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Abstract 

Earthquake-induced pounding of adjacent structures can cause severe structural damage and 

advanced probabilistic approaches are needed to obtain a reliable estimate of the risk of impact. 

This study aims to develop an efficient and accurate probabilistic seismic demand model (PSDM) 

for pounding risk assessment between adjacent buildings, which is suitable for use within 

modern performance-based engineering frameworks. 

In developing a PSDM, different choices can be made regarding the intensity measures (IMs) 

to be used, the record selection, the analysis technique applied for estimating the system response 

at increasing IM levels, and the model to be employed for describing the response statistics given 

the IM. In the present paper, some of these choices are analyzed and evaluated first by 

performing an extensive parametric study for the adjacent buildings modeled as linear single-

degree-of-freedom systems, and successively by considering more complex nonlinear multi-

degree-of-freedom building models. An efficient and accurate PSDM is defined using advanced 

intensity measures and a bilinear regression model for the response samples obtained by cloud 

analysis. The results of the study demonstrate that the proposed PSDM allows accurate estimates 

of the risk of pounding to be obtained while limiting the number of simulations required. 
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1 INTRODUCTION  

The seismic-induced pounding between adjacent buildings with inadequate separation distance 

is an undesirable event that can cause major damage and even structural collapse [1, 2]. This 

issue is particularly relevant for structures located in metropolitan areas, due to limited 

availability of land space. 

In the last thirty years, extensive research was carried out to estimate both experimentally and 

numerically the effect of pounding between adjacent structures such as buildings and bridges. In 

most cases, the structural pounding phenomenon was shown to be detrimental rather than 

beneficial to the seismic performance of adjacent buildings, with its main effect consisting in an 

increase of the acceleration and drift demand at various story levels [3-7]. Although different 

techniques have been developed to minimize these effects (e.g., [9-10]), the simplest and most 

effective approach to mitigate seismic pounding is to provide enough clearance between the 
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adjacent structures, though this solution may not always be feasible due to lack of space [11]. 

In order to control pounding risk, design codes prescribe a minimum separation distance 

between adjacent buildings and provide simplified numerical procedures and analytical rules for 

estimating its value under a given seismic hazard scenario [12-15]. However, these code 

procedures are characterized by unknown safety levels and, thus, do not permit to control 

explicitly the risk of pounding [16, 17] or the consequences of the impact [18]. In [16], a 

methodology was proposed to evaluate the risk of pounding between adjacent systems. This 

methodology was efficiently applied to the case of buildings modeled as linear systems, for 

which analytical techniques can be efficiently employed to estimate with good accuracy the 

response statistics under the uncertain earthquake input. Based on the results presented in [16], a 

reliability-based methodology was proposed in [17] for the design of the separation distance 

between adjacent buildings which corresponds to a target probability of pounding during the 

design life of the buildings. In [18], an alternative methodology has been proposed to design the 

separation distance between adjacent buildings by controlling also the consequences of the 

impact in term of increase of displacement demand for the systems. 

Despite the advancement made by these works in the definition of the separation distance 

between adjacent buildings, further studies are required to make these methodologies applicable 

in an efficient way to more complex nonlinear building models, which require the use of 

computationally expensive numerical simulations to accurately simulate the structural response. 

The objective of this paper is to develop an efficient probabilistic seismic demand model (PSDM) 

[19-22] for pounding risk assessment consistent with modern performance-based design 

frameworks such as the Pacific Earthquake Engineering Research Center framework [23, 24]. A 

PSDM is the outcome of probabilistic seismic demand analysis (PSDA), and consists in the 

analytical representation of the relation between a seismic intensity measure (IM) and a measure 

of the structural response of interest, i.e., an engineering demand parameter (EDP). In this 

specific case, the EDP of interest is the peak relative displacement between the adjacent 

buildings at the most likely impact location. The PSDM can be used to estimate the seismic 

vulnerability and the mean annual frequency (MAF) of pounding between adjacent buildings via 

convolution with the hazard curve of the site. 

In the development of a PSDM, different choices can be made regarding the IM to be 

employed, the record selection, the technique used in PSDA to estimate the response statistics for 

different IM levels, and the model describing the EDP statistics given the IM. In the present 

paper, some of these choices are discussed and evaluated by considering models of adjacent 

buildings with different degree of complexity. 

First, the case of two adjacent buildings modeled as linear single-degree-of-freedom (SDOF) 

systems is considered. An extensive parametric study is performed by exploring a wide range of 

situations, as described by the identified non-dimensional characteristic parameters that control 

the system seismic behavior. Different IMs are proposed for the problem at hand, whose choice 

is motivated mainly by efficiency criteria. The parametric study results are utilized to evaluate 

the efficiency and sufficiency of the proposed IMs employed in conjunction with a PSDM widely 

employed in the literature [25, 26] and involving the linear regression of the seismic demand 

variation with respect to the IM in the log-log space. 

Successively, a more realistic structural model of two adjacent buildings described as nonlinear 

hysteretic multi-degree-of-freedom (MDOF) systems is considered, with the aim of evaluating 

the effectiveness and accuracy of the IMs and PSDM introduced for the buildings described as 

SDOF systems. A bilinear (in the log-log space) PSDM is also proposed to achieve a better fit of 

the seismic median demand and dispersion over the entire range of seismic excitation levels. 

Finally, comparisons are made between the risk estimates obtained by using the linear and 
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bilinear PSDMs and the corresponding estimates obtained via incremental dynamic analysis [27] 

in order to evaluate and compare the accuracy of the proposed regression models. 

2 DEVELOPMENT OF A PSDM FOR POUNDING RISK ASSESSMENT 

2.1 Probabilistic seismic demand analysis 

The risk of pounding between two adjacent buildings A and B, where A denotes the building 

providing the largest contribution to the displacement demand at the most likely impact location, 

can be expressed in terms of the MAF,  EDPv  , with which the peak relative displacement 

between the adjacent buildings at the most likely impact location, urel (EDP of interest in this 

problem), exceeds the separation distance [16]. It is noteworthy that the most likely impact 

location can be obtained for any given pair of adjacent buildings by using the buildings’ 

structural response statistics. However, for buildings that are regular in elevation and have a 

structural response dominated by the first mode of vibration (such as those considered in this 

study), the most likely impact location corresponds to the roof level of the lower of the two 

buildings. For the remainder of this study, the most likely impact location is assumed to coincide 

with the roof level of the lower of the two adjacent buildings. Based on the total probability 

theorem,  EDPv  is expressed as: 

      dEDP IMEDP IM

im

v G im v im    (1) 

in which  EDP IM
G im  = complementary cumulative distribution function (CCDF) of EDP = 

urel conditional to IM = im , and  IMv im  = MAF of exceedance of a specific value im. In this 

paper, upper case symbols indicate random variables and lower case symbols denote specific 

realizations of the corresponding random variable. It is noted here that, for linear elastic 

structures, building A usually corresponds to the building with higher natural period of vibration 

(i.e., the period corresponding to the first mode of vibration). 

The probabilistic description of the seismic intensity measure IM through the MAF  IMv im  is 

the task of probabilistic seismic hazard analysis. The description of  EDP IM
G im  is the task of 

PSDA, and returns the PSDM, which is the object of this study. In general, the computation of 

 EDP IM
G im  involves performing a series of time-history dynamic analyses of the structural 

system under a set of ground-motion records with IM levels spanning in the range of interest. 

Then, a regression analysis of the EDP samples on the corresponding IM values is usually 

carried out to obtain a synthetic probabilistic description of the seismic demand given IM = im

[26]. 

The two major issues in defining a PSDM for the problem considered in this study are related 

to the choice of (1) an appropriate (i.e., efficient and sufficient) IM, and (2) a regression model 

for the relation between the EDP and the IM. It is noteworthy that these two problems are strictly 

related, because the appropriateness of an IM, as described in next section, is usually quantified 

based on the results of regression analysis, and thus depends on the regression model employed. 

2.2 Candidate IMs for pounding risk assessment 
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The choice of an appropriate IM is a critical issue in PSDA because it affects the computational 

cost and the accuracy of the estimates of  EDP IM
G im  and, thus, of vEDP(). Usually, the IM is 

selected based on efficiency, sufficiency, and hazard computability criteria [20, 21, 26]. The term 

‘efficiency’ is related to the dispersion of the seismic demand for a given IM value. An efficient 

IM results in a relatively small variability of EDP conditional on IM, thereby reducing the 

number of time-history analyses that are necessary to estimate  EDP IM
G im  with adequate 

confidence [28]. The term ‘sufficiency’ refers to the statistical independence of the EDP with 

respect to typical ground motion characteristics such as magnitude (M) and source-to-site 

distance (R). For example, if an IM sufficient with respect to M and R is employed for PSDA, 

Eqn. (1) can be applied to estimate  EDP IM
G im  without being affected by the values of M and 

R of the records employed for the non-linear dynamic analyses. The ‘hazard computability’ of an 

IM refers to the availability of a hazard curve or attenuation law for that IM, or to the effort 

required to derive a seismic hazard model in terms of that IM. It is noteworthy that the optimal 

IM in terms of efficiency and sufficiency is the EDP itself [26]. However, directly computing 

vEDP via probabilistic seismic hazard analysis would usually require the use of an impractically 

large number of time-consuming nonlinear dynamic analyses of the structural model subject to 

ground motions from an array of M and R values. Furthermore, this operation should be repeated 

for each different structure considered. Thus, the best IM should be chosen among those for 

which hazard curves or attenuation laws are readily available or easy to compute. In this paper, a 

regression model is fitted to the results of PSDA. Thus, the efficiency of the proposed IMs is 

measured by the degree of scatter about the regression fit, whereas their sufficiency is measured 

by the extent to which the residuals of the regression are statistically independent of M and R [20, 

26, 29]. In addition to this sufficiency measure, the ‘relative sufficiency measure’ (RSM) of an 

IM over another is also evaluated, as in [30]. 

Based on the previous considerations, it is advantageous in terms of efficiency and sufficiency 

to select an IM that is as close as possible to the EDP of interest. Modal combination rules such 

as the absolute sum (ABS), square root of the sum of the squares (SRSS), and double difference 

combination (DDC) rules can provide approximate estimates of the relative displacement 

response between two adjacent systems in function of their spectral displacement [31]. Since a 

hazard model is usually available for the spectral displacements, these rules can be employed to 

define efficient IMs for pounding risk assessment. 

The simplest IM that naturally stems from the use of spectral displacements is: 

  1 A AdIM S T  (2) 

where Sd(TA) denotes the spectral displacement at the fundamental period TA and A denotes the 

fundamental mode participation factor of building A. In computing A, the modal shape is 

normalized to have a unit displacement at the pounding location. This intensity measure is 

roughly proportional to the spectral acceleration, which is widely employed in PSDA of 

buildings for its sufficiency and efficiency [28]. However, in the problem considered here, this 

IM could be not appropriate due to the potentially relevant contribution of both buildings’ 

displacements to the peak relative displacement. 

A more advanced IM can be defined as: 

   2 2
2 A A 11 1d BA BAIM S T R IM R     (3) 
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where    B B A ABA d dR S T S T         . This IM is very similar to that proposed by [26] to reduce 

(when compared to using IM1) the dispersion of buildings’ inter-story drift demand by 

accounting also for the contribution of their second vibration mode. In the present study, IM2 is 

proposed to account for the contribution to the peak relative displacement response of both 

systems and can be directly related to the SRSS rule for estimating the peak relative 

displacement. 

An even more advanced IM can be defined as: 

   2 2
3 11 2 1 2A d A BA BA BA BA BA BAIM S T R R IM R R         (4) 

where  denotes the correlation factor between the two buildings’ responses [31]. This last IM 

can be directly related to the DDC rule for peak relative displacement evaluation, which is in 

general more accurate than the ABS and SRSS rules, especially for close fundamental vibration 

periods [16, 31]. A hazard curve can be easily derived for each of the proposed IMs when an 

attenuation law for Sd(Ti) (i = A, B) is available. 

It is noteworthy that building structures usually behave as MDOF hysteretic systems. Thus, 

evaluation of the separation distance between adjacent buildings should account for the 

contribution of the relevant vibration modes of each building, as well as for their nonlinear 

behavior. Although several approximate criteria for determining the peak relative displacement 

between adjacent buildings with nonlinear behavior have been proposed in the literature, none of 

these criteria appears to be very accurate under a wide range of conditions [32]. In addition, 

attenuation relations for inelastic spectral displacements are usually not available. Thus, IMs 

based on peak relative displacement estimates accounting for nonlinear behavior in a simplified 

way are not considered in this study. Furthermore, the use of vector valued IMs would open a 

full range of alternative model forms, combinatorial expansion of the problem considering IM 

pairs, and practical challenges in implementation in a risk assessment analysis procedure. Thus, 

also the use of advanced vector-valued IMs is considered out of the scope of the present study. 

On the other hand, the peak ground acceleration (PGA), referred to hereinafter as IM0, is 

considered in this work as a basic reference scalar IM, since it is employed in many studies for 

evaluating the pounding probability of buildings [16, 33]. 

2.3 Regression models for pounding risk assessment 

2.3.1 Linear regression model 

PSDM are often built by using the following expression as regression model between EDP and 

a scalar IM [25]: 

 ln ln ln lnEDP IM a b IM IM    (5) 

where the parameters a and b, as well as the error variable IM  need to be estimated via 

regression analysis in the log-log space of the EDPs samples given IM. The functional form 

given by Eqn. (5) is based on extensive regression analysis of the seismic response of steel 

structures [25]. The variable IM  is assumed to be lognormally distributed, i.e., ln IM  

follows a normal distribution with zero mean value and standard deviation  ln |IM im  Thus, 
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also the considered EDP follows a lognormal distribution and ln EDP IM  is normally 

distributed with mean value ln lna b im   and standard deviation  ln |EDP IM im . 

The assumed regression model permits to evaluate in closed form the CCDF  EDP IM
G im  

used in Eqn. (1) as [25]: 

  
 ln |

ln ln ln   
         

 
EDP IM

EDP IM

a b im
G im P EDP IM im

im


 


 (6) 

where (·) denotes the standard normal cumulative distribution function. The plot of 

 EDP IM
G im  as a function of IM is commonly denoted as fragility curve in the literature [34]. 

Different techniques can be used to generate the EDPs samples given IM [22, 25, 28, 35]. In 

this study, cloud analysis is employed. The use of this technique is usually coupled with the 

assumption of homoscedasticity of the demand, i.e., the standard deviation of the EDP is 

assumed constant with respect to IM as  ln |EDP IM im   [22]. 

It is noteworthy that, in the case of linear elastic behavior of the two adjacent systems, b can be 

assumed equal to one, and the PSDM requires a simpler one parameter log-log linear regression. 

Other studies suggest to take b = 1 even for PSDA of systems behaving nonlinearly, e.g., for 

estimating the maximum inter-story drift in building frames for some advanced IMs [26]. Under 

these assumptions, the assessment of the efficiency and sufficiency of the IM is greatly 

simplified [26]. 

Finally, it is observed that in developing a PSDM specific for pounding risk assessment, 

particular attention should be given to the demand samples to be considered. In fact, the 

buildings may collapse under the action of earthquakes characterized by high IM levels (i.e., for 

high building displacement demands) independently from the occurrence of pounding. The EDPs 

samples corresponding to these earthquakes should be discarded in the regression analysis. 

2.3.2 Bilinear model 

It has been shown that the period elongation and hysteretic damping following buildings’ 

yielding very often can result in smaller values of the peak relative displacement for buildings 

with nonlinear behavior than for those with linear behavior [32, 36]. Thus, a linear relationship in 

the log-log plane between the IM and the median response could be not valid for the entire IM 

range of interest. Another situation in which a linear PSDM model can fail in properly describing 

the seismic demand is when two adjacent systems have the same behavior in the elastic range, 

but different yield displacements and nonlinear behaviors [37]. For low seismic excitation levels 

(under which the systems behave linearly), the relative displacement demand is zero. However, 

for seismic intensities under which the weaker system yields, the relative displacement demand 

can increase significantly for increasing IM levels. The nonlinear building behavior is also 

expected to induce an increased dispersion of the EDPs values, due to the reduced efficiency of 

an IM that is based on the elastic system properties. Thus, also the assumption of 

homoscedasticity could be not satisfied. 

Several alternative techniques exist to solve these issues in accurately describing the EDP 

seismic demand [19, 21]. In this paper, a bilinear PSDM (Figure 1) is considered because of its 

simplicity and the small number of parameters involved in the fitting. The bilinear regression 

model has been employed in other PSDA studies, e.g., to describe the relationship between drift 
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demand and seismic intensity in multi-story frame structures [38]. 

This bilinear regression model is described by the following expression: 

     1 1 1 2 2 1ln ln ln 1 lnEDP IM a b IM H a b IM H IM       (7) 

in which ai and bi (i = 1, 2) control the intercepts and the slopes of the i-th segment, respectively 

(see Figure 1), and H1 denotes the step function (i.e., H1 = 1 for *IM IM , and H1 = 0 for 
*IM IM , where the parameter *IM  identifies the breakpoint, which is defined as the point of 

intersection of the two segments, corresponding on average to the yielding of any of the two 

buildings). The value of *IM  is obtained by solving the following equation: 

 * *

1 1 2 2ln lna b IM a b IM    (8) 

By substituting Eqn.(8) into Eqn.(7), the following alternative expression is obtained: 

      *

1 1 1 1 1 2 2 1ln ln ln ln 1 lnEDP IM a b IM H a b b IM b IM H IM           (9) 

In the problem considered in this paper, the breakpoint *IM  is not known, and the model 

parameters *

1 1 2, , , lna b b IM  can be estimated by performing ordinary nonlinear least square 

regression. The value b1 = 1 can be assumed for the first segment describing the buildings’ linear 

response. It is noteworthy that the use of a bilinear model permits to consider two different 

dispersions for the linear (first segment) and nonlinear (second segment) range of behavior, i.e., 

it allows to relax the assumption of homoscedasticity. 

 

ln(IM) 

ln(EDP) 

ln(IM
*
) 

a1 

a2 b1 
1 

b2 
1 

 

Figure 1. Illustration of bilinear regression model parameters. 

3 PARAMETRIC STUDY FOR ADJACENT BUILDINGS MODELED AS LINEAR 

SDOF SYSTEMS 

In this section, the adjacent buildings are modeled as linear elastic SDOF systems. An 

extensive parametric study for a wide range of system parameters is carried out to evaluate the 

accuracy and efficiency of the proposed IMs in conjunction with the linear regression model for 

estimating the relative displacement demand. It is noteworthy that the use of linear elastic SDOF 

models for the buildings permits to reduce the number of parameters to be analyzed and varied in 

the parametric study and, thus, to explore wide ranges of situations while limiting the 

computational efforts. Furthermore, the use of linear structural models can be representative of 

many situations in which the buildings are very close one to each other and, thus, collide while 
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vibrating in their linear range of behavior. 

A dimensional analysis of the problem [39] reveals that, using an IM whose dimension is a 

length, the normalized relative displacement response between two buildings undergoing free-

vibrations can be expressed as: 

 A B
A

B A

, , ;     1,2,3rel

i

u T
f i

IM T






 
  

 
 (10) 

where i  (i = A, B) denotes the damping ratio corresponding to the first mode of vibration of 

each building. 

By contrast, under seismic excitation, the peak relative displacement depends also on the 

frequency content and duration of the earthquake input. These effects for a given IM are related 

to the natural vibration periods of the two buildings taken individually as: 

 A B
A A

B A

, , , ;     1,2,3rel

i

u T
f T i

IM T






 
  

 
 (11) 

To reduce the number of parameters of the analysis, it is assumed here that A = B = 2%. The 

vibration period TA of building A is varied in the range 0-4s (with an interval of 0.2s), whereas 

the ratio TB/TA is varied in the range 0-1 (with an interval of 0.1 up to 0.9 and of 0.025 from 0.9 

to 1). The results corresponding to TB/TA = 1 are obtained at the limit for B A 1T T   from below, 

because 3 0IM   for TB/TA = 1. 

A set of Ngm = 240 records taken from [40] is selected to account for the variability of the 

frequency content and duration of the seismic input. The set of records used in this study was 

obtained by excluding pulse-like records from the original set presented in [40]. Dynamic time-

history analyses are carried out under the selected records and the results are fitted by using a 

one-parameter linear regression model obtained by assuming b = 1 in Eqn. (5). The parameter ai 

for the i-th IM (i = 1, 2, 3) is estimated as the 50th percentile of the samples of the normalized 

demand urel/IMi, whereas the lognormal standard deviation (also called dispersion) i is 

evaluated as [26]:  

 

   
2

1

ln / ln

;     = 1, 2, 3
2

Ngm

rel i ij
j

i

gm

u IM a

i
N




 
 





 (12) 

Figure 2 reports the normalized median response ai as a function of TA and TB/TA, for the 

different IMs considered. In Figure 2(a), which shows the results obtained by using IM0 = PGA, 

the displacement is normalized as 2
A 0/relu IM , where A A2 T   denotes the natural circular 

frequency of building A, since the dimension of PGA is of a length divided by a squared time. 

The relative displacement demand normalized to the PGA exhibits a significant dependence on 

both TA and TB/TA. It is observed that, for TB/TA = 0, the values of a0 shown in Figure 2(a) 

coincide with the median pseudo spectral accelerations of the records for the vibration period TA, 

normalized by the PGA. 

For the IMs based on spectral displacements (i.e., IM1, IM2, and IM3), the values of the 
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normalized relative displacement demand ai (i = 1, 2, 3) are only slightly affected by the 

vibration period TA of building A. They slowly increase when TB/TA increases from 0 to 

approximately 0.8 and decrease when TB/TA increases from 0.8 to 1. For B A/ 0 0.8T T    and 

A 0.3sT  , the results carried out by using IM2 and IM3 are only slightly biased in estimating ai 

(i.e., ai assumes values close to one for i = 2, 3), whereas those evaluated by using IM1 are more 

biased, because the contribution of system B to the relative displacement response is disregarded. 

In the same period ranges, IM2 practically coincides with IM3, because the correlation factor  is 

almost zero for distant vibration periods. As TB/TA approaches zero (from above), the normalized 

relative displacements ai (i = 1, 2, 3) tend to slightly less than one. This phenomenon is due to 

the fact that the relative displacement tends to the displacement of building A, while IMi (i = 1, 2, 

3) approaches the peak absolute displacement of building A. 

For TB/TA approaching one (from below), the normalized relative displacement response tends 

to zero if IM1 or IM2 are employed, because the two systems vibrate in phase. IM3 is less biased 

in estimating the peak displacement, because it accounts for the correlation between the adjacent 

buildings’ responses. For TB/TA approaching one, IM3 tends to zero. However, a3 tends to a finite 

value which depends on the system and ground motion properties (in fact, the DDC rule and thus 

IM3 provide exact estimates of the peak relative displacement only in the case of stationary 

response to stationary white noise excitation). 

  

  

Figure 2. Normalized median relative displacements for different system vibration periods using as IM:  

(a) IM0 = PGA, (b) IM1, (c) IM2, and (d) IM3. 
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Figure 3 reports the dispersions i as a function of TA and the ratio TB/TA, for the different IMs 

considered. In general, the dispersion  for IM = PGA is very high, with values varying from 

about 0.50 to 1.20 (Figure 3(a)). As expected, i is significantly lower for IMs based on spectral 

displacements (Figure 3(b) through (d)). For TB/TA in the range between 0 and 0.8,  assumes 

values lower than 0.30, while 2 and  assume values lower than 0.20. The higher efficiency of 

IM2 and IM3 is due to the fact that they account for the contribution of building B to the relative 

displacement demand. For TB/TA approaching one (from below), i increases significantly for i = 

1, 2, 3, and IM3 has an efficiency similar to that of IM2. However, the values assumed by i (i = 1, 

2, 3) remain lower than 0.40 in all cases considered here. 

  

  

Figure 3. Relative displacement response dispersion for different system vibration periods using as IM:  

(a) PGA, (b) IM1, (c) IM2, and (d) IM3. 

The sufficiency of the different IMs with respect to M and R is also analyzed, for each 

combination of the parameters considered, by performing a multiple linear regression of the 

residuals ( ln k IM  for k = 1, 2, …, Ngm) jointly with respect to M and ln(R) [26], and by 

evaluating the corresponding p-values. These p-values denote the probability of finding estimates 

of the coefficients of the regression multiplying M and ln(R) at least as large (in absolute value) 

as those observed if, in fact, the true value were 0. It is noteworthy that p-values lower than 0.05 

suggest that the IM is insufficient. Figure 4 reports the p-values corresponding to all the cases 

analyzed in the parametric study and obtained by considering IMi (i = 0, 1, 2, 3) as IM (Figure 

4(a) through (d), respectively). While IM0 is largely insufficient, IM2 is sufficient for a wide 
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range of system properties. The other results of the sufficiency study demonstrate that IM1 is 

more sufficient than IM0 but less sufficient than IM2, whereas IM2 gives results comparable to 

IM3 in terms of sufficiency. It is noteworthy that, in a few cases, even IM2 and IM3 are not 

sufficient.  

  

  

Figure 4. Variation with TA and TB/TA of the p-values for different system vibration periods using as IM:  

(a) IM0; (b) IM1; (c) IM2; (d) IM3. p-values ranges: ‘×’ for p-values < 0.05; ‘●’ for 0.05 ≤ p-values < 0.20; ■ for p-

values ≥ 0.20. 

In order to provide a further comparison between the sufficiency properties of the IMs, the 

‘relative sufficiency measure’ (RSM) of an IM over another is also evaluated by following the 

approach proposed in [30]. This measure quantifies the relative change of information regarding 

the EDP of interest obtained by using two different IMs. The RSM of IMi over IMj for i, j = 0, 1, 

2, 3 is calculated as: 
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where  EDP IM
p EDP IM  denotes the probability distribution function (PDF) (usually assumed to 

follow a lognormal distribution) of the EDP conditioned to the IM. A positive value of 
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 rel i jI u IM IM  means that, on average, IMi provides more information about the monitored 

EDP than IMj and, hence, that IMi is more sufficient than IMj. 

Figure 5(a) and (b) show the improvements in terms of sufficiency obtained by using IM1 

instead of IM0 and IM2 instead of IM1, respectively. In the majority of the cases, both 

 1 0relI u IM IM  and  2 1relI u IM IM  assume positive values for the considered range of 

parameters investigated. Thus, in general, IM1 is more sufficient than IM0 and IM2 is more 

sufficient that IM1. The RSM  1 0relI u IM IM  assumes large positive values for low values of TA, 

decreases for increasing values of TA, assumes negatives values (in general of small absolute 

value) for some of the cases corresponding to TA ≥ 2.6s, and is only weakly sensitive to the ratio 

TB/TA. The RSM  2 1relI u IM IM  assumes positive values for all cases considered here, 

generally decreases for decreasing values of TA, and for a given TA achieves a maximum value 

for TB/TA close to 0.5. For TB/TA approaching 1,  2 1relI u IM IM  tends to 0.5 for all values of TA. 

This result is due to the fact that, for TB/TA→1, 
2 12 IM IM  and 

   
2 2 1 1

2 2 1 12 
a IM a IM

p a IM p a IM . The results for  2 0relI u IM IM ,  3 2relI u IM IM , 

 3 1relI u IM IM , and  3 0relI u IM IM  are not plotted here due to space constraint. However, 

they indicate that using IM3 does not provide any significant advantage in terms of sufficiency 

when compared to using IM2, and that IM2 is always more sufficient than IM0 with the exception 

of the cases corresponding to TA ≥ 3.8s and TB/TA ≥ 0.95. 

  

Figure 5. Variation with TA and TB/TA of the RSM for: (a) IM1 with respect to IM0, and (b) IM2 with respect to IM1. 

It is noteworthy that Figure 2 through 5 are plotted using a discretization with intervals equal to 

0.1 for B A/ 0.9T T   and to 0.025 for B A/ 0.9T T  . This discretization with different intervals was 

adopted to better describe the higher variability exhibited in the range B A/ 0.9T T   by the 

quantities under study. 

4 PSDA RESULTS FOR ADJACENT BUILDINGS MODELED AS NOLINEAR 
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4.1 Case study description 

In this section, PSDA is applied to evaluate the PSDM for the case study of two adjacent steel 

moment-resisting frame buildings with nonlinear hysteretic behavior. The same buildings 

already analyzed in [17] are considered here (Figure 6). Building A is an eight-story shear-type 

building with constant inter-story stiffness kA = 628,801kN/m and floor mass mA = 454,550kg, 

while building B is a four-story shear-type building with constant inter-story stiffness kB = 

470,840kN/m and floor mass mB = 454,550kg. The story heights are equal to 3.2m for both 

buildings. A Rayleigh-type damping matrix is used to model the inherent viscous damping in the 

two systems. The matrix is built by assigning a damping ratio ζR = 2% to the first two vibration 

modes of each system considered independently from the other. The fundamental vibration 

periods of the two buildings are TA = 0.915s and TB = 0.562s, respectively. 

 

uA uB 

mA 

kA 

mB 

Building A 

kB 

Building B 

 

Figure 6. Models of buildings A and B. 

A bilinear hysteretic constitutive model with kinematic hardening describes the relationship 

between the inelastic inter-story restoring force and inter-story drift [32]. This constitutive model 

for building i (with i = A, B) is defined by the yield force, Fy,i, and by the ratio of the post-yield 

to initial stiffness, ri, which is assumed equal to 0.05 for both models. The inter-story yield 

forces for system A and B are respectively Fy,A = 6871.4kN and Fy,B = 3755.4kN and are derived 

from [33]. The participation factors for the first vibration modes of the two buildings are: A  = 

0.855 and B  = 1.241. 

4.2 Linear and bilinear PSDMs 

Cloud analysis is applied to this case study by employing the same set of 240 records already 

considered in the previous section. Since the buildings are expected to undergo significant 

inelastic deformations for a large number of records, the EDP samples corresponding to values 

of the peak inter-story drift (IDR) demand for the systems higher than 4% are discarded in 

developing the PSDM. The 4% limit is taken from FEMA 356 [41] and corresponds to the 

collapse limit states for steel moment-resisting frame buildings. A reduced set of samples 

(consisting of 234 out of 240 relative displacement responses conditioned on not exceeding the 

IDR limit of 4%) is used to derive the PSDMs conditioned on no collapse for this application 

example. The information on structural collapse can be incorporated in the model by estimating 

the supplementary probability of collapse as a function of the seismic intensity, as described in 

[42]. 
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Two sets of linear and bilinear PSDMs are developed for each of the four IMs considered in the 

previous section. It is found that IM0 = PGA provides very high relative displacement demand 

dispersions (close to 0.45 for both linear and bilinear PSDM), whereas the results obtained using 

IM2 and IM3 are practically identical, given that the correlation coefficient BA assumes a very 

low value, i.e., 0.0064. Thus, only the results obtained for IM1 and IM2 are shown and 

commented hereinafter. 

Figure 7(a) and (b) report the response samples and the fitted median demand obtained by using 

the linear and bilinear PSDMs for IM1 and IM2, respectively. For the linear PSDMs, the values of 

the regression parameter b assume values contained between 0.6 and 0.7. 

  

Figure 7. Comparison of linear and bilinear regression PSDMs in the log-log plane by using as IM: (a) IM1, and (b) 

IM2. 

Figure 8 plots the variation with IM1 and IM2 of the dispersion corresponding to the two (linear 

and bilinear) PSDM models. With regard to the linear PSDM, the observed relative displacement 

demand dispersions, measured by i (i = 1, 2) are higher than those obtained for the SDOF 

linear systems. Furthermore, in this specific case study, the relative displacement demand 

dispersion corresponding to the use of IM2 (2 = 0.250) is only slightly lower than the dispersion 

corresponding to the use of IM1 (1 = 0.262). 

The bilinear regression model gives better results in terms of efficiency than the linear model. In 

fact, in the case of IM1, the dispersion corresponding to the bilinear regression model is equal to 

0.231 and 0.236 respectively for ‘low’ and ‘high’ IM values. In the case of IM2, the dispersion 

corresponding to the bilinear PSDM model is equal to 0.146 and 0.248 respectively for ‘low’ and 

‘high’ IM values. These values of the dispersion confirm the superiority of IM2 in terms of 

efficiency in the case of linear structural behavior, consistently with the results reported in the 

previous section for the SDOF linear models. As expected, in the case of nonlinear structural 

response, the efficiency of IM2 tends to reduce. The bilinear model is superior to the linear model 

also considering a goodness-of-fit criterion based on the standard error of the regression, S [43]. 

This parameter represents the average distance between the observed values and the regression 

line, so that lower values of it correspond to higher accuracy of fit. In the case of the linear 

model, S coincides with the dispersion i and it assumes the values S = 0.262 for IM = IM1 and S 

= 0.250 for IM = IM2, whereas in the case of the nonlinear regression model it assumes the 

values S = 0.233 for IM = IM1 and S = 0.206 for IM = IM2. 
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Figure 8. Dispersion of linear and bilinear regression models as a function of: (a) IM1, and (b) IM2. 

The sufficiency of the IMs with respect to M and R is evaluated by performing a linear 

regression of the residuals of both the linear and bilinear regression model ln k iIM  

( 1,2,.., gmk N ) on M and R, considered one at a time [29]. Figure 9(a) and (b) show the residuals, 

regression lines, and p-values corresponding to the linear regression model by using IM1 and IM2 

for M and R, respectively. Figure 9(c) and (d) show the same quantities as those reported in Figure 

9(a) and (b), respectively, corresponding to the bilinear regression model. Based on a cut-off p-

value of 0.05, the null hypotheses that the slopes of the regression lines are zero cannot be 

rejected for any of the IMs considered and for both M and R, with the exception of the case 

corresponding to the bilinear regression based on IM1 for M. 
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Figure 9. Cloud regression plots for: (a) linear regression model and M; (b) linear regression model and R; (c) 

bilinear regression model and M; and (d) bilinear regression model and R. 

4.3 Comparison of linear and bilinear PSDMs for seismic risk assessment 

In this section, the results of a seismic risk assessment analysis obtained using the linear and 

bilinear PSDMs developed in the previous section are compared. The fitted linear and bilinear 

PSDMs are employed to estimate via Eqn. (6) the probability of pounding conditioned on no 

collapse for different values of the separation distance  in the range between 0m and 0.2m and 

for different values of the employed IMs. Figure 10 shows the fragility curves obtained using IM2 

for  = 0.05m (Figure 10(a)) and  = 0.09m (Figure 10(b)). It is noted that the fragility curve 

obtained for  = 0.05m by employing the bilinear regression model exhibits a jump in 

correspondence of the breakpoint *IM  between the two linear branches of the PSDM (from Pf = 

0.26 for values of IM approaching *IM  from below, to Pf = 0.36 for values of IM approaching 
*IM  from above) due to the change of slope of the median response and of the dispersion, as 

also observed in [38]. For the lower value of the separation distance, the IM2 value corresponding 

to a 50% probability of pounding is higher in the case of the bilinear regression model than in the 

case of the linear regression model. For the higher value of the separation distance, higher 

vulnerability is calculated by employing the linear rather than the bilinear model. It is 

noteworthy that, for  = 0.09m, the jump in the fragility curve obtained using the bilinear 

regression model is not visible, due to the fact that Pf = 0 for *IM IM . Figure 10 also shows 

the numerical fragility curves obtained through incremental dynamic analysis (IDA) [27]. These 

curves are obtained by scaling all the 240 records to discrete common IM values and directly 

comparing the response samples to the capacity (i.e., the separation distance). The numerical 

fragility curves obtained through cloud analysis by employing a bilinear PSDM are close to the 

corresponding curves estimated using IDA and are derived at only a small fraction of the 

computational cost of the corresponding IDA-based curves. However, it is worth noting that the 

IDA results, used here as reference solutions, cannot be considered "exact", since they are 

obtained by scaling, sometimes even by a significant amount, the seismic records. 
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Figure 10. Fragility curves obtained by using linear PSDM, bilinear PSDM, and IDA for IM2 and different values of 

the separation distance: (a) = 0.05m (square markers denote the jump of the fragility curve at *IM ), and (b)  = 

0.09m. 

The MAF of pounding for a given deterministic separation distance ,  f EDPv v  , is also 

evaluated through the procedure reported in [16] by assuming that the buildings are located in 

Los Angeles, CA. The information on the seismic hazard curve for the site is taken from the 

United States Geological Survey’s (USGS) website [44], which provides the MAF of exceedance 

for the PGA and spectral accelerations at discrete periods in the range between 0.1s and 4.0s. The 

MAFs of exceedance of the proposed IMs,  IMv im , are obtained by interpolating the available 

hazard curves. Figure 11(a) reports the hazard curve  IMv im  for IM1 and IM2, whereas Figure 

11(b) shows the MAF of pounding for in the range between 0m and 0.3m obtained for IM2 

through the linear PSDM, bilinear PSDM, and IDA. 

  
Figure 11. Seismic risk analysis: (a) hazard curve for IM1 and IM2 at the selected location (Los Angeles, CA), and 

(b) MAF of pounding based on IM2 for different values of the separation distance and estimated using linear PSDM, 

bilinear PSDM, and IDA. 

The three techniques provide very similar results for separation distances between 0m and 

0.07m. For values higher than 0.07m, the results obtained using cloud analysis in conjunction 

with the bilinear regression model are close to the results obtained through IDA, whereas the 

linear model provides highly conservative estimates of the pounding risk. Similar results are 
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obtained by using IM1 and, thus, are not reported here due to space constraints. 

5 CONCLUSIONS 

This paper proposes an efficient and accurate probabilistic seismic demand model (PSDM) for 

assessing the risk of pounding between adjacent buildings within modern Performance-Based 

Earthquake Engineering (PBEE) frameworks. The model is defined using different advanced 

intensity measures, based on well-known design rules for estimating the buildings’ separation 

distance, and a bilinear regression model for the response samples obtained by cloud analysis. 

An extensive parametric study is carried out for adjacent buildings modeled as single-degree-

of-freedom linear systems under a suite of 240 natural ground motion records. In this case, the 

bilinear regression model reduces to a linear regression model. The parametric study results 

reveal that intensity measures (IM) based on rules for separation distance design, such as the 

square root of the sum of the squares (IM2) and the double difference combination (IM3) rules, 

are superior in terms of efficiency to more common IM, i.e., to IM0 = PGA, and to the spectral 

displacement at the fundamental period of the taller building (IM1). It is also shown that (1) IM2 

and IM3 are sufficient with respect to the magnitude (M) and source-to-site distance (R) for a 

wide range of system properties, (2) IM2 and IM3 are always more sufficient than IM0 = PGA and 

IM1, and (3) IM2 and IM3 give similar results in terms of both efficiency and sufficiency, even 

though IM3 provides less biased estimates of the peak relative displacement than IM2. 

A case study of two realistic steel buildings modeled as nonlinear hysteretic multi-degree-of-

freedom shear-type systems is also analyzed in detail. Linear and bilinear PSDMs are considered 

to describe the relative displacement demand at the most likely pounding location. Based on the 

results of the study, the following conclusions are drawn: (1) IM2 and IM3 are more efficient 

intensity measures than PGA and IM1, even when inelastic seismic behavior is taken into account; 

(2) the IM efficiency is higher while using the bilinear PSDM than the linear PSDM, at least in 

the linear behavior range; (3) the bilinear PSDM provides a more accurate description of the 

seismic demand than the linear PSDM, since it is able to account for the changes of the relative 

displacement demand (in terms of median value and dispersion) due to structural yielding; and (4) 

the use of a bilinear PSDM in conjunction with cloud analysis provides seismic pounding risk 

estimates that are very close to those obtained through incremental dynamic analysis at a small 

fraction of the computational cost and without scaling the records. Thus, the bilinear PSDM in 

conjunction with cloud analysis is recommended for seismic pounding risk analysis of buildings 

with nonlinear structural behavior. 

It is noted here that, while the scope of the proposed PSDM is limited to the evaluation of the 

pounding probability, further studies should be carried out to assess its adequacy for evaluating 

the performance of adjacent buildings subject to seismic pounding hazard. These studies could 

use mechanical models already available in the literature to simulate the effects of pounding 

between adjacent buildings, and could extend the probabilistic analyses (which focus only on 

relative displacement response assessment in the present study) to account for the variability of 

damage and losses of the building components. 
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