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Local cellular neighborhood controls proliferation 
in cell competition

ABSTRACT  Cell competition is a quality-control mechanism through which tissues eliminate 
unfit cells. Cell competition can result from short-range biochemical inductions or long-range 
mechanical cues. However, little is known about how cell-scale interactions give rise to popu-
lation shifts in tissues, due to the lack of experimental and computational tools to efficiently 
characterize interactions at the single-cell level. Here, we address these challenges by com-
bining long-term automated microscopy with deep-learning image analysis to decipher how 
single-cell behavior determines tissue makeup during competition. Using our high-through-
put analysis pipeline, we show that competitive interactions between MDCK wild-type cells 
and cells depleted of the polarity protein scribble are governed by differential sensitivity to 
local density and the cell type of each cell’s neighbors. We find that local density has a dra-
matic effect on the rate of division and apoptosis under competitive conditions. Strikingly, 
our analysis reveals that proliferation of the winner cells is up-regulated in neighborhoods 
mostly populated by loser cells. These data suggest that tissue-scale population shifts are 
strongly affected by cellular-scale tissue organization. We present a quantitative mathemati-
cal model that demonstrates the effect of neighbor cell–type dependence of apoptosis and 
division in determining the fitness of competing cell lines.

INTRODUCTION
Competition between cells is a phenomenon originally identified in 
development that results in the elimination of less fit cells (the loser 
cells) from a tissue (Levayer and Moreno, 2013; Vincent et al., 2013; 
Merino et al., 2016). The viability of loser cells depends strongly on 
context: when they are cultured alone, they thrive, but when they 

are cultured in a mixed population, they are eliminated by cells with 
greater fitness. Many of the mutations leading to competition give 
rise to a change in growth rate, with the faster-growing cells eventu-
ally eliminating the slower-growing ones (Morata and Ripoll, 1975; 
Simpson and Morata, 1981; Oliver et al., 2004). The relationship 
between cell competition and cancer is complex. In some cases, 
competition can confer protection against tumorigenesis by elimi-
nating cells with oncogenic mutations (Hogan et al., 2009; Tamori 
et al., 2010; Norman et al., 2012; Martins et al., 2014; Merino et al., 
2015; Porazinski et al., 2016), but in other cases, cancer cells can 
turn competition to their advantage, leading to field cancerization 
(Rhiner and Moreno, 2009; Fernandez et al., 2016). In cancer, many 
different lineages with distinct mutations are present in a tumor 
(Navin et al., 2011; Sottoriva et al., 2013), and their interaction can 
be viewed as a competition. Recent computational work has shown 
that a small competitive advantage, linked, for example, to better 
survival in the presence of a drug, can lead to one lineage taking 
over the whole tumor (Waclaw et al., 2015). Thus, a detailed under-
standing of cell competition, how it depends on local context, and 
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determine the time evolution of cell count and the overall popula-
tion fitness. Our analytical tools can be generally applied to deter-
mine the dependence of cell competition on local density and local 
neighborhood and to analyze cell interactions with relevance to can-
cer, developmental biology, and stem cell biology.

Experimental and computational strategy
To characterize how single-cell behaviors give rise to population 
shifts during cell competition, we developed a high-throughput im-
aging and analysis pipeline. We acquired time-lapse movies lasting 
several days, imaging cocultures of MDCKWT cells and scribblekd cells 
expressing H2b–green fluorescent protein (H2b-GFP) and H2b–red 
fluorescent protein (H2b-RFP), respectively. We first confirmed that 
exposure of scribblekd cells to tetracycline for 70 h led to ∼90% re-
duction in scribble expression, consistent with previous reports 
(Norman et al., 2012) (Supplemental Figure S1E). We assembled a 
low-cost cell-imaging system for multiposition and multiwavelength 
acquisition inside a standard CO2 incubator. Using fast-switching 
LEDs for illumination and an automated stage, we acquire bright-
field, GFP, and RFP images for up to 12 regions of 530 × 400 μm2 
with a 20× objective with a temporal resolution of 4 min for more 
than 80 h (Figure 1, A and B). Regions can be sampled from multiple 
Petri dishes, allowing competitions and controls to run side by 
side in identical conditions. In these conditions, the fate of loser 
cells (scribblekd) surrounded by winner cells (MDCKWT) can be easily 
traced as they undergo apoptosis before extrusion from the mono-
layer (Figure 1B).

Movies were then automatically analyzed to track the position, 
state, and lineage of the cells using deep learning–based image 
classification in a first processing step. In this first step, cell nuclei are 
segmented (Figure 1, A–C) and classified using a deep neural net-
work to assign them one of five states: interphase, prometaphase, 
metaphase, anaphase, or apoptosis (Figure 1, D–G). The positions 
and states of nuclei are then linked into trajectories over time (Figure 
1H) using a Bayesian tracking method followed by hypothesis-based 
optimization to generate lineage trees (Figure 2). In a second 
processing step, we determined the rates of division, apoptosis, 
and net growth as a function of density and local neighborhood. 
These data were then used in numerical models of cell competition. 
Further details of the segmentation and tracking algorithms along 
with comparison to existing approaches can be found in the Supple-
mental Material.

Over the course of a single imaging experiment, we acquired 12 
movies in parallel, following 800–1000 cells per field of view for 
800–1200 frames. The analysis of such an experiment results in the 
determination of the fate of 9600–12,000 cells (800–1000 cells × 12) 
and returns 640,000–1,200,000 (800–1000 × 800–1200) discrete 
cellular-scale observations (cells/time) per field of view. In the follow-
ing sections, we define an “observation” as the detection of an 
object (a cell) at a given frame, while an “event” refers to the detec-
tion of an apoptosis or a cell division.

RESULTS
Cell count, cell cycle length, and apoptosis in pure and 
mixed populations
Following tracking and identification of cell cycle state (Supplemen-
tal Movies 1–3), we could generate lineage trees for each cell iden-
tifying its progeny and potential termination by apoptosis (Figure 2, 
A–D). By measuring the temporal separation between the birth of a 
cell and that of its daughters on a lineage tree, we extract the dura-
tion of the cell cycle at single-cell resolution (Figure 2B) and plot its 
distribution for the entire population (Figure 2E). For MDCKWT, this 

how competition is modulated by the environment are of clear ther-
apeutic interest.

Competition involves either the exchange of short-range bio-
chemical information (biochemical competition) or longer-range 
mechanical cues (mechanical competition). In the former, compet-
ing cells must be in contact with one another and, as a result, cell 
death occurs only at the interface between cell types (Moreno et al., 
2002). In mechanical competition, cell death occurs because of dif-
ferences in tolerance to cell density, and the role of contact interac-
tion is less clear. To date, most studies have quantified competition 
at the tissue scale mainly concentrating on increases in apoptotic 
events and reporting these across tissues (Levayer et al., 2015; 
Wagstaff et al., 2016). Although these studies have yielded insight 
into the mechanisms of competition, many important aspects still 
remain unclear. Indeed, changes in population composition can 
arise not only from increases in apoptosis but also through changes 
in division rates. Furthermore, as competition is by nature context 
dependent, a tissue-scale description of outcome obscures key 
characteristics of how competition takes place at the single-cell 
level. For example, recent work has revealed that, when loser cells 
have a limited fraction of their surface in contact with winner cells, 
they survive (Levayer et al., 2015).

These examples highlight the need to quantitatively characterize 
the apoptosis and division rates of each cell type and investigate 
how local cell density and neighborhood modulate these. Such 
characterization presents several challenges. First, cell trajectories 
must be accurately tracked (Hilsenbeck et al., 2016) and the cell cy-
cle states determined over long durations for several hundred cells. 
Second, new data analysis tools and metrics must be developed to 
characterize the spatiotemporal rules of competition. Here, we 
address these challenges by developing long-term automated mi-
croscopy together with deep-learning image analysis to decipher 
single-cell behaviors underlying population shifts during competi-
tion. As a test case for our analysis pipeline, we examine competi-
tion between MDCK cells depleted in the polarity protein scribble 
(scribblekd) and wild-type cells (MDCKWT).

Competition induced by loss of scribble is widely regarded as an 
example of mechanical competition (Norman et al., 2012). Recent 
work has suggested that mechanical competition might stem from 
differences in the tolerances of each cell type to density. Indeed, 
when cultured in pure populations, the density in each cell popula-
tion first increases before reaching a plateau (the homeostatic den-
sity). This homeostatic density is maintained over time, because the 
rate of cell death exactly compensates the rate of cell birth. Remark-
ably, scribblekd cells reached lower homeostatic densities than 
MDCKWT cells because of a threefold larger apoptosis rate (Wagstaff 
et al., 2016). In competitive conditions, MDCKWT cells compacted 
scribblekd cells, causing an increase in their death rates. These re-
sults suggest changes in density may induce increases in apoptosis 
events that alone are sufficient to result in the elimination of the 
scribblekd cells. However, a detailed characterization of the influence 
of density on apoptosis is lacking for a quantitative test of this hy-
pothesis, and the sensitivity of cell division to density has never 
been characterized.

Here, we take a first step in characterizing apoptosis, cell divi-
sion, and net growth as a function of local cell density. Next, we 
show that the local neighborhood influences apoptosis and division, 
suggesting a role for inductive phenomena in mechanical competi-
tion and emphasizing the importance of examining single-cell be-
haviors to characterize competition at the tissue scale. Finally, 
we implement a simple numerical model of competition to investi-
gate how the density dependence of cell division and apoptosis 
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FIGURE 1:  High-throughput image analysis pipeline for long-term analysis of single-cell dynamics. (A) Representative 
image containing H2b-GFP MDCKWT (green) and H2b-RFP scribblekd (magenta) cells mixed in an initial 90:10 ratio. The 
image corresponds to one field of view (1600 × 1200 pixels, 530 µm × 400 µm) acquired by wide-field epifluorescence 
using 20× magnification. The region of interest in the white rectangle is shown in B. (B) Time series from the competition 
assay in the region boxed in A. The white arrow indicates a scribblekd cell surrounded by MDCKWT neighbors that 
undergoes apoptosis. The acquisition of both transmission and fluorescence images enables detection of the apoptotic 
fragmentation of the loser’s nucleus happening before extrusion of the cell body from the monolayer. Timings are 
indicated in the top left corner in hours and minutes. (C) Segmentation of the final image in B. MDCKWT cells are outlined 
in green and scribblekd cells in magenta. (D) Flowchart of the computational pipeline implemented for the study of 
competition dynamics. The strategy is based on segmentation of individual cells (cell detector), automatic annotation of 
morphological classes related to cell cycle state and apoptosis (track compiler), and postprocessing analysis of single-cell 
tracking data. (E) CNN for object classification. The CNN inputs are single-object patches, both in the transmission 
(BF) and fluorescence channels (left). The CNN stacks together four types of layers: convolutional/ReLU/max-pooling, and 
fully connected layers (middle). The CNN transforms the input image layer by layer from the original pixel values to the 
final class scores with the highest score reflecting the most probable classification of the image data (right). (F) Confusion 
matrix showing the matching of human annotations vs. the annotation of the CNN system. (G) HMM used for modeling 
progression through the cell cycle. The figure depicts the permitted directional transitions between five classes 
(interphase, prometaphase, metaphase, anaphase, and apoptosis). (H) Automated annotation of cell trajectories over 
time. A random selection of 100 trajectories (rows) is aligned and shown over a 40-min period. Colors refer to state labels 
as defined in F. Left, tracks following division start with anaphase before proceeding to interphase. Middle, tracks 
terminating in a division are preceded by interphase before going through prometaphase and metaphase. Right, tracks 
terminating with apoptosis are often preceded by interphase but can arise through failed division events (highlighted 
with arrows).
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higher counts of apoptosis than MDCKWT cells, despite being far 
scarcer, indicating a higher probability of apoptosis in scribblekd 
cells.

In contrast, control experiments mixing H2b-GFP MDCKWT with 
noninduced H2b-RFP scribblekd in a 90:10 ratio showed a twofold 
increase in cell count for H2b-RFP scribblekd and a threefold increase 
in MDCKWT cells after 50 h (Supplemental Figure S1A). These 
increases were comparable to those recorded in pure populations 
of each cell type over a similar duration (Supplemental Figure S1D). 
When we examined apoptosis in each cell population, we found 
that WT cells had significantly higher apoptosis counts, as would 
be expected from their 10-fold larger numbers (Supplemental 
Figure S1B) and in contrast to what is observed upon depletion 
(Figure 1G). Together, these data confirmed that, when scribble 
depletion is not induced, scribblekd and MDCK WT cells do not com-
pete (Norman et al., 2012).

Altogether, our large-scale quantification of growth rates and 
apoptosis in competitive and noncompetitive conditions are consis-
tent with previous findings (Wagstaff et al., 2016), confirming that 
our analysis pipeline can provide reliable high-throughput auto-
mated quantification of single-cell events during competition.

yields a mean cell cycle time of 18 ± 3.2 h, consistent with other re-
ports (Puliafito et al., 2012; Gudipaty et al., 2017) and validating our 
segmentation, classification, and tracking steps. It is important to 
note that, despite accurate estimation of cell cycle duration for the 
vast majority of the population, some errors subsist due to identity 
swaps at high cell densities or triple divisions that lead to underesti-
mation of the cell cycle time (e.g., ∼1.5% of cells have estimated cell 
cycle times of 5–10 h; Figure 2E).

As further validation of our algorithms, we analyzed the change 
in cell numbers and the number of apoptoses in a competition as-
say in which MDCKWT cells were mixed with scribblekd cells. We 
mixed cells in a 90:10 MDCKWT:scribblekd ratio with an initial seed-
ing density of 10−3 cells/µm2. Over the course of 80 h, scribblekd 
and MDCKWT proliferation differed markedly, with the scribblekd 
count peaking after 40 h before decreasing (Figure 2F, inset) and 
MDCKWT count showing a sevenfold increase (Figure 2F), consis-
tent with previous work (Wagstaff et al., 2016). Previous work has 
revealed increased cell death in the scribblekd cells when in the 
presence of MDCKWT cells (Wagstaff et al., 2016). To confirm this, 
we plotted the cumulative count of apoptosis events for each cell 
type (Figure 2G). This revealed that scribblekd cells had significantly 

FIGURE 2:  Cell lineage, cell cycle duration, and apoptosis detection during cell competition. (A) Representative cell 
tracks assembled into lineage trees as result of the global optimization. The original progenitor cell is at the bottom of 
the diagram, time is on the z-axis, and the position of all progeny is plotted in the x–y plane. Tracks in which the 
metaphase to anaphase transition is present are split and labeled as division events. In our classification, the metaphase 
state corresponds to a branching point, and new tracks start with the anaphase state. Each cell is assigned a unique cell 
ID (not shown in the figure). (B) Representative lineage tree for the cells shown in A. Cell cycle time can be measured for 
each individual cell as the time between consecutive division events on the lineage tree. (C) Representative cell tracks 
assembled into a lineage tree, showing a single apoptotic termination event, following multiple observations of the 
apoptotic state. The apoptotic states are labeled in red. (D) The lineage tree of the cells shown in C. (E) Histogram of 
cell cycle time measured for a population of MDCKWT showing a mean value of 18 ± 3.2 h. The distribution represents a 
population of at least 250 cells in the same field of view followed for 80 h. A total of 1326 division events were 
observed. (F) Proliferation profiles of MDCKWT (green) and scribblekd (magenta) during a competition. Data are pooled 
from three biological replicates imaging four fields of view for each replicate. The solid line indicates the mean of the 
experiments and the shaded area indicates the SD. The inset shows the evolution of cell count in the scribblekd cells on 
a smaller scale. (G) Quantification of apoptotic events for MDCKWT (green) and scribblekd (magenta) during competition. 
The number of apoptoses is detected and averaged across the four areas imaged during one competition assay.
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with f(div/apo) being the number of observed events (division or 
apoptosis) in each bin and f being the total number of observations 
in that bin. The net growth per cell per frame pnet growth is then 
defined as

p p pnet growth div apo( ) ( ) ( )ρ = ρ − ρ

In pure populations, MDCKWT cells showed a high base-
line probability of division that decreased when density reached 
ρ ∼ 10−2 µm−2, whereas this remained approximately constant at a 
fourfold smaller level for scribblekd cells (Figure 3D). Probability of 
apoptosis for both cell types was similar, ∼10-fold smaller than the 
probability of division and increasing with density (Figure 3E). Over-
all, this resulted in net growths that were positive and relatively in-
sensitive to density until ρ ∼ 10−2 µm−2, after which they decreased 
(Figure 3F). These data suggest that homeostatic density is set dif-
ferently for each cell type: in MDCKWT cells, it is controlled by a 
density-dependent decrease in proliferation; while in scribblekd 
cells, it results from an increase in apoptosis with density.

As hypothesized previously (Levayer et al., 2015; Wagstaff et al., 
2016), we found that the probability of apoptosis papo of scribblekd 
cells increased sharply with density for densities ρ > 4 × 10−3 µm−2 
when placed in contact with MDCKWT cells (Figure 3, E and H). For 
MDCKWT cells, papo was comparable to that observed in pure popu-
lations until ρ ∼ 10−2 µm−2, after which it increased sharply. For high 
densities (ρ ≥ 10−2 µm−2), the probability of apoptosis for scribblekd 
was ∼2.5-fold higher than for MDCKWT cells. At the lowest densities 
(ρ > 3 × 10−3 µm−2), the probability of apoptosis for scribblekd was 
similar in competitive and pure populations (compare Figure 3H 
with Figure 3E). Interestingly, the local density observed in competi-
tions covered a larger range than in pure populations (Figure 3, C 
and H), perhaps because in pure populations, scribblekd cells strive 
to preserve the low homeostatic density that they prefer. Together, 
these data directly show that apoptosis is up-regulated with increas-
ing density, as hypothesized previously (Wagstaff et al., 2016).

To date, analysis of competition has mostly focused on in-
creases in the probability of apoptosis. Interestingly, the analysis of 
division probabilities in competitive conditions revealed clear dif-
ferences in behavior between scribblekd and MDCKWT. MDCKWT 
cells behaved as in pure populations, with pdiv remaining largely 
insensitive to density before decreasing for ρ ≥ 10−2 µm−2 (Figure 3, 
D and G). In contrast, scribblekd cells showed clear sensitivity to 
local density with similar pdiv than in pure populations at low den-
sity, but a larger pdiv for densities ρ ≥ 10−2 µm−2 (Figure 3, D and G). 
In both pure populations and competitions, pWT

div  was larger than 
pscribble

div  until ρ ∼ 10−2 µm−2. Together, the increase in papo with den-
sity and the decrease in pdiv with density resulted in net growth that 
decreased sharply for densities ρ ≥ 10−2 µm−2 (Figure 3I). Overall, 
the MDCKWT cells dominate the competition at all densities, with a 
net growth of 0.2% that drops to 0.025% for the largest densities 
present in our experiments due to the combination of a decrease 
in pdiv and an increase in papo. Thus, our single-cell analysis empha-
sizes the importance of considering division as well as apoptosis 
when examining cell competition.

Single-cell analysis reveals the presence of local 
neighborhood effect in net growth
The induction of behavior in one cell lineage by contact with 
another is a central concept in cell competition (Vincent et al., 
2013). To detect inductive behaviors during cell competition, we 
categorized each division and apoptosis as a function of the 
number of neighbors of each type. To do this, we implemented a 

Probability of division and apoptosis depend on local cell 
density in competitive interactions
Previous experiments showed that scribblekd cells are less tolerant 
to density than MDCKWT cells, resulting in a higher rate of apoptosis 
for a given density (Wagstaff et al., 2016). During competition, 
MDCKWT cells cause compaction of the scribblekd cells inducing 
them to apoptose. However, the exact relationship between cell 
density and probability of apoptosis was not determined. Further-
more, although a decrease in probability of division with density 
would also contribute to competition, the influence of cell density 
on cell division has not been examined.

Using our analysis pipeline, we investigated the impact of cellu-
lar density on the probability of division and apoptosis. For this, we 
implemented a measure of single-cell density based on a Delaunay 
triangulation of the centers of mass of cell nuclei in each image 
frame (Figure 3A). In computing density, we verify that cells are in 
contact with one another using a distance threshold (Supplemental 
Figures S2 and S3), and we exclude cells that are closer than 10 µm 
to the edge of the field of view, because not all of their neighbors 
can be identified, leading to an underestimation of density. We 
defined the local cellular density ρ as the sum of inverse areas of the 
triangles that share a common vertex with the cell of interest, as 
given by the equation

∑ ( )ρ =
= A i

1

i

n

1

where A(i) is the area of the triangle i, possessing a vertex in the 
center of the nucleus of the cell of interest (Figure 3A). Consistent 
with previous qualitative descriptions (Wagstaff et al., 2016), the 
mean local density of noninduced scribblekd (tet−) and MDCKWT 
cells increases with time in pure populations, whereas the density of 
pure populations of induced scribblekd fluctuates around the initial 
density value (Figure 3B). After 80 h, the mean density of nonin-
duced scribblekd and MDCKWT cells reaches a plateau (the homeo-
static density) several fold higher (3.6- and 3-fold, respectively) than 
the density of induced scribblekd (Figure 3B). Thus, induced scrib-
blekd cells possess a lower homeostatic density than MDCKWT or 
noninduced scribblekd cells. Strikingly, when induced scribblekd cells 
are placed in competition with MDCKWT cells, the temporal evolu-
tion of their density changes dramatically, augmenting fourfold over 
80 h and reaching a final density 1.4-fold higher than the average 
density of surrounding MDCKWT cells (Figure 3C). In contrast, when 
MDCKWT cells and noninduced scribblekd cells are placed in com-
petitive conditions, they follow behaviors similar to those observed 
in pure populations (Supplemental Figure S1A). Overall, our time-
resolved mean local density measurements are consistent with the 
global density analysis previously performed by means of single–
time-point quantification (Wagstaff et al., 2016).

Having validated the efficacy of our approach to estimate den-
sity heterogeneity in a competing coculture, we experimentally de-
termined the dependency of proliferation and apoptosis probability 
on local cellular density. To do this, we discretized the local densities 
for each cell ID at each time frame into 20 bins; the middle bin 
corresponds to the mean local density of all cells, and the first and 
last bins correspond to the minimum and maximum local density 
measured across the population, respectively. The probability of 
cells undergoing mitosis/apoptosis per cell per frame was then 
calculated for each bin as:

p
f

f

div/apo
div/apo

∑
∑
( )

( )ρ = ρ

ρ
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FIGURE 3:  Probability of apoptosis and division are sensitive to local density in competitive conditions. (A) Definition of 
local density. The center of the nucleus of each cell is represented by a filled circle (green: MDCKWT; magenta: scribblekd). 
Nucleic centers are used to construct a Delaunay triangulation (dashed lines) and a Voronoi tessellation (solid lines). Local 
density was defined as the sum of inverse areas of the triangles sharing a common vertex at the nucleus of the cell of 
interest. The area taken into account in this example is shown in gray. (B, C) The local cellular density was computed for 
each cell ID and averaged among cells of the same lineage at each time point. The solid line indicates the mean of 
the experiments and the shaded area indicates the SD. Data are pooled from three biological replicates. (B) Temporal 
evolution of local density for pure populations of MDCKWT (green), noninduced scribblekd (tet−, black), and induced 
scribblekd (tet+, magenta). (C) Temporal evolution of local density for MDCKWT (green) and scribblekd (magenta) seeded at 
a 90:10 ratio during a competition assay. (D–F) Probability of division (pdiv), apoptosis (papo), and net growth (pdiv − papo) per 
cell per frame as function of local density computed for induced scribblekd (tet+, magenta) and MDCKWT pure populations. 
(G–I) Probability of division, apoptosis, and net growth per cell per frame for MDCKWT and induced scribblekd during 
competition. Data are pooled from eight fields of view from two biological replicates. (D–I) Data points are indicated by 
solid circles. Each data point is computed from N > 500 observations. Trend lines computed using smoothing splines are 
plotted as dashed lines. In D–F, the mean local density used to define the bins is 2.6 × 10−3 µm−2 for scribblekd cells and 6 × 
10−3 µm−2 for MDCKWT. In G–I, the mean local density value is 6 × 10−3 µm−2 for both cell types. For each data point, 
whiskers indicate the inverse of the number of observations as an estimate of accuracy in determining the probability.
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determine the time evolution of cell count and the overall popula-
tion fitness. In this model, the density of the MDCKWT (wt) and 
scribblekd cells (kd) increases at a rate proportional to the density-
dependent division rate (fdiv

wt, fdiv
kd), and decreases proportionally with 

the density-dependent death rate (f f,apo
wt

apo
kd ), as given by Eqs. 1 and 

2. The rate equations for cell counts Nwt and Nkd are dependent on 
the cell density, as given by Eqs. 3 and 4.

f ft 1 a ( )wt
div
wt

wt kd wt kd apo
wt

wt kd wt( ) ( )( )∂ρ
∂ = ρ + − ρ ⋅ ρ + ρ − ρ + ρ ⋅ρ

�
(1)

f ft
kd

div
kd

wt kd wt kd apo
kd

wt kd kd( ) ( ) ( )∂ρ
∂ = ρ + ρ ⋅ ρ + ρ − ρ + ρ ⋅ρ

�
(2)

N f f Nt [ 1 a ( )]wt
div
wt

wt kd apo
wt

wt kd wt( )( )∂
∂ = ρ + − ρ − ρ + ρ ⋅

�
(3)

N f f Nt [ ( )]kd
div
kd

wt kd apo
kd

wt kd kd( )∂
∂ = ρ + ρ − ρ + ρ ⋅

�
(4)

Equations 1 and 2 describe the temporal evolution of local den-
sity of MDCKWT and scribblekd, respectively. Equations 3 and 4 
describe the temporal evolution of cell count of MDCKWT and scrib-
blekd, respectively. We solve Eqs. 1–4 simultaneously for the four 
unknowns (ρwt, ρkd, Nwt, Nkd), because the local density ρ and cell 
count N are not trivially related. To describe the density depen-
dence of birth and death rates of MDCKWT and scribblekd cells, we 
fit logistic curves to the experimental data in Figure 3, G and H 
(Supplemental Figure S6, C, D, and F). The analytical form for the 
division rates of scribblekd (fdiv

kd) and MDCKWT (fdiv
wt) are determined by 

fitting a Gaussian and a logistic function, respectively, to the experi-
mental data in Figure 3G (Supplemental Figure S6, A, B, and F). The 
resultant input functions to the model are shown in Figure 5A. Based 
on our experimental finding (Figure 4, B and C) that the MDCKWT 
cells exhibit an asymmetric neighborhood dependence of division 
rate, we introduce a parameter, a, describing the degree of asym-
metric dependence of MDCKWT division rate on the densities of 
MDCKWT and scribblekd cells. The coupled Eqs. 1–4 are solved nu-
merically to reproduce the temporal evolution of cell counts of 
MDCKWT and scribblekd cells (Figure 5, B and C, and Supplemental 
Figure S6E), subject to the experimental initial conditions for the cell 
count and density of the two cell types.

We hypothesize three different models for competitive interac-
tion between the MDCKWT and the scribblekd cells, modulated by the 
asymmetry parameter, a. First, we consider an uncoupled model (a = 
1), in which the growth rates of MDCKWT and scribblekd cells are in-
dependent of each other. Second, we examine a symmetric interac-
tion model (a = 0), in which the evolution of cell density and count are 
equally affected by the densities of the MDCKWT and scribblekd cells. 
Finally, we investigate an asymmetric interaction model, with a > 0 
treated as a fitting parameter, such that the division rate of MDCKWT 
cells are enhanced in the presence of scribblekd neighbors (a > 1).

Both the symmetric model (Figure 5B) and the uncoupled model 
(Supplemental Figure S6E) fail to quantitatively reproduce the ex-
perimental cell count, predicting a lower count of MDCKWT cells. By 
contrast, the asymmetric model (a = 2.6) quantitatively reproduces 
the experimentally observed cell counts (Figure 5C) by accounting 
for the enhancement of division rate of MDCKWT when in neighbor-
hoods with high proportions of scribblekd cells (Figure 4, B and F). 
This result reinforces our hypothesis that the MDCKWT cells exhibit 
division induction dependent on local neighborhood. The model 
further predicts how the net growth of the competing cell lines var-
ies with the densities of MDCKWT and scribblekd cells (Figure 5, D 
and E). First, the net growth of the MDCKWT is larger than that of the 
scribblekd cells, as seen experimentally (Figure 4D). Second, in 

neighborhood-based distance algorithm to retrieve the interaction 
network for each cell at each time point. First, we used the localiza-
tion of centroids to infer the Voronoi diagram (Barber et al., 1996) 
in each frame (Figure 4A and Supplemental Figures S2 and S3) and 
verified its accuracy in determining the number of neighbors of 
each cell (Supplemental Figure S8). For each cell ID, we computed 
the total number of neighbors and the number belonging to each 
cell lineage. Such calculations exclude cells closer than 10 µm to 
the edge of the field of view, because their entire neighborhood 
cannot be identified. This information enables the generation of 
“neighborhood plots,” wherein the value of a parameter of inter-
est is color-coded and placed in a grid as a function of the number 
of scribblekd and MDCKWT neighbors, respectively, on the x-axis 
and y-axis. The measurement at each grid position is typically 
computed from > 500 cells and often 104–105 cells (Supplemental 
Figure S4). In our diagrams, we annotated with an asterisk grid 
positions populated by more than 500 observations, but for which 
no event (e.g., a division or an apoptosis) of interest was de-
tected. Thus, in these positions, we provide an upper bound 
(1/Nobservations) for the probability of the event.

Next, we employed neighborhood plots to investigate how pro-
liferation, apoptosis, and the resulting net growth depend on the 
local neighborhood (Figure 4, B–D). A diagram with uniform color 
indicates a behavior independent on the composition of the cell 
neighborhood, whereas a diagram showing asymmetry about the 
diagonal identifies a behavior dependent on neighborhood. To 
provide a metric for asymmetry, we computed

s U L= ∑ − ∑

where U and L are the upper and lower triangular matrices of the 
neighborhood plot (see Materials and Methods and Figure 4E). 
With this metric, the higher the s value, the higher the inductive ef-
fect (Figure 4F). The probability of division (pdiv) of MDCKWT is 
strongly influenced by neighborhood, being higher in scribblekd-
dominated neighborhoods (Figure 4B, top, lower quadrant). In con-
trast, pdiv for scribblekd is insensitive to neighborhood (Figure 4B, 
bottom). Apoptosis diagrams displayed higher symmetry (Figure 
4F), with papo higher in scribblekd cells than MDCKWT cells for most 
grid positions (Figure 4C). For both cell types, papo is lower than pdiv 
by approximately an order of magnitude (Figure 4, B and C), consis-
tent with Figure 3. As a result, the net-growth neighborhood plots 
reflect the prevalent contribution of division (Figure 4D). Net growth 
is positive and highest in the bottom right corner of the neighbor-
hood plot for MDCKWT cells (Figure 4D, top), while scribblekd has 
either zero or negative net growth in the upper left corner (Figure 
4D, bottom), the region dominated by MDCKWT. Similar plots for 
mixed populations of noninduced scribblekd (tet−) and MDCKWT 
show less sensitivity to neighborhood, with a much lower degree of 
asymmetry in apoptosis, division, and net growth (Supplemental 
Figure S5). In particular, the noninduced scribblekd (tet−) cells have a 
positive and quite uniform net growth across the entire grid, signify-
ing that their behavior is independent on the composition of the cell 
neighborhood.

Rate-equation model of density-dependent growth and 
death quantitatively reproduces competition dynamics
Previous work has suggested that mechanical competition may be 
the result of cell-autonomous increases in apoptosis with density 
(Wagstaff et al., 2016). Here, we test this hypothesis by developing 
a quantitative model based on our experimental findings. To this 
end, we implemented a coupled rate-equation model to investi-
gate how the density dependence of cell division and apoptosis 
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FIGURE 4:  Probability of apoptosis, division, and net growth are sensitive to the composition of local neighborhood. 
(A) Definition of local neighborhood. The center of the nucleus of each cell is represented by a filled circle (green: 
MDCKWT; magenta: scribblekd). Nucleic centers are used to construct a Voronoi tessellation (solid lines). To determine 
the composition of the local neighborhood, we determine how many intercellular junctions the cell of interest (gray) has 
in common with the MDCKWT cells (junctions shown in green) or scribblekd cells (junction shown in magenta). The 
position of the cell of interest depicted here is shown by the grid position circled with the white frame in B in the 
neighborhood plot for MDCKWT cells. (B−D) Neighborhood plots showing the color-coded probability per cell per frame 
of division, apoptosis, and net growth for MDCKWT (top) and scribblekd (bottom) during competition. The number of 
scribblekd neighbors is shown on the x-axis and the number of MDCKWT cells is shown on the y-axis. The diagonal (black 
dashed line) indicates grid positions with equal numbers of MDCKWT and scribblekd neighbors. Numbers in each grid 
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FIGURE 5:  A density-dependent rate-equation model for cell competition. (A) Probability (per unit time per cell) of 
apoptosis (dashed lines) and probability of division (solid lines) for MDCKWT (green lines) and scribblekd (magenta lines) 
cells determine the rates fapo and fdiv for our model. These functions were fit to the experimental data in Figure 3, G–I, 
and Supplemental Figure S5, A–D. (B) Temporal evolution of cell count predicted by the symmetric interaction model 
(a = 0.0) initialized with the mean experimental cell count at t = 0 for MDCKWT (solid blue line) and scribblekd (solid red 
line). The model curves are overlaid with the experimental cell count from Figure 2D for MDCKWT (green) and scribblekd 
cells (magenta). (C) Temporal evolution of cell count predicted by the asymmetric interaction model (a = 2.64) initialized 
with the mean experimental cell count at t = 0 for MDCKWT (solid blue line) and scribblekd (solid red line). (D, E) Heat 
maps of net growth as a function of local density of MDCKWT cells on the y-axis and local density of scribblekd cells on 
the x-axis for the asymmetric interaction model for MDCKWT cells (a = 2.64, D) and scribblekd cells (a = 2.64, E). Warm 
colors indicate high net growths, while cold colors indicate low net growths. Dashed line indicates the contour of zero 
net growth, or density homeostasis. (F) Relative fitness landscape for the asymmetric density-dependent model 
(a = 2.64), defined as the net growth of the MDCKWT cells minus the net growth of the scribblekd cells. MDCKWT cells 
have a higher fitness than scribblekd cells, except within the region delineated by the dashed line.

position indicate the number of detected events (division/apoptosis). The total number of observations for each grid 
position is shown in Supplemental Figure S4. Measurements for each grid position are typically computed from 
observations of >500 cells. The probability for each grid position is defined as p = Nevents/Nobservations. Grid positions for 
which many observations were made but no event detected are marked by an asterisk and colored as 1/Nobservations to 
provide an upper bound for the probability in that position. Data are pooled from 12 time-lapse movies from three 
biological replicates. (E) Definition of s as parameter used for calculating the symmetry of neighborhood plots around 
the diagonal. For each neighborhood plot, s is computed as difference between the sum of the lower quadrant and the 
sum of the upper quadrant for grid positions ranging from [0,0] to [4,4] inclusive. (F) Symmetry calculation performed on 
checkerboard plot shown in B–D. The symmetry defines whether the behavior is cell autonomous (low s values) or 
dependent on the cell type of neighbors (high s values).

agreement with the experimental data (Figure 4D, bottom), the net 
growth of scribblekd cells exhibit a symmetric dependence on ρwt 
and ρkd (Figure 5E). Finally, the relative fitness (net growth of the 
MDCKWT – net growth of the scribblekd) heat map (Figure 5F) pre-
dicts that the net growth of the MDCKWT cells is always larger than 

scribblekd cells, except in a small region with high density of scrib-
blekd cells and low density of MDCKWT cells (Figure 5F, dashed line). 
This prediction quantitatively delineates the influence of asymmetric 
density dependence of MDCKWT division rate on the overall fitness 
landscape.
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by scribblekd cells. Thus, proliferation also seems to be strongly af-
fected by local cellular neighborhood and, surprisingly, this is the case 
in the winner cell type. These data suggest that some inductive cell 
behavior may be at play in this competition, something that is a well-
known marker of cell competition in its traditional definition (Vincent 
et al., 2013). In addition, our neighborhood analysis can be extended 
to include a temporal aspect, so that changes in competition at high 
or low cell density can be assessed, for example (Supplemental Figure 
S7). Time-resolved neighborhood plots may also enable comparison 
of competition before and after drug treatment.

To explore the dependence of apoptosis and division on neigh-
bor cell type evident from our experimental data, we introduced a 
coupled rate-equation model for the evolution of cell count, wherein 
rates of division and apoptosis depended on cell density. We found 
that the scenario that best simulated the experimental cell counts 
assumed an asymmetric dependency of the division rate of MDCKWT 
on the density of scribblekd cells. There is a clear difference when we 
compare this scenario with the symmetric interaction model, which 
underestimates the temporal evolution of MDCKWT cell count.

Interestingly, our numerical simulation shows that scribblekd cells 
may outcompete MDCKWT cells in a region of high scribblekd density 
and low MDCKWT density (bottom right hand corner of Figure 5F). 
Such a regime was never observed in our experimental conditions 
and would require external manipulation to be applied.

Initial seeding density is a key parameter in the competition phe-
nomenon described here. All of our experiments were performed 
with an initial density of 10−3 cells/µm2 and a 90:10 ratio of MDCKWT 
and scribblekd cells. Future experiments will be necessary to assess 
how the competition outcome depends on initial seeding density 
and seeding ratios of the competing lines.

One intriguing question arising from our analysis is whether in-
creased division of MDCKWT cells in majority scribblekd neighbor-
hoods is cause or consequence of increased apoptosis in scribblekd 
cells. Further experimental work will be needed to understand the 
molecular mechanisms underlying the sensitivity of mitotic behavior 
to density and neighborhood and provide a dynamic characteriza-
tion of the molecular changes occurring at the interface between 
cell types.

Our quantitative analysis of competition has suggested original 
hypotheses underlying the eventual elimination of loser cells from 
the tissue and emphasizes the need to examine how the probability 
of division changes with density and neighborhood. In addition to 
competition, our pipeline and characterization tools are broadly ap-
plicable to any interaction between cell types leading to outcomes 
such as division, death, or differentiation in processes such as can-
cer, stem cell biology, and development.

MATERIALS AND METHODS
Cell culture
The MDCK cell lines used for this study (MDCKWT and pTR scribble 
short hairpin RNA [shRNA], scribblekd) were generated as described 
by Norman et al. (2012). All cell lines used in this publication have 
been tested for mycoplasmal infection and were found to be nega-
tive (MycoAlert Plus Detection Kit, Lonza, LT07-710).

MDCK cells were grown in DMEM (Thermo-Fisher) supple-
mented with 10% fetal bovine serum (Sigma-Aldrich), HEPES buffer 
(Sigma-Aldrich), and 1% penicillin/streptomycin in a humidified in-
cubator at 37°C with 5% CO2. The scribblekd cells were cultured as 
WT cells, except that we used tetracycline-free bovine serum (Clon-
tech, 631106) to supplement the culture medium. For inducing ex-
pression of scribble shRNA, doxycycline (Sigma-Aldrich, D9891-1G) 
was added to the medium at a final concentration of 1 µg/ml.

DISCUSSION
Competition is a process during which two (or more) cell types inter-
act and whose outcome is the elimination of the less fit cells. Previ-
ous work has shown that competition can arise through biochemical 
induction via intercellular contact or through different tolerances to 
cell density (Levayer and Moreno, 2013; Vincent et al., 2013). Fur-
thermore, as competition typically takes place over several days, 
population shifts may result from changes in division rate as well as 
apoptosis rate. Thus, quantitatively characterizing cell competition 
necessitates high-throughput automated analysis strategies to mine 
long-duration time lapses of cell interactions.

Here, we describe a new high-throughput analysis pipeline for 
characterizing the single-cell behaviors giving rise to population 
shifts during cell competition. We developed a low-cost time-lapse 
acquisition system for imaging cells over long durations (up to 80 h) 
that we coupled with an image-analysis pipeline that tracks cells, 
automatically annotates cell cycle state, and generates lineage trees 
for each cell at each time point. Next, we designed tools to investi-
gate how key parameters in competition, such as the probabilities of 
apoptosis and division, are affected by the local cellular density and 
the composition of the local cellular neighborhood. To benchmark 
our analysis, we examined the interaction between MDCKWT cells 
and scribblekd cells, as previous work has highlighted it as an ex-
ample of mechanical competition resulting from differential sensitiv-
ity of the cell lines to cell density (Wagstaff et al., 2016).

Previous work showed that scribblekd cells are more sensitive to 
cell density leading to apoptosis and suggested that compaction 
caused by the MDCKWT cells leads to their eventual elimination 
(Wagstaff et al., 2016). We found that, when scribblekd cells are 
placed in the presence of MDCKWT cells, their local density increases 
threefold compared with when they are in pure populations. Using 
our automated analysis pipeline, we quantitatively characterized the 
dependency of the probability of apoptosis and division as a func-
tion of density. Strikingly, interaction with MDCKWT cells causes the 
probability of apoptosis of scribblekd cells to increase sharply at 
higher densities. As the probability of division is approximately one 
order of magnitude larger than the probability of apoptosis, any 
effect on division will be the dominant effect on competition. For 
instance, at high density (∼10−2 µm−2), the division rate for scribblekd 
cells is higher than the division rate of MDCKWT cells and higher than 
in pure populations of scribblekd cells. Despite this, the net growth 
of scribblekd cells at high density remains lower than that of MDCKWT 
because of a concomitant increase in the probability of apoptosis of 
scribblekd cells. Therefore, in the range of density explored in our 
experiments, there is no regime where scribblekd cells have higher 
net growth than MDCKWT cells. These competition-specific changes 
were intriguing, because they did not fit in a framework in which cell 
density is the main predictor of competition outcome and sug-
gested that other factors may participate.

We addressed this question by using our single cell–analysis ap-
proach to investigate the impact of the local neighborhood makeup 
on population dynamics. For this, we generated neighborhood plots, 
which display how the probability of apoptosis or division depends on 
the number and cell type of neighbors. Our neighborhood plots sug-
gest that apoptosis is increased in scribblekd cells possessing many 
neighbors, consistent with the notion that apoptosis increases at high 
density. Our metric for asymmetry revealed that apoptosis in scrib-
blekd cells was more sensitive to neighborhood than apoptosis in 
MDCKWT cells. However, the most striking neighborhood depen-
dence was revealed in neighborhood plots of division in MDCKWT 
cells. Interestingly, we found that the probability of division is signifi-
cantly higher for MDCKWT cells in a neighborhood mostly populated 
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before seeding. In other experiments, the cells were maintained in 
tetracycline-free medium to prevent scribble shRNA induction.

Imaging was started 2–3 h after seeding. Imaging medium used 
during the assay was phenol red–free DMEM (Thermo Fisher Scien-
tific; 31053) supplemented with tetracycline-free bovine serum, 
HEPES, antibiotics, and, for experiments involving induction, doxy-
cycline at the dose indicated earlier. Multilocation imaging was 
performed inside the incubator scope for duration of 50–80 h. 
Bright-field, GFP, and RFP fluorescence images were acquired with 
a frequency of 1 frame every 4 min for each position.

Image processing and cell tracking
After having acquired time-lapse movies of cells using the incubator 
microscope, we segmented the images into foreground (cells) and 
background. Several preprocessing steps were performed to re-
store the images. Flat-field illumination correction was performed 
and CCD “hot pixels” were removed.

Following image restoration, segmentation of the fluorescence 
images was performed using a Gaussian mixture model (GMM). 
Briefly, the combined intensity histogram of three images taken 
from the beginning, middle, and end of the movie were fitted to a 
GMM using the expectation maximization algorithm to learn the 
appropriate parameters (Xu and Jordan, 1996). The intensity distri-
bution was described as a weighted sum of n normal distributions:

∑ ( )( )θ = λ µ σ
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n

k k k k
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where θ represents the learned parameters for the N models: λk is the 
normalized weight, µk the mean intensity, and k

2σ  the variance for 
each normal distribution in the mixture model (Prince, 2012). We typi-
cally used n = 3, and separate parameters were learned for the GFP 
and RFP fluorescence movies. In general, when ordered by increasing 
µk, the three normal distributions reflect the intensity distributions of 
background, interphase, and mitotic/apoptotic cells. The output of 
the segmentation method is a binary classification of the image into 
background and cells. Dense regions of cells were separated using 
either a marker-controlled watershed transform, a custom-written 
object-splitting algorithm based on calculating regions of concavity in 
convex objects (Wienert et al., 2012), or a hybrid of both methods.

Next, we used an additional merging step to recombine frag-
ments arising from oversegmentation of nuclei with a weak fluores-
cence signal. The algorithm attempts to find the best possible 
hypothesis for merging the objects, based on separation distance 
and image features. This works in several phases. First, a Delaunay 
graph is calculated to make putative clusters of fragments. Second, 
hypotheses for combinations of fragments constituting a single ob-
ject are constructed. Each hypothesis has an equal prior probability. 
Third, successive Bayesian updates are performed using the separa-
tion distance and image feature information. Finally, the algorithm 
selects the merging hypotheses with the highest posterior probabil-
ities. This algorithm has the advantage of not merging apoptotic 
fragments with nonapoptotic nuclei.

Once the objects are segmented and split/merged, each nuclear 
marker in the original image is classified according to its position in 
the cell cycle. We used the following classes for simplicity: inter-
phase, pro(meta)phase, metaphase, anaphase/telophase, and apop-
totic. We trained a deep convolutional neural network (CNN) to 
perform object classification.

Our CNN architecture was broadly based on the LeNet-5 archi-
tecture (Lecun et al., 1998) and consisted of several layers of 3 × 3 
convolution, rectified linear units (ReLU) (Nair and Hinton, 2010) and 
2 × 2 max-pooling units (Scherer et al., 2010), which decrease spatial 

To enable visualization of nucleic acid organization during the 
cell cycle, we established cell lines stably expressing fluorescently 
tagged histone markers. Use of different fluorescent proteins en-
abled us to distinguish the two competing cell types and allowed 
for accurate segmentation. To do this, we transduced MDCKWT 
cells with lentiviruses encoding H2b-GFP (Addgene; plasmid 
#25999) and the scribblekd cells with lentiviruses encoding H2B-
RFP (Addgene; plasmid #26001). After transduction, cells were 
sorted using fluorescence-activated flow cytometry based on GFP 
or RFP fluorescence to yield populations with homogeneous levels 
of fluorescence.

Western blotting
We performed Western blotting on MDCK H2b-GFP cells, nonin-
duced MDCK scribblekd H2b-RFP (tet−), and induced MDCK 
scribblekd H2b-RFP cells. Induction of scribble shRNA was carried 
out as previously described (Norman et al., 2012). Briefly, cells were 
induced with 1 µg/ml doxycycline for 70 h before lysis. For prepara-
tion of protein extracts, cells were placed on ice and washed with 
cold phosphate-buffered saline (PBS). After removal of PBS, the cells 
were lysed using RIPA lysis buffer (Santa Cruz Biotechnology) to 
which protease and phosphatase inhibitors were added at appropri-
ate concentrations. The lysates were clarified by centrifugation at 
8000 × g for 4 min at 4°C, diluted 1:1 with 2× Laemmli buffer (Sigma-
Aldrich), denatured for 5 min at 95°C, and loaded onto NuPage 
4–20% gradient gels (Bio-Rad). For immunoblotting, we used goat 
anti-Scribble primary antibody (1:500; Santa Cruz; sc-11048) and 
mouse anti-GAPDH (1:1000; Novus Biologicals; NB300-221) as 
loading control. For secondary antibodies, we used horseradish per-
oxidase (HRP)-coupled anti-mouse (GE Healthcare; NXA931) and 
HRP-coupled anti-goat (Abcam; ab 97110). All HRP-coupled sec-
ondary antibodies were used at 1:10,000 dilution. Protein bands 
were visualized using the ECL Detection kit (GE Healthcare).

Wide-field microscopy
A custom-built automated epifluorescence microscope was built in-
side a standard CO2 incubator (Thermo Scientific Heraeus BL20) 
that maintained the temperature at 37°C and in a 5% CO2 atmo-
sphere. The microscope comprised a high-performance motorized 
stage (Prior Proscan III; H117E2IX), with a motorized focus controller 
(Prior FB201 and PS3H122R) and a 9.1MP CCD camera (Point Grey; 
GS3-U3-91S6M). Bright-field illumination was provided using a 
green LED (Thorlabs M520L3; 520 nm). Fluorescence illumination in 
two channels, GFP and mCherry/RFP, was via a blue (Thorlabs; 
M470L3, 470 nm) or yellow (Thorlabs; M565L3, 565 nm) LED, re-
spectively. These were combined using a dichroic beamsplitter 
(Semrock) and focused onto the back focal plane of a 20× air objec-
tive (Olympus 20×/0.4 NA) in an epifluorescence configuration. The 
camera and the LEDs were synchronized using TTL pulses from an 
external D/A converter (Data Translation; DT9834). A custom-built 
humidified chamber maintained the humidity within the sample 
chamber and was fitted with a thermocouple and humidity sensor to 
continuously monitor the environment. The microscope setup was 
controlled via custom-written software in Python and C++.

Long-term live imaging and competition assay
Cell competition assays were carried out in 35-mm glass-bottom Pe-
tri dishes (WillCo). At the start of each experiment, cells were seeded 
at an initial density of 1 × 10−3 cells µm−2. MDCKWT cells expressing 
H2b-GFP were mixed with scribblekd H2b-RFP cells at a ratio of 
90:10. In some experiments, the expression of scribble shRNA had 
been induced in scribblekd cells by exposure to doxycycline for 70 h 
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All code was implemented in Python and C/C++ using CVXOPT, 
GLPK, Numpy, Scipy, TensorFlow, and Caffe libraries. All image pro-
cessing was performed on a Dell Precision workstation running 
Ubuntu 16.04LTS with 32 Gb RAM and a NVIDIA GTX1080 GPU. 
Computational time was on the order of minutes to hours depend-
ing on the complexity of the data.

Postprocessing analysis
The output of the tracking software is a table containing a time-
resolved list of unique cell IDs; for each cell ID, the software saves 
the centroid coordinates, the assigned cell cycle state, and lineage 
information (mother ID).

To investigate the role of local neighborhood in cell competition, 
we implemented a neighborhood-based distance algorithm to re-
trieve the cellular interaction network (Figure 3A). A custom-written 
MATLAB (MathWorks) script was created to calculate the Voronoi 
diagram (Barber et al., 1996) using the known localization of cell 
centroids in each frame. The distance between Voronoi cells was 
computed (Supplemental Figure S2) and compared with a threshold 
value (Dthresh). We calculated the mean value of internuclear separa-
tion over time, determining Dthresh to be 30 µm for MDCK WT and 60 
µm for induced MDCK scribblekd. Among the neighboring Voronoi 
cells centered at a distance below Dthresh, we defined true neigh-
bors as those cells sharing one common vertex with the target cell. 
This definition is important to detect and remove neighbors situated 
too far from the cell of interest to truly interact with it. Thus, for each 
cell ID, we could compute the number of neighbors and the fraction 
of neighbors belonging to each cell lineage. This allowed investiga-
tion of the dependency of proliferation and apoptosis on local 
neighborhood (Figure 3, B and C).

To investigate how apoptosis and division depended on local 
cell density, we implemented a custom-written MATLAB script to 
compute a local cellular density measurement based on the Delau-
nay triangulation of nucleic centers of mass in each image frame 
(Figure 3A). We defined the local cellular density as the sum of in-
verse areas of the triangles that share a common vertex with the cell 
of interest, and as given by the equation

∑ ( )ρ =
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where A(i) is the area of the triangle i sharing a vertex with the target 
cell. Local cell density (ρ) was computed for each cell ID and averaged 
among cells of the same lineage at each time point. This average 
was then plotted as a function of time for each cell type separately in 
mixed populations.

Error bars correspond to the inverse of the number of observa-
tions for each data point. For generating the neighborhood 
diagrams shown in Figure 4, we implemented a custom-written 
MATLAB script to compute the interaction network for each cell at 
each time point, based on a Voronoi tessellation. For each cell ID, 
we computed the total number of neighbors and the number 
belonging to each cell lineage, MDCKWT, or scribblekd. We catego-
rized each division and apoptosis event as a function of the number 
of neighbors of each type. We color-coded the probability of divi-
sion, apoptosis, and net growth and display these parameters as 
function of neighborhood by placing them in a grid, where the x-
axis and y-axis represent the number of scribblekd and MDCKWT 
neighbors, respectively. The measurement within each grid position 
was computed from Nobservations > 500 cells. We annotated with an 
asterisk grid positions populated by more than 500 observations, 
but for which no event (e.g., a division or an apoptosis) of interest 

dimensionality and increase the number of filters. These layers are 
followed by several fully connected layers, which reduce the output 
to a one-dimensional tensor representing the five mutually exclusive 
cell cycle classes. A final Softmax layer (normalized exponential 
function) returns the output probabilities for each class.

To train the deep CNN, we generated three data sets: 1) training, 
2) test, and 3) validation. Each set has an identical number of train-
ing examples that are shuffled, class balanced, and augmented 
(rotations, noise, translations) to yield a large number of training 
examples. CNNs were implemented in Caffe (Jia et al., 2014) or 
TensorFlow (Abadi et al., 2016). Training was performed using a 
momentum optimizer with an exponentially decaying learning rate 
until convergence. We measured the accuracy of the CNN classifica-
tion by calculating a confusion matrix that compares a ground truth 
based on human operator classification and the CNN prediction us-
ing the validation data set. Following the training steps, the CNN 
achieved an overall accuracy of >99% (Figure 1F).

We also trained a nonlinear support vector machine (SVM) with a 
radial basis function using image features such as fluorescence in-
tensity, intensity gradient, histogram of oriented gradients (HoG) 
features (Dalal and Triggs, 2005), orientation, eccentricity, and 
texture. Although the SVM performed well at cell cycle state classi-
fication, it did not match the performance of the CNN, particularly 
with apoptosis detection, with a maximum accuracy of ∼80% (un-
published data). We used the CNN for all further data analysis.

Next, classified and segmented objects were assembled into 
tracks. The tracking algorithm assembles reliable sections of track 
that do not contain cell division events (tracklets). Each new tracklet 
initiates a probabilistic model in the form of a Kalman filter (Kalman, 
1960) and uses this to predict future states (and error in states) of 
each of the objects in the field of view. We assigned new observa-
tions to the growing tracklets (linking) by evaluating the posterior 
probability of each potential linkage from a Bayesian belief matrix 
for all possible linkages (Narayana and Haverkamp, 2007). The best 
linkages are those with the highest posterior probability. Despite the 
high instantaneous accuracy of the CNN classification, occasional 
errors occur. We corrected errors using a temporal model of the cell 
cycle (Held et al., 2010) implemented as a hidden Markov model 
(HMM) comprising interphase, the three states of mitosis, and a 
dead-end state of apoptosis. Any tracklets containing a metaphase 
to anaphase transition are split into separate tracks so that they can 
be labeled as division events in later steps of the algorithm.

The tracklets are then assembled into lineage trees by using 
multiple hypothesis testing and integer programming (Al-Kofahi 
et al., 2006; Bise et al., 2011) to identify a globally optimal solution. 
We built upon this previous work to incorporate hypotheses specific 
to apoptosis/extrusion and used additional geometric features and 
CNN classifications in the hypothesis generation. The following hy-
potheses were generated: 1) true positive track, 2) false positive 
track, 3) initializing at the beginning of the movie or near the edge of 
the FOV, 4) termination at the end of the movie or near the edge of 
the FOV, 5) a merge between two tracklets, 6) a division event, or 
7) an apoptotic event. The likelihood of each hypothesis was calcu-
lated for some or all of the tracklets based on heuristics. The global 
solution identified a sequence of high-likelihood hypotheses that 
accounted for all observations. The global solution having been 
identified, the fates of individual cells were updated, tracks were 
merged and lineage trees were generated using a breadth-first 
search to traverse the trees.

At the end of the image-processing and tracking steps, the 
xyt-position, cell cycle state, and lineage of each cell in the field of 
view has been determined.
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was detected. In these positions, we provide an upper bound 
(1/Nobservations) for the probability of the event.

Numerical simulations
The experimental data for the density dependence of the probabil-
ity of division and apoptosis were fit with analytic functions. These 
functions correspond to the density-dependent division and apop-
totic rate for both respective cell types used in the model (fdiv

wt, fapo
wt , 

fdiv
kd, fapo

kd ). The mathematical form of the fitting functions was chosen 
to minimize the number of parameters (Figures 5A and Supplemen-
tal Figure S5, A–D) while providing an accurate fit that converges at 
extremities. For the density-dependent apoptotic rate of MDCKWT 
and density-dependent apoptotic rate of scribblekd, logistic func-
tions satisfied these criteria. For the density-dependent division rate 
of wild-type and scribblekd, Gaussian functions best described the 
experimental trends (Supplemental Figure S5, A and B). We numeri-
cally solved the four coupled rate equations (Eqs. 1–4) for the den-
sity of MDCKWT, density of scribblekd, cell count of MDCKWT, and the 
cell count of scribblekd using Mathematica (Wolfram Research), and 
plotted the normalized cell counts in Figure 5C. We studied two in-
teracting limits of the rate-equation models, one describing a 
symmetric interaction of local densities of MDCKWT and scribblekd 
(a = 0) and the other describing asymmetric interaction (a > 0 in 
Eqs. 1–4). We found that the asymmetric model best replicated the 
experimental findings. For Figure 5, D and E, the heat maps of net 
growth against density of MDCKWT and density of scribblekd were 
then plotted by using the built-in Density Plot function in Mathemat-
ica, in which the net growth of a cell type is calculated as the density-
dependent division rate minus the density-dependent apoptotic 
rate. The relative fitness is calculated as the net growth of MDCKWT 
minus the net growth of scribblekd.

Software availability
MATLAB scripts for analysis of cell trajectories are available at https://
github.com/quantumjot/CellTracking. The Bayesian tracking library is 
available at https://github.com/quantumjot/BayesianTracker.

ACKNOWLEDGMENTS
This work was supported by two Engineering and Physical Sciences 
Research Council (EPSRC) PhD studentships to A.B. and D.G. A.B. 
was partially supported by a Young Investigator grant from the 
Human Frontier of Science Programme to G.C. S.B. acknowledges 
support from a UCL strategic fellowship. A.R.L. was supported by 
grants from the Medical Research Council (MRC MR/K015826/1 and 
MR/M009033/1) and a Wellcome Trust infrastructure support 
(WTISSF) grant to the University of London (UCL). We thank Saheli 
Datta, Gautham Venugopalan, and James Gill for interesting discus-
sions. We thank members of the Lowe, Charras, and Banerjee labs for 
discussions and technical support during the project. We thank Pedro 
Monteiro and Susana Godinho (Queen Mary, UCL) for providing plas-
mids and lentiviruses used for establishing cell lines stably expressing 
fluorescently tagged histone markers and Karl Matter (UCL) for the 
kind gift of the goat anti-Scribble primary antibody. We acknowledge 
Abetharan Antony (UCL) for help with the HMM and the Institute for 
the Physics of Living Systems (UCL) for summer studentship funding.

development established with murine neural progenitor cells. Cell Cycle 
5, 327–335.

Barber CB, Dobkin DP, Huhdanpaa H (1996). The Quickhull algorithm for 
convex hulls. ACM T Math Software 22, 469–483.

Bise R, Yin ZZ, Kanade T (2011). Reliable cell tracking by global data 
association. IEEE International Symposium on Biomedical Imaging: 
From Nano to Macro, held March 30–April 2, 2011, Chicago, IL, 
1004–1010.

Dalal N, Triggs B (2005). Histograms of oriented gradients for human 
detection. IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, held June 20–25, 2005, San Diego, CA.

Fernandez LC, Torres M, Real FX (2016). Somatic mosaicism: on the road to 
cancer. Nat Rev Cancer 16, 43–55.

Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, 
Krishnegowda V, Rosenblatt J (2017). Mechanical stretch triggers rapid 
epithelial cell division through Piezo1. Nature 543, 118–121.

Held M, Schmitz MH, Fischer B, Walter T, Neumann B, Olma MH, Peter M, 
Ellenberg J, Gerlich DW (2010). CellCognition: time-resolved phenotype 
annotation in high-throughput live cell imaging. Nat Methods 7, 747–754.

Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B, Hoppe PS, 
Loeffler D, Kokkaliaris KD, Hastreiter S, Skylaki E, Filipczyk A, et al. 
(2016). Software tools for single-cell tracking and quantification of 
cellular and molecular properties. Nat Biotechnol 34, 703.

Hogan C, Dupre-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling 
AE, Piddini E, Baena-Lopez LA, Vincent JP, Itoh Y, et al. (2009). Charac-
terization of the interface between normal and transformed epithelial 
cells. Nat Cell Biol 11, 460–467.

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama 
S, Darrell T (2014). Caffe: convolutional architecture for fast feature 
embedding. arXiv:1408.5093v1.

Kalman R (1960). A new approach to linear filtering and prediction 
problems. Trans ASME J Basic Engineering 82(Series D), 35–45.

Lecun Y, Bottou L, Bengio Y, Haffner P (1998). Gradient-based learning 
applied to document recognition. Proc IEEE 86, 2278–2324.

Levayer R, Hauert B, Moreno E (2015). Cell mixing induced by myc is required 
for competitive tissue invasion and destruction. Nature 524, 476–480.

Levayer R, Moreno E (2013). Mechanisms of cell competition: themes and 
variations. J Cell Biol 200, 689–698.

Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, Lasitschka 
F, Mastitsky SE, Brors B, Hielscher T, et al. (2014). Cell competition is a 
tumour suppressor mechanism in the thymus. Nature 509, 465–470.

Merino MM, Levayer R, Moreno E (2016). Survival of the fittest: essential 
roles of cell competition in development, aging, and cancer. Trends Cell 
Biol 26, 776–788.

Merino MM, Rhiner C, Lopez-Gay JM, Buechel D, Hauert B, Moreno E 
(2015). Elimination of unfit cells maintains tissue health and prolongs 
lifespan. Cell 160, 461–476.

Morata G, Ripoll P (1975). Minutes: mutants of Drosophila autonomously 
affecting cell division rate. Dev Biol 42, 211–221.

Moreno E, Basler K, Morata G (2002). Cells compete for decapentaplegic 
survival factor to prevent apoptosis in Drosophila wing development. 
Nature 416, 755–759.

Nair V, Hinton GE (2010). Rectified linear units improve restricted Boltzmann 
machines. Proceedings of the 27th International Conference on Machine 
Learning, Haifa, Israel.

Narayana M, Haverkamp D (2007). A Bayesian algorithm for tracking 
multiple moving objects in outdoor surveillance video. IEEE Conference 
on Computer Vision and Pattern Recognition, held June 17–22, 2007, 
Minneapolis, MN.

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndee J, Cook K, 
Stepansky A, Levy D, Esposito D, et al. (2011). Tumour evolution inferred 
by single-cell sequencing. Nature 472, 90–94.

Norman M, Wisniewska KA, Lawrenson K, Garcia-Miranda P, Tada M, Kajita 
M, Mano H, Ishikawa S, Ikegawa M, Shimada T, Fujita Y (2012). Loss of 
Scribble causes cell competition in mammalian cells. J Cell Sci 125, 59–66.

Oliver ER, Saunders TL, Tarle SA, Glaser T (2004). Ribosomal protein L24 
defect in belly spot and tail (Bst), a mouse Minute. Development 131, 
3907–3920.

Porazinski S, de Navascues J, Yako Y, Hill W, Jones MR, Maddison R, Fujita 
Y, Hogan C (2016). EphA2 drives the segregation of Ras-transformed 
epithelial cells from normal neighbors. Curr Biol 26, 3220–3229.

Prince SJD (2012). Computer Vision: Models, Learning, and Inference, 
New York: Cambridge University Press.

Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Kuchnir Fygenson 
D, Shraiman BI (2012). Collective and single cell behavior in epithelial 
contact inhibition. Prac Natl Acad Sci USA 109, 739–744.

REFERENCES
Abadi M, Agarwal A, Barham P, Brevdo E (2016). Tensorflow: large-

scale machine learning on heterogeneous distributed systems. 
arXiv:1603.04467v2.

Al-Kofahi O, Radke RJ, Goderie SK, Shen Q, Temple S, Roysam B (2006). 
Automated cell lineage construction—a rapid method to analyze clonal 



3228  |  A. Bove, D. Gradeci, et al.	 Molecular Biology of the Cell

Vincent JP, Fletcher AG, Baena-Lopez LA (2013). Mechanisms and mechan-
ics of cell competition in epithelia. Nat Rev Mol Cell Biol 14, 581–591.

Waclaw B, Bozic I, Pittman M, Hruban R, Vogelstein B, Nowak M (2015). A 
spatial model predicts that dispersal and cell turnover limit intratumour 
heterogeneity. Nature 525, 261–264.

Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, 
Hampton-O’Neil L, Bradshaw CR, Allen GE, Rawlins EL, et al. (2016). 
Mechanical cell competition kills cells via induction of lethal p53 levels. 
Nat Commun 7, 11373.

Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, Dietel M, 
Denkert C, Klauschen F (2012). Detection and segmentation of cell nuclei 
in virtual microscopy images: a minimum-model approach. Sci Rep 2, 503.

Xu L, Jordan MI (1996). On convergence properties of the EM algorithm for 
Gaussian mixtures. Neural Comput 8, 129–151.

Rhiner C, Moreno E (2009). Super competition as a possible mechanism to 
pioneer precancerous fields. Carcinogenesis 30, 723–728.

Scherer D, Muller A, Behnke S (2010). Evaluation of pooling operations in 
convolutional architectures for object recognition. Lect Notes Comput 
Sc 6354, 92–101.

Simpson P, Morata G (1981). Differential mitotic rates and patterns of 
growth in compartments in the Drosophila wing. Dev Biol 85, 299–308.

Sottoriva A, Spiteri I, Piccirillo S, Touloumis A, Collins V, Marioni J, Curtis C, 
Watts C, Tavaré S (2013). Intratumor heterogeneity in human glioblas-
toma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 
110, 4009–4014.

Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, Harrison 
N, Poulton J, Ivanovitch K, Disch L, et al. (2010). Involvement of Lgl and 
Mahjong/VprBP in cell competition. PLoS Biol 8, e1000422.




