independent mechanisms that activate the cytotoxic functions of NK cells 

[416]. NK cells are able to lyse K562 tumour cells due to the lack of expression of 

major MHC class I molecules by this cell line. CD107a marker is significantly 

upregulated on the surface of NK cells following stimulation with K562 cells [395] 

and the optimal effector to target ratios for detecting CD107a expression range 

from 1:1 and 10:1 [395, 400, 401, 403]. It has also been reported that 

simultaneous incubation of PBMCs with both phorbol 12-myristate 13-

acetate/ionomycin (PMA/I) and K562 enhance the release of cytotoxic molecules 

and expression of CD107a marker on activated NK cells [400]. 

Prior to thawing, 10ml of media warmed to 37°C was added to a 15ml falcon and 

5mls of warm media to two T25 flasks. Then flasks were placed in 37°C 5%CO2 

incubator. Once the vial was removed from liquid nitrogen, it was thawed 

immediately in 37°C water bath; then the vial content was transferred to the 15ml 

falcon with warm media. Thawed cells were centrifuged at 300g for 5mins at RT. 

Supernatant was discarded and pellet resuspended in 10ml of fresh warm media. 

Following this, 5ml of suspension was transferred to each of the two T25 flasks. 

Following thawing these cells reach log phase in 5 to 7 days. Once the cell density 

reached 0.8x10^6%cells/ml the culture was split to approximately 

0.4x10^6%cells/ml with fresh, warm media. From this point, the cells double on 

average every 24 hours. 2. The cells were splitted when the density reached 

approx. 0.75%million/ml. The cell culture was maintained in RPMI 1640 

(Dulbecco) supplemented with 10% FBS, 2mM L-glutamine and 50UI/ml penicillin; 

at 37°, 5%CO2 with 100% humidity. 
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5.2.5. Antibody Dependent Cell Mediated Cytotoxicity (ADCC) Assay.  

 
In order to investigate the ADCC responses in patients who participated in the 

gB/MF59 study, an indirect in vitro assay was developed:  

 

1. gB vaccine protein coating onto 96 well plates. 

 

The gB vaccine protein (Sanofi Pasteur) was diluted in 1x ELISA coating buffer 

(Biolegend) at the ratio: 1:1299 (0.77µL of the protein in 1mL of 1x ELISA coating 

buffer) in order to achieve a final concentration of 0.75µg/mL. 100µL of the 

solution was added per well to the 96-well ELISA plates (Microtest 96 well clear 

ELISA plate, BD). Plates were covered using a plate sealer (Seal Plate- plate 

sealer films, Elkay) and incubated overnight at 4°C in 5% CO2, then subsequently 

washed 1x with 200ul and 4x with 100ul of PBS-pH 7.7 [-]CaCl2 [-]MgCl2 (Gibco by 

Life Technologies). Washes were followed by addition of 100µL ELISA Blocking 

Solution-5% BSA (Sigma-Aldrich) in sterile PBS (Gibco by Life Technologies). 

Plates were covered by using a plate sealer and incubated for 2 hrs at room 

temperature, then subsequently washed 1x with 200µl and 4x with 100µl of PBS-

pH 7.7 [-]CaCl2 [-]MgCl2 (Gibco by Life Technologies). 

 

2. Incubation with serum. 

 

Glycoprotein-B immobilised on the solid surface was incubated with serum as 

follows: 50µL of respective heat-inactivated, autologous, healthy donor HCMV 

seropositive or seronegative serum or serum from SOT patients enrolled in the 

vaccine study (neat or diluted 1:5, 1:10, 1:20) were added to the corresponding 

wells. Plates were covered using a plate sealer and incubated overnight at 4°C.
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3. Incubation with PBMCs or purified NK cells. 

 

Following the incubation with serum, plates were washed 1x with 200µl and 4x 

with 100µl of PBS-pH 7.7 [-]CaCl2 [-]MgCl2 (Gibco by Life Technologies) in order to 

remove non-specific antibodies. The anti-gB antibodies bound to gB on the solid 

surface were then incubated with PBMCs or purified NK cells. PBMCs and purified 

NK cells were isolated from healthy HCMV positive and negative blood donors; 

(method is described in the section: 5.2.2 and 5.2.3). Cells were counted and re-

suspended at 10x106/mL in RPMI medium (Dulbecco) supplemented with 10% 

FCS 0.5x106 of the PBMC’s (50µL of 10x106/mL suspension) or 104 of the purified 

NK cells (50µL of 2x105/mL suspension) and 50µL of RPMI medium (Dulbecco) 

supplemented with 10% FCS added to each well. In order to stimulate the PBMC 

cells (positive control): PMA (phorbol 12-myristate 13-acetate; 50ng/mL) and 

ionomycin 500ng/mL were added to respective wells (5.3.1.1).  

 

4. Stimulation of the PBMCs and cell-surface staining.  
 

CD107a FITC (BD) used at the concentration 5µl/mL and final dilution of 1/5 and 

RPMI medium supplemented with 10% FCS were added to each well and 

incubated for 4.5h at 37°C. Plates were covered with a cell culture 96-well plate lid 

and incubated at 37°C. After 1h of incubation, 50µL per well of the mix of: 

monensin (BD GolgiStop; used at the concentration 6µg/mL and final dilution 

1/333); Brefeldin A (BD; used at the concentration 5µl/mL and final dilution of 

1/200); were added to each well and plates were placed back in incubator for 

remaining 3.5h. Monensin and brefeldin A are protein transport inhibitors that 

block the intracellular protein transport processes. This results in the accumulation 

of cytokines and/or proteins in the Golgi complex. The increased accumulation of 

cytokines in the cell enhances the detectability of cytokine-producing cells in the 

assay. 
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Following the incubation, cells were transferred to 96 well V-bottom polystyrene 

plates. 100µL of PBS with 2% heat inactivated-FCS was added to each well, and 

then plates were centrifuged at 800g for 5 min, 4°C. 100µL of PBS with 10% heat 

inactivated-FCS was added to each well and incubated for 15 minutes on ice in 

order to block non-specific binding sides. After the blocking step 100µL of PBS 

with 2% heat inactivated-FCS was added to each well and plates were centrifuged 

at 800g for 5 min, 4°C. 100µL of the Cell Surface Antibody mix was added to all 

wells: CD3 PerCP (BD) used at the concentration 12.5µl/mL and final dilution of 

1/5 CD56 AF647 (BD) used at the concentration 50µl/mL and final dilution of 1/50 

or CD56 APC used at the concentration 12µl/mL and PBS with 2% heat 

inactivated-FBS. Cells were incubated for 20 minutes on ice in the dark.  

 

Following cell surface staining, 100µL of PBS with 2% heat inactivated-FCS was 

added to each well, and then plates were centrifuged at 800gfor 5 min, 4°C. 

Cellular pellet was re-suspended in 200µL/well of 100µL of PBS with 2% heat 

inactivated-FCS and transferred to mini tubes for data acquisition. Stained cells 

were stored at 4◦C in the dark prior to FACS acquisition.  

 

5. Intracellular staining. 
 

 

To assess intracellular staining, following the cell surface staining, 200µL of 

Cytofix/Cytoperm (BD) was added to each well and incubated for 20minutes on 

ice; plates were centrifuged at 800g for 5 min, 4°C and then incubated with 

Perm/Wash for 20min on ice in the dark.  

IFNᵞ AF700 (BD) antibody was used at the concentration 50µl/mL and diluted in 

1xPerm/Wash (BD). Plates were incubated for 20min on ice in the dark and then 

centrifuged at 2000rpm for 5 min, 4°C. Cellular pellet was re-suspended in 

200µL/well of 100µL of PBS with 2% heat inactivated-FCS and transferred to mini 

tubes for FACS acquisition.  



176 
 

Solutions used in the assays: 

 

-5x Wash Buffer- pH 6.6-6.8 (for 1L): 101.0g NaCl (Sigma Aldrich); 1.0g KH2PO4 

(Potassium Phosphate, monobasic, Sigma Aldrich); 4.585g Na2HPO4 (Sodium 

Posphate, dibasic, Sigma Aldrich); 2.5mL Tween20 (Sigma Aldrich) and deionized 

water. All reagents were dissolved on a magnetic stirrer, in approximately 800mLs 

of deionized water. Volume was adjusted to 1L with deionized water; pH was 

verified by pH indicator strips (Sigma-Aldrich). Solution was stored at 2-10°C up to 

2 months. 

-Recombinant HCMV gB protein (Sanofi Pasteur): Stored at -70°C in 250uL 

aliquots at 0.975mg/mL(=975 ug/mL). Used at a final concentration of 0.75ug/ml: 

0.77uL in 1mL of 1x ELISA coating buffer. The maximum number of freeze/thaw 

cycles per aliquot was 3.  

-ELISA coating buffer (Biolegend) 5x concentrate, diluted 1:5 in deionised water. 

Stored undiluted at 4°C. 

-ELISA blocking buffer: 1% BSA (Sigma Aldrich) in sterile PBS, filtered and stored 

at 4°C. 

-PMA (Sigma-Aldrich) Lab stock 100µg/mL in ethanol. Used at 50ng/mL final 

concentration: stock was diluted 1/10 then uses at 1/200. Stored at -20°C. 

-Ionomycin (Ionomycin) Lab stock 100µg/mL in ethanol. Used at 500ng/mL: stock 

was diluted at 1/10 then used at 1/20. Stored at -20°C. 
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Figure 5.2. Schematic representation of the indirect ADCC assay.  
 
Adapted from: Jegaskanda S. et al., J Immunol. 2013; 190: 1837-1848 [402]. 
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5.2.6. FACS Acquisition. 

 

Following stimulation and staining of the cells, the cell suspensions were acquired 

using a four laser LSR Fortessa flow cytometer (BD Bioscience, Oxford, UK). 

FACS analyses were performed using FlowJo Data Analysis software, version 10 

(FlowJo LCC, OR, USA).  

 

 

 

Initial gating to identify the lymphocyte population was performed using forward 

and side scatter. A secondary gate was placed around the CD3-CD56+ population 

to identify NK cells. The threshold fluorescence intensity for CD107a (and 

interferon gamma in some initial assays) positive cells was set using unstimulated 

control cells (Figure 5.3). 

 

Compensation values (the simultaneous solution of the equations for the 

contributions of the spectral overlaps of each of the colours into every detector) 

are used by the flow cytometer to subtract out the contributions of non-primary 

colours overlapping into a given detector. In order to determine the spectral 

overlap the CompBead presenting single-stained controls (BD) were used.  

 

The CompBeads were stained as follows: one drop each of positive and negative 

CompBeads was added to a FACS tube and centrifuged for 3mins at 1000g. The 

CompBeads were stained as per Table 1, and then incubated for 10min in the 

dark at room temperature. 2ml of PBS with 2% heat inactivated-FCS was added to 

samples and centrifuged at 1000g for 3 min. The supernatant was discarded and 

200µL of PBS with 2% heat inactivated-FCS was added and mixed well. Stained 

CompBeads were stored at 4◦C in the dark until acquired by FACS.  

5.2.6.1. Gating strategy. 
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Antibody Company Concentration Work concentration µL/ test 

CompBeads BD N/A 1 drop Neg + Pos 

mIgG1 PerCP Invitrogen 100µg/mL 1/100 1 

CD56 APC BD 12µg/mL 1/50 2 

mIgG1 FITC BD 50µg/mL 1/50 2 

 

Table 5.1. Antibodies for compensation beads (BD CompBeads). 
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Figure 5.3. Gating strategy for the assay.  
 
A) Representative staining for all markers used in this chapter B) Representative 
staining for positive and negative control for the assay (positive control: PBMCs 
stimulated with PMA/I and negative control: unstimulated PBMCs). 
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5.2.7. Optimization of the assay. 

 
 

 

In order to correctly identify and gate cells in the context of data spread due to the 

multiple fluorochromes in a given panel, FMO control experiment was conducted.  

In this FMO control, one PBMC sample was stained with all the flurochromes 

(FITC, PerCP, AF647 and AF7004 colour staining). 

In this panel four fluorochromes were used, therefore there were four separate 

FMO controls-PBMC cells stained with all the fluorochromes minus one 

fluorochrome that was being tested.  

This allowed any spread of fluorochrome(s) into the unlabelled channel to be 

taken into account and allowed the gate to be set in the correct place (Figure 5.4).  

5.2.7.1. Fluorescence minus one (FMO). 
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Figure 5.4. Fluorescence minus one.  
 
Four separate FMO controls-PBMC cells stained with all but one fluorochrome that was being tested: A) FITC (for CD107a 
staining) B) AF700 (for IFNγ staining), C) AF647 (for CD56 staining) and D) PerCP (for CD3 staining). Positive control were 
PBMCs stained with four colours (depicted on the graph as “four colours”. Control sample is followed by test sample in order to 
compare the proportion of positive cells in both control and test samples in the same settings.  

A) 

B) 

C) 

D) 
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5.3. Results. 

 

5.3.1. Validation of ADCC system. 

 

In order to ensure that my assay was working effectively I first established the 

conditions for a robust positive control. Thus the first series of experiments was 

conducted with different concentrations of PMA/Ionomycin (a potent activator of 

NK cells) and a K562 target cell line at different effector to target ratios.  

 
 

 
 

Firstly, it was tested whether stimulation of PBMC with PMA/I upregulated the 

expression of ADCC marker (CD107a) on activated NK cells. PMA (Phorbol-

Myristate-Acetate) is a substitute for DAG (diacylglycerol), one of the adaptor 

molecules that induce the signal transduction enzyme protein kinase C (PKC) 

[417, 418]. Ionomycin is a selective calcium ionophore whose major role is to raise 

the intracellular level of calcium (Ca2+), [419]. The combination of these molecules 

(PMA/I) aids the activation of PKC and facilitates an influx of intracellular calcium; 

both events are required to induce signalling pathways for degranulation [401, 

417]; 

 

PBMCs were stimulated with PMA/I at the following concentrations [395, 400, 

401]; 

-PMA 50ng/mL and ionomycin 100ng/mL;  

-PMA 50ng/mL and ionomycin 500ng/mL;  

-PMA 2500ng/mL and ionomycin 500ng/mL. 

5.3.1.1. Stimulation of PBMC with PMA/I. 

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Protein_kinase_C
http://en.wikipedia.org/wiki/Calcium
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PBMC stimulation with PMA/ionomycin resulted in a significant increase in the 

level of expression of CD107a and IFN on activated NK cells at the 

concentrations of 50ng/mL PMA + 100ng/mL ionomycin and 50ng/mL PMA + 

500ng/mL ionomycin. At the highest concentration: 2500ng/mL PMA + 500ng/mL 

ionomycin an upregulation of the expression of CD107a was observed, but 

interestingly the IFN production was lost. The highest level of the expression of 

both markers was observed with the cells stimulated with a concentration of: PMA 

50ng/mL and ionomycin 500ng/mL (Figure 5.5).  
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Figure 5.5. Level of expression of CD107a and IFN on CD3-CD56+ cells following stimulation of PBMCs with PMA/I. 
PMA/I was used at three different concentrations: i) PMA: 50ng/mL, ionomycin: 100ng/mL; ii) PMA: 50ng/mL, ionomycin: 
500ng/mL; iii) PMA: 2500ng/mL, ionomycin: 500ng/mL. The unstimulated cells are negative control for this assay .
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In order to investigate whether incubation of NK cells with K562 would result in 

higher level of CD107a expression in comparison to the stimulation with PMA/I 

several assays were performed. In this set of experiments cells were co-incubated 

at effector to target ratio (NK: K562): 1:1 or 5:1 with or without concomitant 

stimulation with PMA/I. Negative controls were unstimulated PBMC, and 

unstimulated K562 cells (Figure 5.6).  

 

As expected, activation of NK cells was observed following the stimulation with 

K562. The increase in the level of CD107a expression was seen at both E:T ratios 

where 9.2% and 8.2% of CD3-CD56+ cells were expressing CD107a (5:1; 1:1 

respectively). However, only 5.26% of CD3-CD56+ cells were expressing CD107a 

in the negative control (unstimulated PBMCs).  

The concomitant stimulation of PBMCs with K562 and PMA/I also activated NK 

cells. I observed an increase in the number of cells expressing CD107a compared 

to unstimulated PBMCs. Specifically 10.2% and12.9% of NK cells were expressing 

CD107a (5:1; 1:1, neg. control, respectively).   

 

In summary, stimulation of PBMCs with PMA/I only, at the concentration of PMA 

50ng/mL and ionomycin 500ng/mL appeared to have the most profound effect on 

NK cell activation (16.2% of CD3-CD56+ cells were expressing CD107a); (Figure 

5.6). Consequently, it has been confirmed that PBMC stimulation with PMA/I only 

was sufficient to induce high levels of CD107a degranulation. Based on these 

experiments, this dosage was chosen as a positive control for the future 

degranulation assays. 

5.3.1.2. Stimulation of PBMC with K562 cell line. 
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Figure 5.6. The level of CD107a marker expression following PBMC stimulation with K562 human erythroleukemic cell 

line.  

 
A) without concomitant PMA/I stimulation and B) with concomitant PMA/I stimulation; at different effector to target ratios: 5:1 and 
1:1.
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5.3.2. The effect of heat inactivation of serum samples from healthy donor 

HCMV seropositive and HCMV seronegative patients on the level of CD107a 

expression by NK cells in total PBMCs.  

 
Heat inactivation of serum is required to eliminate the influence of various immune 

factors, particularly serum complement, which may have an impact on the 

outcome of the experiments. In order to examine whether there is any evidence of 

beneficial effect of serum heat- inactivation in the assay; ten neat HCMV 

seropositive and ten HCMV seronegative sera from healthy donor patients were 

tested with and without prior heat-inactivation. The expression of CD107a marker 

on activated NK cells (CD3-CD56+) was measured.  

 

The data from this indirect assay show that there is a statistically significant 

difference in the expression of the CD107a protein on activated NK cells in whole 

PBMC between seropositive and seronegative HCMV healthy serum donors 

irrespective of whether the sera were heat-inactivated or not. However, the 

difference in the expression of CD107a was higher and more statistically 

significant between seropositive and seronegative serum donors when the 

samples were heat– inactivated prior to analysis (Figure 5.7).  

In summary, these data show that heat inactivation of the serum samples 

enhances the difference in the level of the CD107a de-granulation between HCMV 

seropositive and seronegative patients. Thus, for all future experiments measuring 

ADCC only heat inactivated serum samples were used in order to preserve the 

integrity of these immunoassays and eliminate confounding effects of complement 

in the patient serum. 
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Figure 5.7. The effect of heat inactivation of serum on the level of CD107a expression by CD3-CD56+ (NK) cells.  
 
Sera were obtained from healthy HCMV seropositive (n=10) and seronegative (n=10) donors. The differences between groups 
were assessed by Mann Whitney U test and significant differences are depicted in red. The horizontal lines indicate the median 
value and the range. 
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5.3.3. The effect of serum dilution on the level of CD107a expression by NK 

cells in total PBMCs and the establishment of the optimal serum dilution. 

 

In order to maximise the use of the precious biological material from the gB/MF59 

clinical trial (described in chapters: 1.11. and 2.1.) the effect of serum dilution on 

the expression of CD107a was studied to determine the highest dilution of serum 

that can be used without losing bioactivity in the assays.  

 

To address this, neat and diluted (1/5, 1/10, 1/20) heat-inactivated sera from 

healthy HCMV seropositive (=10) and seronegative (n=10) donors were tested in 

the ADCC assay. As expected, no expression of CD107a protein on NK cells 

analysed from a HCMV seronegative donor was detected when the PBMC were 

incubated with seronegative sera (Figures 5.8C and 5.9C) confirming that the 

assay is not detecting non-specific reactions. However, when the NK cells from 

HCMV seronegative donor were incubated with seropositive donors’ sera cell 

surface expression of CD107a was observed. Interestingly, there was a 

substantial variability in the level of CD107a expression in response to the 

different donors’ serum. Although incubation with sera from some donors failed to 

induce higher level of CD107a expression, addition of sera from the others 

resulted in high level of NK cell degranulation (Figures 5.8A and 5.9A). 

 

Interestingly, when the same HCMV seronegative serum samples were incubated 

with PBMC from a HCMV seropositive donor, expression of the CD107a protein 

on NK cells was observed (Figures 5.8D and 5.9D). Moreover, the incubation of 

serum from HCMV seropositive donors with NK cells from HCMV seropositive 

donor resulted in similar level of CD107a expression as with seronegative sera 

(Figures 5.8B and 5.9B). 
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In summary, there were no statistically significant differences in the expression of 

CD107a by activated NK cells between the dilutions of serum in both HCMV 

seronegative and seropositive groups of patients when incubated with PBMCs 

from healthy HCMV seronegative (Figures: 5.8A, C and Figures: 5.9A, C) and 

healthy HCMV seropositive donors of serum (Figures: 5.8B, D and Figures: 5.9B, 

D). However, a trend was observed amongst the seropositive patients whose sera 

were incubated with NK cells from HCMV seronegative donor- the number of 

patients displayed a higher level of CD107a expression when incubated with 

diluted sera (1/5 and 1/10). Therefore, it was decided that all the patients’ serum 

samples should be diluted 1/5 prior to analysis.   

 

5.3.4. The effect of PBMC donor serostatus on the expression of CD107a by 

NK cells. 

The differential effects in response to serum observed with PBMCs isolated from 

seropositive and seronegative donors (described in section 5.3.3) suggested that 

serostatus of the PBMC donor might influence the responsiveness of NK cells and 

therefore impact on the fidelity of the ADCC assay I intended to use in my assays 

of the vaccinees’ sera. 

 

Thus I wished to investigate the effect of PBMC donor HCMV serostatus on the 

expression of CD107a by NK cells in more detail. PBMCs from heathy HCMV 

seropositive- and seronegative donors were incubated with serum taken from both 

seropositive (n=10) and seronegative (n=10) donors. Additionally, the HCMV 

seropositive and seronegative PBMCs were tested against their autologous 

serum. 

 

The first analyses concerned the incubation of seropositive donor PBMC with 

serum from both seropositive and seronegative individuals. The data show that no 

differences in CD107a expression were observed under all experimental 

conditions (neat and diluted sera). Thus irrespective of HCMV serostatus, 

seropositive PBMCs incubated with serum displayed evidence of elevated CD107 

expression (Figure 5.10). Interestingly, mean values of CD107a expression of 



192 
 

seronegative donor samples at all different dilutions were higher than the 

expression of CD107a in negative control (unstimulated seropositive PBMCs); 

(Figure 5.8 A, C). In contrast, when PBMCs from a HCMV seronegative healthy 

donor were incubated with sera, the differences in the expression of CD107a 

following incubation with seropositive and seronegative donors’ serum were 

statistically significant under all conditions (neat-seropositive vs neat-seronegative 

serum: p=0.0003; 1/5 diluted seropositive vs 1/5 diluted seronegative serum: 

p=0.0018; 1/10 diluted seropositive vs 1/10 diluted seronegative serum: p=0.0031; 

1/20 diluted seropositive vs 1/20 diluted seronegative serum: p=0.0018); (Figure 

5.11). The data show that evidence of ADCC activation (e.g. CD107 expression) 

was only observed when the PBMC were incubated with seropositive donor sera. 

 

In order to investigate this, additional studies of the seropositive and seronegative 

purified NK cells and total PBMCs were performed. The results of these 

serological analyses (of sera from both healthy HCMV seropositive and 

seronegative donors) revealed no major differences in the level of CD107a 

expression measured between NK cells from seropositive and seronegative 

donors (Figure 5.12). I could observe that the expression of CD107a on 

seropositive NK cells (Figure 5.12B) resembles the expression patterns on 

seronegative NK cells (Figure 5.12C). Moreover, I could observe similar results 

with total PBMCs from seropositive donor (Figure 5.12A and D). In both scenarios 

(purified NK cells and NK cells in total PBMCs) I could see clear differences in the 

level of CD107a expression between seropositive and seronegative sera (Figure 

5.12).  

 

These results did not confirm previous findings therefore a third analysis was 

performed (Figure 5.13). Again, I could observe clear differences in the level of 

CD107a expression between seropositive and seronegative sera; with the level of 

CD107a expression on the latter ones being similar to negative controls in both 

purified NK (Figure 5.13C and D) cells and total PBMCs (Figure 5.13A and B) from 

seropositive and seronegative donors. 
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The reasons for this discrepancy were unclear. However, in order to proceed with 

the analyses of the sera from the clinical trial I decided to use the NK cells in total 

PBMCs from seronegative donor only (excluding PBMC from seropositive donor) 

to avoid any potential confounding factors (see 5.3.7). 
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Figure 5.8. Level of CD107a expression on NK cells in whole PBMCs incubated with different dilutions of sera.  
 
A) PBMCs from HCMV one seronegative healthy donor incubated with HCMV seropositive (n=10) and C) seronegative (n=10) 
neat and diluted (1/5; 1/10; 1/20) sera from healthy donors; B) PBMCs from one HCMV seropositive healthy donor incubated 
with HCMV seropositive (n=10) and D) seronegative (n=10) neat and diluted (1/5; 1/10; 1/20) sera from healthy donors.   

C) 

D) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A) 
 
 
 

A) 

B) 
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Figure 5.9. Minimal effect of serum dilution on the level of CD107a expression.  
 
A). Incubation of PBMCs from HCMV seronegative donor with sera from HCMV seropositive (n=10) healthy donors C). 
Incubation of PBMCs from HCMV seronegative donor with sera from HCMV seronegative (n=10) healthy donors. B) Incubation 
of PBMCs from HCMV seropositive donor with sera from HCMV seropositive (n=10) healthy donors D) Incubation of PBMCs 
from HCMV seropositive donor with sera from HCMV seronegative (n=10) healthy donors. The horizontal lines indicate the 
median value and the range. All differences in the expression of CD107a between compared groups were not statistically 
significant (ns; p>0.05). P values were calculated by Mann Whitney U test.  
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          Incubation with PBMCs from HCMV seropositive donor
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Figure 5.10. Minimal differences in the level of CD107a expression on PBMCs from one HCMV seropositive healthy 
donor when incubated with HCMV seropositive and seronegative sera.  
 
The seropositive (n=10) and seronegative sera (n=10) were obtained from healthy donors. The horizontal lines indicate the 
median value and the range. All differences in the expression of CD107a between compared groups were not statistically 
significant (ns; p>0.05). P values were calculated by Mann Whitney U test. 



197 
 

 
Figure 5.11. Significant differences in the level of CD107a expression on PBMCs from one HCMV seronegative healthy 
donor when incubated with HCMV seropositive and seronegative sera.  
 
The seropositive (n=10) and seronegative sera (n=10) were obtained from healthy donors. The horizontal lines indicate the 
median value and the range. The differences between groups were assessed Mann Whitney U test and P values were depicted 
in red. All the differences in the expression of CD107a between compared groups were statistically significant (neat-seropositive 
vs neat-seronegative serum: p=0.0003; 1/5 diluted seropositive vs 1/5 diluted seronegative serum: p=0.0018; 1/10 diluted 
seropositive vs 1/10 diluted seronegative serum: p=0.0031; 1/20 diluted seropositive vs 1/20 diluted seronegative serum: 
p=0.0018).
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Figure 5.12. Similar pattern of ADCC responses between NK cells in total PBMCs from seropositive donor and purified 
NK cells from seropositive and seronegative donors.  
 
Level of CD107a expression on purified NK from healthy HCMV seropositive donor (B); healthy seronegative donor (C) and on 
NK cells in total PBMCs isolated from healthy HCMV seropositive individual (A) and in total PBMCs isolated from healthy HCMV 
seropositive individual depleted from NK and incubated with NK cells isolated from healthy HCMV seronegative individual (D); 
when incubated with sera from seropositive and seronegative healthy donors. 
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Figure 5.13. Similar pattern of ADCC responses between NK cells in total PBMCs and purified NK cells.  
 
The ADCC responses were measured by the CD107a expression on: NK cells in total PBMCs isolated from healthy HCMV 
seropositive individual (A) NK cells in total PBMCs isolated from healthy HCMV seronegative individual (B); purified NK from 
healthy HCMV seropositive donor (C); purified NK from healthy HCMV seronegative donor (D); when incubated with sera from 
seropositive and seronegative healthy donors. 
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5.3.5. Investigating the influence of PBMCs versus purified NK cells and 

their donor serostatus on the level of CD107a expression.  

 
In order to test whether the addition of purified NK cells instead of total PBMCs 

would influence the level of ADCC activity measured by this indirect assay, serum 

samples from renal transplant patients who participated in the gB/MF59 trial were 

analysed with purified NK cells from a HCMV seronegative healthy donor. The 

level of CD107a expression was used as a marker of ADCC activity and measured 

as described in 5.2.5. Purified NK cells obtained from a HCMV seronegative 

healthy donor were incubated with sera from HCMV seropositive (n=8) and 

seronegative (n=8) renal transplant patients. As in previous analyses, NK cells 

stimulated with PMA/I served as a positive control for the assay. NK cells were 

also tested against their autologous sera which, alongside unstimulated NK cells, 

served as a negative control for the assays (Figure 5.14 A, B; Figure 5.15 A, B).  

 

The analyses of CD107a expression on purified NK cells from healthy 

seronegative donor incubated with seronegative sera showed similar results to 

those obtained in the previous assays with total PBMCs from seronegative donor. 

Besides one outlier, the level of CD107a responses in the remaining read-outs 

was below- or comparable to the level of this marker expression in negative 

controls (Figure 5.14 A, B). Lack of expression of CD107a in this assay is 

consistent with the previous finding- the lack of ADCC stimulating antibody 

responses in seronegative patients (Figure 5.8 D). Interestingly, when I performed 

similar analysis with the sera from seropositive renal transplant patients I could 

observe a range of ADCC responses (Figure 5.15 A, B). The level of CD107a 

expression greatly varies between the patients, as it was observed in the previous 

experiments with total PBMCs (Figure 5.8B) and generally the level of CD107a 

responses in the sera from these vaccinees corresponds well with the outcomes 

from the concomitant analyses of these patients with total PBMCs Therefore, due 

to economical and practical reasons I decided to test sera from the clinical trial 

with the NK cells in total PBMCs. 
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Figure 5.14. No evidence for vaccine-induced ADCC responses in seronegative liver transplant patients.  
 
The level of the CD107a expression on activated, purified NK cells was a marker of ADCC activity. Sera used in this assay were 
collected from seronegative renal transplant patients who participated in phase-2 clinical trial (NCT00299260) subunit 
glycoprotein-B vaccine with MF-59 adjuvant at the day of vaccine or placebo administration (pre-vaccination) and at the day of 
transplantation (post-vaccination). A. Patients who received vaccination are depicted in blue (n=4); patients who received 
placebo are depicted in black (n=4). B. Patients who developed viraemia are depicted in red (n=2) and patients without viraemia 
are depicted in black (n=6). 
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Figure 5.15. High variability of the ADCC responses in seronegative liver transplant patients.  
 
The level of the CD107a expression on activated NK (purified) cells was a marker of ADCC activity. Sera used in this assay was 
collected from seropositive liver transplant patients who participated in phase-2 clinical trial (NCT00299260) subunit glycoprotein-
B vaccine with MF-59 adjuvant at the day of vaccine or placebo administration (pre-vaccination) and at the day of transplantation 
(post-vaccination). A. Patients who received vaccination are depicted in blue (n=4); patients who received placebo are depicted 
in black (n=4). B. Patients who developed viraemia are depicted in red (n=3) and patients without viraemia are depicted in black 
(n=5). 
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5.3.6. Testing serum from the patients enrolled in the gB/MF59 clinical trial.  

 

Having established conditions where the ADCC response to vaccine gB could be 

measured indirectly through CD107a cell surface expression, I was confident that 

the analysis of the serum samples collected from the transplant recipients was 

feasible. 

 

Sera from patients were tested in this indirect ADCC assay and the level of the 

CD107a expression by activated NK cells was measured according to the 

procedure described in 5.2.5. Serum samples were processed and stored 

according to the NHS diagnostic serology procedure prior to analysis (described in 

section 2.2). Throughout my analyses I confirmed that CD107a expression could 

be induced on the NK cells using PMA/I as stimulation as a positive control. 

Additionally, the PBMCs were also tested against their autologous serum which 

showed, as expected, that the level of CD107a on PBMCs stimulated with 

autologous sera (which is seronegative) was very low-similar to the level of 

expression of CD107a on unstimulated PBMCs (Figures:5.26- 5.29). Therefore, 

measuring the level of the CD107a expression by activated NK cells against 

autologous sera provided an additional negative control for the experiments.  

 

I first analysed the sera from seropositive transplant recipients. These data 

showed that the incubation of PBMCs with gB and sera from seropositive renal 

and liver transplant patients resulted in higher levels of CD107a expression on the 

NK cell population in comparison to the level of CD107a expression on 

unstimulated NK cells (negative control); (Figures: 5.16; 5.20-5.22). Generally, a 

wide range of ADCC responses was observed prior and post vaccination. 

However, an analysis of the samples post vaccination provided no evidence that 

supported the hypothesis that the vaccine boosted pre-existing ADCC responses. 

No differences in the level of CD107a expression were observed between 

samples collected at different time points post vaccination- (v#1: v#5 and D0/D7); 

(Figures: 5.16; 5.20-5.22).  



204 
 

A comparison of the difference in expression of CD107a on NK cells in total 

PBMCs stimulated with sera from vaccinated and placebo groups of seropositive 

liver transplant patients at the time of transplantation also revealed no statistically 

significant differences (Figure 5.18). In fact, in the seropositive renal vaccine 

recipient samples when the sera from those patients was incubated with NK cells 

lower levels of CD107a expression were observed in comparison to the sera from 

placebo recipients (Figure 5.24). Furthermore, although evidence of ADCC 

promoting antibodies was observed in the seropositive patients there was no 

correlation between the level of CD107a expression (i.e. level of ADCC promoting 

antibodies) and patient outcome -no statistically significant differences in the 

expression of the CD107a on NK cells in total PBMCs incubated with sera from 

patients who developed viraemia vs patients without viraemia was observed in 

both liver and renal transplant patients (Figures 5.18 and 5.24). Generally, no 

differences were found between groups of seropositive patients when two 

variables were analysed in this seropositive cohort of patients (placebo/vaccine 

status and viraemia/no viraemia incidence). 

 

I next analysed the serum samples from seronegative liver and renal transplant 

recipients who received vaccine or placebo in my ADCC assay. Interestingly, 

throughout these analyses I could detect no evidence of CD107a activation on NK 

cells in response to seronegative serum irrespective of vaccination or not. The 

level of CD107a expression in all the read-outs was comparable with the level of 

CD107a expression in negative control-unstimulated PBMCs (Figures: 5.26-5.29). 
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Figure 5.16. High variability in the level of the CD107a expression on activated CD3-CD56+ cells in seropositive liver 
transplant patients.  
 
Sera were obtained from individuals who participated in the trial with gB/MF59 vaccine at the day of vaccine or placebo 
administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and at the 
day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=8) are depicted in dark blue and placebo 
patients (n=9) are depicted in black 
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Figure 5.17. Fold difference from the baseline (v#1) in seropositive liver transplant patients shows no segregation in the 
level of CD107a expression on activated NK cells between groups of patients.  
 
Sera from individuals (n=17) who participated in the trial with gB/MF59 vaccine were collected at the day of vaccine or placebo 
administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and at the 
day of transplantation (D0) or following the transplantation (D7). A) Vaccinated patients (n=8) are depicted in dark blue and 
placebo patients (n=9) are depicted in black. B) Patients who had viraemia (n=6) are depicted in red and patients with no 
viraemia (n=12) are depicted in black.  
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Figure 5.18. Comparable levels of CD107a expression on activated CD3-
CD56+ (NK) between different groups of seropositive liver transplant 
patients.  
 
Sera were obtained from individuals (n=17) who participated in gB/MF59 trial at 
the day of transplantation (D0) or 1 week following the transplantation (D7). The 
differences between groups were assessed by Mann-Whitney U test. The 
horizontal lines indicate the median value and the range. All the differences in the 
expression of CD107a between compared groups were not statistically significant 
(placebo vs vaccine: p=0.36; viraemia vs no viraemia p=0.426).  
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Figure 5.19. Minimal differences in the levels of the CD107a expression on 
activated CD3-CD56+ (NK) cells between different groups of seropositive 
liver transplant patients.  
 
Sera from seropositive individuals (n=17) who participated in gB/MF59 trial at the 
day of transplantation (D0) or 1 week following the transplantation (D7). The 
horizontal lines indicate the median value and the range. All the differences in the 
expression of CD107a between compared groups were not statistically significant 
p>0.05. The differences between groups were assessed by Mann-Whitney U test.
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Figure 5.20. High variability in the level of the CD107a expression on activated CD3-CD56+ cells in seropositive renal 
transplant patients-experiment I.  
 
Sera were obtained from individuals who participated in the  trial with gB/MF59 vaccine at the day of vaccine or placebo 
administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and at the 
day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=5) are depicted in dark blue and placebo 
patients (n=4) are depicted in black. 
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Figure 5.21. High variability in the level of the CD107a expression on activated CD3-CD56+ cells in seropositive renal 
transplant patients-experiment II.  
 
Sera were obtained from individuals who participated in phase-2 clinical trial with gB/MF59 vaccine at the day of vaccine or 
placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and 
at the day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=2) are depicted in dark blue and 
placebo patients (n=5) are depicted in black. 
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Figure 5.22. High variability in the level of the CD107a expression on activated CD3-CD56+ cells in seropositive renal 
transplant patients- experiment III.  

Sera were obtained from individuals who participated in phase-2 clinical trial with gB/MF59 vaccine at the day of vaccine or 
placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and 
at the day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=3) are depicted in dark blue and 
placebo patients (n=6) are depicted in black.  
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Figure 5.23. Fold difference from the baseline (v#1) in seropositive renal transplant patients shows no segregation in 
the level of CD107a expression on activated NK cells between groups of patients.  
 
Sera from individuals (n=26) who participated in phase-2 clinical trial with gB/MF59 vaccine at the day of vaccine or placebo 
administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months (v#5) and at the 
day of transplantation (D0) or following the transplantation (D7). A) Vaccinated patients (n=11) are depicted in dark blue and 
placebo patients (n=15) are depicted in black. B) Patients who had viraemia (n=11) are depicted in red and patients with no 
viraemia (n=15) are depicted in black.   
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Figure 5.24. No evidence that the vaccine enhanced pre-existing ADCC 
responses; lack of correlation between the level of the CD107a expression 
and onset of viraemia.  
 
Sera were obtained from seropositive individuals (n=26) who participated in 
phase-2 clinical trial with gB/MF59at the day of transplantation (D0) or 1 week 
following the transplantation (D7). The differences between groups were assessed 
by Mann-Whitney U test. The horizontal lines indicate the median value and the 
range. The differences in the expression of CD107a between compared groups 
were: placebo vs vaccine: p=0.0034; viraemia vs no viraemia p=0.56.  
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Figure 5.25. Similar levels of the CD107a expression on activated CD3-
CD56+ (NK) cells between different groups of seropositive renal transplant 
patients.  
 
Sera from seropositive individuals (n=26) who participated in gB/MF59 trial at the 
day of transplantation (D0) or 1 week following the transplantation (D7). The 
horizontal lines indicate the median value and the range. The differences between 
groups were assessed by Mann-Whitney U test. The differences in the expression 
of CD107a between compared groups were: placebo-viraemia (n=6) vs placebo-
no viraemia (n=8) p=0.949; vaccinated-viraemia (n=4) vs vaccinated- no viraemia 
(n=7) p=0.52; placebo-viraemia (n=6) vs vaccinated viraemia (n=4) p=0.114; 
vaccinated- no viraemia (n=7) vs placebo- no viraemia (n=8) p=0.02.   
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Figure 5.26. No evidence of vaccine induced ADCC responses in seronegative liver transplant patients. Level of the 
ADCC responses was measured by surrogate marker CD107a expression on activated CD3-CD56+ cells.  
 
Sera tested in this assay were obtained from seropositive liver transplant patients who participated in gB/MF59 trial at the day of 
vaccine or placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months 
(v#5) and at the day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=11) are depicted in dark 
blue and placebo patients (n=10) are depicted in black.  
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Figure 5.27. No evidence of ADCC responses preventing onset of viraemia following vaccination in seronegative liver 
transplant cohort.  
 
Level of the CD107a expression on activated CD3-CD56+ cells in seropositive liver transplant patients who participated in 
gB/MF59 trial at the day of vaccine or placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 
months(v#3), 6months (v#4), 7months (v#5) and at the day of transplantation (D0) or following the transplantation (D7). Patients 
who developed viraemia are depicted in red (n=8) and patients without viraemia are depicted in black (n=13). 
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Figure 5.28. No evidence of vaccine induced ADCC responses in seronegative renal transplant patients. Level of the 
ADCC responses was measured by surrogate marker CD107a expression on activated CD3-CD56+ cells.  
 
Sera tested in this assay were obtained from seropositive renal transplant patients who participated in gB/MF59 trial at the day of 
vaccine or placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 months(v#3), 6months (v#4), 7months 
(v#5) and at the day of transplantation (D0) or following the transplantation (D7). Vaccinated patients (n=13) are depicted in dark 
blue and placebo patients (n=9) are depicted in black.  
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Figure 5.29. No evidence of ADCC responses preventing onset of viraemia following vaccination in seronegative renal 
transplant cohort.  
 
Level of the CD107a expression on activated CD3-CD56+ cells in seropositive renal transplant patients who participated in 
gB/MF59 trial at the day of vaccine or placebo administration (v#1), 1week following the vaccination: 1month (v#2), 2 
months(v#3), 6months (v#4), 7months (v#5) and at the day of transplantation (D0) or following the transplantation (D7). Patients 
who developed viraemia are depicted in red (n=5) and patients without viraemia are depicted in black (n=17). 
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5.4. Discussion. 

 

The results from previous sections provide no evidence for vaccination inducing 

protection via intrinsic ability of the sera only (chapter 3-neutralization and chapter 

4-inhibition of viral spread from cell to cell). Therefore, next I wished to investigate 

the importance of ADCC responses in the patients who participated in the phase-2 

clinical trial with the soluble recombinant subunit gB vaccine with the MF-59 

adjuvant (NCT00299260). In order to perform this kind of analysis an assay for 

measuring ADCC using CD107a was established and optimised. Using this assay 

the correlation between the levels of CD107a expression with the incidence of 

viraemia was sought.  

 

In one of the preliminary, experiments I investigated whether the serostatus of the 

PBMCs donor can influence the level of ADCC (when incubated with both, 

seropositive and seronegative sera). The initial analysis showed significant 

differences in the level of expression of ADCC marker between the same serum 

specimens when incubated with PBMCs from seropositive and seronegative 

individuals. This finding suggested that serostatus of the PBMC donor might 

influence the responsiveness of NK cells. In order to investigate this in more detail, 

I decided to perform additional sets of analyses in which I tested the seropositive 

and seronegative donor sera against seropositive and seronegative purified NK 

cells and total PBMCs. 

 

I hypothesized that two potential outcomes were possible:  

 

1) If purified NK cells respond in the same way as was reported for total PBMC – 

that is similar level of CD107a expression on NK cells irrespective of donor 

serostatus- then that suggests that NK cells from a seropositive individual exhibit 

different biological activities. Although, classically, NK cells were considered to be 

a part of the innate immune system, some recent publications demonstrate that 

NK cells undergo preferential clonal expansion following HCMV infection [420]. 

Several groups have recently reported that NK cells from HCMV infected 

individuals possess different subsets of memory-like NK cells. It has been reported 
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that clonal-like expansion of NK cells in response to HCMV infection causes stable 

imprints in the human KIR repertoire which is skewed and a bias for self-specific 

inhibitory KIRs. [421]. Others revealed that HCMV is capable of shaping the NK 

cell receptor repertoire inducing the expansion of an NK cell subset expressing the 

activating NKG2C receptor [422]. Moreover, it has been reported that the memory-

like NK cell repertoire is modulated and maintained by a mechanism that relies on 

both epigenetic modification of gene expression and antibody-dependent 

expansion [421, 423, 424]. Thus it seems plausible that the development of NK 

cells and the distribution of NK cell receptors can be deeply influenced by HCMV 

infection. The presence of so called “memory-like” NK cells in the infected 

individuals argues that immunological responsiveness of these cells could be 

different to the NK cells from uninfected subjects.  

 

2) Alternatively, if the pattern of CD107a expression on isolated NK cells reflects 

that observed with PBMCs from a seronegative individual (i.e. only evidence of 

ADCC with seropositive donors’ serum) this would indicate that other 

immunological mechanisms not intrinsic to the NK cells were engaged. In these 

experiments total PBMC, that contains cells such as cytotoxic T lymphocytes 

(CTL), antigen presenting cells (APC), monocytes, were used. Additionally an 

antigen (gB) was present in the system. Thus, it seems possible that the 

responses of the NK cells from the seropositive donor could have been driven by 

some cytokine mediated effects underpinned by antigen presenting events 

occurring in the experimental set up. 

 

In order to investigate this, additional studies of the seropositive and seronegative 

purified NK cells and total PBMCs were performed. The results of these 

serological analyses did not confirm the previous findings and I could not see the 

difference in the level of CD107a expression between the total PBMCs and 

purified NK cells from seropositive and seronegative donor when incubated with 

seropositive and seronegative sera. However, I order to avoid any potential 

immunological confounders I decided to utilize only PBMCs from seronegative 

donors.  
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Interestingly, I observed that the incubation of seronegative PBMCs with 

recombinant gB protein and sera from healthy seropositive individuals resulted in 

higher level of CD107a expression on NK cells (in total PBMCs) when compared 

with unstimulated controls - indicative of the presence of ADCC inducing 

antibodies in the serum of seropositive individuals. I also noted that the level of 

ADCC appears to be highly variable amongst seropositive patients, indicating a 

natural diversity in the ADCC responsiveness within the population which further 

reflects the heterogeneity of the antibody response against gB and. Nevertheless, 

this finding strongly supports the presence of ADCC inducing antibodies against 

gB in the sera of healthy seropositive individuals that has been induced by natural 

infection. However, despite the presence of ADCC promoting antibodies in 

seropositives these results provide evidence that the protective effect elicited by 

the gB subunit vaccine against HCMV is not dependent on the induction of ADCC 

stimulating antibody responses. Although I could see wide range of ADCC 

responses among seropositive patients, regardless of their vaccine or placebo 

status, the level of ADCC responses was not correlated with the viraemia 

incidence among the patients who received the vaccine and proceeded to 

transplantation. The data presented here clearly showed that the administration of 

the vaccine also did not increase any pre-existing responses in this cohort. Such 

result does not support the hypothesis that the ADCC responses might have a 

protective role in vaccinated transplant patients. Moreover a comparison of 

vaccine versus placebo in liver transplant group showed that the level of CD107a 

was generally lower in the vaccinated patients. Nevertheless, the statistical power 

of this study is limited by the small number of samples; therefore this correlation 

might not be biologically relevant. The results in seronegative patients clearly 

show that the vaccination failed to induce ADCC stimulating responses. Besides a 

few outliers, the level of CD107a expression in the read-outs are below or 

comparable to the level of the expression of CD107a protein in negative controls- 

unstimulated NK cells in total PBMCs. Such result again argues against the 

protective humoral responses generated by the vaccine being through the 

production of ADCC inducing antibodies against gB. 
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Importantly, however, I assessed ADCC using PBMC isolated from healthy 

seronegative donor and these analyses provided the majority of the experimental 

analyses. Thus I also investigated whether there is a difference in the 

responsiveness of NK cells depending whether they are used in the assays as 

total PBMCs or as purified cells. In order to investigate the potential confounding 

effects in total PBMCs I analysed the ADCC responses incubating sera from 

healthy donors and vaccine cohort. Generally, this analysis allowed the level of 

ADCC responses to be compared between the assays with purified NK cells and 

total PBMCs. As I expected, the pattern of ADCC responses was similar in both 

types of assays and there were no major differences in the expression of CD107a 

when I used purified NK cells instead of total PBMCs suggesting that the data I 

have accrued is representative of the general consensus that ADCC against gB 

has little or no impact on conferring protection. Such results justify testing sera 

from this vaccine cohort using total PBMCs instead of purified NK cells as it is a 

more practical and economical approach.  

 

Taken together, the current data suggest that another mechanism of protection 

must be elicited by the vaccine. Using this approach it was demonstrated that the 

vaccine alone did not generate ADCC inducing responses in seronegative patients 

nor did the vaccine boost the pre-existing ADCC responses in seropositive 

patients. However, it has to be considered that the assay is an indirect measure of 

ADCC. Thus, although the approach is a well-established measure of ADCC 

activity, it does not preclude NK cells as being important cells required for the 

control of HCMV infection. 
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6. Epitope specific humoral responses to recombinant CMV gB vaccine. 

 

6.1. Introduction. 

 

Once gB was recognized as a dominant target of humoral immune responses 

[161] many extensive examinations were conducted to establish whether or not 

this protein is capable of eliciting potent neutralizing antibodies that would exert a 

protective effect. It is hypothesised that gB plays important roles in the entry of 

different herpes viruses as the proteins are highly conserved across the family. 

These functional constraints placed on gB may render it less able to undergo 

substantial mutation to avoid deleterious immune responses. 

 

Initially, researchers mapped epitopes via expression in prokaryotes. This 

approach has limitations but some observations were made [161]. The first highly 

conserved linear neutralizing epitope was identified on gB by use of murine 

monoclonal antibodies [192]. The newly identified region (608- 625aa) was a 

component of AD1-dominant antigenetic determinant (AD1: 560-640 aa). A 

detailed analysis of human convalescent sera and monoclonal antibodies (human 

and mouse) discovered that AD-1 comprises approximately 80aa between 

positions 560 and 640 of gB (gp58) based on the sequence of the AD169 strain 

[425]. AD1 was recognized as a major target of humoral responses towards gB 

since nearly 100% of sera from HCMV healthy seropositive donors had antibodies 

recognising this antigenic domain [162, 189, 190] Interestingly, the antibody 

responses against AD-1 that developed after natural infection with HCMV had a 

wide range of neutralizing capacity [158, 191]. Potential competition between non-

neutralizing and neutralizing antibodies against this antigenic domain was 

reported for the first time in the 1990s [158, 161, 192]. Subsequently, it was 

proposed that the competitive binding of these antibodies could be a manifestation 

of an immune-evasive mechanism that the virus utilizes to avoid neutralization of 

cell free virus, since the neutralizing activity of the polyclonal human antibodies 

against the AD-1 that were obtained from healthy seropositive donors did not 

exceed 50% in in vitro studies. This finding also showed that natural infection with 



224 
 

the virus induces both neutralizing and competing non-neutralizing antibodies that 

are specific to this immune-dominant antigenic domain [191] 

 

The studies of sequence homology between the Towne and AD169 strains of 

HCMV led to the discovery of AD2 (which is located in gp116 between 50-77aa). 

Although the gB homology between these laboratory strains is very high (-95%), 

the distribution of the differences appeared to be not random across the whole 

molecule-interestingly; it was revealed that the level of homology in the N-terminal 

part of the molecule was only approximately 55%. Thus both monoclonal 

antibodies and sera isolated from healthy seropositive individuals were incubated 

with this amino-terminal portion of gB that was expressed in prokaryotic systems 

and synthetic peptides. The examination of the binding capacities of the 

antibodies to both strains indicated that there are two binding sites:  

 

-site I- located between 68-77aa and conserved amongst the strains. The 

antibodies that bound to this site exhibited neutralizing capacities. It has been 

estimated that approximately 50% of infected individuals have antibodies against 

this site I of AD2 [162, 426, 427]. 

-site II- located between 50-54aa, not conserved amongst the strains. The 

antibodies that bound to this site were incapable of neutralizing the virus [426]. 

 

Another linear epitope, AD-3, was discovered when the C-terminal part of gB was 

mapped using synthetic peptides. The incubation of sera from HCMV seropositive 

healthy individuals with gp58 revealed that most of these donors possessed 

antibodies that bound to the sequence localized in the intraluminal part of this 

molecule (between 798 to 805aa). Such localization however suggests that the 

antibodies that are directed towards this epitope may not have the capacity to 

neutralize cell-free virus in vivo as this region may not be exposed to the immune 

system of the host [160, 428].  
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The relatively large size of the gB protein suggested that there might be other, 

additional binding sites for antibodies that are elicited following infection with the 

virus. In order to complete the epitope map of this glycoprotein, analysis of 

humoral responses with the use of gB-specific memory B cells isolated from 

healthy HCMV-seropositive individuals and clonally expanded was performed. 

Experiments in which antibodies secreted from these B-cells were examined 

demonstrated that the majority of antibodies that were elicited against HCMV 

following natural infection (90%) did not possess the capacity to neutralize the 

virus in in vitro assays. Most importantly, two previously unknown antibody 

domains that bound the majority of the antibodies released by these clonal B cells 

were discovered. Moreover, many of the antibodies against these domains did 

prove to have very potent neutralizing activities:  

 

-domain I (AD5)- located between 133–343 aa- approximately 50% of seropositive 

individuals developed antibodies that bound to this antigenic site [160]; although 

more recent data suggest that the incidence of AD5 responses in seropositives is 

higher (personal communication with Prof Michael Mach). 

-domain II (AD4) - a discontinuous domain that recognizes a structural motif 

defined by regions  121–132 aa and 344–438aa. Approximately 90% of 

seropositive individuals elicit antibody responses against this epitope [160]. 

 

Although a number of AD have been identified that give rise to strong humoral 

responses in vivo it is not entirely clear which domains are important targets for 

the control of HCMV infection. AD1 is recognized as a major target of humoral 

responses towards gB since nearly 100% of sera from HCMV healthy seropositive 

donors have antibodies that bind to this antigenic domain [162, 189]. However, it 

was shown before that this domain induces a mixture of neutralizing and non-

neutralizing specificities. It is suggested that antibodies to AD2 may confer better 

protection against HCMV infection because a strong neutralising antibody 

response is directed against this epitope. However, given that only 50% of people 

have AD2 responses and that neutralising antibody responses against AD4 and 

AD5 are detectable this hypothesis needs further consideration [429].  
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Analysis of the antibody profiles towards each antigenic domain can potentially 

reveal that the protection against the pathogen is correlated with specific antibody 

responses and moreover, such analysis could provide further clues to the 

protective nature of the vaccine response since these epitopes have been linked 

with different aspects of immune control of HCMV infection. Additionally, such 

experiments will allow the antibody responses elicited by the vaccine to be 

compared with those following natural infection. The changes that were introduced 

to facilitate expression and production of this recombinant vaccine protein could 

potentially alter antigen presentation and influence the fine specificity of these 

humoral responses that may be important for the protection of vaccinated patients. 

 

In the phase-2 study in SOT patients the duration of viraemia was inversely 

correlated with the anti-gB antibody titre measured by ELISA which suggests that 

humoral responses may be protective [188]. Therefore, in this set of analyses, the 

binding activity of these sera to 4 (of 5) key antigenic domains was assessed. The 

AD1, AD2, and AD5 epitopes that have been identified so far on gB were tested 

by ELISA.  

 

.  
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Objectives: 

The aim of the present study was to provide detailed analysis of the antibody 

repertoire following natural infection and vaccination with gB/MF59 and to 

determine whether any correlations between AD specific antibody responses and 

protection from viraemia following the transplantation could be identified as a 

potential basis for the protective effect observed with gB/MF59 vaccination. 
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Figure 6.1. Schematic representation of gB from HCMV- ectodomain 
structure.  
 

ADx are representing the locations of the antigenic domains domains mapped 
onto the gB. (A) Schematic representation of the full-length HCMV gB (top) and 
the crystallized construct, gB78-706-7M-E (bottom). Disulfide bonds are 
represented as black brackets, antigenic domains (AD-1-5) are indicated in blue 
brackets, and mutations are shown using red bars. Structural domains, are 
colored as follows: domain I = blue, II = green, III = yellow, IV = orange, V = red, 
as in [430, 431]. SS = signal sequence, MPR = membrane proximal region, TM = 
transmembrane domain, and Cyto = cytoplasmic domain. Numbers denote 
construct boundaries. (B) The crystal structure of the HCMV gB ectodomain is 
shown as a protomer and a trimer in cartoon representation as well as a trimer in 
surface representation. Chain B is colored by domain as in (A). (C) Side and top 
down view of the coiled coil in DIII with a coordinated calcium ion (CA) (blue 
sphere). Side chains of D508 (yellow) with carboxyl oxygens (red) and C506 
(green) are also shown. Dashed lines indicate distances between the carboxyl 
oxygens in D508 and the calcium ion. All structure figures were made in Pymol 
(http://www.pymol.org). Reprinted from Burke H.G. et al., 2015; doi: 
10.1371/journal.ppat.1005227 [358].  

http://www.pymol.org/
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6.2. Materials and methods. 

 

6.2.1. Antigens. 

For this component of the work, I collaborated with Professor Michael Mach in 

Erlangen who has prepared and evaluated the complex antigens required. The 

assays were performed by his staff in Germany and I analysed all the results. 

 

The following gB-specific antigens, derived from HCMV strain AD169, were used: 

AD-1, containing aa 484-650, AD-2 containing aa 68-80 (Cambridge research 

biochemicals), AD-4 containing a fused polypeptide of aa 121-132 and 344-438 

and AD-5 containing aa133 to 343. The ELISA tests for AD-1 and AD-2 have been 

described in detail by Schoppel et al. [162]. For determination of AD-4-specific 

antibodies a purified GST-AD-4 fusion protein was used as antigen as described 

by Spindler et al [432]. AD-5-specific antibodies were determined in a capture 

ELISA using a mammalian cell derived AD-5 polypeptide containing a HA-epitope 

tag at the amino terminus of the protein as described elsewhere [433]. To capture 

the antigen, an anti-HA monoclonal antibody (clone HA-7, Sigma-Aldrich) was 

diluted to 1 µg/ml in 0.05 M sodium carbonate buffer; pH 9.6, and 50 µl/well was 

used to coat polystyrene 96-well plates (NuncImmuno™) overnight at 4°C.  

 

6.6.2. Enzyme-linked immunosorbent assay (ELISA) tests. 

All of the following reactions were performed at 37°C. Reaction wells were rinsed 

with PBS supplemented with 0.1%Tween then the reaction wells were blocked 

with PBS containing 2% fetal calf serum for 1 h, washed three times with PBS plus 

0.1% Tween 20 and incubated with comparable amounts of AD-5 wt or mutant 

proteins for 2 h. The plate was washed three times with PBS containing 0.1% 

Tween 20 and human serum was added at a dilution of 1:100 for 1 h. Dilution of 

all sera was done in PBS with 2% FCS. Unbound antibody was removed by 

washing three times and peroxidase-conjugated secondary antibody (goat-anti-

human IgG, Dianova) was added for 1 h. After three washing steps with 100 µl of 

tetramethylbenzidine peroxidase substrate was added for 3.5 min, diluted 1:1 in 
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peroxidase substrate solution B (KPL, USA). The reaction was stopped by adding 

100 µl of 1 M phosphoric acid. The optical density at 450 nm (OD450) was 

determined using an Emax microplate reader (Eurofins MWG Operon, Germany).  

6.2.3. Statistical analyses. 

 

The analysis of the results was performed by Graph Pad Prism®-software. 

Statistical differences between the mean value of the OD of the samples obtained 

at the same time points between populations of patients: vaccinated vs placebo 

and viraemia vs no viraemia were obtained from Mann Whitney Test (ns: not 

significant; *: P < 0.05; **: P < 0.005; ***: P < 0.005). Geometric mean values 

(±95%CI) were represented by horizontal lines.  

 

6.3. Results. 

6.3.1. Antibody responses towards AD1.  

 

The AD1 specific antibody responses were measured by ELISA at five different 

time points: day of vaccine/placebo administration (month 0); day of administration 

of the second (month 1) and third dose (month 6), and 3 and 7 months post 

vaccination. As expected, nearly all HCMV seropositive individuals possessed 

detectable antibody responses against this antigenic domain (Figure 6.2 A, B). 

Furthermore, vaccination of HCMV seropositive SOT candidate patients with 

gB/MF59 increased pre-existing antibody responses against AD1 (Figure 6.2 A 

and C). However, although a boost of these antibody responses was observed 

there was no evidence that there was reduced occurrence of viraemia among the 

patients who had high level of these antibody responses and underwent 

transplantation (Figure 6.2.D).  

The same analyses of sera from the seronegative cohort revealed that vaccination 

elicited antibody responses only in a minority of patients (Figure 6.3). Furthermore, 

it was observed that seronegative patients who developed good responses 

against AD1 were equally likely to develop viraemia following transplantation than 

those that did not have AD1 responses.  
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Figure 6.2. Vaccination boosted AD1 antibody levels in HCMV seropositive 
patients but higher AD1 levels did not correlate with protection from 
viraemia following transplantation.  

AD1 responses are represented as OD values at different time-points: day of first 
vaccine/placebo administration (month 0); day of administration of the second 
(month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD1 
responses in HCMV seropositive vaccine recipients represented as OD values (B) 
AD1 responses in HCMV seropositive placebo recipients represented as OD 
values (C) Comparison between antibody levels against AD1 in the sera from 
vaccinated and placebo patients. Horizontal lines represent geometric mean 
values (±95%CI). (D) Comparison of antibody levels against AD1 between 
patients who developed viraemia versus patients who did not develop viraemia 
following transplantation. Horizontal lines represent geometric mean values. 
Statistical differences between the mean value of ODs between the populations of 
patients: vaccinated vs placebo and viraemia vs no viraemia were obtained from 
Mann Whitney Test (ns: not significant; *: P < 0.05; **: P < 0.005; ***: P < 0.005). 
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Figure 6.3. Vaccination of HCMV seronegative patients induced variable responses against AD1.  

AD1 responses are represented as OD values at different time-points: day of first vaccine/placebo administration (month 0); day 
of administration of the second (month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD1 responses in 
HCMV seropositive vaccine recipients represented as OD values (B) Comparison of antibody levels against AD1 between 
patients who developed viraemia versus patients who did not develop viraemia following transplantation. Horizontal lines 
represent geometric mean values. Statistical differences between the mean value of ODs between the populations of patients 
(vaccinated vs placebo were obtained from Mann Whitney Test; ns: not significant). 
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6.3.2. Antibody responses towards AD2.  

I next performed the same analyses on AD2 responses. Consistent with previous 

studies [160, 189] approximately 50% of seropositive patients had detectable 

levels of anti-AD2 antibodies prior to vaccination (Figure 6.4 A and B). 

Administration of the first dose of vaccine boosted pre-existing antibody responses 

against AD2 in HCMV seropositive SOT patients (Figure 6.4 A and C, Figure 6.5). 

However, there was no evidence that the vaccine induced de novo anti-AD2 

responses in seropositive individuals who did not possess anti-AD2 responses at 

baseline (Figure 6.4 A). Interestingly, in patients with an AD2 response there was 

a direct correlation between higher levels of AD2 antibodies and reduced viraemia 

post-transplant (Figure 6.4.D).  

In seronegative patients there was no evidence that the vaccine induced de novo 

anti-AD2 responses (Figure 6.6).  



234 

 
 

 

 

 

Figure 6.4. Vaccination boosted pre-existing antibody responses against 
AD2 in HCMV seropositive SOT patients that correlated with protection.  

AD2 responses are represented as OD values at different time-points: day of first 
vaccine/placebo administration (month 0); day of administration of the second 
(month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD2 
responses in HCMV seropositive vaccine recipients represented as OD values (B) 
AD2 responses in HCMV seropositive placebo recipients represented as OD 
values (C) Comparison between antibody levels against AD2 in the sera from 
vaccinated and placebo patients. Horizontal lines represent geometric mean 
values (±95%CI). (D) Comparison of antibody levels against AD2 between 
patients who developed viraemia versus patients who did not develop viraemia 
following transplantation. Horizontal lines represent geometric mean values. 
Statistical differences between the mean value of ODs between the populations of 
patients: vaccinated vs placebo and viraemia vs no viraemia were obtained from 
Mann Whitney Test (ns: not significant).  
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HCMV seropositive renal and liver transplant recipients
who had AD2 responses prior to vaccination
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Figure 6.5. Vaccination with the subunit glycoprotein-B vaccine with MF-59 
adjuvant boosted pre-existing antibody responses against AD2 in HCMV 
seropositive patients.  

AD2 responses are represented as OD values at day of first vaccine/placebo 
administration (pre-vaccination) and 2 months following the vaccination (post-
vaccination). The dotted line represents a cut-off value (the highest OD value in 
seronegative group at the time of vaccine administration). Horizontal lines 
represent geometric mean values. Statistical differences between the mean value 
of ODs between the populations of patients: vaccinated vs placebo were obtained 
from Mann Whitney Test (ns: not significant; **: P < 0.005). 
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Figure 6.6. Vaccination of HCMV seronegative patients did not elicit detectable antibody responses against AD2.  

AD2 responses are represented as OD values at different time-points: day of first vaccine/placebo administration (month 0); day 
of administration of the second (month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD2 responses in 
HCMV seronegative vaccine recipients represented as OD values (B) Comparison of antibody levels against AD2 between 
patients who developed viraemia versus patients who did not develop viraemia following transplantation. Horizontal lines 
represent geometric mean values. Statistical differences between the mean value of ODs between the populations of patients 
(vaccinated vs placebo were obtained from Mann Whitney Test; ns: not significant. 
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6.3.3. Antibody responses towards AD4. 

Next I studied antibody responses against AD4. Most seropositive patients had 

detectable antibody levels against AD4 prior to first vaccination (Figure 6.7 A and 

B). Furthermore, vaccination of HCMV seropositive patients awaiting SOT 

significantly boosted the level of antibody against AD4 in HCMV seropositive SOT 

patients who had high anti-AD4 antibody levels at baseline (Figure 6.7 A and C). 

Of the few seropositive patients with low level AD4 antibody responses an 

increase in anti-AD4 antibody level post vaccination was seen in some individuals 

but not all (Figure 6.7 A). Furthermore, an analysis of AD4 levels and outcome 

revealed that there was a trend for patients who had higher levels of AD4 specific 

antibody responses to be less likely to develop viraemia (Figure 6.7 D) although 

this did not reach statistical significance.  

 

In contrast to my observations with seropositive patients, the immunization of 

seronegative patients failed to induce any detectable antibody responses towards 

AD4 (Tables 6.1 and 6.2).  
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Figure 6.7. Vaccination of HCMV seropositive patients increased antibody 
levels against AD4.  

AD4 responses are represented as OD values at different time-points: day of first 
vaccine/placebo administration (month 0); day of administration of the second 
(month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD4 
responses in HCMV seropositive vaccine recipients represented as OD values (B) 
AD4 responses in HCMV seropositive placebo recipients represented as OD 
values (C) Comparison between antibody levels against AD4 in the sera from 
vaccinated and placebo patients. Horizontal lines represent geometric mean 
values (±95%CI). (D) Comparison of antibody levels against AD4 between 
patients who developed viraemia versus patients who did not develop viraemia 
following transplantation. Horizontal lines represent geometric mean values. 
Statistical differences between the mean value of ODs between the populations of 
patients: vaccinated vs placebo and viraemia vs no viraemia were obtained from 
Mann Whitney Test (ns: not significant; *: P < 0.05).  
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6.3.4. Antibody responses towards AD5. 

 

The final analysis was of antibody responses to AD5. Sera from nearly all 

seropositive patients contained antibodies against AD5 (Figure 6.8 A and B) and 

vaccination increased pre-existing antibody levels against AD5 in all patients 

(Figure 6.8 A and C). Despite this boost, these AD5 specific responses did not 

correlate with protection from viraemia following transplantation (Figure 6.8 D).  

 

In seronegatives, post-administration of the second dose of the vaccine, 

detectable antibody responses against AD5 in the majority of the patients were 

observed. However, similar to my observations in the seropositive group, these 

responses did not correlate with protection from viraemia (Figure 6.9). 

 

6.3.5. Correlation between AD1 and AD2 responses. 

Lastly I attempted to establish whether there is a correlation between AD1 and 

AD2 responses, as it was suggested previously in the literature. There were three 

possible relationships between the AD1 and AD2 OD levels in vaccinated 

seropositive SOT recipients: I) competition; II) additive effect; III) no interaction 

(Figure 6.10). Analysis of the observed antibody responses revealed that there 

was no correlation between the AD2 and AD1 OD levels in seropositive SOT 

recipients- post vaccination. 

 .
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Figure 6.8. Vaccination of HCMV seropositive patients boosted antibody 
responses against AD5 but did not correlate with protection from viraemia 
following transplantation.  

AD5 responses are represented as OD values at different time-points: day of first 
vaccine/placebo administration (month 0); day of administration of the second 
(month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD5 
responses in HCMV seropositive vaccine recipients represented as OD values (B) 
AD5 responses in HCMV seropositive placebo recipients represented as OD 
values (C) Comparison between antibody levels against AD5 in the sera from 
vaccinated and placebo patients. Horizontal lines represent geometric mean 
values (±95%CI). (D) Comparison of antibody levels against AD5 between 
patients who develop viraemia versus patients who did not develop viraemia 
following transplantation. Horizontal lines represent geometric mean values. 
Statistical differences between the mean value of ODs between the populations of 
patients: vaccinated vs placebo and viraemia vs no viraemia were obtained from 
Mann Whitney Test (ns: not significant). 
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Figure 6.9. Vaccination of HCMV seronegative patients promoted antibody responses against AD5 but did not correlate 
with protection from viraemia following transplantation.  

AD5 responses are represented as OD values at different time-points: day of first vaccine/placebo administration (month 0); day 
of administration of the second (month 1) and third dose (month 6), and 2 and 7 months post vaccination. (A) AD5 responses in 
HCMV seronegative vaccine recipients represented as OD values (B) Comparison of antibody levels against AD5 between 
patients who developed viraemia versus patients who did not develop viraemia following transplantation. Horizontal lines 
represent geometric mean values. Statistical differences between the mean value of ODs between the populations of patients 
(vaccinated vs placebo were obtained from Mann Whitney Test; ns: not significant). 
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Figure 6.10. Hypothetical models of possible relationships between the AD1 and AD2 OD levels in vaccinated 
seropositive SOT recipients.  

I) competition; II) additive effect; III) no interaction. 
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Figure 6.11. No correlation between the AD2 and AD1 OD levels in seropositive SOT recipients- post vaccination. 
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Table 6.1. Summary of antibody responses in sera from patients vaccinated with the subunit glycoprotein-B vaccine 
with MF-59 adjuvant against four key antigenic domains mapped onto gB.   

 

Antigenic 
domain 

HCMV seropositive vaccine recipients 
HCMV seronegative 
vaccine recipients 

Induction of antibody responses de 
novo 

Boost of pre-existing responses Induction of antibody responses 

AD1 Yes (Figure 6.2) Yes (Figure 6.2) Some (Figure 6.3) 

AD2 No (Figure 6.5; Figure 6.5) Yes (Figure 6.5; Figure 6.5) No (Figure 6.6) 

AD4 No (Figure 6.7) Yes (Figure 6.7) No (data not shown) 

AD5 Yes (Figure 6.8) Yes (Figure 6.8) Yes (Figure 6.9) 
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Table 6.2. Summary of serologic results of sera from patients vaccinated with the subunit glycoprotein-B vaccine with 
MF-59 adjuvant against four key antigenic domains mapped onto gB and correlated with protection from viraemia 
following transplant.  

 

Antigenic domain 

HCMV seropositive vaccine recipients 
HCMV seronegative 
vaccine recipients 

% positivity 
prior to vaccination 

% positivity 
following vaccination 

protection from 
viraemia 

% positivity 
following vaccination 

protection from 
viraemia 

AD1 86.4% (38/44) 93.8% (15/16) No 36% (4/11) No 

AD2 50% (23/46) 50% (9/18) Yes 0% No 

AD4 98% (43/44) 93.8% (15/16) Trend 0% No 

AD5 97.7 (43/44) 95.8 (23/24) No 62.5% (10/16) No 
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6.4. Discussion. 

 
The initial remit of this study was to identify whether any specific antibody 

responses against four known epitopes of gB correlated with protection against 

viraemia. To be classified as a correlate of protection in seronegative transplant 

recipients, any immunological responses would need to be induced by the vaccine 

and to correlate with protection against viraemia. In the seropositive donors the 

analysis was more complex: firstly, I could address whether any pre-existing 

immune responses to gB correlated with protection; secondly, whether vaccine 

administration enhanced pre-existing immune responses; thirdly, whether the 

vaccine elicited new responses which again correlated with protection. In this 

study I sought to find such a correlate that could explain the observed partial 

protection from viraemia seen following the administration of this vaccine 

formulation [188].  

 

This analysis illustrates the complexity of studying immune responses to HCMV. 

For example, HCMV establishes latency from which it periodically reactivates 

which could alter the pattern of immunological responses seen at any time of 

analysis irrespective of any external vaccine administration. To control for this, I 

examined not only vaccinated patients but also recipients of placebo at the same 

time points. This allowed me to follow natural changes in the composition of the 

humoral immune response in seropositive transplant recipients. Here I aimed to 

provide more insight into the protective nature and fine specificity of the humoral 

responses against gB evoked either by vaccination with gB/MF59 or natural 

infection.  

 

A major observation in this study was boosting of pre-existing AD-2 responses by 

gB/MF59. I demonstrated that the antibody responses towards this antigenic 

domain correlated with a level of protection in our patient cohort. The 

immunogenicity of AD-2 was variable, which is consistent with the published 

literature and extends the observation in natural infection to a human challenge 

model. Previous studies showed that only approximately 50% of infected 

individuals developed antibodies against the site I of AD-2 following natural 
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infection [162, 189, 426, 427] and the data I presented here are consistent with 

these observations. 

 

This study also shows that the administration of the first dose of the subunit 

glycoprotein-B vaccine with MF-59 adjuvant boosted pre-existing antibody 

responses against AD2 in HCMV seropositive SOT patients (Figures 6.4 A and 

6.5). These elevated antibody responses correlated with a lower number of 

patients who developed viraemia following transplant consistent with the 

hypothesis that antibodies against AD2 are protective (Figure 6.4 D). However, I 

noted that the vaccine failed to induce de novo anti-AD2 responses in both 

seronegative patients (Figure 6.6) and in seropositive individuals who did not 

possess anti-AD2 responses prior to vaccination (Figure 6.4 A and C). Taken 

together these data suggest that whilst pre-existing AD2 responses can be 

enhanced, the vaccine does not induce novel AD2 responses. Thus although 

evidence for a protective role for AD2 responses in a subset of patients could be 

postulated it clearly cannot explain the protection seen in patients who did not 

show evidence of an AD2 response.  

Structural and immunochemical analyses suggest that the anti-AD-2 specific 

immunological responses may be created though a cascade of rare and very 

specific immunoglobulin gene re-arrangement events [429, 434]. Therefore, it is 

likely that the variable response towards this epitope following both natural 

infection and vaccination with gB/MF59 and Towne based vaccines is a 

consequence of the low probability of developing antibodies that require 

recombination of two well-conserved human germline V elements (IGHV3-30 and 

IGKV3-11), and IGHJ4 and the possibility of antigen competition through the 

easier production of AD-1 antibodies [435]. Antibodies against AD-2 are also 

characterized by specific substitutions at certain positions that seem to be crucial 

for high affinity binding to this epitope [159, 429, 436, 437]. Although only a 

proportion of infected individuals develop these rare AD-2 antibodies, they seem 

to play an important role in neutralizing the virus and controlling infection [427, 

437-439]. Thus an immunogen that can enhance or generate de novo responses 

against AD-2 is a good candidate for a new HCMV vaccine. Importantly, my data 

suggest that, whilst pre-existing AD-2 responses established at the time of primary 

infection or in response to the reactivation of the virus from latency can be 
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enhanced, the gB/MF59 vaccine does not induce AD-2 responses in those lacking 

them at baseline. Interestingly, I observed an increase in the level of AD-2 

responses in one recipient of placebo and suggest that this might be a response 

to reactivation of latent virus or even a re-infection event in this patient prior to 

transplant. In summary, although evidence of a protective role for AD-2 responses 

was seen in a subset of patients and boosting of these responses with a vaccine 

in seropositive patients correlated with protection, the failure to induce de novo 

AD-2 responses in both seropositive and seronegative patients suggests a target 

that newer vaccines should aim for. 

 

In contrast to the variability in individuals displaying AD-2 responses, the vast 

majority of HCMV infected individuals develop antibodies against AD-4 following 

natural infection. This discontinuous domain is highly immunogenic, since 

approximately 90% of seropositive individuals possessed humoral responses 

against this structure in a previous report [160]. Here I confirm that indeed nearly 

all seropositive patients possess antibodies against AD-4. These AD-4 specific 

antibodies have a high neutralizing capacity at the post-adsorption step which 

suggests that evoking these immunological responses by vaccination may help 

control the virus [160].  

 

Furthermore, the vaccination of HCMV seropositive patients awaiting solid organ 

transplant boosted significantly the level of antibody against AD4 in HCMV 

seropositive SOT patients who had high anti-AD4 antibody levels prior to 

vaccination (Figure 6.7 A and C). Of the few seropositive patients with low level 

AD4 antibody responses I noted an increased anti-AD4 antibody level post 

vaccination in some individuals but not all (Figure 6.7 A). However, I also 

observed small increases in these AD4 specific responses in some placebo 

recipients, too, which may be indicative of natural fluctuation in the AD4 responses 

in healthy seropositives possibly due to re-infection or reactivation of latent 

infection occurring in these individuals during the period of analysis (Figure 6.7 B). 

Although the results did not reach statistical significance, there was a clear trend 

that the patients who had higher level of AD4 specific antibody responses were 

less likely to develop viraemia (Figure 6.7 D). This trend indicates that the 

antibody responses against AD4 may play an important role in protection.  
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In contrast to my observations with seropositive patients, the immunization of 

seronegative patients failed to induce any antibody responses towards AD4 (Table 

6.1 and 6.2). 

 

Here it is interesting to note potential analogies with other herpesviruses. 

Antibodies that bind to the AD-4 corresponding sequence on HSV-gB inhibit the 

interaction of gB with gH/gL complex with a downstream effect on viral fusion 

[440]. Although the actual role of this antigenic domain in HSV entry into cells 

remains unclear, a similar effect on HCMV could have marked impact on the 

ability to infect cells. Although the specific activity of the antibody response against 

AD-4 on infection remains unclear I cannot exclude from the small number of 

serum samples available to me that the antibody responses against AD-4 may 

also provide a certain level of protection. Importantly, similar to AD-2 responses, 

vaccination boosted only the pre-existing responses towards this potentially 

protective epitope. It remains to be established why vaccination could not elicit de 

novo AD-2 and AD-4 responses in seropositives not possessing these responses 

prior to vaccination or induce these responses in seronegative individuals. One 

possibility is that the structural form of the gB delivered in the vaccine occludes the 

production of good antibody responses against these potentially protective 

epitopes. One future approach to address this may utilise fragments of gB for 

vaccination to determine whether AD-2 or AD-4 responses can be induced de 

novo when presented alone or prior to vaccination with full gB.  

 

In contrast to my observations with AD-2 and AD-4 directed antibody responses, 

serological analysis of this vaccine cohort revealed that the antibody responses 

towards two further domains, AD-1 and AD-5, did not correlate with protection. It is 

well documented that the humoral responses against the immune- dominant 

region AD-1 that develop after natural infection with HCMV have a wide range of 

neutralizing capacity [158, 191]. However, competition between non-neutralizing 

and neutralizing antibodies against AD-1 was reported soon after the discovery of 

this antigenic region [158, 161, 192]. I could find no supporting evidence that high 

levels of AD-1 antibodies increased the chance of viraemia but the lack of a 

protective effect could argue for its removal from a future vaccine. Thus, if we 

consider the hypothesis that the virus is selected to benefit from immune 
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responses directed against AD-1 because of impaired generation of robust 

responses against key neutralizing epitopes, and then elimination of AD-1 from gB 

may lead to better protective antibody responses. What was not clear from my 

initial study was whether AD-1 binding antibodies have a negative impact through 

competition with other neutralizing antibodies. It seemed possible that the 

antibodies against AD-1 could potentially block the AD-2 epitope due to 

conformational masking as both of these antigenic domains are in close proximity 

on gB [358]. However, attempts to engineer gB without AD-1 proved to be difficult 

as AD-1 is necessary for oligomerization of gB and lack of this domain significantly 

compromised the structure of this protein [441]. In order to establish whether there 

is a competition between AD1 and AD2 antigenic domains and their binding 

capacities due to steric proximity I performed additional set of analyses in which I 

have shown no interactions between these antibody responses (Figure 6.11).  

 

Based on the date presented here, it can be hypothesised that future vaccines 

could be developed by using immunogens encoding AD-2 and AD-4 domains 

only. The most straightforward way to do this would be with peptides. However, a 

pre-clinical animal study on peptide-based vaccine specific to the HCMV gB AD-2 

region showed that such vaccine formulation elicits only poor neutralizing antibody 

responses [442]. Such an outcome emphasises that there are many challenges in 

developing potent immunogenic vaccines against single antigenic domains 

presented on a large parent molecule.  

 

I also analysed humoral responses against the recently described AD-5. 

Importantly, the antibodies that target this domain neutralize the virus in in vitro 

studies [160] [433] which suggests that these responses may play an important 

role in protection. The first report on AD-5 immunogenicity revealed that 

approximately 50% of seropositive individuals developed antibodies that bound to 

this antigenic site [160]. However, using second generation antigens and tests, 

seropositivity rates in healthy HCMV infected individuals were found to be in the 

range of 90% (A. Wiegers, M. Mach, personal communication). Consistent with 

this, we showed that sera from nearly all seropositive patients contain antibodies 

against AD5 (Figure 6.8 A and B) which is in line with the more recent estimates. 

Interestingly, similarly to AD1 responses, analyses showed no correlation between 
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increased level of these AD5 specific responses and reduction in viraemia. 

Whether HCMV exploits AD1 and AD5 domains to evade the immune system by 

masking the epitopes that may be protective, or by directing the attention of the 

immune system towards poorly functional domains, remains to be further 

investigated. 

 

The previous report from my group revealed that the vaccine elicited high titres of 

anti-gB antibodies in seronegative patients [188]. However, the immunogenicity of 

the vaccine against these four well-defined antigenic domains used in this study is 

surprisingly low amongst the vaccinated seronegative cohort. I could observe only 

modest responses in seronegative patients against AD1 and AD5 that did not 

correlate with protection. It is worth noticing that the AD1 and AD4 antigenic 

domains were produced in bacterial expression systems which could potentially 

alter glycosylation patterns and at least partly explain poor recognition of the 

antibodies towards these epitopes. However, the antibody responses in 

seropositive individuals prior to vaccination are well recognised by these antigenic 

domains. The reasons why this vaccine boosted pre-existing antibody responses 

in seropositive patients but failed to induce these responses de novo in both 

seronegative and seropositive patients, remains unclear. Clearly, a substantial 

response against gB is made, [188] suggesting the possibility that some other, 

currently unknown epitopes on gB are presented effectively in the vaccine.    
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7. Longitudinal analyses of humoral antibody responses elicited by 
vaccination.  

 

7.1. Pharmacodynamic assessment of the post-transplant sera. 

 

Pharmacodynamics is the study of the effect of a particular drug or chemical 

compound exhibited on a living organism. This approach focuses on the duration 

and magnitude of response observed in relation to the concentration of the drug at 

an active site in the organism. In contrast, pharmacokinetic approaches 

investigate how the drug or chemical compound is absorbed and distributed 

(“biotranslocation”), what chemical alterations a drug may undergo in the body, 

(“biotransformation”) and ultimately- how the drug is stored within the living 

organism and eliminated from it. Put succinctly, they can be described as: 

“pharmacodynamics is study of what a drug does to the body, whereas 

pharmacokinetics is the study of what the body does to a drug”.  

Consequently, pharmacokinetics requires a specific knowledge about the 

mechanism of action of the drug. Therefore it is not possible to use this approach 

for medical conditions where the protective component has not been identified. On 

the other hand, the pharmacodynamic approach offers a potential unbiased, open-

ended way to a discovery as long as a robust biomarker is available as the read 

out of successful control of a disease process.  

 

These principles can be applied to HCMV. It is known that the immune system 

controls replication of this virus, but the precise components of the immune 

system that provide control have not been identified. In patients whose immune 

system is compromised, HCMV replicates to high levels and can be detected in 

the blood. Thus, serial quantitative measures of viraemia (described in chapter 

1.16; Table 1.4, Fig. 1.9) can be interpreted as a natural biomarker of HCMV 

activity. This quantification was used as a reference point for the phase-2 vaccine 

trial with subunit, recombinant gB vaccine [2] (described in chapter 1.16). Most 

importantly; this systematic analysis could then be applied to 

immunocompromised patients randomised to receive an experimental vaccine or a 

matching placebo. If the vaccine reduces the viraemia biomarker, then correlations 

can be sought with a variety of potential immune effectors.  
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In order to perform the pharmacodynamic assessment of the clinical samples 

obtained from the patients who participated in the clinical trial, the glycoprotein-B 

antibody titres were measured and correlated with the virological parameters that 

were established in the natural history studies described previously. This approach 

allowed evaluation of the efficacy of the vaccine despite the lack of prior 

information on the correlate of protection (see chapter 1.16, [188]).   
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7.2. Interruption of viral transmission. 

A major characteristic of herpesviruses like HCMV is their ability to undergo both 

lytic and latent types of infection [34, 275]. Typically, after primary infection and 

initial immune response, HCMV establishes life- long latency that may be followed 

by periods of reactivation of lytic infection [443]. Although HCMV is controlled 

through the life-time by the immune system of healthy individuals, there might be 

severe outcomes of reactivation from the latent stage in immunocompromised 

individuals such as HIV patients, [293-296, 298, 299] individuals that require 

immunosuppressive therapy, SOT patients, hematopoietic stem cell transplant 

recipients [188, 284-291]; and possibly even the elderly population whose immune 

system is less efficient due to immune senescence [444]. The reactivation of latent 

virus in these vulnerable groups is associated with increased mortality and 

morbidity rates [284, 286]. The maintenance of latency requires constant evasion 

of the robust immune-surveillance of the host. In order to survive in the hostile 

environment, HCMV evolved to become a master of immune-evasion, encoding 

many proteins that target and downregulate the effectors of the host’s 

immunological system [445-447]. Such interference is associated with an 

immunosuppressive effect, thus it is very likely that it makes the host more 

susceptible to other infections [448]. Additionally, an increasing body of evidence 

indicates that the replication of HCMV is also associated with inflammation and 

several autoimmune-diseases. However, some of those links between 

inflammation, auto-immunity and the role of HCMV infection are controversial and 

not fully understood yet [448-450]. 

Interestingly, over the last few years a number of reports showed that HCMV plays 

a more active role during latency than was previously thought as many virally 

encoded genes are now known to be expressed during this dormant stage. 

However, the role of these latently expressed proteins is not fully elucidated yet. 

Indisputably, having both latent and lytic types of infection the strategy common to 

all herpes viruses, made them very successful in persistence and transmission 

within the human population and it is important to investigate whether vaccination 

is able to interrupt transmission of virus from the organ donor during SOT. 
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Therefore, as a last step of this follow up analysis, I investigated whether this 

vaccine could block transmission of the virus from HCMV infected donor to 

seronegative graft recipient. It was well established in our previous studies that 

patients in this group (D+R-) are at the highest risk of onset of viraemia and 

HCMV disease [35, 188]. Although the number of patients in the highest risk D+R- 

group was small, I was interested whether humoral immunity induced by 

vaccination in these patients had an impact on reducing the transmission rate of 

HCMV from donor to recipient and how these humoral responses conferred 

protection in some of these vaccinated patients. 
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Objectives: 

 

The analyses thus far have focused on characterising the humoral immune 

response up to the point of transplantation in an attempt to identify the protective 

element. In this section my approach is to analyse the sera post-transplant to 

determine whether there is evidence of differential responses in individuals who 

have received the vaccine versus placebo. Finally, I will investigate, as a proof of 

concept, whether I can establish an assay to measure whether the vaccine 

completely blocks transmission as well as reducing measures of viraemia.  
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7.3. Materials and methods. 

7.3.1. Clinical trial: conduct and patients. 

Randomisation, masking, vaccination schedule and conduct of this phase-2 

placebo-controlled trial clinical trial were described in detail elsewhere (chapter 

2.1) [188]. Briefly, the vaccine or placebo was given in three doses: at day 0 

(baseline), 1 month and 6 months later. Blood samples were collected on each of 

these 3 times as well as 1 month after dose 2 (Month 2) and one month after the 

third dose (Month 7) [188]. The patients who subsequently underwent 

transplantation were followed up for 90 days during which serial blood samples 

were obtained at days: 0, 7, 35, 63 and 90 (Figure 1.14). Some patients who 

completed this study gave informed consent to obtain their blood samples at the 

times of their follow-up visits (approximately 2 years post vaccination, end of the 

study-July, 2016). The population from whom samples have been evaluated and 

described in this work are HCMV seronegative solid organ transplant patients who 

participated in this follow-up study.  

7.3.2. Detection of Latency. 

PCR was performed using 2x PCR Master Mix (ThermoFisher). Forward and 

reverse primers (Invitrogen) were present at 2ng/µl in each reaction. The nested 

UL138 PCR used 30 cycles for the first reaction, then 15 for the nested PCR 

(Table 7.1. A).  

A nested PCR that amplified the UL138 region was conducted according to 

standard procedures as follows: 25µl of PCR MasterMix (Promega): 1µl (1:10 

diluted in sterile water) of forward primer for UL138 (Integrated DNA 

Technologies); 1µl (1:10 diluted in sterile water) of reverse primer for UL138 

(Integrated DNA Technologies) made up to a final volume of 45µl with sterile, 

nuclease-free water (Promega). Then, 5µL of extracted DNA from clinical samples 

were added and all clinical samples were analysed in duplicate. The extremely low 

proportion of genome positive cells in natural latency (1 per 10,000 cells [128]) 

often requires the use of nested PCR approach to detect it. Therefore a nested 

PCR was performed on 5µL of the first round PCR product, 25µl of PCR 
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MasterMix (Promega),1µl of forward primer for nested UL138 (Thermofisher); 1µl 

of reverse primer for nested UL138 (Thermofisher) and made up to a final volume 

of 45µl with sterile, nuclease-free water (Promega). As a control the DNA samples 

were amplified with primers against the house- keeping gene 18S (1:10 diluted in 

sterile water) (Thermofisher), conditions as indicated above. PCR cycling 

conditions were: 10min at 95°C; and 30 cycles of 40s at 95°C; 40s at 55°C and 

90s at 72°C and 10min at 72°C (for both standard and nested PCR).  
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A) 

  Stage Temperature Duration 

1 x Initial Denature 95oC 60 seconds 

30 x 

Denature 95oC 40 seconds 

Annealing 55oC 40 seconds 

Extension 72oC 90 seconds 

1 x Final 
Extension 

72oC 600 seconds 

 

B) 
 

 

Table 7.1. PCR specification. A) PCR workflow; B) Primer sequences.  

 

Product Forward Reverse 

UL138 TGCGCATGTTTCTGAGCTAC ACGGGTTTCAACAGATCGAC 

UL138 Nest GAGCTGTACGGGGAGTACGA AGCTGCACTGGGAAGACACT 

18S GTAACCCGTTGAACCCCA CCATCCAATCGGTAGTAGCG 
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7.3.3. Serological analysis. 

 

Serological analyses were performed using commercially available line 

immunoassay kit recomLine CMV IgG and recomLine CMV IgM (Mikrogen 

Diagnostik) according to manufacturer’s instruction. This stripe test contains 

recombinant antigens to detect IgG and IgM antibodies directed against HCMV 

from human sera. The antigens included in the test were IE1 (IE1 protein); CM2 

(p52 protein, UL44, UL57); p150 (pp150 protein, UL32); p65 (pp65 protein, UL83); 

gB1 (gB protein, UL55) and gB2 (gB protein, UL55). Statistical analysis was not 

performed here due to the small number of samples.  
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Figure 7.1. Commercially available line immunoassay kit recomLine CMV IgG 
and recomLine CMV IgM (Mikrogen Diagnostik).  
 
A) Schematic representation of the stripe test that contains recombinant antigens 
to detect IgG and IgM antibodies directed against human cytomegalovirus from 
human sera and B) table containing the list of gB antigens that are incorporated 
into this test and their short characterization. 

A) 

B) 
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7.4. Results. 

7.4.1. Pharmacodynamic assessment of the post-transplant sera from the 

D+R- group.  

In order to investigate the magnitude of humoral responses post-transplantation, 

total level of antibodies against gB were measured by enzyme immunoassay and 

the viral load was evaluated by PCR (Table 7.2). Unfortunately, the number of 

patients in this D+R- who proceeded to transplant was very limited. We had only 

four placebo and eleven vaccine recipients. Interestingly; all four placebo patients 

(100%) experienced viraemia in comparison to six out of eleven vaccinated 

patents (55%); (Table 7.2). Moreover, three placebo patients had antibody levels 

below the baseline (negative cut-off) throughout the period of analysis and only 

one placebo patient developed quickly a high level of anti-gB antibodies. However, 

this did not protect this individual from the onset of viraemia. In general, the 

vaccinated patients (when compared to placebo): had higher levels of anti-gB 

antibodies, and required less time to produce these high titres of antibodies (Table 

7.2). 

I also analysed virological parameters other than viraemia occurrence such as 

total viraemia duration, occurrence and duration of subsequent viraemia episodes, 

peak viral load and duration of antiviral therapy. The detailed analysis of the 

duration of viraemia in both vaccine and placebo recipients revealed interesting 

differences between these two groups of patients. A decrease in the total duration 

of viraemia in vaccinated group was observed (Figure 7.2.A). Due to the small 

number of samples it is difficult to assess whether there are any differences in the 

duration of the first episode of viraemia in those patients who developed viraemia. 

(Figure 7.2.B). However, when I looked at the subsequent episodes of viraemia, it 

became clear that vaccine prevented its occurrence. None of the vaccinated 

patients experienced second episodes of viraemia (0/11) in comparison to three 

out of four patients (placebo recipients) who had more than one episode of 

viraemia (Figure 7.2.C). Moreover, I could see an inverse relationship between the 

baseline antibody titre and viraemia occurrence (Figure 7.3.A) and duration 

(Figure 7.3.B, [188]) in seronegative patients who received organs from 
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seropositive donors. Interestingly though, it seems that vaccination did not have 

impact on the other virological parameter: peak viral load, which is defined as a 

maximum number of viral copies per ml of blood that was detected during the 

follow-up period in each patient (Figure 7.4).  

Overall, despite sample number limitations, these results suggest that vaccine 

recipients were immunologically primed to combat and clear viral infection more 

effectively in comparison to the placebo group. 



264 

 
 

 

vax placebo
0

50

100

150

200

250
vax

placebo

**

D
u

ra
ti

o
n

 o
f 

v
ir

a
e
m

ia
 (

d
a
y
s
)

vax placebo
0

20

40

60
vax

placebo

*

D
u

ra
ti

o
n

 o
f 

in
it

ia
l 
v
ir

a
e
m

ia
 (

d
a
y
s
)

vax placebo
0

50

100

150 vax

placebo

*

d
u

ra
ti

o
n

 o
f 

s
u

b
s
e
q

u
e
n

t 
v
ir

a
e
m

ia
(d

a
y

s
)

  

Figure 7.2. Duration of viraemia post- transplantation in seronegative patients who received organs from seropositive 
donors is shorter in vaccinated group. 

A) Total duration of viraemia in vaccine vs placebo groups of patients. B) Duration of first episode of viraemia in vaccine vs 
placebo groups of patients. C) Duration of subsequent episodes of viraemia in vaccine vs placebo group of patients. Statistical 
differences were obtained from Mann Whitney Test; *: p<0.05; **: p<0.01). 

A) B) C) 
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Figure 7.3. Inverse relationship between the baseline antibody titre at the day of transplantation and viraemia 
occurrence and duration in seronegative patients who received organs from seropositive donors (D+R-).  

A) Inverse correlation between the baseline antibody concentration and viraemia occurrence B) Inverse correlation between the 
baseline antibody concentration and duration of viraemia. Statistical differences were obtained from Mann Whitney Test; ns: 
p>0.05).   

A) B) 
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Figure 7.4. Peak viral load in vaccinated and placebo seronegative patients who received organs from seropositive 
donors.  

Peak viral load is the highest value of genome copies per ml of blood that was detected during the surveillance time (up till 90 
days post vaccination). Statistical differences were obtained from Mann Whitney Test; ns: p>0.05). 
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Table 7.2. The database of the D+R- cohort.  

The table contains both: virological parameters (viraemia occurrence and duration) and the serological data – total level of the 
anti-gB antibodies measured by ELISA in the samples collected at different time-points prior to and post transplantation. Red 
arrows indicate the onset of viraemia. 

No 
vaccine/

placebo 

donor 

status 
viraemia 

days 

viraemia 

gB last 

sample 

before tx 

gB D0 gB D7 gB D35 gB D63 gB D90 

002-009 placebo POS yes 191d 395 305 233↓ 149 184 160 

002-020 placebo POS yes 54d <50 
 

<50 <50↓ 257 3140 

004-004 placebo POS yes 65d <50 
 

106305↓ 71785 114106 229984 

004-019 placebo POS yes 48d <50 323 209↓ 1324 9131 5400 

002-003 vax POS yes 47d 737 764 472 277↓ 42038  

002-008 vax POS no 
 

1243 355 151 318 283 281 

002-018 vax POS no 
 

37858 38426 17108 16815 10840 5177 

002-035 vax POS no 
 

10425 36487 15869 14798 11879 9261 

002-040 vax POS no 
 

41612 20590 21590 21725 14464 12355 

004-003 vax POS yes 1d <50 2458 1593↓ 1234 2287 1898 

004-012 vax POS yes 27d 1107 3737 6844↓ 8330 37606 42677 

004-015 vax POS no 
 

137 103 186 243 663 340 

004-017 vax POS yes 13d <50 474 1393↓ 1048 13019 77544 

004-021 vax POS yes 13d <50 
 

↓ 660262 1732390 284393 

004-025 vax POS yes 28d 49961 9170 7833↓ 15024 
  



268 

 
 

7.4.2. Serology. 

 

 

The suggestion of prompt anti-gB responses in the R- population led me to 

investigate whether a humoral response was raised against other HCMV antigens 

post- transplant. I performed longitudinal analyses of serological responses (IgG 

Table 7.3 and IgM Table 7.4) towards key HCMV-antigens IE1 (IE1 protein); CM2 

(p52 protein, UL44, UL57); p150 (pp150 protein, UL32); p65 (pp65 protein, UL83); 

gB1 (gB protein, UL55) and gB2 (gB protein, UL55) in follow-up serum samples 

from seronegative HCMV gB-MF59 vaccine recipients collected approximately two 

years following transplantation. Patients from the highest risk group D+R- (n=7) 

are highlighted in yellow; patients from non-risk group D-R- (n=3; served as 

control group in these analyses) are highlighted in green. Interestingly, this 

analysis revealed that all patients from D+R- group had good IgG antibody 

responses towards HCMV. All patients had antibody responses towards the 

vaccine antigen- gB- as expected, but also there was clear evidence of antibody 

responses towards other HCMV antigens. For example, pp150 responses were 

detected in all subjects. All 7 D+R- patients had viraemia post-transplant and no 

follow up samples were available from D+R- patients without viraemia. In contrast, 

in the control group (D-R-) no antibody responses were detected against HCMV 

proteins.  

 

As well as analysis of IgG I also investigated the IgM antibody repertoire. In 

contrast to the IgG response only two out of seven D+R- and none of control D-R- 

patients had detectable levels of IgM. 

7.4.2.1. Analyses of the antibody repertoire following vaccination. 
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Table 7.3. Analyses of IgG responses towards key HCMV-antigens in the 
sera from gB-MF59 seronegative vaccine recipients that were collected 
approximately 2 years following transplantation.  

Patients from the highest risk group D+R- (n=7) are highlighted in yellow, 
patients from non-risk group D-R- (n=3) highlighted in green served as 
control group in these analyses.  

patient no IE1 CM2 p150 pp65 gB1 gB2 

002-00010 yes yes yes no yes yes 

004-00004 no no yes no yes yes 

004-00012 yes yes yes yes yes no 

004-00017 yes yes yes yes yes yes 

004-00019 yes yes yes yes yes yes 

004-00021 no no yes no yes yes 

002-00014 no no yes no yes no 

002-00027 no no no no no no 

002-00028 no no no no no no 

004-00020 no no no no no no 
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Table 7.4. Analyses of IgM responses towards key HCMV-antigens in the 
sera from gB-MF59 seronegative vaccine recipients that were collected 
approximately 2 years following transplantation.  

 
Patients from the highest risk group D+R- (n=7) are highlighted in yellow, patients 
from non-risk group D-R- (n=3) highlighted in green served as control group in 
these analyses. 

patient no IE1 CM2 p150 pp65 gB1 gB2 

002-00010 yes yes yes no no no 

004-00004 no no no no no no 

004-00012 no no no no no no 

004-00017 no no no no no no 

004-00019 no no no no no no 

004-00021 no no no no no no 

002-00014 no no yes no no no 

002-00027 no no no no no no 

002-00028 no no no no no no 

004-00020 no no no no no no 
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The next parameter I wished to investigate was time. Specifically, I was interested 

to determine whether the duration from the time of receiving the last vaccination 

dose to the time of challenge with the virus had any impact on the virological 

parameters- e.g. probability of viraemia occurrence; longer duration of viraemia or 

anti- viral treatment. Secondly, I was interested whether the number of vaccine 

doses administered to the patients is inversely correlated with the duration of 

viraemia.  

 

The results are shown in the Table 7.5. Due to the small number of patients in this 

high risk group (D+R-) it is difficult to assess whether the duration from the time of 

receiving the last vaccination dose to the time of challenge with the virus was 

correlated with the values of these virological parameters. Similarly, it is difficult to 

conclude whether the number of vaccine doses received impacted the outcome, 

as the majority of the patients in this group received only two doses of the vaccine 

prior to transplantation. 

7.4.2.2. The impact of the duration from the time of receiving the last vaccination 

dose to the time of challenge with the virus (transplantation) and the number of 

vaccine doses received on development of viraemia. 
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Table 7.5. Database of the D+R- cohort.  

 
The table contains virological parameters (viraemia occurrence and duration); the 
total number of vaccine/placebo doses received and the duration between 
vaccination and transplantation.  

No 
vaccine/ 
placebo 

donor 
status 

viraemia 
days 

viraemia 
No. of 
doses 

Period between 
vaccination and 
transplantation 

002-009 placebo POS yes 191d 3 3 months 

002-020 placebo POS yes 54d 3 3 months 

004-004 placebo POS yes 65d 3 
3 years, 7 months  

2 weeks 

004-019 placebo POS yes 48d 2 2 weeks 

002-003 vax POS yes 47d 2 2 weeks 

002-008 vax POS no 
 

2 4 months 2 weeks 

002-018 vax POS no 
 

2 2 weeks 

002-035 vax POS no 
 

2 1 month 

002-040 vax POS no 
 

3 3 months 3 weeks 

004-003 vax POS yes 1d 2 1 month 

004-012 vax POS yes 27d 2 2 weeks 

004-015 vax POS no 
 

1 1 month 

004-017 vax POS yes 13d 2 2 weeks 

004-021 vax POS yes 13d 2 1 month 3 weeks 

004-025 vax POS yes 28d 3 3 weeks 
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7.3.3. Detection of latent infection. 

Finally, I wished to investigate whether I could detect latent viral genomes in the 

monocytes of seronegative patients in post-transplant follow up samples. To do 

this, DNA was harvested from 10^5 CD14+ monocytes which had been isolated 

from peripheral blood from previously R- transplant recipients. DNA was then 

amplified using a nested PCR against viral DNA. A PCR analysis of three placebo 

recipients (D+R-); two vaccine recipients (D+R-) and a D-R+ positive control was 

performed. Interestingly, viral DNA could be amplified from all samples (except 

water control) including one D+R- sample that did not exhibit any evidence of 

viraemia post-transplant. Although this signal was less (lane 5) the PCR 

amplification the cellular DNA gene 18S suggested that this was likely due to 

lower levels of input DNA in the PCR.   

  



274 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 7.5. Detection of HCMV UL138 gene as a marker of latent infection.  
 
Lane 1) water (as a negative control), 2) D+R-; placebo recipient (002-00010); 3) 
D+R-; vaccine recipient (002-00014); 4) D+R-; placebo recipient (004-00004); 5) 
D+R-; vaccine recipient (004-00015); 6)D+R-; placebo recipient (004-00019); 7) D-
R+ vaccine recipient (001-00053)- as a positive control. Upper panel indicates 
UL138 (pointed by arrow) and lower indicates control- 18s (pointed by arrow). 

UL138 

18s 

1 2 3 4 5 6  7 

1 2 3 4 5 6  7 
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patient 
vaccine/ 

placebo 

donor/ 

recipient 

status 

Viraemia 

(>200 

genome 

copies/mL 

blood) 

PCR 

positive-

latency 

002-00010 plac D+R- yes yes 

002-00014 vacc D+R- yes yes 

004-0004 plac D+R- yes yes 

004-00015 vacc D+R- no  yes 

004-00019 plac D+R- yes yes 

001-00053 vacc D-/R+ no  yes 

 

Table 7.6. Detection of HCMV UL138 sequences as a marker of latent 
infection. 
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7.4. Discussion. 

 

A long duration of antibody responses elicited by vaccination could be important 

for seronegative transplant candidates who are waiting to be challenged with the 

virus transmitted from a seropositive donor. These recipients do not possess any 

pre-existing immune responses to the virus other than those made in response to 

vaccination and would elicit impaired antibody responses towards the HCMV from 

the positive organ due to the immunosuppressive drug regimen. Therefore, this 

serological analysis illustrates the advantages of conducting longer-term follow up 

studies to correctly assess the humoral responses evoked by vaccination and their 

full potential to protect from this pathogen.  

 

In this analysis I aimed to investigate the humoral responses in follow up samples 

(post-transplant) of this highest risk group D+R-. Firstly, I looked at the duration of 

these antibody responses and analysed sera of D+R-patients that were collected 

approximately 2 years after transplantation. I could detect good and broad 

antibody responses in all of the D+R- individuals. Unfortunately, a very limited 

number of samples were available and it was not possible to differentiate the 

quality of responses between placebo/ vaccine group and most importantly- 

between patients who experienced viraemia and those who did not. All the 

patients whose sera were analysed here had viraemia post-transplantation and, 

therefore, it is not surprising that all these patients had broad antibody responses 

which must have developed following exposure to other viral antigens. However, it 

would be very interesting to see whether the sera from patients who did not 

develop viraemia also contained these anti-CMV antibodies and that analysis 

should be built into future studies of CMV vaccines. The detection of antibody 

responses against multiple antigens other than gB (vaccine antigen) would 

suggest that, although there was transmission of the virus from the donor, the 

infection was controlled by the immune responses of the host. Alternatively, if 

further analyses of the non-viraemic D+R- patient cohort revealed that IgGs were 

only raised against gB it would argue that vaccination was successfully 

interrupting HCMV at the point of transmission. 
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Of course, a similarly plausible explanation of only antibodies against gB being 

present in these non-viraemic D+R- patients could be a lack of virus exposure 

following transplant (natural history data: Table 1.4: not all but 78% of D+R- 

experienced viraemia).  

 

The pharmacodynamic analysis of the post-transplant sera revealed some 

differences between placebos and vaccinated D+R- patients. Although I cannot 

conclude whether there is a difference in the duration of the initial period of 

viraemia and other virological parameters such as peak viral load (Figure 7.1. A, B 

and Figure 7.3) between these groups of patients due to the small sample size, it 

is clear that vaccinated patients did not experience subsequent episodes of 

viraemia (Figure 7.1.C). This, together with generally much higher titres of anti-gB 

antibodies in these vaccinated individuals suggests that the vaccination might 

prime the immune system of vaccinees prior to challenge with the virus following 

transplant. It seems possible that, although I could not detect specific antibody 

responses towards particular antigenic domains in these seronegative patients 

(see chapter 6) prior to transplantation, patients could possess memory B-cells 

specific for these antigens. However, due to the lack of exposure to the pathogen, 

the level of the antibodies could remain low or below the level of detection. 

However, upon exposure to the virus (i.e. at the time of transplantation) the 

immune-system could react quicker and produce the protective antibodies more 

efficiently.  

 

In any vaccine studies it is important to identify whether the vaccine provides 

sterilising immunity or just protects from viraemia. This becomes particularly 

important with herpes viruses since they have the capacity to establish lifelong 

latent infections that likely contribute to transmission in the population and can 

result in pathogenesis in immune-compromised patients upon reactivation. Thus I 

reasoned that it would be interesting to ask whether vaccination of R- individuals 

receiving an organ from a seropositive donor prevented the establishment of latent 

infection as this would be good evidence that the vaccine had prevented 

transmission of the virus. 
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Unfortunately, although we had originally 16 patients in D+R- group (11 vaccine 

and 5 placebo recipients) who completed the phase-2 study and consented to 

participate in follow-up study, we received in total only 5 follow up samples from 

D+R- patients (2 vaccine recipients, one of whom experienced viraemia post 

transplantation). Interestingly, all of these patients had detectable levels of HCMV 

DNA present in their monocyte fraction (Figure 7.5 and Table 7.6). The detection 

of HCMV DNA sequences in the monocytes of the D+R- transplant patients who 

experienced viraemia is perhaps not surprising. Unfortunately, we obtained only 

one sample of the most informative case-scenario: vaccinated patient from high-

risk D+R-group who did not experience viraemia after viral challenge, which if 

were proven to be genome-negative could potentially suggest interruption of viral 

transmission by vaccination. The detection of DNA in the monocytes isolated from 

that patient would be consistent with latency in that individual. Thus, although no 

viraemia was observed in this patient there is direct evidence that they have 

become DNA- positive suggesting the virus was transmitted, albeit at a low level. 

However this observation remains anecdotal and could reflect the acquisition of 

HCMV post-transplant. Thus it would be of interest in future studies to carry out a 

more systematic analysis of non-viraemic D+R- patients post-transplant to ask 

whether they had established latent infections.  

 

Of course, it also remains possible that the antibodies detected in samples of the 

transplant patients collected approximately 2-years post transplantation could be 

elicited by infection with other strain of HCMV (than the donor strain) or even 

multiple strains of the virus (superinfection), that were acquired in a period 

between transplantation and follow up studies. Therefore, I cannot exclude the 

possibility that the humoral responses in those long-term follow up samples were 

made only in response to the vaccine antigen and possibly- virus from seropositive 

organ. In order to have more insight into this, I performed the analyses of IgM 

response profiles in this follow up study. Of course, the presence of IgM antibodies 

would indicate that the infection was acquired recently. I detected that 2 out of 7 

D+R- patients had IgM responses to at least one viral antigen in this follow-up 

analysis (Table 1.4). This suggests that those patients experienced either re-

infection with different strain or re-activation of their latent HCMV in the past few 

months. This method, although offers some insight into the nature of immune 
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responses of those patients, it has also certain limitations; e.g.: it is impossible to 

determine whether vaccine successfully prevented subsequent infections with 

different strains. To ultimately determine whether the antibody repertoire in those 

follow up samples was elicited by the viral strain acquired during transplantation or 

by subsequent re-infections with different HCMV strains during the follow up 

period; it would be necessary to genotype viral strains of the donors prior to 

transplantation and viral strains of the patients. Such approach would offer a 

possibility to compare the sequences of the donor strains and the strains of the 

patients in the follow-up period. If they match, that would clearly indicate that 

although vaccine did not prevent transmission at the time of transplantation, it 

conferred some protection against re-infections with different strains of this 

pathogen.  

 

Despite the severe limitations of sample size that have limited many of the follow 

up analyses presented here, what they do show is that as a proof of concept we 

can interrogate sera and cell samples post-transplant with standard laboratory 

techniques. As such there would be great power in ensuring that in future studies 

part of the focus was to include a more comprehensive recruitment and analysis 

post transplantation. 
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8. Final discussion. 

 

The results in this thesis illustrate the complexity of trying to discover vaccines 

able to control HCMV infection. Despite the fact that this virus was isolated for the 

first time over 60 years ago [5-8], there are still no vaccines available to control 

this important pathogen [344]. Although several vaccine candidates for HCMV 

have been trialled to date, none of them is approaching licensure [273].  

First attempts were made with live attenuated vaccines (based on laboratory 

passaged CMV strains: Towne and AD169) [16, 24, 269-272]. Apart from the 

unsatisfactory immunogenicity levels induced by these vaccines, one of the major 

concerns over the use of live whole-virus vaccines is the possibility of 

establishment of latency post-vaccination. Therefore, to overcome this obstacle, 

new vaccination strategies including subunit and vectored vaccines were 

developed (reviewed elsewhere [273]). Several vaccine formulations are currently 

under phase-2 clinical development, including modified vaccinia Ankara (MVA) 

CMV triplex vaccine (NCT02506933) and CMVpp65-A*0201 peptide vaccine 

(NCT02396134). To date, only one vaccine candidate has reached phase-3 

clinical trials- the DNA plasmid ASP0113 vaccine (NCT01877655). There are 

several reasons why the development of vaccines against HCMV has proved to be 

difficult. One of the most important features of HCMV is the natural history that is 

much more complex than viruses that have previously been controlled by 

immunisation, for example rubella [36, 127]. Due to the similarities and the 

analogy in the mode of infection, transmission of the virus from newly infected 

pregnant women to the fetus (especially in the first trimester of pregnancy) - many 

of the initial conclusions about HCMV were extrapolated from studies on rubella. 

The general dogma was that HCMV could be controlled by preventing primary 

infection [451]. However, in the case of infection with HCMV, the situation proved 

to be much more complex. For example, in addition to causing primary infection, 

HCMV can reactivate from latency and individuals can be re-infected with new 

strains [35, 125, 126, 188]. The first observation suggesting that some of the 

congenitally infected babies were born to seropositive mothers and that the 

burden of the disease is associated with the quantity of the virus (viral load) came 
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from natural history studies of new-borns conducted in 1970s in Alabama, USA 

[36]. This finding was initially controversial and hard to accept by many 

researchers in these very early days of HCMV research. It seemed odd to many, 

that maternal immunity is not always able to prevent the virus from damaging the 

fetus [127], as it was in case of infection with rubella virus. The mounting evidence 

ultimately showed that pre-existing immunity substantially lowers the risk of 

congenital infection (by 69% [127]). However, due to the high prevalence of this 

virus, up to 100% in developing countries- many infections occur due to 

reactivation or reinfection of the mother [33]. This complex natural history of 

HCMV makes development of a vaccine more challenging, as it needs to protect 

not only from primary infection but also reactivation of latent virus and reinfection 

with a different strain. Interestingly, all of the extensive number of proteins 

encoded by HCMV is recognised by the immune system [452] but, despite this, 

reactivation and reinfection still occur, which suggests that mimicking natural 

immunity through vaccination may not be sufficient to prevent transmission of this 

virus and ultimately, control disease.  

Furthermore, although virus neutralisation is conventionally regarded as a 

correlate of immune protection mediated by vaccination [333, 334], this again 

seems to be much more complex in case of the HCMV infection [301]. The 

reactivation and reinfection with HCMV occur in individuals who already have 

neutralising antibodies, which shows that the presence of neutralizing antibodies 

does not always confer protection. This very complex natural history may be the 

result of HCMV encoding a large number of immune evasion genes which target 

cell-mediated and humoral immunity [453-455]. Alternatively, it may be explained 

by the transmission of virus in a cell associated form, which would not normally be 

expected to be susceptible to classical virus neutralising antibodies. Furthermore, 

the type of inoculum of virus transmitted from person to person may be different in 

distinct patient groups such as transplant patients or women of childbearing age 

[274]. Also, the absence of relevant animal models that could imitate the human 

immune responses following infection with HCMV is another practical hurdle in 

vaccine development [344].  
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Despite all these uncertainties, the results described in this thesis show the 

advantages of applying pharmacodynamics to discover vaccines with activity 

against HCMV infection in transplant patients. This approach uses biomarkers of 

viral load that were validated for each patient group in a previous natural history 

study [35]. My results are based upon a detailed analysis of one phase-2 

randomised controlled trial in candidates awaiting transplantation of a kidney or 

liver [35]. Strength of this approach is that the date of challenge with virus that is 

transferred between humans is known, because it is the day of transplant. A 

weakness of this approach is that the strain of HCMV present in the donor organ 

cannot be controlled, nor can the effective inoculum transmitted at the time of 

transplant. Furthermore, the number of patients studied in a proof of concept study 

is necessarily small, so limiting the definitive conclusions that can be reached. 

Nevertheless, detailed examination of the samples available to me offers some 

conclusions with the potential of helping design further studies to address some 

novel hypotheses. 

 

I sought to identify correlates of humoral immune protection in these patients. To 

address the precise nature of the protective humoral response a number of assays 

were performed. Firstly, I focused on the intrinsic abilities of the sera from 

vaccinated patients to decrease infectivity of cell free virus and to block the spread 

of the virus from cell to cell. These assays were developed to investigate whether 

vaccine administration had an impact on cell-free virus neutralization and inhibition 

of viral dissemination. Although, classically, many vaccine responses have relied 

on the induction of neutralising antibody responses, my results provide no 

evidence for vaccination inducing an effective neutralising antibody response 

against HCMV in seronegative vaccine recipients. Moreover, relatively good 

neutralizing responses in seropositive vaccine recipients were not correlated with 

decreased incidence of viraemia.  



283 
 

 
 

It should be pointed out that gB is not the only target of neutralizing antibody 

responses, as there is a much broader spectrum of antigens: e.g.: pentameric 

complex and different glycoproteins that are present on viral envelope. This would 

be consistent with the literature that suggests gH/gL and the pentameric complex 

being the targets of potent neutralizing antibodies. These antigens are not 

presented to the immune system of seronegative vaccine recipients; therefore 

could not be developed following the vaccination.  

Next, I sought to explain why there were such good antibody responses in 

seropositive vaccine recipients in the in vitro assays but this was not correlated 

with protection in vivo. The recently published data in the literature suggest that in 

vitro the virus is predominantly spreading from cell to cell [195]. In this case, these 

neutralizing antibody responses would have decreased efficacy (as they would 

target only cell- free virus). As I could observe in further analysis, sera from the 

seropositive vaccine recipients were indeed far less effective in the inhibition of 

cell-associated than the inhibition of the cell-free virus. This finding fits with the 

above hypothesis that in vitro the virus is predominantly cell-associated.  

However, in the in vitro assay that was optimized to detect neutralizing antibodies I 

could see good responses in seropositive vaccine recipients. Although the role of 

these neutralizing antibody responses cannot be underestimated as, in principle, 

potent neutralizing antibodies could be very effective in lowering or even 

completely disrupting transmission of secretions containing cell-free virus. 

However, the results described in this thesis suggest that eliciting high titres of 

neutralizing antibody responses may not be fully sufficient to achieve a 

satisfactory level of protection. This suggests that a successful vaccine may 

induce potent neutralizing antibodies to protect against the cell-free mode of viral 

transmission, but those neutralizing antibody responses might not be sufficient to 

provide sterilizing protection in vivo because of cell-to-cell transmission of HCMV. 

This is a very important finding, as many researchers are still relying on induction 

of high titres of neutralizing antibody responses by vaccination as a guide to 

successful vaccination.  
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Although I could observe some level of the protection in the sera from seropositive 

vaccine recipients, this was not correlated with the vaccine/placebo status. 

Moreover, sera from seronegative vaccine recipients had no impact on viral 

spread. Taken together, the results described in my thesis strongly indicate that 

serum alone is unable to control the virus and other mechanisms must be evoked 

by vaccination than those mediated by intrinsic ability of the sera.  

Therefore the next step was to investigate the indirect mechanisms of humoral 

responses- such as induction of antibody effector functions that induce apoptosis 

of infected cells. An increasing body of evidence supports ADCC as a mechanism 

for conferring protection after vaccination in the cases of HIV Thai trial and natural 

viral infections: e.g. Influenza) [397-399, 404-406, 409]. Interestingly, I found no 

evidence that the protective effect elicited by the CMV gB/MF59 vaccine involves 

the induction of ADCC stimulating antibody responses in either seronegative or 

seropositive vaccine recipients. The vaccine did not induce ADCC responses in 

seronegative vaccine recipients and did not boost the level of already existing 

ADCC-mediating antibody responses in seropositives. The relatively high level of 

ADCC response that was present at the time of vaccine administration (following 

natural infection) in seropositive individuals was not correlated with improved 

outcome, which suggests that ADCC may not be the predominant mechanism of 

protection following natural infection with HCMV.  

Additionally, I performed an epitope mapping analysis of the sera from SOT 

patients who participated in the gB/MF59 clinical trial. The binding activity of the 

sera to 4 (of 5) epitopes that have been identified so far on the gB molecule was 

tested by ELISA. The analysis of the antibody profiles towards each antigenic 

domain could potentially reveal that the protection against the pathogen is 

correlated with the specific antibody responses towards one of these antigenic 

domains and could provide further clues to the protective nature of the vaccine 

response since these epitopes have been linked with different aspects of immune 

control of HCMV infection. Moreover, this analysis allowed antibody responses 

elicited by the vaccine to be compared with those following natural infection.  
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Based on all of my results, described in detail in the results section of this 

thesis, I can propose a series of conclusions that can be formally tested in 

the future.  

First, I propose that at least some of the protection seen in seropositive individuals 

is due to them having antibodies against AD2 epitope. This immediately draws 

attention to our lack of understanding of this component of the natural history of 

HCMV infection; namely, why do only 50% of people with natural immunity against 

HCMV have antibodies that recognise this epitope [162, 189, 190, 426]? Studies 

of the immunoglobulin gene rearrangements show that these antibodies are not 

found in the germline DNA, but have to go through a cascade of rare and very 

specific immunoglobulin gene re- arrangement events [429, 434]. The fact that 

only a proportion of infected individuals develop these rare AD-2 antibodies 

following natural infection could be a consequence of the low probability of 

developing antibodies that require such specific recombination events [435]. 

Moreover, these rare immunoglobulins are also characterized by specific 

substitutions at certain positions that seem to be detrimental to achieve high 

affinity binding to this epitope, which is an additional factor that contributes to their 

limited availability [159, 429, 436, 437]. Importantly, my data suggest also that, 

whilst pre-existing AD-2 responses established at the time of primary infection or 

in response to the reactivation of the virus from latency can be enhanced, the 

gB/MF59 vaccine does not induce AD-2 responses in those lacking them at 

baseline. Interestingly, I observed an increase in the level of AD-2 responses in 

one recipient of placebo (Figure 6.4.B) and suggest that this might be a response 

to reactivation of latent virus or even a re-infection event in this patient prior to 

transplant. It is tempting to speculate that these responses develop with time as 

individuals reactivate HCMV from latency and present antigen repeatedly.  

Although publications in the literature have suggested the desirability of vaccines 

that induce AD2 antibodies [429], I believe my thesis contains the first results to 

substantiate these suggestions, because I present strong evidence that these 

antibodies correlate with protection against viraemia. Thus, the results presented 

in this thesis suggest that an immunogen that can enhance or generate de novo 

responses against AD2 is a good candidate for a new HCMV vaccine. 
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These results can be presented as objectives for the future: we need new 

vaccines that can induce AD2 antibodies in both seronegative and seropositive 

individuals who currently lack these antibodies. Based on my results, the 

necessary studies can now be performed in phase-1 immunogenicity studies, 

which are much quicker and cheaper to perform than phase-2 proof of concept 

studies. Now that the gB crystal structure is available [358], appropriate 

immunogens can be easily designed. However, reaching satisfactory 

immunogenicity levels using short peptide vaccines may not be a simple task. A 

recently published study on animal models (mice and rabbit) with peptide-

conjugate vaccines targeting AD2 and its flanking regions showed that although 

vaccines could produce strong binding titers of antibodies specific to AD2, they 

failed to induce significant levels of neutralization [456]. This pioneering work 

suggests that using simple peptides as an antigens may not be sufficient for this 

purpose.  

On the other hand, it is very important to bear in mind that immunogenicity is not, 

on its own, sufficient to prioritise an immunogen for vaccine development; 

responses against AD1 were common, but were not associated with protection 

against viraemia. Furthermore, having an immunodominant AD1 epitope might 

facilitate immune evasion by HCMV if the gB molecule also contained an epitope 

(AD2) that could induce protective immunity. The literature contains suggestions 

that antibodies against AD1 may interfere with the putative protective antibodies 

against AD2, due to its spatial location on this gB molecule, but my thesis provides 

no evidence for this. This observation is very important, because it may be 

necessary to retain substantial portions of the gB molecule in order to have an 

immunogen that induces protective antibodies against AD2. 
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In contrast to the results in HCMV seropositive cohort, my analyses did not identify 

a correlate of protection for HCMV seronegative vaccine recipients. On the 

contrary, in my study I could see only very limited humoral responses in those 

vaccinated seronegative transplant patients. It is a surprising result, considering 

that the previously reported levels of anti-gB antibodies in those seronegative 

vaccine recipients (measured by ELISA assays with the immobilized vaccine 

antigen- recombinant gB on the solid surface) were relatively high, approaching 

the level of anti-gB antibodies seen in seropositive cohort (Fig. 1.11) [188]. 

Despite these previous, encouraging results showing high level of anti-gB 

antibodies elicited by vaccine in seronegative recipients; I could not find strong 

evidence that these antibodies were functional, as I observed only minimal effects 

of these anti-gB antibodies in my assays. The reasons for this discrepancy are 

unclear. However; there are several plausible explanations to this paradoxical 

observation: 

i) One possible explanation is that the antibodies elicited by the 

recombinant gB (vaccine antigen) may have either decreased, or even 

completely lost affinity to the native gB. This would be possible in case 

the recombinant gB used in vaccine contains epitopes that are not 

presented during natural infection or that the epitopes were presented 

differently in the context of vaccine and native antigen. This is definitely 

a possibility, because there were several changes introduced into this 

recombinant gB in order to increase its stability and solubility [165, 316]. 

Nevertheless, it is impossible to speculate to what extent such changes 

could potentially change the antigen/epitope presentation to the immune 

system of vaccine recipients. Although the crystal structure of this 

molecule was published recently [358], presumably it represents only 

the post-fusion form of this protein. Of course, during natural infection 

the two forms of gB are present (pre- and post- fusion), therefore, the 

humoral responses are elicited against both forms following the natural 

infection. The crystal structure of the vaccine antigen is not available so 

the direct comparison between both specimens is not possible. 

However, such a putative differences in the antigen presentation could 

at least partly explain the discrepancy between my- and the previously 
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published work [188]. Interestingly though, I can clearly see that the 

vaccine is boosting immune responses of seropositive patients. Thus, it 

is clear that at least to some extent the vaccine antigen is recognized by 

the memory B-cells that evolved in response to previously acquired 

natural infection. Also, the exposure to vaccine antigens could have 

been insufficient in those seronegative individuals. This would result in a 

very low probability of developing those very specific rearrangements 

required to produce rare, protective antibodies in naïve individuals. On 

the other hand such antigen presentation could still potentially suffice to 

boost pre-existing immunity in seropositives. This possibility, although 

speculative, further illustrates the potential advantage of using 

pharmacodynamics rather than trying to mimic natural immunity when 

designing vaccines. 

 

ii) Secondly, the influence of potential antigenic polymorphism between the 

gB used in some of the assays (with Merlin strain) and the vaccine gB 

(that was derived from Towne strain) could also play a role. The 

increasing body of data demonstrates that the glycoproteins of HCMV 

have very high rates of genetic polymorphism; with one report showing 

that 93.7% of the seropositive individuals in their study group had 

multiple gB genomic variants [40]. Although the reasons for such high 

rate of polymorphism in glycoproteins are unknown, it is hypothesised 

that this could be a potential way of evading immune responses of the 

host [39, 41]. Of course, such a high rate of antigenic polymorphism 

between strains could affect the recognition of epitopes through some 

conformational changes (being a result of the mutations or mismatches 

between the sequences of the strains) or decreased affinity of the 

antibodies against different strains of the virus. However, again this 

seems less likely, as I have used not only gB derived from Merlin (in 

neutralization and cell-cell spread assays), but also vaccine 

recombinant gB (ADCC assays). In both cases I see very limited 

responses in the sera form seronegative patients. Therefore, it seems 

likely that although antigenic polymorphism between stains and potential 
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mismatch between the vaccine derived gB and the gB that I have used 

in some of the assays, could play role in decreasing the affinity of 

antibodies, it is unlikely that it played a crucial role in the recognition, as 

can I see good antibody responses in seropositive patients. 

iii) Thirdly, it is possible that the gB vaccine primed helper T-cell and 

memory B-cell responses to have a more rapid response when they 

encountered HCMV in the donor organ. I could see that although 

patients in both groups: placebo and vaccine recipients experienced 

viraemia (Fig. 7.2.A, B); the vaccinees did not develop any subsequent 

episodes (Fig.7.2.C). This result clearly suggests that these patients 

were able to mount substantial immunity against the virus much quicker 

than corresponding placebo group. When I looked at the overall humoral 

responses towards vaccine antigen in those seronegative transplant 

patients, I could see that generally the level of anti-gB antibodies raised 

to much higher levels after the exposure to the virus (at the time of 

transplant) in vaccine recipients; and this possibly explains why this 

group of patients was more efficient at preventing subsequent episodes 

of viraemia (Table 7.2). While the number of patients available 

precludes definitive conclusions, this possibility should be examined 

when further phase-2 vaccine studies are performed. Although my 

results provided some evidence that vaccine recipients were 

immunologically primed to respond quicker to and more effectively in 

comparison to the placebo group, it would be important to investigate in 

more detail what immunological mechanism was responsible for this.  

One way of investigating this would be to collect samples from the 

patients not only post-vaccination but also following challenge with the 

virus (day of transplant). If there are much more rapid responses and 

higher titres of protective antibody responses in those post-transplant 

samples, in comparison to responses detected in pre-transplant 

samples- that would support vaccine priming of the immune system of 

seronegatives. Of course, future studies should not only focus entirely 

on those humoral responses but also investigate possible synergistic 

effect of T-cell helper responses primed by the vaccine. 
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From my results I can also propose some criteria that could be applied in future 

proof of concept studies. I argue that the small-sized study described in my thesis 

highlights the importance of longitudinal studies of immunological responses 

evoked by vaccination and that coupling it with molecular analysis of latency could 

prove informative in the future when considering markers that reflect a block to 

transmission of HCMV. The investigation of the putative changes in rate of viral 

transmission following vaccination is indisputably highly relevant. This seems to be 

particularly important for this patient group as it would decrease potential risk not 

only for primary infection but also reactivation and reinfection; all of which occur 

more frequently in transplant recipients than in the healthy population and are 

associated with increased morbidity. It will be important to differentiate between a 

vaccine that can completely prevent transmission of HCMV from donor to recipient 

and a vaccine that just reduces the effective inoculum. Both may be clinically 

useful, but the former has the advantage that the individual does not have latent 

HCMV that can reactivate at a later date. Although the number of samples 

available to me was very small, the results (Figure 7.5) show that detecting 

transcripts from latent genes offers a potential approach to this problem. Of 

course, acquisition of the virus at a later date post-transplant could not be ruled 

out in this type of analysis- (the positivity for latent HCMV genome) but if the rate 

of acquisition was higher than the natural rate of infection in the population (about 

1% per annum)- that would provide supporting evidence for transmission at the 

time of transplant. Consideration of this point is important when powering future 

studies that seek to address transmission as such analyses would require much 

larger cohorts of patients in order to reach statistical significance.  

To support future studies attempting to interrupt transmission, genotyping of the 

viral strains from the donor could be performed prior to transplantation and then 

compared with the genotype of HCMV strain from the respective recipients in the 

follow-up samples. If the strains match, that would provide strong evidence for the 

transmission of virus from the donor organ. In addition, antibody responses 

against proteins not incorporated in the vaccine could be used to identify 

individuals who have become re-infected with wild-type HCMV despite having 

received a vaccine. This may have little practical significance for the transplant 

patient population (except perhaps for those who need a second transplant), but 
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would be very important where a vaccine is intended to give long term protection 

spanning the childbearing years.  

 

I also suggest that any future study should incorporate analysis of memory B-cell 

repertoire by using single cell sequencing with optimized next generation 

sequencing (NGS) technologies. This approach can provide a high resolution of 

cellular differences (prior to and following vaccination) and enable analysis of 

vaccine-induced antibody responses (paired heavy and light chain sequencing). 

This could be particularly important for development of diagnostic and therapeutic 

antibodies as well as new generation of vaccines.   

Also, I did consider the possibility that the titre of antibody made against gB may 

be a correlate of immunity, but not a mechanistic correlate of immunity [457]. For 

example, the titre of antibody might be an indirect marker of good CD4 T-cell 

response to a vaccine with T-helper activity explaining the high titres of antibody 

produced. Recent results from a randomised controlled trial proposed by my 

department are therefore of interest [186]. Seronegative patients destined to 

receive a kidney from seropositive donors were randomised to receive infusions of 

monoclonal antibodies specific for HCMV or a matching placebo. The results 

showed significantly less CMV viraemia in the recipients of monoclonal antibodies. 

This study proves that humoral immunity can reduce transmission of virus from 

donor to recipient. The study was performed with monoclonal antibodies reactive 

against glycoprotein H and UL130 in combination rather than gB, because clinical 

grade gB monoclonals were not available [186]. This suggests two possibilities; 

even better results might be obtained if gB monoclonals were added to the 

existing combination and monoclonal antibodies reactive with any CMV protein 

found on the surface of infected cells [458] could be investigated. These 

suggestions could be tested directly. 

 

Despite all the complexities of the natural history of HCMV, its immune evasion 

genes and the detailed results presented in this thesis when trying to identify 

correlates of protective immunity, it is salutary to note that all the manufacturers 

https://en.wikipedia.org/wiki/Next_generation_sequencing
https://en.wikipedia.org/wiki/Next_generation_sequencing
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attempting to produce vaccines against HCMV are still using induction of 

neutralising antibodies as a marker of success in phase-1 studies. My results 

suggest that a more sophisticated, formal analysis of correlates of immunity 

should be incorporated into all future phase-2 randomised controlled trials. 
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Management permission or approval must be obtained from each host organisation prior to the start of 
the study at the site concerned. 
 

Management permission ("R&D approval") should be sought from all NHS organisations involved in the 
study in accordance with NHS research governance arrangements. 
 

Guidance on applying for NHS permission for research is available in the Integrated Research Application 
System or at http://www.rdforum.nhs.uk.   
 

Where a NHS organisation’s role in the study is limited to identifying and referring potential participants to 
research sites ("participant identification centre"), guidance should be sought from the R&D office on the 
information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the procedures 
of the relevant host organisation.  
 

Sponsors are not required to notify the Committee of approvals from host organisations 

 

Clinical trial authorisation must be obtained from the Medicines and Healthcare products Regulatory 
Agency (MHRA). 
 

The sponsor is asked to provide the Committee with a copy of the notice from the MHRA, either 
confirming clinical trial authorisation or giving grounds for non-acceptance, as soon as this is available. 
 

Approved documents 

 

The final list of documents reviewed and approved by the Committee is as follows: 
  

Document    Version    Date    

Covering Letter  from Emily Rothwell  18 February 2013  

Evidence of insurance or indemnity  Arthur J Gallagher International  30 July 2012  

GP/Consultant Information Sheets  1.0  13 April 2012  

Investigator CV  Prof Paul Griffiths  14 February 2013  

Investigator's Brochure  14.0  14 November 2012  

Letter from Sponsor  Gemma Jones-CT operations 
manager  

15 February 2013  

http://www.rdforum.nhs.uk/
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Letter from Statistician  Dr Colette Smith - UCL  12 February 2013  

Letter of invitation to participant  1.0  14 February 2013  

Other: Letter from David Wilson confirming 
UCL insurance  

  26 June 2012  

Other: Copy of IRAS- NHS REC Application 
Form   

Print Version   14 February 2013  

Other: CMV gB vaccine long term antibody 
response Consent Form  

1.0  20 July 2012  

Participant Information Sheet  1.0  02 July 2012  

Participant Information Sheet: Parts 1 and 2  V1.1, track changed   07 May 2013  

Participant Information Sheet: Parts 1 and 2  1.1, clean copy   07 May 2013  

Protocol  1.0  13 November 2012  

REC application    08 March 2013  

Response to Request for Further 
Information  

Letter from Emily Rothwell  07 May 2013  

 
Statement of compliance 
 
This Committee is recognised by the United Kingdom Ethics Committee Authority under the Medicines for 
Human Use (Clinical Trials) Regulations 2004, and is authorised to carry out the ethical review of clinical 
trials of investigational medicinal products. 
 
The Committee is fully compliant with the Regulations as they relate to ethics committees and the 
conditions and principles of good clinical practice. 
 
The Committee is constituted in accordance with the Governance Arrangements for Research Ethics 
Committees and complies fully with the Standard Operating Procedures for Research Ethics Committees 
in the UK. 
 

After ethical review 
 

Reporting requirements 
 

The attached document “After ethical review – guidance for researchers” gives detailed guidance on 
reporting requirements for studies with a favourable opinion, including: 
 

 Notifying substantial amendments 

 Adding new sites and investigators 

 Notification of serious breaches of the protocol 

 Progress and safety reports 

 Notifying the end of the study 
 
The NRES website also provides guidance on these topics, which is updated in the light of changes in 
reporting requirements or procedures. 
 
Feedback 
 
You are invited to give your view of the service that you have received from the National Research Ethics 
Service and the application procedure.  If you wish to make your views known please use the feedback 
form available on the website. 
 
Further information is available at National Research Ethics Service website > After Review 
 



This Research Ethics Committee is an advisory committee to London Strategic Health Authority 
The National Research Ethics Service (NRES) represents the NRES Directorate within  

the National Patient Safety Agency and Research Ethics Committees in England 

 

 

 

13/LO/0335                          Please quote this number on all correspondence 

 
We are pleased to welcome researchers and R & D staff at our NRES committee members’ training days 
– see details at http://www.hra.nhs.uk/hra-training/  
 
With the Committee’s best wishes for the success of this project. 
 
Yours sincerely 

 
Miss Stephanie Ellis 
Chair 
 
Email: NRESCommittee.London-Hampstead@nhs.net    
 
Enclosures:  “After ethical review – guidance for 
   researchers” [SL-AR1] 
    
 
Copy to:  Adedayo Akinyemi, University College London 
   Muhammad Rahman, R&D 
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