
 

 

SLAVE TO THE ALGORITHM? WHY A ‘RIGHT 

TO AN EXPLANATION’ IS PROBABLY NOT THE 

REMEDY YOU ARE LOOKING FOR 
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ABSTRACT 

Algorithms, particularly machine learning (ML) algorithms, 

are increasingly important to individuals’ lives, but have caused a 

range of concerns revolving mainly around unfairness, 

discrimination and opacity. Transparency in the form of a “right to 

an explanation” has emerged as a compellingly attractive remedy 

since it intuitively promises to open the algorithmic “black box” to 

promote challenge, redress, and hopefully heightened 

accountability. Amidst the general furore over algorithmic bias we 

describe, any remedy in a storm has looked attractive. 

However, we argue that a right to an explanation in the EU 

General Data Protection Regulation (GDPR) is unlikely to present 

a complete remedy to algorithmic harms, particularly in some of 

the core “algorithmic war stories” that have shaped recent 

attitudes in this domain. Firstly, the law is restrictive, unclear, or 

even paradoxical concerning when any explanation-related right 

can be triggered. Secondly, even navigating this, the legal 

conception of explanations as “meaningful information about the 

logic of processing” may not be provided by the kind of ML 

“explanations” computer scientists have developed, partially in 

response. ML explanations are restricted both by the type of 

                                                      
† Professor of Internet Law, Strathclyde Law School, University of Strathclyde, Glasgow, 

UK [lilian.edwards [at] strath.ac.uk]. Research supported in part by the Arts and Humanities 

Research Council (AHRC) centre CREATe, and the Engineering and Physical Sciences 

Research Council (EPSRC) Digital Economy Hub Horizon at University of Nottingham, 

grant number EP/G065802/1. 
†† Doctoral candidate, Department of Science, Technology, Engineering and Public Policy 

(STEaPP), University College London, UK [m.veale [at] ucl.ac.uk]; technical advisor, Red 

Cross Red Crescent Climate Centre. Michael Veale receives support from the EPSRC, grant 

number EP/M507970/1 and the World Bank Global Facility for Disaster Reduction and 

Recovery (GFDRR).  

The authors would like to thank Johannes Welbl, Max Van Kleek, Reuben Binns, Giles 

Lane, and Tristan Henderson, and participants of BILETA 2017 (University of Braga, 

Portugal), the 2017 Privacy Law Scholars Conference (PLSC) and the 2017 Big Data: New 

Challenges for Law and Ethics Conference, University of Ljubljana, for their helpful 

comments. 



19                          SLAVE TO THE ALGORITHM?  [Vol. 16 

explanation sought, the dimensionality of the domain and the type 

of user seeking an explanation. However, “subject-centric" 

explanations (SCEs) focussing on particular regions of a model 

around a query show promise for interactive exploration, as do 

explanation systems based on learning a model from outside rather 

than taking it apart (pedagogical versus decompositional 

explanations) in dodging developers' worries of intellectual 

property or trade secrets disclosure. 

Based on our analysis, we fear that the search for a “right to 

an explanation” in the GDPR may be at best distracting, and at 

worst nurture a new kind of “transparency fallacy.” But all is not 

lost. We argue that other parts of the GDPR related (i) to the right 

to erasure ("right to be forgotten") and the right to data portability; 

and (ii) to privacy by design, Data Protection Impact Assessments 

and certification and privacy seals, may have the seeds we can use 

to make algorithms more responsible, explicable, and human-

centered. 

INTRODUCTION 

 Increasingly, algorithms regulate our lives. Decisions vital to our 

welfare and freedoms are made using and supported by algorithms that 

improve with data: machine learning (ML) systems. Some of these mediate 

channels of communication and advertising on social media platforms, 

search engines or news websites used by billions. Others are being used to 

arrive at decisions vital to individuals, in areas such as finance, housing, 

employment, education or justice. Algorithmic systems are thus 

increasingly familiar, even vital, in both private, public and domestic 

sectors of life. 

 The public has only relatively recently become aware of the ways in 

which their fortunes may be governed by systems they do not understand, 

and feel they cannot control; and they do not like it. Hopes of feeling in 

control of these systems are dashed by their hiddenness, their ubiquity, their 

opacity, and the lack of an obvious means to challenge them when they 

produce unexpected, damaging, unfair or discriminatory results. Once, 

people talked in hushed tones about “the market” and how its “invisible 

hand” governed and judged their lives in impenetrable ways: now it is 

observable that there is similar talk about “the algorithm,” as in: “I don’t 

know why the algorithm sent me these adverts” or “I hate that algorithm.”1 

Alternatively, algorithms may be seen as a magic elixir that can somehow 

                                                      
1 See, e.g., TANIA BUCHER, The Algorithmic Imaginary: Exploring the Ordinary Affects of 

Facebook Algorithms, 20 INFO., COMM. AND SOC’Y 30 (2015) (a qualitative study of how 

individuals online understand the “algorithms” around them). 
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mysteriously solve hitherto unassailable problems in society.2 It seems that 

we are all now to some extent, “slaves to the algorithm.” In his landmark 

book, Frank Pasquale describes this as “the black box society,”3 and the 

issue has become a subject of international attention by regulators, expert 

bodies, politicians and legislatures.4 

 There has been a flurry of interest in a so-called “right to an 

explanation” that has been claimed to have been introduced in the General 

Data Protection Regulation (GDPR)5. This claim was fuelled in part by a 

short conference paper presented at a ML conference workshop,6 which has 

received considerable attention in the media.7 However a similar remedy 

had existed8 in the EU Data Protection Directive (DPD), which preceded the 

GDPR, since 1995.9 This remedy held promise with its updated translation 

                                                      
2 See Randall Munroe, Here to Help, XKCD (last visited May 25, 2017), 

https://xkcd.com/1831/. 
3 FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL 

MONEY AND INFORMATION (Harvard University Press 2015). 
4 See, e.g., INFORMATION COMMISSIONERS OFFICE (ICO), BIG DATA, ARTIFICIAL 

INTELLIGENCE, MACHINE LEARNING AND DATA PROTECTION (2017); EUROPEAN DATA 

PROTECTION SUPERVISOR (EDPS), MEETING THE CHALLENGES OF BIG DATA: A CALL FOR 

TRANSPARENCY, USER CONTROL, DATA PROTECTION BY DESIGN AND ACCOUNTABILITY 

[OPINION 7/2015] (2015). ROYAL SOCIETY, MACHINE LEARNING: THE POWER AND PROMISE OF 

COMPUTERS THAT LEARN BY EXAMPLE. (2017); Wetenschappelijke Raad voor het 

Regeringsbeleid [Dutch Scientific Council for Government Policy (WRR)], Big data in een 

vrije en veilige samenleving [Big data in a free and safe society], WRR-RAPPORT 95 (2016); 

Commons Science and Technology Select Committee, Algorithms in Decision-Making 

Inquiry Launched, UK PARLIAMENT (Feb. 28, 2017)[https://perma.cc/PJX2-XT7X]; 

NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, PREPARING FOR THE FUTURE OF AI (2016), 

[https://perma.cc/6CDM-VR3V]. 
5 Regulation (EU) 2016/679, of the European Parliament and the Council of 27 April 2016 

on the protection of natural persons with regard to the processing of personal data and on the 

free movement of such data, and repealing Directive 95/46/EC (General Data Protection 

Regulation), 2016 O.J. (L 119) 1 (hereafter “GDPR”). 
6 Bryce Goodman & Seth Flaxman, EU Regulations on Algorithmic Decision Making and “a 

Right to an Explanation,” 2016 ICML WORKSHOP ON HUMAN INTERPRETABILITY IN ML 

(2016). 
7 See, e.g., Ian Sample, AI Watchdog Needed to Regulate Automated Decision-making, Say 

Experts, THE GUARDIAN, (Jan. 27, 2017), [https://perma.cc/TW2C-MZWX]. 
8 There is a long history of work into explanation facilities, previously referred to as 

“scrutability” in Web Science. See, e.g., Judy Kay, Scrutable Adaptation: Because We Can 

and Must, (2006), in ADAPTIVE HYPERMEDIA AND ADAPTIVE WEB-BASED SYSTEMS (V.P. 

Wade et al. eds., Springer 2006). 
9 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on 

the protection of individuals with regard to the processing of personal data and on the free 

movement of such data, 1995 O.J. (L 281) 31 (hereafter “Data Protection Directive” or 

“DPD”). For earlier discussions concerning what is now referred to as a “right to an 
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into the GDPR, yet in the highly restricted and unclear form it has taken, it 

may actually provide far less help for these seeking control over algorithmic 

decision making than the hype would indicate. 

 Restrictions identified within the GDPR’s Articles 22 and 15(h) 

(the provisions most often identified as useful candidates for providing 

algorithmic remedies) include: carve-outs for intellectual property (IP) 

protection and trade secrets;10 restriction of application to decisions that are 

“solely” made by automated systems; restriction to decisions that produce 

“legal” or similarly “significant” effects; the timing of such a remedy in 

relation to the decision being made; the authorisation of stronger aspects of 

these remedies by non-binding recitals rather than the GDPR’s main text, 

leading to substantial legal uncertainty; and the practical difficulty in 

knowing when or how decisions are being made, particularly in relation to 

“smart” environments.11 Given the volume of media and literature attention 

currently being paid to this possible right to an explanation, our interest is 

threefold: what type of remedies currently exist in European law, how can 

they be meaningfully implemented, and are these the remedies one would 

really start from given a free hand. 

 This paper explores explanation as a remedy for the challenges of 

the ML era, from a European legal, and technical, perspective, and asks 

whether a right to an explanation is really the right we should seek. We 

open by limiting our scrutiny of “algorithms” in this paper to complex ML 

systems which identify and utilise patterns in data, and go on to explore 

perceived challenges and harms attributed to the growing use of these 

systems in practice. Harms such as discrimination, unfairness, privacy and 

opacity, are increasingly well explored in both the legal and ML literature, 

so here only highlighted to found subsequent arguments. We then continue 

on slightly less well travelled land to ask if transparency, in the form of 

explanation rights, is really as useful a remedy for taming the algorithm as it 

intuitively seems to be. Transparency has long been regarded as the logical 

first step to getting redress and vindication of rights, familiar from 

institutions like due process and freedom of information, and is now being 

                                                                                                                       
explanation,” see Alfred Kobsa, Tailoring Privacy to Users’ Needs, in USER MODELING, (M. 

Bauer et al. eds., Springer 2001), doi:10.1007/3-540-44566-8_52; Mireille Hildebrandt, 

Profiling and the rule of law, 1 IDENTITY IN THE INFORMATION SOCIETY 1, 55 (2008), 

doi:10.1007/s12394-008-0003-1. 
10 Rosemary Jay, UK Data Protection Act 1998—the Human Rights Context, 14 INT’L REV. 

OF LAW, COMPUTERS & TECH. 3, 385, (2000) (doi:10.1080/713673366). 
11 Sandra Wachter et al., Why a Right to Explanation of Automated Decision-Making Does 

Not Exist in the General Data Protection Regulation, 7 INTERNATIONAL DATA PRIVACY LAW 

2, 76–99 (2017), doi:10.1093/idpl/ipx005; Mireille Hildebrandt, The Dawn of a Critical 

Transparency Right for the Profiling Era, DIGITAL ENLIGHTENMENT YEARBOOK 2012 

(Jacques Bus et al. eds., 2012).  
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ported as a prime solution to algorithmic concerns such as unfairness and 

discrimination. But given the difficulty in finding “meaningful” 

explanations (explored below), we ask if this may be a non-fruitful path to 

take. 

 We then consider what explanation rights the GDPR actually 

provides, and how they might work out in practice to help data subjects. To 

do this, we draw upon several salient algorithmic “war stories” picked up by 

the media, that have heavily characterised academic and practitioner 

discussion at conferences and workshops. It turns out that because of the 

restrictions alluded to above, the GDPR rights would often likely have been 

of little assistance to data subjects generally considered to be adversely 

affected by algorithmic decision-making. 

 This exercise also identifies a further problem: data protection (DP) 

remedies are fundamentally based around individual rights—since the 

system itself derives from a human rights paradigm—while algorithmic 

harms typically arise from how systems classify or stigmatise groups. While 

this problem is known as a longstanding issue in both privacy and equality 

law, it remains underexplored in the context of the “right to an explanation” 

in ML systems. 

 Next, we consider how practical a right to a “meaningful” 

explanation is given current technologies. First, we identify two types of 

algorithmic explanations: model-centric explanations (MCEs) and subject-

centric explanations (SCEs). While the latter may be more promising for 

data subjects seeking individual remedies, the quality of explanations may 

be depreciated by factors such as the multi-dimensional nature of the 

decision the system is concerned with, and the type of individual who is 

asking for an explanation. 

 However, on a more positive note, we observe that explanations 

may usefully be developed for purposes other than to vindicate data subject 

rights. Firstly, they may help users to trust and make better use of ML 

systems by helping them to make better “mental maps” of how the model 

works. Secondly, pedagogical explanations (a model-of-a-model), rather 

than those made by decomposition (explaining it using the innards) may 

avoid the need to disclose protected IP or trade secrets in the model, a 

problem often raised in the literature. 

 After thus taking legal and technological stock, we conclude that 

there is some danger of research and legislative efforts being devoted to 

creating rights to a form of transparency that may not be feasible, and may 

not match user needs. As the history of industries like finance and credit 

shows, rights to transparency do not necessarily secure substantive justice 
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or effective remedies.12 We are in danger of creating a “meaningless 

transparency” paradigm to match the already well known “meaningless 

consent” trope. 

 After this interim conclusion, we move on to discussing in outline 

what useful remedies relating to algorithmic governance may be derived 

from the GDPR other than a right to an explanation. First, the connected 

rights-based remedies of erasure (“right to be forgotten”) and data 

portability, in Articles 17 and 20 respectively, may in certain cases be as 

useful, if not more so, than a right to an explanation. However, their 

application to inferences is still unclear and up for grabs. 

 Second, we consider several novel provisions in the GDPR which 

do not give individuals rights, but try to provide a societal framework for 

better privacy practices and design: requirements for Data Protection Impact 

Assessments (DPIAs) and privacy by design (PbD), as well as non-

mandatory privacy seals and certification schemes. These provisions, unlike 

explanation strategies, may help produce both more useful and more 

explicable ML systems. 

 From these we suggest that we should perhaps be less concerned 

with providing individual rights on demand to data subjects and more 

concerned both with (a) building better ML systems ab initio and (b) 

empowering agencies, such as NGOs, regulators, or civil society scrutiny 

organisations, to review the accuracy, lack of bias and integrity of a ML 

system in the round and not simply challenge ML decisions on behalf of 

individuals. US legal literature has begun to explore these options using its 

due process literature and public oversight experiences, with suggestions 

such as “an FDA for algorithms”13 and variants on “big data due process.”14 

However these solutions are currently largely aspirational, partly because 

the US lacks a clear omnibus legal regime around personal data to build on. 

European law, by contrast, provides a panoply of remedies in the GDPR 

that could be pressed into service immediately (or at least from May 2018 

when it becomes mandatory law). Such approaches certainly come with 

their own challenges, but may take us closer to taming and using, rather 

than being enslaved by, algorithms. 

                                                      
12 See, e.g., Kate Crawford & Jason Schultz, Big Data and Due Process: Toward a 

Framework to Redress Predictive Privacy Harms, 55 B.C. L. REV. 1 (2014); Pasquale, supra 

note 3. 
13 See generally Andrew Tutt, An FDA for Algorithms, 69 ADMIN. L. REV. 83, (2017) (on 

how the FDA might take a watchdog function). 
14 See generally Crawford & Schultz, supra note 12; Danielle Keats Citron, Technological 

Due Process, 85 WASH. U. L. REV. 1249 (2008) (on how due process might be extended in 

the Big Data era). 
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I. ALGORITHMS, AND HOW WE ARE A SLAVE TO THEM 

 Cast broadly, an algorithm is “any process that can be carried out 

automatically.”15 For our purposes, this definition is too wide to be helpful. 

Software has long been used for important decision-support, and this 

decision support has not existed within a governance vacuum. Such systems 

have received plenty of unsung scrutiny in recent years across a range of 

domains. For example, in the public sector, a 2013 inventory of “business 

critical models” in the UK government described and categorised over 500 

algorithmic models used at the national level, and the quality assurance 

mechanisms that been carried out behind them.16 

 The algorithmic turn17 that has been at the end of most recent 

publicity and concern relates to the use of technologies that do not model 

broad or abstract phenomena such as the climate, the economy or urban 

traffic, but model varied entities—usually people, groups or firms. These 

systems—discussed in detail below—are primarily designed either to 

anticipate outcomes that are not yet knowable for sure, such as whether an 

individual or firm will repay a loan, or jump bail, or to detect and 

subjectively classify something unknown but somehow knowable using 

inference rather than direct measurement—such as whether a submitted tax 

return is fraudulent or not. 

 Lawyers involved with technology historically have experience in 

this area relating to rule-based “expert systems,” although the substantive 

impact of these technologies on lawyering has been relatively small 

compared to grand early expectations of wholesale replacement of 

imperfect human justice by computerised judges and arbitrators. 

Endeavours to create the “future of law” with expert systems in the ‘80s and 

‘90s, whereby law would be formalised into reproducible rules, have largely 

been regarded as a failure except in some highly specific, syntactically 

complex but semantically un-troubling domains.18 Not all scholars bought 

into this utopian vision uncritically—indeed, law was one of the earliest 

domains to be concerned about the application of ML systems without clear 

                                                      
15 A HISTORY OF ALGORITHMS: FROM THE PEBBLE TO THE MICROCHIP (Jean-Luc Chabert et al. 

eds., 1999) at 2. 
16 HM TREASURY, REVIEW OF QUALITY ASSURANCE OF GOVERNMENT ANALYTICAL MODELS: 

FINAL REPORT 26 (HM Government, 2013). 
17 A variation on the more legally familiar “computational” turn. See generally MIREILLE 

HILDEBRANDT, PRIVACY, DUE PROCESS AND THE COMPUTATIONAL TURN (Routledge, 2008) 

(on the legal implications of a variety of data-driven technologies). 
18 See RICHARD SUSSKIND, EXPERT SYSTEMS IN LAW (Clarendon Press 1989); JOHN 

ZELEZNIKOW AND DAN HUNTER, BUILDING INTELLIGENT LEGAL INFORMATION SYSTEMS: 

REPRESENTATION AND REASONING IN LAW (Kluwer, 1994); see also Lilian Edwards & John 

A.K. Huntley, Creating a Civil Jurisdiction Adviser, 1 INFORMATION & COMMUNICATIONS 

TECHNOLOGY LAW 5 5 (1992), doi:10.1080/13600834.1992.9965640. 
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explanation facilities.19 The explanation facilities that were developed in the 

era of expert systems set a high, albeit often overlooked, bar for today’s 

discussions. 

A. The Rise of Learning Algorithms 

 Progress in automated decision-making and decision support 

systems was initially held back by a lack of large-scale data and algorithmic 

architectures that could leverage them, restraining systems to the relatively 

simplistic problems. In recent years, technologies capable of coping with 

more input data and highly non-linear correlations have been developed, 

allowing the modelling of social phenomena at a level of accuracy that is 

considerably more operationally useful. For a large part, this has been due 

to the move away from manually specified rule-based algorithms (such as 

the early legal systems noted above) to ML. In rule-based systems, 

explicitly defined logics turn input variables, such as credit card transaction 

information, into output variables, such as a flag for fraud. Complex ML 

algorithms are different: output variables and input variables together are 

fed into an algorithm theoretically demonstrated to be able to “learn” from 

data. This process trains a model exhibiting implicit, rather than explicit, 

logics, usually not optimised for human-understanding as rule-based 

systems are.20 The learning algorithms that make this possible are often not 

blazingly new, many dating from the ‘70s, ‘80s and ‘90s. But we now have 

comparatively huge volumes of data that can be stored and processed 

cheaply, such that the performance of and ability to further research ML 

systems has greatly increased. 

 Two main relevant forms of ML exist, which relate to the type of 

input data we have. “Supervised learning” takes a vector of variables,21 such 

as physical symptoms or characteristics, and a “correct” label for this 

vector, such as a medical diagnosis, known as a “ground truth.” The aim of 

supervised learning is to accurately predict this ground truth from the input 

variables in cases where we only have the latter. “Unsupervised learning” is 

not “supervised” by the ground truth. Instead, ML systems try to infer 

structure and groups based on other heuristics, such as proximity. Here, we 

might be interested in seeing which physical characteristics we could think 

of as “clustered” together, without knowing immediately what such as 

                                                      
19 See, e.g., John Zeleznikow & Andrew Stranieri, The Split-up System: Integrating Neural 

Networks and Rule-based Reasoning in the Legal Domain, PROCEEDINGS OF THE 5TH 

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW, COLLEGE PARK, 

MARYLAND, USA, MAY 21 - 24 (1995), doi:10.1145/222092.222235 
20 Machine learning techniques that explicitly encode logic are found in natural language 

processing and in bioinformatics, but not focussed on here. 
21 This vector is like a row in a spreadsheet where columns are characteristics. 



No. 1] DUKE LAW & TECHNOLOGY REVIEW 26 

cluster might mean.22 Segmentation by market researchers, for example, 

would be a relevant field where unsupervised learning might be fruitfully 

applied since they are interested in finding the most relevant groups for a 

given task. 

 Designers of ML systems formalise a supervised or unsupervised 

learning approach as a learning algorithm. This software is then run over 

historical training data. At various stages, designers usually use parts of this 

training data that the process has not yet “seen” to test its ability to predict, 

and refine the process on the basis of its performance. At the end of this 

process, a model has been created, which can be queried with input data, 

usually for predictive purposes. Because these ML models are induced, they 

can be complex and incomprehensible to humans. They were generated 

with predictive performance rather than interpretability as a priority. The 

meaning of learning in this context refers to whether the model improves at 

a specified task, as measured by a chosen measure of performance.23 

Evaluation, management and improvement of the resulting complex model 

is achieved not through the interrogation of its internal structure, but 

through examining how it behaves externally using performance metrics. 

 ML is the focus of this piece, for several reasons. In our current 

interconnected, data-driven society, only ML systems have demonstrated 

the ability to automate difficult or nuanced tasks, such as search, machine 

vision and voice recognition.  As a result, ML systems are fast becoming 

part of our critical societal infrastructure. Significantly, it would be 

impractical for many of these decisions to have a “human in the loop”; this 

is truer still in complex ambient or “smart” environments. 

 ML uptake is also driven by business models and political goals, 

which have led practitioners to seek more “data-driven decisions.” Cheap 

computation has produced large datasets, often as by-products of digitised 

service delivery and so accruing to the Internet’s online intermediaries and 

industrial giants as well as traditional nation-states. There has been a visible 

near-evangelical compulsion to “mine” or infer insights from these datasets 

in the hope they might have social or economic value. New business 

models, particularly online, tend to offer services ostensibly for free, 

leaving monetisation to come from the relatively arbitrary data collected at 

scale along the way: a phenomenon some commentators refer to as 

“surveillance capitalism.”24 These logics of “datafication” have also lead to 

increasing uptake of ML in areas where the service offering does not 

                                                      
22 Some other types of learning exist, such as semi-supervised learning or reinforcement 

learning, but they do not consider enough relevant current challenges to be considered here. 
23 TOM MITCHELL, MACHINE LEARNING (McGraw Hill 1997). 
24 Shoshana Zuboff, Big Other: Surveillance Capitalism and the Prospects of an Information 

Civilization, 30 J. INFO. TECH. 1, 75–89 (2015). 
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necessarily require it, particularly in augmenting existing decisions with 

ML–based decision-support, in areas such as justice, policing, taxation or 

food safety. 

 In this article, we are aware we are speaking across a wide range of 

very different ML systems—in scope, size, purpose and user—which may 

raise very different legal, ethical and societal issues, and this may lead to 

some misleading generalisations. However, at this early stage of the 

research into ML and the GDPR, a wide scope seems important, and where 

critical differences arise between private and public sector ML systems, we 

have tried to make this plain. 

B. ML and Society: Issue of Concern 

 Aspects of ML systems have raised significant recent concern in the 

media, from civil society, academia, government and politicians. Here, we 

give a high level, non-exhaustive overview of the main sources of concern 

as we see them, in order to frame the social, technical and legal discussions 

that follow. 

1. Discrimination and Unfairness 

 A great deal of the extensive recent literature on algorithmic 

governance has wrestled with the problems of discrimination and fairness in 

ML.25 Once it was commonly thought that machines could not display the 

biases of people and so would be ideal neutral decision makers.26 This had 

considerable influence on some early legal cases involving Google and 

other online intermediaries and their responsibility (or not) for algorithmic 

harms.27 The drafting process of the 1995 European DPD explicitly 

recognised this—the European Commission noted in 1992 that “the result 

produced by the machine, using more and more sophisticated software, and 

even expert systems, has an apparently objective and incontrovertible 

character to which a human decision-maker may attach too much weight, 

thus abdicating his own responsibilities.”28 

                                                      
25 See the useful survey in Brent Mittelstadt et al., The Ethics of Algorithms: Mapping the 

Debate, 3 BIG DATA & SOC’Y 2 (2017), especially at section 7. 
26 See Christian Sandvig, Seeing the Sort: The Aesthetic and Industrial Defence of “the 

Algorithm,” 11 MEDIA-N 1 (2015). 
27 See this “neutrality” syndrome imported by analogy with common carrier status for online 

intermediaries and usefully traced by Uta Kohl, Google: the Rise and Rise of Online 

Intermediaries in the Governance of the Internet and Beyond (Part 2), 21 INT’L. J. L. INFO. 

TECH. 2, 2 (2013). 
28 Amended Proposal for a Council Directive on the Protection of Individuals with Regard to 

the Processing of Personal Data and on the Free Movement of Such Data, at 26, COM(92) 

422 final—SYN 297 (Oct. 15, 1992). 
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 As Mittelstadt et al. put it, “this belief is unsustainable”29 given the 

volume of recent evidence, mainly in the US in relation to racial 

discrimination. If ML systems cannot be assumed to be fair and unbiased, 

then some form of “opening up the black box” to justify their decisions 

becomes almost inevitable. 

 Even if, as some argue, “big data” will eventually give us a 

complete picture of society30—we will come to our reservations about 

this—making decisions based on past data is often problematic, as the 

structures that existed in that data often contain correlations we do not wish 

to re-entrench. These correlations frequently relate to “protected 

characteristics,” a varying list of attributes about an individual such as so-

called race, gender, pregnancy status, religion, sexuality and disability, 

which in many jurisdictions are not allowed to directly (and sometimes 

indirectly31) play a part in decision-making processes.32 Algorithmic 

systems trained on past biased data without careful consideration are 

inherently likely to recreate or even exacerbate discrimination seen in past 

decision-making. For example, a CV or résumé filtering system based only 

on past success rates for job applicants will likely encode and replicate 

some of the biases exhibited by those filtering CVs or awarding positions 

manually in the past. While some worry that these systems will formalise 

explicit bias of the developers, the larger concern appears to be that these 

systems will be indirectly, unintentionally and unknowingly 

discriminatory.33 

 In many cases, protected characteristics like race might indeed 

statistically correlate with outcome variables of interest, such as propensity 

to be convicted of property theft, to submit a fraudulent tax or welfare 

claim, to follow an advert for a pay-day loan, or to fail to achieve seniority 

in certain jobs. While these correlations may be “true” in the sense of 

statistical validity, we societally and politically often wish they weren’t. ML 

systems are designed to discriminate—that is, to discern—but some forms 

of discrimination seem socially unacceptable. The use of gender—and its 

recent prohibition—in the pricing of car insurance in the EU serves as a 

                                                      
29 Mittelstadt et al., supra note 25, at 25. 
30 VIKTOR MAYER-SCHÖNBERGER & KENNETH CUKIER, BIG DATA: A REVOLUTION THAT WILL 

TRANSFORM HOW WE LIVE, WORK, AND THINK (Houghton Mifflin Harcourt, 2013). 
31 In relation to the U.K., see Equality Act 2010, c. 15, s. 19; for discussion of US law, 

compare Solon Barocas & Andrew Selbst, Big Data’s Disparate Impact,  104 CALIF. L. REV. 

671 (2016). 
32 For a US discussion in the context of ML discrimination, see Barocas and Selbst, supra 

note 31. 
33 See Toon Calders & Indrė Žliobaitė, Why Unbiased Computational Processes Can Lead to 

Discriminative Decision Procedures, in DISCRIMINATION AND PRIVACY IN THE INFORMATION 

SOCIETY (Bart Custers et al. eds., Springer 2013). 
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recent salient example.34 One way forward is to try to build fair or non-

discriminatory ML systems where these characteristics are not explicitly fed 

into the system, even if they have some predictive value—e.g. by omitting 

the data column containing race or gender. However, this may still not 

result in a fair system as these excluded variables are likely related to some 

of the variables that are included, e.g. transaction data, occupation data, or 

postcode. Put simply, if the sensitive variable might be predictively useful, 

and we suspect the remaining variables might contain signals that allow us 

to predict the variable we omitted, then unwanted discrimination can sneak 

back in. On rare occasions, this happens explicitly. A ProPublica 

investigation uncovered the apparent use of “ethnic affinity,” a category 

constructed from user behaviour rather than explicitly asked of the user, as a 

proxy for race (which had been deliberately excluded as illegal to ask) for 

advertisers seeking to target audiences on Facebook to use.35 

 More broadly, cases around “redlining” on the internet—

“weblining,” as it was known nearly 20 years ago36—are far from new. A 

spate of stories in 2000 during the heady years of the dot-com bubble 

surrounded racist profiling using personal data on the internet. Consumer 

bank Wells Fargo had a lawsuit filed against it for using an online home-

search system to steer individuals away from particular districts based on 

provided racial classifications.37 Similarly, the online 1-hour-media-delivery 

service Kozmo received a lawsuit for denying delivery to residents in black 

neighbourhoods in Washington, DC, which they defended in the media by 

saying that they were not targeting neighbourhoods based on race, but based 

on high Internet usage.38 

                                                      
34 See Case C-236/09, Association belge des Consommateurs Test-Achats ASBL and 

Others v. Conseil des ministres, 2011 E.C.R. I-00773. 
35 See Julia Angwin & Terry Parris Jr., Facebook Lets Advertisers Exclude Users by Race, 

PROPUBLICA (Oct. 28, 2016), https://www.propublica.org/article/facebook-lets-advertisers-

exclude-users-by-race. While ProPublica subsequently reported (Feb. 8, 2017) that Facebook 

amended their dashboard as to “prevent advertisers from using racial categories in ads for 

housing, employment and credit” and to warn advertisers to comply with the law in other 

categories, a year later the reporters were still able to successfully place adverts excluding 

people on the basis of a wide array of inferred characteristics. See Julia Angwin et al., 

Facebook (Still) Letting Housing Advertisers Exclude Users by Race, PROPUBLICA (Nov. 21, 

2017), https://www.propublica.org/article/facebook-advertising-discrimination-housing-race-

sex-national-origin. 
36 Marcia Stepanek, Weblining: Companies are using your personal data to limit your 

choices—and force you to pay more for products, BLOOMBERG BUSINESS WEEK, Apr. 3, 

2000, at 26. 
37 Wells Fargo yanks "Community Calculator" service after ACORN lawsuit, CREDIT UNION 

TIMES (July 19, 2000), https://perma.cc/XG79-9P74. 
38 Elliot Zaret & Brock N Meeks, Kozmo’s digital dividing lines, MSNBC (Apr. 11, 2000); 

Kate Marquess, Redline may be going online, 86 ABA J. 8 at 81 (Aug. 2000). 
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 It is worth noting that in the EU, there have been far fewer scare 

revelations of “racially biased” algorithms than in the US. While some of 

this may be attributed to a less investigative journalistic, civil society or 

security research community, or conceivably, a slower route towards 

automation of state functions, it may also simply reflect a less starkly 

institutionally racist mass of training data.39 Racism is surely problematic 

around the world, yet does not manifest in statistically identical ways 

everywhere. Countries with deeper or clearer racial cleavages are naturally 

going to collect deeper or more clearly racist datasets, yet this does not 

mean that more nuanced issues of racism, particularly in interaction with 

other variables, does not exist. 

 Not all problematic correlations that arise in an ML system relate to 

characteristics protected by law. This takes us to the issue of unfairness 

rather than simply discrimination. As an example, is it fair to judge an 

individual’s suitability for a job based on the web browser they use when 

applying, for example, even if it has been shown to be predictively useful?40 

Potentially, there are grounds for claiming this is actually “true” 

discrimination: because the age of the browser may be a surrogate for other 

categories like poverty, since most such applications may be made in a 

public library. Indeed, is poverty itself a surrogate for a protected 

characteristic like race or disability? Unfair algorithms may upset individual 

subjects and reduce societal and commercial trust, but if legal remedies 

come into the picture then there is a worry of over extending regulatory 

control. Variables like web browser might, even if predictively important, 

be considered to abuse short-lived, arbitrary correlations, and in doing so, 

tangibly restrict individuals’ autonomy. 

 In the European data protection regime, fairness is an overarching 

obligation when data is collected and processed41 something which is 

sometimes overshadowed by the focus on lawful grounds for processing. 

The UK's data protection authority, the Information Commissioner's Office 

(ICO) published recent guidance on big data analytics which seems to imply 

that ML systems are not unfair simply because they are “creepy” or produce 

                                                      
39 Note the recent report of the ICO, supra note 4, which pays serious attention to issues of 

fairness and bias but cites only US examples of such despite being a product of the UK 

regulator. The German autocomplete cases are cited but referred to interestingly, as questions 

of error or accuracy, rather than discrimination or fairness. See Jones, infra note 79. See also 

National Science and Technology Council, supra note 4, at 30 (specifying that “it is 

important anyone using AI in the criminal justice system is aware of the limitations of the 

current data”). 
40 How might your choice of browser affect your job prospects?, THE ECONOMIST , Apr. 

11, 2013 https://www.economist.com/blogs/economist-explains/2013/04/economist-

explains-how-browser-affects-job-prospects.  
41 GDPR, supra note 5, at art. 5(1)(a). 

https://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-browser-affects-job-prospects
https://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-browser-affects-job-prospects
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unexpected results.42 However, they may be unfair where they discriminate 

against people because they are part of a social group which is not one of 

the traditional discrimination categories, e.g. where a woman was locked 

out of the female changing room at the gym because she used the title “Dr” 

which the system associated with men only.43 The ICO report argues that 

unfairness may, on occasion, derive from expectations, where data is used 

for a reason apparently unconnected with the reason given for its 

collection,44 and from lack of transparency, which we discuss in detail 

below in section I.B.3. 

 Reliance on past data additionally asks fairness questions that relate 

to the memory of algorithmic systems—how far back and with which 

variables should judge people on? Are individuals legally entitled to a 

tabula rasa—a blank slate—after a certain number of years, as is common 

in some areas of criminal justice?45 There is a widely-held societal value to 

being able to “make a fresh start,” and technological change can create new 

challenges to this. Indeed, common institutional frameworks for 

forgetfulness can be found in bankruptcy law and in credit scoring.46 

 

 

 

                                                      
42 ICO, supra note 4. 
43 ICO, supra note 4 at 20 (referencing Jessica Fleig, Doctor Locked Out of Women's 

Changing Room Because Gym Automatically Registered Everyone with Dr Title as Male, 

THE MIRROR (Mar. 18, 2015), http://www.mirror.co.uk/news/uk-news/doctor-locked-out-

womens-changing-5358594). This is one of very few reports of algorithmic misbehaviour in 

the ICO report not emanating from the US, and the simplicity of the task means it is very 

unlikely to be ML based. 
44 See the well-known theory of contextual integrity in HELEN NISSENBAUM, PRIVACY IN 

CONTEXT: TECHNOLOGY, POLICY, AND THE INTEGRITY OF SOCIAL LIFE (Stanford Law Books, 

2009). In a perfect, data protection compliant world, all purposes for which data is to be 

used, including re-uses, should be notified in the privacy policy or otherwise. See GDPR art. 

5(1)(b). However, as discussed infra in section V.A, this concept of “notice and choice” is 

increasingly broken. 
45 Under the UK Rehabilitation of Offenders Act 1974, as in many other European countries, 

disclosure of convictions (with some exceptions) is not required as these convictions become 

“spent,” in spheres such as employment, education, housing and other types of applications. 

Whether such convictions would be erased from training set data would not however 

necessarily follow, depending on who maintained the record, legal requirements and how 

training set data was cleaned. Notably, official advice on spent convictions advises job 

applicants with spent convictions to check what is (still) known about them to employers via 

Google and also advises them of their “right to be forgotten,” discussed infra at Section 

IV.B.1, See Criminal Record Checks, NACRO https://perma.cc/GKY4-KHJA. 
46 Jean-François Blanchette & Deborah G. Johnson, Data Retention and the Panoptic 

Society: The Social Benefits of Forgetfulness, 18 THE INFO. SOC’Y 1, 33–45 (2002). 
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2. Informational Privacy 

 Privacy advocates and data subjects have long had concerns relating 

to profiling, which as a general notion, is a process whereby personal data 

about a class of data subjects is transformed into knowledge or “inferences” 

about that group, which can then in turn be used to hypothesise about a 

person’s likely attributes or behaviour.47 These might include the goods and 

services likely to interest them, the social connections they might have or 

wish to develop, medical conditions or personality traits. As the GDPR, 

Article 4(4) now defines it, profiling is: 

[A]ny form of automated processing of personal data consisting of the 

use of personal data to evaluate certain personal aspects relating to a 

natural person, in particular to analyse or predict aspects concerning 

that natural person's performance at work, economic situation, health, 

personal preferences, interests, reliability, behaviour, location or 

movements. 

ML is now the favoured way of deriving such profiles—which are now 

often implicit and relational, rather than clear-cut categories—but profiling 

is wider than ML, and many means of profiling common today remain 

grounded in manually defined classifications and distinctions. As 

Hildebrandt notes, profiling is what all organisms do in relation to their 

environments, and is “as old as life itself.”48 

 For data subjects, privacy concerns here embrace an enormous 

weight of issues about how data concerning individuals are collected to be 

bent into profiles, how individuals can control access to and processing of 

data relating to them, and how they might control the dissemination and use 

of derived profiles. In particular, ML and big data analytics in general are 

fundamentally based around the idea of repurposing data, which is in 

principle contrary to the data protection principle that data should be 

collected for named and specific purposes.49 Data collected for selling 

books becomes repurposed as a system to sell advertisements book buyers 

might like. Connected problems are that “big data” systems encourage 

limitless retention of data and the collection of “all the data” rather than 

merely a statistically significant sample (contra principles in Article 5(1)(e) 

and (c)). These are huge problems at the heart of contemporary data 

                                                      
47 See generally, Mireille Hildebrandt, Defining Profiling: A New Type of 

Knowledge?, in PROFILING THE EUROPEAN CITIZEN 17 (Mireille Hildebrandt & Serge 

Gutwirth eds., Springer 2008). 
48 Hildebrandt, supra note 9. 
49 GDPR, art. 5(1)(b) (referring to “purpose limitation”). 
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protection law,50 and we do not seek to review these fully here. We do 

however want to point out where these issues specifically affect ML. 

 First, an exceedingly trite point is that data subjects increasingly 

perceive themselves as having little control over the collection of their 

personal data that go into profiles. As an example, the most recent 

Eurobarometer survey on personal data from June 2015 showed 31% of EU 

citizens as feeling they had no control over the data they provided online 

and a further 50% feeling they had only partial control.51 In the GDPR, 

collection falls under “processing” of data (Article 4(2)) and is theoretically 

controlled by (inter alia) the need for a lawful ground of processing (Article 

6). Most lay people believe consent is the only lawful ground for processing 

and thus defends their right to autonomous privacy management (though 

perhaps not in so many words).52 Yet consent is not the only lawful ground 

under Article 6. It’s quite possible that as much personal data is collected on 

the grounds of the “legitimate interests” of the controller (at least in the 

private sector), or on the grounds that the data was necessary to fulfil a 

contract entered into by the data subject.53 More importantly, consent has 

become debased currency given ever-longer standard term privacy policies, 

“nudging” methods such as screen layout manipulation, and market network 

effects. It is often described using terms such as “meaningless” or 

“illusory.”54 

 The consent problem is aggravated by the rise of “bastard data,” a 

picturesque term coined by Joe McNamee. He notes that as data is linked 

and transformed it incentivises new data collection. Thus, data “ha[s] 

become fertile and ha[s] bastard offspring that create new challenges that go 

                                                      
50 See discussion in ARTICLE 29 WORKING PARTY (hereinafter “A29 WP”), OPINION 03/2013 

ON PURPOSE LIMITATION, (Apr. 2, 2013); ICO, supra note 4 at 11-12; EDPS, supra note 4. 
51 EUROPEAN COMMISSION, DATA PROTECTION EUROOBAROMETER, (June 2015), 

[https://perma.cc/3XLK-VKA6]. 
52 The UK's Information Commissioner recently addressed the prevalence of these beliefs 

head on with a series of “GDPR Myths” blogs addressing what she refers to, tongue-in-

cheek, as “alternative facts.” See Elizabeth Denham, Consent is Not the ‘Silver Bullet’ for 

GDPR Compliance, INFORMATION COMMISSIONER'S OFFICE NEWS BLOG, (Aug. 16, 2017), 

https://iconewsblog.org.uk/2017/08/16/consent-is-not-the-silver-bullet-for-gdpr-compliance/. 
53 GDPR, art. 6. The public sector has separate public interest grounds for processing. 

Policing and national security are exempted from the GDPR, but covered in a connected 

directive. 
54 For a full discussion of the illusory nature of consent in the Internet world, see Lilian 

Edwards, Privacy, Law, Code and Social Networking Sites, in RESEARCH HANDBOOK ON 

GOVERNANCE OF THE INTERNET (Ian Brown ed., Edward Elgar, 2013) at 323; Rikke Frank 

Joergensen, The Unbearable Lightness of User Consent, 3 INTERNET POL’Y REV. 4 (2014); 

Brendan Van Alsenoy et al., Privacy notices versus informational self-determination: 

Minding the gap, 28 INT’L REV. OF LAW, COMPUTERS & TECHNOLOGY 2 185–203 (2014). 
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far beyond what society previously (and, unfortunately, still) consider[] to 

be ‘privacy.’”55 Many of these offspring are profiles produced by ML 

systems. Typically, data about people, which are personal, are transformed 

into data which have often been seen as non-personal and therefore fall 

outside the scope of data protection law, perhaps simply because the data 

subject name or other obvious identifier has been removed.56 Many 

businesses, particularly those operating online in social networking, 

advertising and search, have regularly argued that their profiles, however 

lucrative, merely involve the processing of anonymised data and hence do 

not fall within the scope of data protection control. In recent times, the 

anonymity argument has been parried on grounds of potential for re-

identification.57 This has become especially crucial in the emerging ambient 

environment deriving from the Internet of Things (IoT), which collects data 

that on first glance looks mundane, but can be used with relative ease to 

discover granular, intimate insights. Data we would once have regarded as 

obviously non-personal such as raw data from home energy meters or 

location data from GPS devices is now, often through ML techniques, can 

be re-connected to individuals, and identities established from it.58 In 

practice, this has meant that the day-to-day actions that individuals 

undertake, especially in “smart” environments,59 leave trails of potentially 

sensitive latent personal data in the hands of controllers who may be 

                                                      
55 Joe McNamee, Is Privacy Still Relevant in a World of Bastard data?, EDRI EDITORIAL, 

(Mar. 9, 2016), https://edri.org/enditorial-is-privacy-still-relevant-in-a-world-of-bastard-data. 
56 “Personal data” is defined at art. 4(1) of the GDPR as “any information relating to an 

identified or identifiable natural person (‘data subject’); an identifiable natural person is one 

who can be identified, directly or indirectly..” Note the debate over “pseudonymous” data 

during the passage of the GDPR, which is defined as data processed “in such a manner that 

the personal data can no longer be attributed to a specific data subject without the use of 

additional information.” Id. at art. 2(5). After some debate, the final text recognises explicitly 

that such data is personal data, although it garners certain privileges designed to incentivise 

pseudonymisation, e.g. it is a form of “privacy by design” and is excluded from mandatory 

security breach notification. Id. at art. 25, 
57 See Paul Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of 

Anonymization, 57 UCLA L. REV. 1701 (2010). In Europe, see A 29 WP, OPINION 05/2014 ON 

ANONYMISATION TECHNIQUES (2014). 
58 See Yves-Alexandre de Montjoye et al., Unique in the crowd: The privacy bounds of 

human mobility, 3 SCIENTIFIC REPORTS (2013); MICHAEL VEALE, DATA MANAGEMENT AND 

USE: CASE STUDIES OF TECHNOLOGIES AND GOVERNANCE (The Royal Society and the British 

Academy 2017).  
59 See MIREILLE HILDEBRANDT, SMART TECHNOLOGIES AND THE END(S) OF LAW: NOVEL 

ENTANGLEMENTS OF LAW AND TECHNOLOGY (Edward Elgar 2015); Lilian Edwards, Privacy, 

Security and Data Protection in Smart Cities: A Critical EU Law Perspective, 1 EUR. DATA 

PROT. L. REV. 28, 28–58 (2016).  
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difficult to identify.60 If controllers are not identifiable, data subjects may 

not be able to effectively exercise the data protection rights we discuss in 

sections II and V below even if they overcome the personal data and 

consent hurdles. 

 Profiles assembled via ML or other techniques may be seen as 

belonging to a group rather than an individual data subject. A profile does 

not simply identify the characteristics of individual data subjects, rather 

they are constructed by contrast with the other data subjects in the dataset. 

In a system attempting to target people by their entertainment choices, I am 

not simply someone who likes music festivals, but someone who is 

modelled as 75% more likely (give or take a margin of statistical 

uncertainty) to attend a music festival than the rest of my cohort. “Persistent 

knowledge” over time links me into this class of interest to the platform that 

holds the data. Mittelstadt argues that big data analytics allow this new type 

of “algorithmically assembled” group to be formed whose information has 

no clear protection in data protection law and possibly not in equality law.61 

 This idea of “group privacy” was an early, albeit marginalised, 

concern in DP, referred to as “categorical privacy” by some authors in the 

late ‘90s,62 and sometimes conflated with discussions of what is personal 

data. As Hildebrandt stated in an early 2008 paper, “data have a legal status. 

They are protected, at least personal data are… [p]rofiles have no clear legal 

status.”63 Hildebrandt argues that protection of profiles is very limited, as 

even if we argue that a profile becomes personal data when applied to an 

individual person to produce an effect, this fails to offer protection to (or, 

importantly, control over) the relevant group profile. A decade later, the 

GDPR refines this argument by asserting that if a profile can be used to 

target or “single me out”64—for example, to deny me access to luxury 

services or to discriminate about what price I can buy goods at—then the 

                                                      
60 On the practical difficulties for data subjects to identify data controllers, see Max Van 

Kleek et al., Better the Devil You Know: Exposing the Data Sharing Practices of Smartphone 

Apps, in CHI’17 (2017), doi:10.1145/3025453.3025556. 
61 Brent Mittelstadt, From Individual to Group Privacy in Big Data Analytics, __ PHILOS. 

TECHNOL doi:10.1007/s13347-017-0253-7. See also Anton Vedder, KDD: the Challenge to 

Individualism, 1 ETHICS & INFO. TECH. 4, 275 (1999); Alessandro Mantelero, From 

GroupPrivacy to Collective Privacy: Towards a New Dimension of Privacy and Data 

Protection in the Big Data Era, in GROUP PRIVACY: NEW CHALLENGES OF DATA 

TECHNOLOGIES (Linnet Taylor et al. (eds.), Springer 2017). 
62 Vedder, supra note 61. 
63 Hildebrandt, supra note 59. 
64 See GDPR, recital 26. 
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profile is my personal data as it relates to me and makes me identifiable.65 

This approach however remains emergent and will be applied with 

hesitation even in some parts of Europe, given it is founded on a recital not 

a main text article.66 

 A final key issue is the ability of such systems to transform data 

categorised as ordinary personal data at the time of collection into data 

perceived as especially sensitive.67 In European data protection law, special 

categories of data (known as “sensitive personal data” in the UK) receive 

special protection. These are defined as restricted to personal data relating 

to race, political opinions, health and sex life, religious and other beliefs, 

trade union membership and (added by the GDPR for some purposes) 

biometric and genetic data.68 Protected characteristics in other domains or 

jurisdictions often differ—in US privacy law, no general concept of 

sensitive data applies but there highly regulated statutory privacy regimes 

for health, financial and children’s data.69 

 A relevant and well-publicised “war story” involves the American 

supermarket Target profiling its customers to find out which were likely to 

be pregnant so relevant offers could then be targeted at them. A magazine 

piece, now urban legend, claimed a teenage daughter was targeted with 

pregnancy related offers before her father with whom she lived knew about 

her condition.70 In data protection law, if consent is used as the lawful 

ground for processing of special categories of data, that consent must be 

                                                      
65 This discussion is important as whether a profile is seen as the personal data of a person 

also determines if they have rights to erase it or to port it to a different system or data 

controller. See discussion infra Sections IV.B.1, IV.B.2. 
66 GDPR recital 26. See discussion of the status of recitals below, in addition to Klimas and 

Vaicuikaite, infra note 132. This approach to personal data has however been championed by 

the A29 WP for many years. See, e.g., ARTICLE 29 WORKING PARTY, OPINION 4/2007 ON THE 

CONCEPT OF PERSONAL DATA 01248/07/EN WP 136, at 13. 
67 See Emannuel Benoist, Collecting Data for the Profiling of Web Users, in PROFILING THE 

EUROPEAN CITIZEN 169, 177 (Mireille Hildebrandt & Serge Gutwirth eds., Springer 2008). 
68 GDPR, art. 9; see also Case C-101/01, Bodil Lindqvist, 2003 E.C.R. 1-12971. 
69 See HIPAA (Health Insurance Portability and Accountability Act of 1996), Pub. L. No. 

104-191, 110 Stat. 1936; Sarbanes–Oxley Act of 2002 (also known as the "Public Company 

Accounting Reform and Investor Protection Act"), Pub. L. No. 107-204, 116 Stat. 745; 

COPPA (Children's Online Privacy Protection Act of 1998), 78 C.F.R. § 4008 (2013). 
70 Charles Duhigg, How Companies Learn Your Secrets, The NEW YORK TIMES MAGAZINE 

(Feb. 16, 2012), http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html; 

Kashmir Hill, How Target Figured out a Teen Girl Was Pregnant Before Her Father Did, 

FORBES (Feb. 16, 2012), https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-

figured-out-a-teen-girl-was-pregnant-before-her-father-did/. 
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“explicit.”71 But if ordinary data about purchases are collected and 

algorithmically transformed into insights that are sensitive, such as those 

related to health, or “protected,” such as those relating to pregnancy, what is 

the correct standard of safeguard? For additional complication, the GDPR 

lays down a basic rule that profiling “shall not be based” on the special 

categories of personal data, unless there is explicit consent.72 Does this 

apply to ML systems where the inputs are non-sensitive but the output 

inferences may be, as was the case in the Target profiling? Should explicit 

consent be given where personal data is gathered from public social media 

posts using “legitimate grounds”73 and transformed into data about political 

preferences which is “sensitive” data in the GDPR (Article 9(1))?74 What 

                                                      
71 This was a significant safeguard in an analogue world—consent would often be taken with 

especial care, such as in written form. Online, it is of limited protection, at best pushing 

controllers to more consumer-friendly consent collection such as opt-in rather than opt-out.  
71 GDPR, art. 9(2)(a). Other grounds are available but notable for commercial data 

controllers is that processing cannot be justified by “legitimate interests” of the controller, 

nor because it was necessary for the performance of a contract between data subject and 

controller – the two prevalent grounds for processing used in the commercial world. For 

executive and judicial processing of special data, the main grounds are art. 9(2)(c) 

(emergency health situations), (f) (regarding legal claims or defences or judicial action) and 

(g) (substantial public interest). 
72 GDPR, Article 22(4). It is also not clear if a controller can simply request a blanket 

consent to profiling of sensitive personal data in a privacy policy – which would tend to 

make this provision nugatory - or if something more tailored is needed. It is interesting that a 

recent collective statement of a number of EU Data Protection Authorities (DPAs) (see 

Common Statement by the Contact Group of the Data Protection Authorities of The 

Netherlands, France, Spain, Hamburg and Belgium, CNIL (May 16, 2017), 

https://www.cnil.fr/fr/node/23602) announcing a number of privacy breaches by Facebook, 

one issue is that company “uses sensitive personal data from users without their explicit 

consent. For example, data relating to sexual preferences were used to show targeted 

advertisements.” (noted specifically by the Autoriteit Persoonsgegevens, the DPA of the 

Netherlands). It is not said if that data was created algorithmically or existed as a user input. 
73 GDPR, art. 6 (1)(f). Note that these interests may be overridden by the “interests or 

fundamental rights and freedoms of the data subject” and that this ground is not available for 

special categories of data under art. 9 (see supra note 71). 
74 This is likely part of the data collection and processing to produce political targeted 

advertisements pushed out via Facebook, allegedly undertaken in the UK and elsewhere by 

companies such as Cambridge Analytica. See Jamie Doward, Watchdog to Launch Inquiry 

into Misuse of Data in Politics, The GUARDIAN, Mar. 4, 2017, 

https://www.theguardian.com/technology/2017/mar/04/cambridge-analytics-data-brexit-

trump. This area of the law is highly sensitive, given concerns about recent elections and 

referenda, and is under investigation by the UK’s ICO. As noted within, the article itself is 

currently the subject of legal dispute as of mid-May 2017! 



No. 1] DUKE LAW & TECHNOLOGY REVIEW 38 

about when ordinary data collected via a wearable like a Fitbit is 

transformed into health data used to reassess insurance premiums?75 

3. Opacity and Transparency 

 Users have long been disturbed by the idea that machines might 

make decisions for them, which they could not understand or countermand; 

a vision of out of control authority which derives from earlier notions of 

unfathomable bureaucracy found everywhere from Kafka to Terry Gilliam’s 

Brazil. Such worries have emerged from the quotidian world (for example 

credit scoring, job applications, speeding camera tickets) to the emergent, 

fictional worlds of technology (such as wrongful arrest by Robocop, 2001's 

HAL, automated nuclear weapons launched by accident in Wargames). 

 In Europe, one of the earliest routes to taming pre-ML automated 

processing was the creation of “subject access rights” (SARs).76 SARs 

empowered a user to find out what data was held about them by a company 

or government department, together with a right to rectify one’s personal 

data—to set the record straight. These rights, harmonised across Europe in 

the DPD, Article 12, included the right to rectify, erase or block data, the 

processing of which did not comply with the Directive—in particular where 

they were incomplete or inaccurate. These rights were, as we discuss later,77 

fused and extended into the so-called “right to be forgotten” in the GDPR, 

which succeeded the DPD in 2016. Although the US lacked an omnibus 

notion of data protection laws, similar rights emerged in relation to credit 

scoring in the Fair Credit Reporting Act 1970.78 

 Domains such as credit scoring, public or rented housing 

applications and employment applications have entrenched in the public 

mind the intuition that challenging a decision, and possibly seeking redress, 

involves a preceding right to an explanation of how the decision was 

reached. In Europe, this led to a specific though rather under-used right in 

the DPD (Article 15) to stop a decision being made solely on the basis of 

automated processing.79 Data subjects had a right to obtain human 

                                                      
75 This raises the issue of what we define as “health data,” which the CJEU has not yet 

decided on. Similar issues have risen in US in relation to the scope of HIPPA. In an 

interesting example of “counter-profiling” obfuscation and the case of “Unfit Bits,” see Olga 

Khazan, How to Fake Your Workout, THE ATLANTIC (Sep. 28, 2015), 

https://www.theatlantic.com/health/archive/2015/09/unfit-bits/407644/.  
76 See DPD, art. 12 (GDPR, art. 15). 
77 See infra Section IV.B.1. 
78 See Danielle Keats Citron & Frank Pasquale, The Scored Society: Due Process for 

Automated Predictions, 89 WASH. L. REV.1,16 (2014). 
79 This has been interpreted to imply that European systems are more interested in the human 

dignity of data subjects than the US system. See Meg Leta Jones, Right to a Human in the 
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intervention (a “human in the loop”), in order to express their point of view 

but this right did not contain an express right to an explanation.80 This right 

was updated in the GDPR to extend to a more general concept of 

profiling.81 As Citron and Pasquale82 map in detail, credit scoring has been a 

canonical domain for these issues in the US as well, as it has evolved from 

‘complicated’ but comprehensible rule based approaches embodying human 

expertise, to ‘complex’ and opaque systems often accused of arbitrary or 

unfair decisions. As such this domain foreshadows the difficulties routinely 

encountered now in trying to interpret many modern ML systems. 

 Explanation rights of a sort are common in the public sphere in the 

form of freedom of information (FOI) rights against public and 

governmental institutions. Transparency is seen as one of the bastions of 

democracy, liberal government, accountability and restraint on arbitrary or 

self-interested exercise of power. As Brandeis famously said, “[s]unlight is 

said to be the best of disinfectants; electric light the most efficient 

policeman.”83 Transparency rights against public bodies enable an informed 

public debate, generate trust in and legitimacy for the government, as well 

as allow individual voters to vote with more information. These are perhaps 

primarily societal benefits, but citizens can clearly also benefit individually 

from getting explanations from public bodies via FOI: opposing bad 

planning or tender decisions, seeking information on why hospitals or 

schools were badly run leading to harm to one self or one’s child, and 

requiring details about public funding priorities are all obvious examples. 

 By comparison with FOI, transparency rights are less clearly part of 

the apparatus of accountability of private decision-making. As Zarsky says, 

“[t]he “default” of governmental action should be transparency.”84 The 

opposite is more or less true of private action, where secrecy, including 

commercial or trade secrecy (and autonomy of business practices85) and 

                                                                                                                       
Loop: Political Constructions of Computer Automation & Personhood from Data Banks to 

Algorithms, 47 SOC. STUD. OF SCI. 216, 217 (2017).  
80 But see supra note 75. 
81 See GDPR, art. 4(4) (“‘Profiling means any form of automated processing of personal data 

consisting of the use of personal data to evaluate certain personal aspects relating to a natural 

person in particular to analyse or predict [...] performance at work, economic situation, 

health, personal preferences, interests, reliability or behaviour, location or movements.”). 

Profiling may be achieved through means other than by ML. See supra Section I.A.1. 
82 Citron & Pasquale, supra note 78, at 16. 
83 LOUIS BRANDEIS, OTHER PEOPLE’S MONEY, AND HOW BANKERS USE IT 62 (National Home 

Library Foundation, 1933). 
84 Tal Zarsky, Transparency in Data Mining: From Theory to Practice, DISCRIMINATION AND 

PRIVACY IN THE INFO. SOC’Y 301, 310 (2013). 
85 Freedom to conduct a business is a fundamental right in the EU. See art. 15, Charter of 

Fundamental Rights of the European Union (CFEU) 2012/C 326/02. 
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protection of IP rights, are de facto the norm. Data protection law in fact 

seems quite odd when looked at from outside the informational privacy 

ghetto, as it is one of the few bodies of law that applies a general principle 

of transparency86 even-handedly to private and public sector controllers, 

with more exceptions for the latter than the former in terms of policing87 

and national security.88 But disclosure of personal data to its subject, from 

both public and private data controllers, is of course justified at root in 

Europe by the fundamental nature of privacy as a human right, sometimes 

extended to a separate right to DP.89 

 Yet an explanation, or some kind of lesser transparency, is of 

course often essential to mount a challenge against a private person or 

commercial business whether in court or to a regulatory body like a privacy 

commissioner, ombudsman, trading standards body or complaints 

association. On a societal level, harmful or anti-competitive market 

practices cannot be influenced or shut down without powers of disclosure. 

The most obvious example of transparency rights in the private90 sphere 

outside DP, and across globally disparate legal systems, lies in financial 

disclosure laws in the equity markets; however arguably these are designed 

to protect institutional capitalism by retaining trust in a functioning market 

rather than protecting individual investors, or less still, those globally 

affected by the movements of markets. Disclosure is also reasonably 

common in the private sector as a “naming and shaming” mechanism91—

e.g. the introduction in the GDPR of mandatory security breach 

notification,92 or the US EPA Toxics Release Inventory.93 Disclosures may 

                                                      
86 GDPR, art. 5(1)(a). 
87 See GDPR art. 2(2)(d). But see supra note 53. 
88 Despite these exceptions, European countries have traditionally been more transparent 

than the US in the development of ML systems used for judicial/penal decision support. ML 

systems in Europe are often developed in-house, rather than privately procured and subject to 

proprietary secrecy. See A COMPENDIUM OF RESEARCH AND ANALYSIS ON THE OFFENDER 

ASSESSMENT SYSTEM (OASYS) (Robin Moore ed., Ministry of Justice Analytical Series, 

2015); Nikolaj Tollenaar et al., StatRec —Performance, Validation and Preservability of a 

Static Risk Prediction Instrument, 129 BULL. SOC. METHODOLOGY 25 (2016) (discussing 

published UK and Dutch predictive recidivism models). 
89 See ECHR, art. 8; CFEU arts. 7 and 8. 
90 An ancillary question relates to how many of the functions of the state are now carried out 

by private bodies or public-private partnerships, and what the resulting susceptibility to FOI 

requests (or other public law remedies, such as judicial review) should be. 
91 See Zarsky, supra note 84, at 311. 
92 GDPR arts. 33 and 34. 
93 Madhu Khanna et al., Toxics Release Information: A Policy Tool for Environmental 

Protection, 36 J. ENV’T ECON. & MGMT.  243 (1998); Archon Fung and Dara O'Rourke, 

Reinventing Environmental Regulation from the Grassroots Up: Explaining and Expanding 

the Success of the Toxics Release Inventory, 25 ENVIRO. MGMT.  115, 116 (2000). 
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also be made voluntarily to engage public trust as in programmes for visible 

corporate social responsibility (CSR), and standards for this exist with 

bodies such as the Global Reporting Initiative (GRI). 

 Despite the sometimes almost unthinking association of 

transparency and accountability, the two are not synonymous.94 

Accountability is a contested concept, but in essence involves a party being 

held to account having to justify their actions, field questions from others, 

and face appropriate consequences.95 Transparency is only the beginning of 

this process. It is interesting that in the context of open datasets as a 

successor to FOI, there is considerable evidence that disclosure (voluntary 

or mandated) of apparently greater quantities of government data does not 

necessarily equal more effective scrutiny or better governance.96 O'Neill 

calls this a “heavily one-sided conversation” with governments able to 

minimise the impact of disclosures by timing of release, difficulty of 

citizens in understanding or utilising the data, failures to update repositories 

and resource agencies who use and scrutinise open data, and general 

political obfuscation.97 Heald terms this a "transparency illusion" which 

may generate no positive results while possibly creating negative impacts, 

such as privacy breaches and loss of trust if disclosures of 

maladministration are not met with punishment.98 

 Notwithstanding these doubts, and turning to ML systems, 

transparency rights remain intimately linked to the ideal of effective control 

of algorithmic decision-making. Zarsky argues that the individual adversely 

affected by a predictive process has the right to “understand why” and 

frames this in familiar terms of autonomy and respect as a human being. 

Hildebrandt has long called for Transparency Enhancing Tools to control 

the impacts of profiling.99 Similar ideas pervade the many calls for 

reinstating due process in algorithmic decision making,100 for respecting the 

right to a “human in the loop” as an aspect of human dignity101 and for 

introducing “information accountability” in the form of “policy awareness” 

                                                      
94 See, e.g., PASQUALE, supra note 3, at 212 (rejecting the idea that transparency has created 

any real effects on or accountability of the financial sector post-crash and recession). 
95 Mark Bovens, Analysing and Assessing Accountability: A Conceptual Framework, 13 

EUROPEAN LAW JOURNAL 447, 450 (2007). 
96 See Helen Margetts, Transparency and Digital Government, in TRANSPARENCY: THE KEY 

TO BETTER GOVERNANCE?, 197, 200 (C. Hood & D. A. Heald, eds., Oxford University Press 

2006). 
97 See Onora O’Neill, Transparency and the Ethics of Communication, in Hood & Heald, 

supra note 96, at 75–90. 
98 David A. Heald, Varieties of Transparency, in Hood & Heald, supra note 96, at 30. 
99 Hildebrandt, supra note 9, at 66. 
100 See, e.g. Crawford & Schultz, supra note 12, at 95; Citron, supra note 14, at 1254.  
101 See Jones, supra note 79, at 217. 
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which will “make bad acts visible to all concerned”; 102 or varied similar 

ideas of “algorithmic accountability.”103 

 Yet this connection has never really been justified in terms of 

practical efficacy in relation to the broad range of algorithmic decisions. If 

we return to the notion of algorithmic "war stories" that strike a public 

nerve, in many cases what the data subject wants is not an explanation—but 

rather for the disclosure, decision or action simply not to have occurred. 

Consider, in relation to an individual, the Target pregnancy case mentioned 

in section I.B.2 above, or another recent case of outrage affecting a group, 

when Google wrongly categorized black people in its Photos app as 

gorillas.104 

 In the few modern EU legal cases we have on controlling 

algorithmic governance, an explanation has not usually been the remedy 

sought. An interesting example is the seminal CJEU Google Spain105 case 

which introduced the “right to be forgotten” and is one of the few cases of 

algorithmic harm to have come to the highest EU court. In this case, the 

claimant, Mr. Costeja González, asking Google to remove as top link in 

searches on his name, a link to an old and outdated page in a newspaper 

archive recording his long-repaid public debt. Mr. Costeja González’s 

(successful) ambition when he went to court was to remove the "inaccurate" 

data; he had, apparently, no interest in why Google’s search algorithm 

continued to put long outdated results at the top of its rankings (even though 

arguably this was inexplicable in terms of how we think we know Page 

Rank works). A similar desire for an action, not for an explanation, can be 

seen in the various European “autocomplete defamation” cases.106 

 In all these cases, an explanation will not really relieve or redress 

the emotional or economic damage suffered; but it will allow developers not 

to make the same mistake again. Clearly these cases may not be typical. An 

explanation may surely help overturn the credit refusal issued by a machine, 

                                                      
102 Daniel J. Weitzner et al., Information Accountability, 51 COMMUNICATIONS OF THE ACM 6 

82,84 (2008). 
103 Maayan Perel & Nova Elkin-Koren, Accountability in Algorithmic Copyright 

Enforcement, 19 STAN. TECH. L. REV. 473, 478 (2016); NICHOLAS DIAKOPOULOS, 

ALGORITHMIC ACCOUNTABILITY REPORTING: ON THE INVESTIGATION OF BLACK BOXES (Tow 

Centre for Digital Journalism, 2013). For a rejection of rights of transparency as the answer 

to algorithmic accountability, see Joshua Kroll et al., Accountable Algorithms, 165 U. PA. L. 

REV. 633, 638 (2017). 
104 See Sophie Curtis, Google Photos Labels Black People as 'Gorillas,' THE TELEGRAPH 

(May 4, 2017, 11:20 AM), http://www.telegraph.co.uk/technology/google/11710136/ 

Google-Photos-assigns-gorilla-tag-to-photos-of-black-people.html. 
105 Google Spain v. Agencia Española de Protección de Datos (AEPD) and González, Case C 

131/12, 13 May 2014 [hereinafter Google Spain]. 
106 For further detail, see Kohl, supra note 27, at 192; Jones, supra note 79, at 216. 
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or an automated decision to wrongfully refuse bail to a black person or 

welfare to someone with medical symptoms—and these are obviously 

important social redresses—but it will not help in all cases. And even in 

these more mainstream cases, as Pasquale correctly identifies, transparency 

alone does not always produce either redress or public trust in the face of 

institutionalised power or money,107 just as David Brin's Transparent 

Society does not in fact produce effective control of state surveillance when 

the power disparity between the state and the sousveillant is manifest.108 

 Thus, it is possible that in some cases transparency or explanation 

rights may be overrated or even irrelevant. This takes us to the question of 

what transparency in the context of algorithmic accountability actually 

means. Does it simply mean disclosure of source code including the model, 

and inputs and outputs of training set data? Kroll et al. argue that this is an 

obvious but naïve solution—transparency in source code is neither 

necessary to, not sufficient for algorithmic accountability, and it moreover 

may create harms of its own in terms of privacy disclosures and the creation 

of “gaming” strategies which can subvert the algorithm’s efficiency and 

fairness.109 Instead they point out that auditing, both in the real and the 

digital world can achieve accountability by looking at the external inputs 

and outputs of a decision process, rather than at the inner workings. Even in 

the justice system, it is common for courts to adjudicate based only on 

partial evidence, since even with discovery, evidence may be unavailable or 

excluded on grounds like age of witness, hearsay status or scientific 

dubiety. We often do not understand how things in the real world work: my 

car, the stock market, the process of domestic conveyancing. Instead of (or 

as well as) transparency, we often rely on expertise, or the certification of 

expertise (e.g., that my solicitor who does my house conveyancing, is 

vouched for both by her law degree and her Law Society affiliation, as well 

as her professional indemnity insurance if things go wrong). Transparency 

may at best be neither a necessary nor sufficient condition for accountability 

and at worst something that fobs off data subjects with a remedy of little 

practical use. 

 We return to this question of “transparency fallacy” below at 

section IV.A, and to the question of what types of explanation in what 

circumstances may actually be useful, and to whom (section III). First 

however we consider the recent legal debate on whether a “right to an 

explanation” of algorithmic decisions does indeed exist in EU data 

protection law. 

                                                      
107 See PASQUALE, supra note 3, at 212. 
108 See Bruce Schneier, The Myth of the ‘Transparent Society,’ WIRED, (Mar. 6, 2008, 12:00 

PM), https://www.wired.com/2008/03/securitymatters-0306/. 
109 See Kroll et al., supra note 103, at 654. For a further discussion on “gaming,” see infra 

Section III.C.1.  
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II. SEEKING A RIGHT TO AN EXPLANATION IN EUROPEAN DATA 

PROTECTION LAW 

 In 2016, to the surprise of some EU data protection lawyers, and to 

considerable global attention, Goodman and Flaxman asserted in a short 

paper that the GDPR contained a "right to an explanation" of algorithmic 

decision making.110 As Wachter et al. have comprehensively pointed out, the 

truth is not quite that simple.111 In this section, we consider the problems 

involved in extracting this right from the GDPR, an instrument still heavily 

built around a basic skeleton inherited from the 1995 DPD and created by 

legislators who, while concerned about profiling in its obvious 

manifestations such as targeted advertising, had little information on the 

detailed issues of ML. Even if a right to an explanation can viably be teased 

out from the GDPR, we will show that the number of constraints placed on 

it by the text (which is itself often unclear) make this a far from ideal 

approach. 

A. GDPR, Article 22: Automated Individual Decision-Making 

 Our starting point is Article 15 of the now-replaced DPD, which 

was originally aimed at protecting users from unsupervised automated 

decision making. This rather odd provision112 was mainly overlooked by 

lawyers and commentators by reason of non-significance and few saw the 

potential it had towards algorithmic opacity. It is clear that Article 15 of the 

DPD did not contemplate dealing with the special opacity found in 

complex, ML systems, and very little was changed to manage this in the 

new GDPR, Article 22 which provides: 

[T]he right not to be subject to a decision based solely on automated 

processing, including profiling, which produces legal effects, 

concerning him or her, or significantly affects him or her.113  

Importantly, Article 22, like Article 15 before it, is a very delimited right. 

Crucially, the remedy it provides is primarily to prevent processing of a 

particular kind and secondly, to require that a “human in the loop” be 

                                                      
110 Goodman & Flaxman, supra note 6, at 2. 
111 Wachter et al., supra note 11, at 72. 
112 See Izak Mendoza & Lee A. Bygrave, The Right Not to Be Subject to Automated 

Decisions Based on Profiling, in EU INTERNET LAW: REGULATION AND ENFORCEMENT 2 

(Tatiani Synodinou et al. eds., Springer, forthcoming 2017) (describing art. 15 as "a second 

class data protection right: rarely enforced, poorly understood and easily circumvented,” not 

included in other fair information privacy schemes such as the OECD guidelines nor 

demanded by Safe Harbour); Lee A. Bygrave, Minding the Machine: Article 15 of the EC 

Data Protection Directive and Automated Profiling, 17 COMPUTER L. & SECURITY REP., 17 

(2001). See also Hildebrandt, supra note 9, at 65. 
113 GDPR, art. 22(1) (emphasis added). 
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inserted on challenge. The remedy is not, prima facie, to any kind of 

explanation of how processing was carried out or result achieved, that being 

the province of the information rights of the data subject (see below).114 

 Even after this there are a number of hurdles to get over. First, 

Article 22 applies only when the processing has been solely by automated 

means. ML systems that affect people’s lives significantly are usually not 

fully automated—instead used as decision support115—and indeed in a great 

deal of these cases—for example involving victims of crimes or accidents—

full automation seems inappropriate or far off. Article 22 would be excluded 

from many of the well-known algorithmic “war stories” on this basis: for 

example, the algorithmic decisions on criminal justice risk assessment 

reported by ProPublica in 2016.116 While the racial bias in these systems is 

clearly objectionable, the important point here is that these systems were 

always at least nominally advisory. 

 When does “nominal” human involvement become no 

involvement? A number of European data protection authorities are 

currently worrying at this point.117 Human involvement can also be rendered 

nominal by “automation bias,” a psychological phenomenon where humans 

either over or under-rely on decision support systems.118 The Dutch 

Scientific Council for Government Policy in early 2016 specifically 

recommended that more attention be paid to “semi-automated decision-

making” in the GDPR, in relation to profiling.119 

                                                      
114 Mendoza & Bygrave, supra note 112, at 13 (arguing that DPD arts.  13-15 and 22 suggest 

that there is a right to be informed that automated decision is being made). 
115 CABINET OFFICE, DATA SCIENCE ETHICAL FRAMEWORK (HM Government, May 2016), 

https://www.gov.uk/government/publications/data-science-ethical-framework. This 

specifically advises human oversight in non-trivial problems, even where autonomous 

systems are possible. 
116 See Julia Angwin et al., Machine Bias, PROPUBLICA, (May 23, 2016), 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. 

Lack of effective supervision has led to bans in some states. See Mitch Smith, In Wisconsin, 

a Backlash Against Using Data to Foretell Defendant’s Futures, THE NEW YORK TIMES (Jun. 

22, 2016). 
117 The UK ICO at the time of writing recently concluded consulting on this point: see ICO, 

FEEDBACK REQUEST – PROFILING AND AUTOMATED DECISION-MAKING [v 1.0 ,2017/04/06] 

(2017) at 20, https://ico.org.uk/media/2013894/ico-feedback-request-profiling-and-

automated-decision-making.pdf (asking “Do you consider that “solely” in Article 22(1) 

excludes any human involvement whatsoever, or only actions by a human that influence or 

affect the outcome? What mechanisms do you have for human involvement and at what 

stage of the process?”). 
118 See, e.g., Linda J Skitka et al., Accountability and Automation Bias, 52 INT’L J.  HUMAN-

COMPUTER STUD. 4, 4 (2000). 
119 WRR, supra note 4 at 142.  

https://ico.org.uk/media/2013894/ico-feedback-request-profiling-and-automated-decision-making.pdf
https://ico.org.uk/media/2013894/ico-feedback-request-profiling-and-automated-decision-making.pdf
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 Second, Article 22 requires there to have been a “decision” which 

“produces legal effects, concerning him or her, or significantly affects him 

or her.” There is little clue what a “decision” is in Article 22 beyond the 

brief statement of the GDPR that it “may include a measure” (Recital 71). 

This takes us to two sub-issues. First, is a “decision” what a ML system 

actually produces? ML technologists would argue that the output of an 

algorithmic system is merely something which is then used to make a 

decision, either by another system, or by a human (such as a judge). When 

queried, ML models mostly output a classification or an estimation, 

generally with uncertainty estimates. On their own they are incapable of 

synthesising the estimation and relevant uncertainties into a decision for 

action.120 

 Second, even if we posit that algorithmic “output” and human 

“decision” may be conflated in Article 22 for purposive effect, when does 

an ML "decision" affect a specific individual? What if what the system does 

is classify subject X as 75% more likely than the mean to be part of group 

A, and group A is correlated to an unwelcome characteristic B (poor 

creditworthiness, for example)? Is this a decision “about” X? It is 

interesting that in relation to a "legal" effect the decision must be 

"concerning him or her" but not in relation to a "significant" effect. In the 

paradigmatic domain of credit scoring, there seems no doubt to the ordinary 

person (or lawyer) that there is a decision (by the credit offering company) 

and that it affects an individual data subject (the person seeking credit). But 

in many cases using ML systems, as we see below, this is not so clear. 

1. Article 22 in the Context of “Algorithmic War Stories” 

 Consider two well-known and influential early examples of 

“algorithms gone bad.” In 2013, Latanya Sweeney, a security researcher at 

Harvard University, investigated the delivery of targeted adverts by Google 

AdSense using a sample of racially associated names.121 She found 

statistically significant discrimination in advert delivery based on searches 

of 2,184 racially associated personal names across two websites. First 

names associated predictively with non-white racial origin (such as 

DeShawn, Darnell and Jermaine) generated a far higher percentage of 

adverts associated with or using the word “arrest” when compared to ads 

delivered to “white” first names. On one of the two websites examined, a 

black-identifying name was 25% more likely to get an ad suggestive of an 

arrest record. Sweeney also ruled out knowledge of any criminal record of 

the person to whom the ad was delivered. Acknowledging that it was 

                                                      
120 HEATHER DOUGLAS, SCIENCE, POLICY AND THE VALUE-FREE IDEAL (University of 

Pittsburgh Press 2009). We return to the issue of “decisions” and ML below. 
121 Latanya Sweeney, Discrimination in Online Ad Delivery, 56 COMMUNICATIONS OF THE 

ACM 44, at 44 (2013). 
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beyond the scope of her research to know what was happening in the “inner 

workings of Google AdSense,”122 and whether the apparent bias displayed 

was the fault of society, Google or the advertiser, Sweeney still asserted her 

research raised questions about society’s relationship to racism and the role 

of online advertising services in this context. 

 In an even earlier incident of notoriety in 2004, the Google search 

algorithm(s) placed a site “Jew Watch” at the top of the rankings for many 

people who searched for the word “Jew.” Google (in stark contrast to its 

more recent attitudes)123 refused to manually alter their ratings and claimed 

instead that the preferences of a particular group of searchers had put Jew 

Watch to the top rather than any normative ranking by Google. It was stated 

that “[B]ecause the word “Jew” is often used in an anti-Semitic context, this 

had caused Google’s automated ranking system to rank Jew Watch—

apparently an anti-Semitic web site—number one for the query.”124 In the 

end Google refused to remove the site from the rankings but collective 

effort was encouraged among users to push up the rankings of other non-

offensive sites, and eventually, the site itself disappeared from the Internet. 

 In each of these cases, did a relevant, “legal,” or “significant,” 

decision take place affecting a person—or only a group? Here we have 

some rare examples of a system apparently making a “decision” solely by 

automated processing, so the first hurdle is surmounted, but is the second? 

In the Google AdSense example, was a “decision” taken with particular 

reference to Sweeney? Clearly there was no effect on her legal status (which 

implies changes to public law status such as being classified as a US citizen, 

or private law effects such as having capacity to make a will)125 but did the 

                                                      
122 Sweeney contemplates advertisers providing ‘black sounding names’ themselves for 

targeting, or auto-adjustment of Google’s algorithm based on distribution of ‘hits.’ 
123 Google has rethought its approach to such cases, especially after unfavourable press 

reports. See Samuel Gibbs, Google Alters Search Autocomplete to Remove 'Are Jews Evil' 

Suggestion, THE GUARDIAN (Dec. 5, 2016, 10:00 AM), https://www.theguardian.com/ 

technology/2016/dec/05/google-alters-search-autocomplete-remove-are-jews-evil-

suggestion. Now, a “quality rating” downgrades pages rather than removes them: interesting 

considering issues raised later regarding altering ML models using the “right to be 

forgotten.” See Google Launches New Effort to Flag Upsetting or Offensive Content in 

Search, SEARCHENGINE WATCH (Mar. 14, 2017, 1:00 PM), 

http://searchengineland.com/google-flag-upsetting-offensive-content-271119. 
124 See Google in Controversy Over Top-Ranking for Anti-Jewish Site, SEARCHENGINE 

WATCH (Apr. 24, 2004), https://searchenginewatch.com/sew/news/2065217/google-in-

controversy-over-top-ranking-for-anti-jewish-site.  
125 See Mendoza & Bygrave, supra note 112 at 10 (suggesting that a decision must have a 

“binding effect.” It is hard to see how an advert could have that. On the other hand, art. 22 

clearly applies to “profiling” which as we have seen (see supra note 81) includes in its 

definition in art. 4(4) the evaluation of “personal aspects” of a person including their 

https://www.theguardian.com/%0btechnology/2016/dec/05/google-alters-search-autocomplete-remove-are-jews-evil-suggestion
https://www.theguardian.com/%0btechnology/2016/dec/05/google-alters-search-autocomplete-remove-are-jews-evil-suggestion
https://www.theguardian.com/%0btechnology/2016/dec/05/google-alters-search-autocomplete-remove-are-jews-evil-suggestion
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delivery of the advert significantly affect her as an individual? The most 

obvious takeaway is that a racial group was affected by an assumption of 

above average criminality, and she was part of that group, which although a 

familiar formulation in discrimination laws, takes us to somewhere very 

different from the individual subject-focused rights usually granted by data 

protection and the GDPR. 

 Even if we accept an impact on Sweeney as an individual 

constructed through group membership, was it “significant?” She did after 

all merely have sight of an advert which she was not compelled to click on, 

and which could even have been hidden using an ad blocker. Mendoza and 

Bygrave126 express doubts that targeted advertising will “ordinarily” 

generate significant consequences (though it might if aimed at a child) and 

point to the two examples given by Recital 71 of the GDPR discussing 

automated credit scoring and e-recruitment. Was she significantly affected 

by pervasive racism as exemplified by the advert delivery? This sounds 

more important to be sure but surely responsibility should lie with the 

society that created the racist implications rather than the “decision” taken 

by Google AdSense, or Google alongside the advertiser? Is it relevant that 

almost certainly no human at Google could have known Sweeney would be 

sent this advert, or is that merely another example, as Kohl discusses,127 of 

confusing automation with lack of responsibility? Does it matter that 

Sweeney could have conceivably asked not to be shown this kind of advert 

(though perhaps not in 2013) using Google’s own tools? 

 In the Jew Watch example, it is even harder to say a “decision” was 

made affecting any one individual significantly. Given the complexity of 

the search algorithms involved, dependent not only on variables derived 

from the searcher but also the general search environment, it is very hard to 

predict a particular ranking of sites being shown to a particular user in 

advance. Furthermore, and quite likely given the evidence quoted above, the 

searcher might not themselves be of the class affected.128 

1. Re-enter the “Right to an Explanation”? 

 The ban on automated decision-making in Article 22(1) operates 

only under certain conditions. It does not apply when the data founding the 

decision was lawfully processed on the basis that it was necessary for 

                                                                                                                       
“personal preferences.” This sounds a lot like targeted advertising, though see below on 

whether that decision would be “significant.”). 
126 Mendoza & Bygrave, supra note 112 at 12. 
127 See Kohl, supra note 27. 
128 This compares to European cases of algorithmic defamation, where Google autocomplete 

suggested particular names was falsely associated with reputation-harming terms. Yet there 

the causal connection between algorithm and data subject harm seems more obvious. See 

discussion in Jones, supra note 79. 
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entering a contract, authorized by law or, most crucially, based on explicit 

consent (Article 22(2)).129 In these cases Article 22 does not prevent 

automated decision-making but, instead, “suitable measures to safeguard the 

data subject’s rights” must be put in place, which should include “at least 

the right to obtain human intervention . . . to express [the data subject’s] 

point of view, and to contest the decision.”130  

 Recital 71 then mentions all of the above safeguards but also adds a 

further, explicit “right to an explanation.” Is this therefore another route to a 

“right to an explanation” in Article 22? This seems paradoxical. Article 22 

gives a primary right, i.e. to stop wholly automated decision making. Would 

it give what seems an equally powerful right—to an explanation—in 

circumstances where the primary right is excluded because the data subject 

has already consented to the processing? 

 To complicate matters further, under Article 22(4), solely 

automated decisions based on sensitive personal data are illegal unless 

based on explicit consent or “substantial public interest.” In both cases 

again, the main text requires the implementation of “suitable measures” to 

safeguard the data subject’s rights, but does not list what these include, 

referring the reader back again to Recital 71 for assistance.131 So it may be 

possible to read a “right to an explanation” into these cases as well, and 

indeed given that we are not pointed to Article 22(3) with its contradictory 

list of safeguards, this might indicate that we could rely more heavily on the 

full extent of the Recital 71 list. 

 Does it matter that the “right to an explanation” is only mentioned 

in the recital text not the main article text? Here we encounter a pervasive 

problem in the GDPR in particular, and European legislation in general, 

which is the status of recitals. Recitals, while a part of the text, are assumed 

                                                      
129 GDPR, art. 9(2). Every act of processing personal data in the GDPR requires a lawful 

ground of processing: see above discussion of consent as such a ground in Section II.A.1. 
130 GDPR, art. 22(3) . 
131 Note also that paragraph 2 of recital 71 details a long list of further suggestions to the data 

controller to “ensure fair and transparent processing.” These involve “appropriate 

mathematical or statistical procedures for the profiling, [and]technical and organisational 

measures.” These seem only to be required (if they indeed are) in relation to processing of 

special categories of data (see art 22(4). Interestingly these move in functionality from 

merely fixing errors in functionality, to ensuring security, to “prevents, inter alia, 

discriminatory effects on natural persons on the basis of racial or ethnic origin, political 

opinion, religion or beliefs, trade union membership, genetic or health status or sexual 

orientation” (i.e. the special categories of data). This appears to point to the field of 

discrimination-aware data mining, still nascent in the research community at the time of the 

drafting of the GDPR, and can be seen as a transition from the traditional function of 

individual subject access rights (to ensure accurate and secure processing) to a more 

aspirational function. 
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to be interpretative of the main text rather than creating free standing extra 

obligations.132 In the GDPR however, as a matter of political expediency, 

many issues too controversial for agreement in the main text have been 

kicked into the long grass of the recitals, throwing up problems of just how 

binding they are. Wachter et al. argue that the history of Article 22 in the 

preliminary drafts indicates a deliberate omission of a “right to an 

explanation” from the main text of Article 22, not an accidental or 

ambiguous omission133 which implies the main text omission should rule 

out the “right to an explanation” in the recital. However the use of the 

mandatory “should” in Recital 71 muddies the waters further.134 

 Our view is that these certainly seem shaky foundations on which to 

build a harmonised cross EU right to algorithmic explanation. 

 Thus, returning to the Sweeney Google AdSense case study, we find 

several further issues. Firstly, if we accept for argument’s sake that a 

“decision” was made regarding her which had “significant effects,” then 

was it “based on a “special” category of data135 (in this case, race)? If so, it 

worth noting that Article 9(2) of the GDPR probably required that she had 

given that data to Google by explicit consent. If that was so, she could 

potentially claim under Article 22(4) the “right to an explanation” of how 

the advertising delivery algorithm had worked. 

 But was the decision based on race? Was it not more likely instead 

based on a multiplicity of “ordinary” information that Sweeney provided as 

signals to the ranking algorithm, plus signals from the rest of the 

“algorithmic group,”136 which together might statistically proxy race? 

Perhaps it was based on information the advertiser provided to Google—

trigger names or keywords, for example? Ironically it seems like we are 

stuck in a Catch 22–like situation: to operationalise this ‘right to 

explanation,’ you need to know what its relevant input variables were, 

which itself may require access to something resembling an algorithmic 

explanation. 

                                                      
132 See Tadas Klimas & Jurate Vaiciukaite, The Law of Recitals in European Community 

Legislation, 15 ILSA J. OF INT’L AND COMP. LAW 1 61, 92 (2008). Recitals in EU law can be 

perplexing and is at core politicised. They lack “independent legal value, but they can 

expand an ambiguous provision's scope. They cannot, however, restrict an unambiguous 

provision's scope, but they can be used to determine the nature of a provision, and this can 

have a restrictive effect.” 
133 Wachter et al., supra note 11, at 9–11. 
134 Interestingly the French text of recital 71 appears to replicate the use of “should” (devrait) 

while the German text is differently constructed so that it does not. 
135 GDPR, art. 9. 
136 See supra, Section I.B.2 and Mittelstadt et al., supra note 25. 
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 Finally looking at the primary remedy Article 22 provides, a 

“human in the loop,” how valuable is it truly? Certainly, for issues of 

abusive or upsetting content thrown up by search or advertising algorithms, 

as in the Sweeney case, pretty useful: this is why Google and Facebook are 

both currently hiring many workers to manually trawl through their outputs 

using both real and hypothetical queries. In such circumstances, an intuitive 

response is likely to be correct and this is something machines do badly. 

But typically,137 the types of ML algorithms that are highly 

multidimensional make “decisions” with which humans will struggle as 

much as, if not more than, machines: simply because of human inability to 

handle such an array of operational factors. In some kinds of cases—for 

example, the much discussed “trolley problem”138—humans are as likely to 

make spur of the moment decisions as reasoned ones. For these reasons, 

Kamarinou et al. have suggested that machines may in fact soon be able to 

overcome certain “key limitations of human decision-makers and provide us 

with decisions that are demonstrably fair.”139 In such an event they 

recommend it might be better, not to have the “appeal” from machine to 

human which Article 22 implies, but to have the reverse.140 

B. GDPR, Article 15: A Way Forward? 

 A right which might be more usefully employed to get a transparent 

explanation of a ML system is not part of Article 22 but rather in Article 15, 

a provision not specially related to automated decision making. Article 15 

provides that the data subject shall have the right to confirm whether or not 

personal data relating to him or her are being processed by a controller and 

if that is the case, access to that personal data and the “following 

information.” This includes in the context of “automated decision making . . 

. referred to in Article 22(1) and (4),” access to “meaningful information 

                                                      
137 See infra Section III.B. 
138 The trolley problem is an ethical thought experiment often applied to autonomous 

vehicles. Imagine a runaway train careering towards a group of people unable to avoid it. A 

bystander could flip the lever to send to train to fewer, equally helpless people—but in doing 

so would determine who lives and dies. What should they do? This is interesting, but we note 

here that when faced with stressful situations with many factors in the real world, the 

challenge is both psychological and ethical. See generally PHILIPPA FOOT, THE PROBLEM OF 

ABORTION AND THE DOCTRINE OF THE DOUBLE EFFECT IN VIRTUES AND VICES (Basil 

Blackwell, 1978). 
139 See Calders & Žliobaitė, supra note 33; see also FAIRNESS, ACCOUNTABILITY, AND 

TRANSPARENCY IN MACHINE LEARNING, WWW.FATML.ORG. 
140 Dimitra Kamarinou et al., Machine Learning with Personal Data, QUEEN MARY SCHOOL 

OF LAW LEGAL STUDIES RESEARCH PAPER NO. 247/2016, https://ssrn.com/abstract=2865811. 
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about the logic involved, as well as the significance and the envisaged 

consequences of such processing.”141 

 As noted above, this version of the “right to an explanation” is not 

new, but has existed in the DPD since 1995.142 While this may seem a more 

straightforward way to get to such a right than via Article 22, it has its own 

problems. 

 A first issue is timing. Wachter et al. suggest that Article 15 

“subject access rights” should be contrasted with the “information rights” of 

the GDPR. Articles 13 and 14. Articles 13 and 14 require that information 

of various kinds should be made available to the data subject when data are 

collected from either her (Article 13), or from another party (Article 14). 

This information is reminiscent of that required to inform consumers before 

entering, say, distance selling contracts. In contrast, Article 15 refers to 

rights of “access” to data held by a data controller. This seems to imply data 

has been collected and processing has begun or taken place. From this 

Wachter et al. argue that the information rights under Articles 13 or 14 can 

only refer to the time before (ex ante) the subject’s data is input to the 

model of the system. As such the only information that can be provided then 

is information about the general “system functionality” of the algorithm, i.e. 

“the logic, significance, envisaged consequences and general functionality 

of an automated decision-making system.”143 

 In the case of Article 15 access rights, however, it seems access 

comes after processing. Therefore ex post tailored knowledge about specific 

decisions made in relation to a particular data subject can be provided, i.e. 

“the logic or rationale, reasons, and individual circumstances of a specific 

automated decision.” 

 This division seems moderately sensible and seems to promise a 

right to an explanation ex post, despite some textual quibbles.144 However, 

                                                      
141 GDPR, art. 15(1)(h)). 
142 DPD, art. 12(a). 
143 Wachter et al., supra note 11 at 78. 
144 Wachter et al., supra note 11 argue that the art. 15(h) ex post right still seems dubious 

given that it includes the right to the “envisaged consequences of such processing” [italics 

added], which, particularly when considered alongside the German version of the text, seems 

"future oriented.” However recital 63, which annotates art. 15, refers merely to the 

“consequences of processing” not the “envisaged” consequences. Is this an accidental or 

inconsequential small textual difference, or is it enough to restrict the apparent scope of art. 

15(1)(h) to “system logic”? As we have already noted, the text of main article normally takes 

precedence over that of recitals. However it could be argued that EC laws should be 

interpreted technologically and restricting art. 15(h) to ex ante explanations seems against 

the purpose indicated by the recital.  
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whether such an explanation can be “meaningful” in substance is another 

story as will be discussed below in section III. 

 Secondly, Article 15(h) has a carve out in the recitals, for the 

protection of trade secrets and IP. “That right should not adversely affect 

the rights or freedoms of others, including trade secrets or intellectual 

property and in particular the copyright protecting the software.”145 This 

probably explains the lack of use of this right throughout the EU, as a 

similar defence was included in the DPD. Recital 63 of the GDPR does 

progress things a little given it now states that this should not justify “a 

refusal to provide all information to the data subject.”146 Several other 

factors also give us hope for overcoming this significant barrier. First, as we 

discuss below,147 some explanation systems which build a model-of-a-

model need not necessarily infringe IP rights. Secondly, the EU Trade 

Secrets Directive, the provisions of which must be adopted by member 

states by June 2018, specifically notes in Recital 35 that the directive 

“should not affect the rights and obligations laid down” in the DPD,148 

going on to specifically name the right of access—although we caution, as 

previously, that the status of recitals is murky at best. 

 Finally, it has been suggested that the text of Article 15(h)’s “right 

to meaningful information” is just as restricted as any remedy derived from 

Article 22, given it refers to “the existence of automated decision-making, 

including profiling, referred to in Article 22(1) and (4).”149 We disagree. It 

seems quite possible to view the reference to Article 22 as merely 

instantiating one form of automated decision making, not excluding others, 

which are e.g., achieved partially but not solely by automation. 

Furthermore, Article 15(h) says the right to “meaningful information” refers 

“at least” to these types of automated decision making. This seems to 

logically imply a wider scope. Given the dearth of European case law on the 

matter, it is hard to say this was a settled matter in the DPD. 

 Next, drawing on literatures from computer science and elsewhere, 

we turn to some of the practical opportunities and challenges implementing 

any similar right to “meaningful information about the logic involved” to 

that Article 15 potentially provides. 

                                                      
145 GDPR, recital 63. 
146 GDPR, recital 63 [emphasis added]. 
147 See infra Section III.C.2. 
148 Recital 35, Directive (EU) 2016/943 of the European Parliament and of the Council of 8 

June 2016 on the protection of undisclosed know-how and business information (trade 

secrets) against their unlawful acquisition, use and disclosure, 2016 O.J. (L 157) 1. 
149 GDPR, art. 15(2)(h). 
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III. IMPLEMENTING A RIGHT TO AN EXPLANATION 

 Explanations and the demand for them in machine learning systems 

are not new, although emphasis has more recently turned to explanations for 

the decision-subject, rather than the user of the decision-support tool. 

Computer scientists have been long concerned that neural networks “afford 

an end user little or no insight into either the process by which they have 

arrived at a given result,”150 and that “people should be able to scrutinise 

their user model and to determine what is being personalised and how.”151 

ML explanations are not just good for decision subjects but for system 

designers too. Such systems often do not work perfectly at the time of 

deployment. Given their probabilistic nature, we must expect them to fail in 

some cases. A system which has predictive accuracy of 90% on unseen data 

used to test it, would, in a simple case, be expected to fail at least 10% of 

the time on new unseen data. In the real world, this is usually worsened by 

the changing nature of tasks, the world and the phenomena ML systems are 

often expected to accurately model.152 Explanations can be used to help 

assess the reliability of systems: for example, assessing if the correlations 

that are being used are spurious, non-generalisable, or simply out-of-date. 

These systems of feedback can help to both ensure system performance and 

support varying notions of quality.153 

 Here, our focus is however mainly on decision subjects (data 

subjects, in data protection parlance), who, as discussed above, might 

display an array of overlapping reasons for wanting an explanation. Below 

we discuss what types of explanation are possible (and what they might 

substantially provide to decision-subjects), and consider in what situations 

and for who an explanation of an ML system may be difficult, limited or 

impossible. Finally, we suggest some positive avenues for explanation 

facilities including (a) explanations aimed at helping users to form better 

mental maps of how algorithms work, and thus to develop better trusted 

relationships with them; and (b) pedagogical (model-of-model) rather than 

decompositional (i.e., explain by taking apart) explanations as a way to 

avoid perceived IP and trade secrets restraints on ML algorithms. 

                                                      
150 Alan B. Tickle et al., The Truth Will Come to Light: Directions and Challenges in 

Extracting the Knowledge Embedded Within Trained Artificial Neural Networks, 9 IEEE 

TRANSACTIONS ON NEURAL NETWORKS 1057, 1057 (1998). See also Zelznikow and Stranieri, 

supra note 19. 
151 Kay, supra note 8 at 18. 
152 Joao Gama et al., A Survey on Concept Drift Adaptation, 1 ACM COMPUTING SURVEYS 1 

(2013). 
153 In the ML field of recommender systems, this reason for explanation has been discussed 

under the term ‘scrutiny’, and is considered a hallmark of good user design. See Nava 

Tintarev & Judith Masthoff, Explaining Recommendations: Design and Evaluation, in 

RECOMMENDER SYSTEMS HANDBOOK (Francesco Ricci et al. eds., Springer 2015). 
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A. Types of Explanation: Model-Centric Versus Subject-Centric 

Explanations 

  We can broadly discern two categories of explanations that might 

be feasible. The first centers on the model itself. In this, we include logics 

that might be generally applicable to many decision subjects as well as 

motivations, context, variables, and performance behind the model and the 

decision process. The second concerns particular predictions of interest, 

which may or may not lead to ‘decisions.’ Here, even in complex models, 

some information can often be provided about ‘why’ a particular prediction 

was made—although this information has its limits. 

1. Model-Centric Explanations (MCEs) 

 Model-centric explanations (MCEs) provide broad information 

about a ML model which is not decision or input-data specific. Computer 

scientists would refer to some aspects of this explanation as ‘global’, as it 

seeks to encapsulate the whole model—although we deliberately avoid this 

terminology here, as it is likely to cause more confusion across disciplines 

than clarity. We extend the focus from the computational behaviour of a 

model to consider the motivations and context behind this model in action. 

As Singh et al. note, machine learning is part of a process, and the 

dimensions of ‘explanation’ that relate to the broader context are important 

and should not be ignored.154 MCEs provide one set of information to 

everyone, but there are limitations on how detailed, practical and relevant—

and thus, how “meaningful”155—such an explanation can be alone. 

 Information provided with an MCE approach could include: 

• setup information: the intentions behind the modelling 

process, the family of model (neural network, random 

forest, ensemble combination), the parameters used to 

further specify it before training; 

• training metadata: summary statistics and qualitative 

descriptions of the input data used to train the model, 

the provenance of such data, and the output data or 

classifications being predicted in this model; 

• performance metrics: information on the model’s 

predictive skill on unseen data, including breakdowns 

such as success on specific salient subcategories of 

data; 

                                                      
154 Jatinder Singh et al., Responsibility & Machine Learning: Part of a Process (Oct. 27, 

2016), https://ssrn.com/abstract=2860048 
155 GDPR art. 15(h). 
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• estimated global logics: these are simplified, averaged, 

human-understandable forms of how inputs are turned 

into outputs, which by definition are not complete, else 

you could use them instead of the complex model to 

achieve the same results. These might include variable 

importance scores, rule extraction results, or 

sensitivity analysis; 

• process information: how the model was tested, 

trained, or screened for undesirable properties. 

 Some work around algorithmic decision-making concerned with the 

consistency, or procedural regularity of the decisions being undertaken falls 

into this category.156 Information about the logics, which might be provided 

in the form of cryptographic assurances,157 might help ensure consistency 

against an adversary intent on switching algorithmic systems behind-the-

scenes, or making arbitrary decisions under the guise of a regular automated 

system. However, for much “meaningful information” for individual data 

subjects, we are probably going to need to look beyond MCEs alone. 

2. Subject-Centric Explanations (SCEs) 

 Subject-centric explanations (SCEs) are built on and around the 

basis of an input record. They can only be provided in reference to a given 

query—which could be real or fictitious or exploratory. As a result (and 

somewhat contrary to the approach of Wachter et al.), they are theoretically 

possible to give before or after a “decision” as discussed in the sense of data 

protection, if access to the model is provided. Computer scientists would 

refer to this type of explanation as ‘local’, as the explanation is restricted to 

the region surrounding a set of data. Complex models cannot be explained 

effectively in their entirety—which is why they have rapidly become known 

as ‘black boxes’ in the media. Despite this, only considering certain relevant 

parts of them at any one time might allow for more useful explanations. 

  To better understand this, we introduce a concept from computer 

science: the “curse of dimensionality.” Data can be thought of 

geometrically: with two numeric variables, you can display all data on a 

two-dimensional scatter plot. With three variables, a three-dimensional one. 

Conceptually, you can scale this up to however many variables you have in 

your data. As you increase the dimensions (i.e., the number of variables) the 

number of ways that all potential values of them can be combined grows 

                                                      
156 Kroll et al., supra note 103. 
157 Only limited prior work has demonstrated the feasibility of verifying certain types of ML 

systems with cryptographic methods for any purpose. See George Danezis et al., Private 

Client-Side Profiling with Random Forests and Hidden Markov Models, PRIVACY 

ENHANCING TECHNOLOGIES (Springer 2012). 
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exponentially. It is this dynamic which makes the data especially complex 

to comprehend. Layered onto this, models which mix arbitrary 

combinations of variables in multiple different ways in parallel, 

interdependent ways, means that the complexity of the data by its extent is 

compounded by the complexity of the procedures used to analyse it. 

Explaining everything in one go, as MCEs try to, quickly becomes 

unwieldy. 

 

Figure 1 Subject-centred explanations in practice. The dotted line 

represents a machine learned decision boundary, where the ticks are 

classified one way, and the crosses another. This is a highly simplified, 

illustrative diagram that consciously omits uncertainty, or points 

misclassified during training in order to illustrate a broader point. 

 Despite this, explanations are possible if we zoom in to the part of 

the space in and around a vector of variables that interest us.  By taking only 

a slice of the system, it can become considerably more interpretable. Take 

the simple (and simplified) example above in Figure 1. The dotted line 

represents a machine learned decision boundary over two input variables. 

Using this boundary, we can classify points into ticks and crosses, which 

might, for example, be acceptance of an application for a financial product. 

Giving out the whole model in a useful form will be challenging, especially 

since usually there are more than the two or three dimensions we can grasp 

visually with relative ease. Yet zooming in to a particular point: such as 

why were ?-1 and ?-2 rejected, might be easier to explain. ?-1 is easier in 

many ways—it seems that they have to just increase variable x to switch the 

decision, and this is helped a little if they also increase variable y at the 

same time, and hindered if they don’t. Yet ?-2 is slightly trickier. They 

could increase or reduce variable y, or increase or reduce variable x. This 
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seems pretty unsatisfactory—the individual is likely to wonder (in an MCE 

fashion) why the model was shaped to have these odd ‘pockets’ they could 

be stuck in, anyway. What is clear is that models can be explained in terms 

of one or two things an individual could change. In other cases, they can 

only be framed in terms of many variables, which change in inconsistent 

and non-linear ways. 

 This is an active field of research which we believe needs more 

consideration from a legal perspective. Here, we distinguish between four 

main types of SCEs: 

• Sensitivity-based subject-centric explanations: what 

changes in my input data would have made my 

decision turn out otherwise?158 (Where do I have to 

move in Figure 1 to be classified differently?) 

• Case-based subject-centric explanations: which data 

records used to train this model are most similar to 

mine?159 (Who are the ticks and crosses nearest to 

me?) 

• Demographic-based subject-centric explanations: what 

are the characteristics of individuals who received 

similar treatment to me?160 (Who, more broadly, was 

similarly classified?) 

• Performance-based subject-centric explanations: how 

confident are you of my outcome? Are individuals 

similar to me classified erroneously more or less often 

than average? (How many ticks and crosses nearer me 

were misclassified during training? Am I a difficult 

case?) 

 Unlike MCEs, SCEs are less suited for discussing aspects such as 

procedural regularity. Instead, they are more about building a relationship 

between these tools and their users or decision subjects that can provide 

“meaningful” explanation. In this sense, SCEs are considerably more linked 

                                                      
158 Wojciech Samek et al., Evaluating the Visualization of What a Deep Neural Network Has 

Learned, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1, 7 (2016); 

Marco Tulio Ribeiro et al. “Why Should I Trust You?”: Explaining the Predictions of Any 

Classifier, PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON 

KNOWLEDGE DISCOVERY AND DATA MINING 1135–44 (2016). 
159 DONAL DOYLE ET AL., A REVIEW OF EXPLANATION AND EXPLANATION IN CASE-BASED 

REASONING (Department of Computer Science, Trinity College, Dublin, 2003). 
160 Liliana Adrissono et al., Intrigue: Personalized Recommendation of Tourist Attractions 

for Desktop and Handheld Devices, 17 APPLIED ARTIFICIAL INTELLIGENCE 687, 696 (2003); 

Tintarev & Masthoff, supra note 153. 
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to communities of interface design and human-computer interaction than to 

communities concerned with engineering issues, such as those building the 

cryptographic assurances that a system did what it was expected to, 

discussed above. 

B. Barriers to Explanations 

 MCEs and SCEs are far from perfect solutions, let alone easy ones 

to operationalize in many cases. Here, we present an in-exhaustive overview 

of two issues in this field: one that relates to the domain of decision-

making, and one that relates to the interaction between who needs an 

explanation and how solid that explanation is likely to be for them. 

1. Domain: Some Tasks Are Easier to ‘Explain’ Than Others 

 Meaningful explanations of ML do not work well for every task. As 

we began to discuss above, the tasks they work well on often have only a 

few input variables that are combined in relatively straightforward ways, 

such as increasing or decreasing relationships. Systems with more variables 

will typically perform better than simpler systems, so we may end up with a 

trade-off between performance and explicability. 

 One way to deal with this is if different input variables can be 

combined in a clear and visual way. Images are a good example of the 

latter: for a ML system, and especially since the rise in popularity of deep 

learning, colour channels in pixels are treated as individual inputs. While 

we struggle to read a table full of numbers at a glance, when an image is 

meaningful, the brain can process thousands of pixels at once in relation to 

one another. Similarly, words hold a lot of information, and a visual 

displaying 'which words in a cover letter would have got me the job, were 

they different' is also meaningful. 

 Even visualisation cannot deal with the basic problem that in some 

systems there is no theory correlating input variables to things humans 

understand as causal or even as “things.” In ML systems, unlike simulation 

models, the features that are being fed in might lack any convenient or clear 

human interpretation in the first place, even if we are creative about it. 

LinkedIn, for example, claims to have over 100,000 variables held on every 

user that feed into ML modelling.161 Many of these will not be clear 

variables like “age,” but more abstract ways you interact with the webpage, 

such as how long you take to click, the time you spend reading, or even text 

                                                      
161 KUN LIU, DEVELOPING WEB-SCALE ML AT LINKEDIN—FROM SOUP TO NUTS, PRESENTED 

AT THE NIPS SOFTWARE ENGINEERING FOR MACHINE LEARNING (Dec. 13, 2014). 
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you type in a text box but later delete without posting.162 These variables 

may well hold predictive signals about individual characteristics or 

behaviours, but we lack compelling ways to clearly display these 

explanations for meaningful human interpretation. In these cases, we must 

ask—what could a satisfactory explanation even look like for decisions 

based on this data? Do we even possess the mental vocabulary of categories 

and concepts to grasp the important aspects in the data? 

2. Users: Explanations Might Fail Those Seeking Them Most 

 It is worth considering the typical data subject that might seek an 

explanation of a ML-assisted decision. We might expect them to have 

received outputs they felt were anomalous. They might feel misclassified or 

poorly represented by classification systems—hardly uncommon, as 

literatures on the problematic and value-laden nature of statistical 

classification note.163 While some might wholesale reject the schema of 

classifications used, others might want to know if such a decision was made 

soundly. For these decision subjects, an explanation might help. 

 However, it also seems reasonable to assume that individuals with 

outputs they felt were anomalous are more likely than average to have 

provided inputs that can genuinely be considered statistically anomalous 

compared to the data an algorithmic system was trained on. To a ML 

system, they are “weirdos.” 

 Researchers have long recognised some outcomes are more difficult 

to predict than others for ML systems, given their relative individual 

complexity.164 Given the many variables being used for each record, 

spotting these individuals cannot be done with methods such as 

visualisation, which we often use to detect outliers. Most of the phenomena 

we are interested in modelling, such as burglary, child abuse, terrorism or 

loan defaults, are rare, at least in comparison to their non-occurrence, and 

this also makes prediction harder.165 ML practitioners expect this kind of 

dynamic within the data they use—the common technique of boosting relies 

on learning more from cases previously misclassified. 

                                                      
162 Sauvik Das & Adam Kramer, Self-Censorship on Facebook, PROCEEDINGS OF THE 

SEVENTH INTERNATIONAL AAAI CONFERENCE ON WEBLOGS AND SOCIAL MEDIA 120, 120 

(2013). 
163 JAMES C. SCOTT, SEEING LIKE A STATE (Yale University Press 1998); SALLY ENGLE 

MERRY, THE SEDUCTIONS OF QUANTIFICATION (University of Chicago Press 2016).  
164 Gary M. Weiss, Mining with Rare Cases, in DATA MINING AND KNOWLEDGE DISCOVERY 

HANDBOOK, 747–57 (Oded Maimon & Lior Rokach eds., Springer 2009). 
165 Taeho Jo & Nathalie Japkowicz, Class Imbalances Versus Small Disjuncts, 6 ACM 

SIGKDD EXPLORATIONS NEWSLETTER 40 (2004). 
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 Why might this challenge meaningful explanations? SCEs 

practically focus on taking the model you have, selecting a certain region of 

it, and modelling it in a simpler and more interpretable way. This 

simplification necessarily discards the complex outlier cases, just as you 

might do when you simplify a scatterplot into a smooth trend-line or a ‘line 

of best fit.’ Optimising an explanation system for human interpretability 

necessarily means diluting predictive performance to capture only the main 

logics of a system: if a more interpretable system with exactly the same 

predictive performance existed, why use the more opaque one? 

Traditionally, this has been described as the “fidelity” of an explanation 

facility for a machine learning system: how well does it mimic the 

behaviour of the system it is trying to explain?166 The more pressing, related 

question is, are the cases that an interpretable model can no longer predict 

simply distributed at random, or are they correlated with those we might 

believe to have a higher propensity to request a right to explanation? We 

lack empirical research in this area. If the users of complex ML systems 

who seek explanations are likely to be these “rare birds,” then it is worrying 

that they are the most likely to be failed. 

B. Opportunities for Better Explanations 

 Better explanations are possible, although it may involve rethinking 

how we make and use them. We highlight two promising avenues. The first 

centers on allowing users to interactively explore algorithmic systems, 

which can enable individuals to develop good and trustworthy mental 

models of the systems they use and are subject to. The second rests on 

another insight—you do not have to have access to the innards of a model to 

attempt to explain it, but can instead wrap a simpler model around it and use 

that as the explanation facility. 

1. Exploring With Explanations 

 Above we introduced the idea of model-centric (MCEs) vs subject-

centric (SCEs) explanations. Which are best for helping users understand 

complex ML systems? The best explanations of complex systems seem to 

be “exploratory,” using subject-centric inputs. Experimental tests have 

found that interfaces that provided SCEs rather than MCEs appeared far 

more effective at helping users complete tasks, even where the experiment 

was constructed so that unusually, the same amount of information was 

provided by both.167 For users, it seems that when done well, SCEs are more 

appealing, convenient and compelling. Here, explanation facilities might 

                                                      
166 Tickle et al., supra note 150, at 1058. 
167 Dianne C. Berry & Donald E. Broadbent, Explanation and Verbalization in a Computer-

Assisted Search Task, Q.J. EXPERIMENTAL PSYCHOL. SEC. A 585, 596 (1987). 
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allow decision subjects to build more effective and relevant mental models, 

build justified trust and work better with algorithmic systems.168 

 Drawing on the literature on human–computer interaction (HCI), 

SCEs can be thought of as “seams” in the design of a ML system.169 

Seamless design hides algorithmic structures, providing certain kinds of 

effortlessness and invisibility. This promotes an acceptance of technology 

based on its effect: the idea that when a machine runs efficiently and 

appears to settle matters of fact, attention is often drawn away from its 

internal complexity to focus only on the inputs and outputs.170 Yet 

“seamful” algorithmic systems, where individuals have points in the 

designed systems to question, explore and get to know them, help build 

important, albeit partial, mental models that allow individuals to better 

adapt their behaviour and negotiate with their environments.171 By 

introducing these “seams” of explanation, it has been demonstrated that 

even new users can quickly build mental models of ML systems to the level 

of those with seasoned experience.172 “Seamful” systems might help restore 

what Mireille Hildebrandt terms “double contingency”—the mutual ability 

to anticipate, or “counter-profile” how an agent is being “read” by another, 

so she can change her own actions in response.173 

 Some SCEs already let individuals hypothetically explore the logics 

happening around their own data points. Tools already exist to let you “try 

out” what your credit score might be online, including through filling a 

questionnaire, or signing into these using your data profile (for example, by 

authorising a ‘soft’ check on your credit file, or potentially one day, by 

                                                      
168 Perel and Elkin-Cohen describe this as “black box tinkering” and are positive about it for 

empowering users in the field of algorithmic copyright enforcement. See Maayan Perel 

(Filmar) & Niva Elkin-Koren, Black Box Tinkering: Beyond Transparency in Algorithmic 

Enforcement, FLORIDA LAW REVIEW (forthcoming 2017). Some authors suggest facilities 

help acceptance of decisions. See Henriette Cramer et al., The Effects of Transparency on 

Trust in and Acceptance of a Content-Based Art Recommender, 18 USER MODELING AND 

USER-ADAPTED INTERACTION 455 (2008); while others consider trust building overall. See 

contra A Busone et al., The Role of Explanations on Trust and Reliance in Clinical Decision 

Support Systems, in ICHI ’15, 160–169 (2015). 
169 Matthew Chalmers & Ian McColl, Seamful and Seamless Design in Ubiquitous 

Computing, in WORKSHOP AT THE CROSSROADS: THE INTERACTION OF HCI AND SYSTEMS 

ISSUES IN UBICOMP (2003). 
170 See BRUNO LATOUR, PANDORA’S HOPE: ESSAYS ON THE REALITY OF SCIENCE STUDIES 304 

(Harvard University Press 1999). 
171 Kevin Hamilton et al., A Path to Understanding the Effects of Algorithm Awareness, CHI 

’14 633 (2014). 
172 Motahhare Eslami et al., First I “Like” It, Then I Hide It: Folk Theories of Social Feeds, 

CHI’ 16 (2016). 
173 Hildebrandt, supra note 59. 
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giving access to your social media API). More advanced approaches might 

let a data subject see how the system might make decisions concerning 

other users, thus taking the user out of their own “filter bubbles.” 

 Unfortunately, it will be easier to build SCEs that let you explore 

the logics around yourself rather than around others, because simulating the 

inputs of others convincingly is hard. Some researchers have attempted to 

‘reverse engineer’ algorithmic systems online in order to study phenomena 

such as price discrimination by simulating the profiles of diverse 

individuals while browsing.174 However, presenting valid hypothetical 

subjects other than yourself to many of these systems is becoming 

increasingly difficult in an era of personalisation. British intelligence 

services have noted the challenge in providing data such as “a long, false 

trail of location services on a mobile phone that adds up with an 

individual’s fake back-story,” with the former director of operations for 

MI6 noting that “the days in which intelligence officers could plausibly 

adopt different identities and personas are pretty much coming to an 

end.”175 Individuals everywhere will find it harder to “fake” a new persona 

without changing their lifestyle, friends etc., in these days of the “digital 

exhaust.” 

 A problem frequently raised with this kind of repeated querying of 

ML systems to establish a “mental model,” but one that we believe to be 

overstated, is that such querying might be used to “game the system.” In 

many cases, this is more unlikely or less consequential than often assumed. 

In private sector systems such as targeted advertising deriving from social 

media information, users anecdotally do often try to “game” or self-

optimize systems with false data such as birthdates or locations. Yet in 

public sector cases, such as ML sentencing and parole systems, it seems 

unlikely that gaming will be a large problem. As the criminological 

literature has noted, any evidence that the severity of sentencing deters 

crime is patchy at best.176 If this is true then it seems unlikely that prisoners 

will change their characteristics just to attempt to game a recidivism 

algorithm that will not even be used until after they have been apprehended. 

Perhaps within prison, individuals might seek to ‘game’ an algorithm used 

during parole, by behaving well, or taking specified courses, for example. 

Yet for this to be gaming, we would need to assume that the act of taking 

                                                      
174 Aniko Hannak et al., Measuring Price Discrimination and Steering on E-Commerce Web 

Sites, in PROCEEDINGS OF THE 2014 CONFERENCE ON INTERNET MEASUREMENT CONFERENCE 

(2014). 
175 Sam Jones, The Spy Who Liked Me: Britain’s Changing Secret Service, FINANCIAL TIMES 

(Sep. 29, 2016), https://www.ft.com/content/b239dc22-855c-11e6-a29c-6e7d9515ad15. 
176 See, e.g., Daniel S. Nagin, Deterrence in the Twenty-First Century, 42 CRIME AND JUSTICE 

199, 201 (2013). 
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these courses, or behaving well, would not be useful or transformative in 

and of itself. 

 For important decisions, we might question if a system that “works” 

but can so easily be gamed is not a system which is already too fragilely 

reliant on obfuscation to achieve its policy goals. If all that is preventing 

misuse is ‘keeping the lid’ on the logic, then it is not a great stretch to 

assume some individuals or organizations, likely assisted by money and 

power, have already pried the lid open further than others. In particular, 

researchers have demonstrated that with significant financial resources, 

there is a feasibility of “model stealing” i.e. reverse engineering models 

such as those Google and Amazon offer as-a-service via APIs.177 It might 

also be questioned if a system is only based on “entrenched” factors that are 

costly or impossible to change or hide (e.g. race), is this really a fair 

system?178 

2. Explaining Black Boxes Without Opening Them 

 As we have seen, the way that ML systems optimize for 

performance usually comes at the expense of internal interpretability. Since 

early research into "expert systems" in the late 80s onwards, there has been 

awareness that a mere trace of the “logic” of how an automated system 

transformed an input into an output was not "meaningful" to a human, let 

alone to a non-expert. Since then researchers have generally seen 

explanation as an entirely separate optimization challenge—decoupling 

algorithmic reasoning from algorithmic explanation.179 

 There are two main styles of decoupled algorithmic explanations.180 

They differ from MCEs and SCES, which concern the focus of explanation, 

to consider the way in which that explanation (MCE or SCE) is decided. 

The first type is the decompositional explanation, which attempts to open 

the black box, and understand how the structures within, such as the 

weights, neurons, decision trees and architecture, can be used to shed light 

on the patterns that they encode. This requires access to the bulk of the 

model structure itself.  Some types of machine learning, like regression, are 

decomposable by design, and commonly used to explain phenomena in 

social sciences. Others can be made more decomposable with relatively 

little effort—random forest models can be trained to also produce “variable 

                                                      
177 Florian Tramèr et al., Stealing Machine Learning Models via Prediction APIs, in USENIX 

SECURITY SYMPOSIUM, AUSTIN, TX, USA, AUGUST 11 2016 (2016).  
178 On the danger of inequalities and gaming, see generally Jane Bambauer & Tal Zarsky, 

The Algorithm Game [draft manuscript, on file with authors]. 
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al. talk about of merely dumping source code, inputs and outputs (supra note 103). 
180 Combinations are also possible. See Tickle et al., supra note 150. 
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importance scores” alongside the model.181 Decomposing others, 

particularly when the innards are complex as they are in deep learning 

systems, requires extra methods—a hot research area.182 

 On the other end of the spectrum, pedagogical systems, also 

referred to as model agnostic systems, do not even need to open the black 

box. They can get the information they need by simply querying it, like an 

oracle.183 Pedagogical systems have the great advantage of demanding a 

much lower level of model access and are thus less likely to run into the IP 

or trade secrecy barriers embedded in Article 15(h) (see section II.B above). 

Indeed, for firms that provide remote access to querying their models—for 

example, through an API—it might be technically possible to build 

pedagogical explanations even if the firm does not directly condone it. 

Furthermore, pedagogical systems cannot easily be reverse engineered to 

construct a model of equal performance, as some might fear. In particular, 

the subject-specific nature of the vast majority of pedagogical explanation 

systems means that even if an algorithm could be siphoned and rebuilt 

elsewhere, that reconstruction would be limited to individuals similar to 

those to which the explanations related. More critically, if a more 

explainable system was similarly accurate, why use a pedagogical system in 

the first place? Statistical controls also exist that might be fruitfully 

repurposed to prevent “over-explaining” to any one person or organisation, 

notably in the area of “differential privacy” guarantees.184 

IV. SEEKING BETTER REMEDIES THAN EXPLANATIONS WITH THE 

GDPR 

A. Avoiding a “Transparency Fallacy” 

 Above, we have seen a large number of difficulties, as well as some 

opportunities, around providing meaningful explanations in ML systems.  

This leads us in this section to stop and consider if “the game is worth the 

candle”: if meaningful information about the logic of ML is so hard to 

provide, how sure are we that explanations are actually an effective remedy 

and if so, to achieve what? In section I.B.3, we already began to explore a 

little sceptically the notion of transparency as a remedy, drawing on 
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historical experience from the financial crash and from freedom of 

information laws. A useful warning can also be taken about so-called 

remedies or safeguards that may simply not work by considering the history 

of consent in information privacy. 

 Privacy scholars are already very familiar with the notion that 

consent, often regarded by lay audiences as the primary safeguard for 

control of personal data, has in the online world become a mere husk of its 

former self, often described as “meaningless” or “illusory.”185 Why is this? 

Online consent is most often obtained by displaying a link to a privacy 

policy at the time of entry to or registration with a site, app or network, and 

asking the user to accede to these terms and conditions by ticking a box. As 

there is no chance to negotiate and little evidence that the majority of users 

either read, understand or truly consider these conditions, it is hard to see 

how this consent is either “freely given, specific, informed and 

unambiguous” despite these being conditions for valid consent under the 

GDPR.186 Consent as an online institution in fact arguably no longer 

provides any semblance of informational self- determination but merely 

legitimises the extraction of personal data from unwitting data subjects. As 

behavioural economics have taught us, many users have a faulty 

understanding of the privacy risks involved, due to asymmetric access to 

information and hard-wired human failure to properly assess future, 

intangible and contingent risks. Even in the real rather than online world, 

consent is manipulated by those, such as employers or insurers, who can 

exert pressures that render “free” consent imaginary. To posit in a rather 

utopian way that consent can be given once to a data controller in a free and 

informed way, will require constant vigilance as privacy policies and 

practices change frequently. It is unreasonable and increasingly 

unsustainable to abide by the liberal paradigm and expect ordinary users to 

manage their own privacy via consent in the world of online dependence 

                                                      
185 See discussion and references supra Section I.B.2 and supra note 54. 
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that service (Article 7(4)). It is submitted however that these changes are not major, and that 
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(Google, Facebook, Amazon and others) emanating from non-EU origins with non-EU law 

norms. The Common Statement of 5 DPAs (supra note 72) is certainly an interesting first 
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and “bastard data.”187 As a result, it is now beyond trite to talk about a 

“notice and choice fallacy.”188 

 Relying on individual rights to explanation as the means for users to 

take control of ML systems risks creating a similar “transparency 

fallacy.”189 Individual data subjects are not empowered to make use of the 

kind of algorithmic explanations they are likely to be offered even if 

(unlikely as it seems) the problems identified in section III are overcome. 

Individuals are mostly too time-poor, resource-poor, and lacking in the 

necessary expertise to meaningfully make use of these individual rights. In 

some ways, the transparency fallacy is even worse than its consent cousin, 

since the explanation itself may not be meaningful enough to confer much 

autonomy even on the most empowered data subject. 

 Ananny and Crawford recount the numerous ways in which 

transparency “as a method to see, understand and govern complex 

systems”190—both in the past, and now in the time of algorithmic ML 

systems—is not only limited but at times misleading and unhelpful. Inter 

alia, they note that transparency can support “neoliberal models of 

agency,”191 placing a tremendous burden on individuals both to seek out 

information about a system, interpret it, and determine its significance, only 

then to find out they have little power to change things anyway, being 

“disconnected from power.”192 Liberal democracy in the past has taught us 

“the feeling that seeing something may lead to control over it”193 but in fact 

in its search for a technical solution, dependence on transparency may 

occlude the true problems which rest in societal power relations and 

institutions as much as the software tools employed. 

B. Beyond Explanation Rights: Making Fuller Use of the GDPR 

to Better Control Algorithms 

 We now consider if in the stampede to find a legally enforceable 

right to an explanation, other new user rights and tools in the GDPR have 

been given undeservedly little attention. We first explore two main rights: 

the right to erasure (colloquially often called “right to be forgotten”) in 

Article 17, and the right to data portability in Article 20, before turning to 

look at the proposed supporting environment for enforcement the GDPR 

                                                      
187 See McNamee, supra note 55. 
188 See full discussion in Edwards, supra note 59.  
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establishes using a varied range of instruments, such as Data Protection 

Impact Assessments (DPIAs) and privacy seals. 

1. GDPR, Article 17: The Right to Erasure (“Right to be Forgotten”) 

 Article 17 of the GDPR states that the “data subject shall have the 

right to obtain from the controller the erasure of personal data concerning 

him or her without undue delay.”194 This is not an unrestricted right. Erasure 

can be obtained on one of various grounds,195 including: that the data is no 

longer necessary in relation to the purposes for which they were collected; 

that the data subject has withdrawn her consent to processing; that the 

personal data have been unlawfully processed; that the data must be erased 

under local state or EU law (e.g. because of rehabilitation of offenders or 

bankruptcy rules); or that the data was provided while a child under sixteen 

years old. Most usefully, erasure can be sought if the data was being used to 

profile the data subject and had been collected lawfully but without her 

consent.196 The right can conceivably be repelled by the controller on 

“compelling legitimate grounds” and there are other exceptions, including 

to safeguard freedom of expression and the historical record.197 

 In the context of ML, we believe a data subject might usefully seek 

erasure as a remedy in at least three main circumstances. 

1. Seeking Erasure of Personal Data “Concerning” a Data 

Subject 

 First, a data subject might seek erasure of her personal data simply 

because she does not wish the data controller to have a copy of it any 

longer. 

 An important issue here is what personal data in the ML system an 

individual data subject has rights over. Clearly, she has the right to erase her 

explicitly provided data used as inputs to an ML system (e.g. name, age, 

medical history) but does she have the right to erase observed data about her 

behaviour and movements both in the real and virtual world?  This is 

important—ML systems such as those run by Facebook or LinkedIn make 

heavy use of observed behaviour—for example the type of links clicked on 

                                                      
194 The right to erasure (“right to be forgotten”) in GDPR, arts. 17 and 18 (restriction of 

processing) emerged after the landmark CJEU case, Google Spain, supra, note 105, and it is 

both wider in effect and more specified than the rule elaborated in that case out of the DPD. 
195 GDPR, art. 17(1). 
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a public data controller, the public interest under art. 6(1). 
197 There is no guidance in recital 69 on what this might mean. Note that art. 17 rights can 

also be excluded by EU states where exercising them affects important public interests 

(Article 17(3)): these include freedom of expression, ‘public interest’ in the area of health, 

public archives and scientific, historical, and statistical research, and legal claims. 
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on-site, the photos viewed, the pages “liked”; or, in the real world, the 

location and movement as tracked by GPS. While this implicitly provided 

data, should arguably qualify as personal data if it clearly allows a data 

subject to be identifiable (e.g. by “singling out”) it does not appear the 

history of Article 17 ever contemplated its use for such purposes. 

 Perhaps most importantly in relation to ML, what about the 

inferences that are made by the system when the data subject’s inputs are 

used as query? These seem what a user would perhaps most like to delete—

especially in a world of “bastard data” where one system’s output becomes 

another’s input. Somewhat surprisingly, the Article 29 Working Party (the 

body of DPA representatives that advises the Commission), in the context 

of the right to portability198 have already issued guidance that the inferences 

of a system is not the data of the subject but “belongs” to the system that 

generated it.199 It is not yet clear if this approach would be advised 

regarding the right to erase, though it logically might, as the two rights 

(GDPR Articles 17 and 20) are seen as complementary. In that case, we 

seem to have a clear conflict with the already acknowledged right of a data 

subject to erase an inference from Google’s search algorithm. One example 

is the “right to be forgotten,” as vindicated in Google Spain.200 

2. Seeking Withdrawal of Personal Data From a Model: 

“Machine “Unlearning”” 

 Secondly, a data subject might seek erasure of her data from the 

model of a trained ML system because she was unhappy with the inferences 

about her that the model produced. In other words, she wants to alter the 

model. This is unlikely to be helpful because it is unlikely that one data 

subject withdrawing their personal data would make much difference to a 

trained model: ML systems often require multiple examples of a 

phenomenon of interest to recognise the pattern. They are calibrated 

(“regularised”) this way to avoid modelling the “noise” or random elements 

in the data (“overfitting”), rather than just capturing the main “signal” 

hoped to be fruitful in analysing future cases after the model is built. To 

make effective use of this right to alter models, whole groups would need to 

collaborate explicitly or implicitly to request erasure. We might imagine a 

data subject whose data generated by a wearable fitness tracker phenomena 

have been correlated with a rare medical condition. She might persuade the 

rest of her “algorithmic group” to withdraw their personal data from the 

system so that the model could no longer make this correlation. This seems 

extremely difficult to organise in practice, as well as probably also 

involving unwanted privacy disclosures. 

                                                      
198 See infra Section IV.B.2. 
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3. Machine “Unlearning” Take 2: Erasing Models as 

Themselves Personal Data 

 Third, a data subject might seek erasure of an entire model (or 

aspects of it) on the grounds that it is her personal data. This might be based 

on the assertion that the model itself is the personal data of each and every 

data subject whose input data helped train and refine it. On the face of it this 

seems implausible. To a lawyer, a ML model resembles a structure of 

commercial use which will probably be protected by trade secrets or 

possibly, by an IP right such as a patent or, in Europe, a database right,201 

which is a right over the arrangement of data in a certain system, personal 

or otherwise, rather than the data itself. 

 Yet for ML specialists, an argument might be made that personal 

data used to create a trained model might be fully or partially reconstructed 

by querying the model.202 Attempts have already been made by researchers 

to extract personal data in this way as a form of “adversarial” ML. An 

attacker might attempt to query, observe or externally influence a ML 

system to obtain private information about some or all individuals within its 

training set.203 In this type of attack, individual records can be recovered 

from a model with high probability. Indeed, some applications of ML 

specifically utilise this characteristic to try and improve or better understand 

data compression techniques.204 

 Assuming that some grounds for erasure were established, for a 

data controller, requests for erasure of personal data from an ML model 

would not always be straightforward as it might involve retraining the 
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model and, especially, revising the features of that model.205 This would be 

problematic as the high computational and labour costs of ML systems 

restrict many organisations’ practical capacities for constant retraining of 

the model when either new data, or indeed, requests for erasure come in. In 

these situations, swift and easy erasure is likely difficult to achieve. 

Computationally faster approaches to ‘machine unlearning’ have been 

proposed, but still require retraining and would require foundational 

changes to model architectures and processes to use.206 

4. Model Trading and the Right to Erasure 

 A rising business model involves the trading, publishing of or 

access to trained models without the data which was used to train them. For 

example, Google’s ML models syntaxnet for parsing sentences (into the 

relations between verbs, propositions and nouns, for example) is based on 

proprietary treebank data, while the word embedding model word2vec (to 

map which words have similar meanings to each other, in which ways) uses 

closed access text from Google News is also available. Can a data subject 

withdraw their personal data in some useful way from a model which has 

been traded? This presents interesting and extremely difficult legal 

challenges to the right to erasure. 

 Article 17, section 2 of the GDPR is an obvious starting point. It 

provides that where a controller has made personal data “public” but is 

asked to erase, then they are to take “reasonable steps, including technical 

measures” to inform other controllers processing the same personal data that 

the data subject has requested the erasure by them of “any links to, or copy 

of, or replication of, those personal data.”207 

 This is a difficult provision to map to ML model trading. It clearly 

had in contemplation the more familiar scenarios of, say, reposted social 

media posts, or reposted links to webpages. First, are models sold under 

conditions of commercial confidentiality, or within proprietary access-

restricted systems, made “public?” If not, the right does not operate. Was a 

"copy" or “replication” of the personal data made? Again, if we regard the 

model as a structure derived from personal data rather than personal data 

                                                      
205 In relation to the importance of feature engineering, see Pedro Domingos, A Few Useful 

Things to Know About ML, 55 COMMUN. ACM 10, 1, 4 (2012). Retraining might only 

involve a single piece of data, such as transforming a postcode into geospatial coordinates. In 

this kind of case, an erasure request is simple. However if a variable is constructed by 

reference to other inputs – e.g. the distance of an input from the mean, which involves all 

data points—then complete erasure might require recalculation of the whole dataset. 
206 Yinzhi Cao & Junfeng Yang, Towards Making Systems Forget with Machine Unlearning, 

in SP’15 PROCEEDINGS OF THE 2015 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, MAY 17–

21, 463–480 (2015). 
207 GDPR, recital 66. 
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itself, neither of these applies. Was there a “link to” that original personal 

data? This seems more possible, but it is still rather a linguistic stretch. 

 Finally, the GDPR makes it plain that a controller is only obliged to 

do this as far as is reasonable, “taking account of available technology and 

the cost of implementation.”208 Even if all these problems are met, the 

obligation is only on the model-seller to “inform.” There is no obligation on 

the controller to whom the model was traded to do anything with this 

information. The data subject would, it seems, have to make another erasure 

request to that controller, unless they chose to redact the model voluntarily. 

2. GDPR, Article 20: The Right to Data Portability 

 Article 20 provides that data subjects have the right to receive their 

personal data, “provided” to a controller, in a “structured, commonly used 

and machine-readable format,” and that they then have the right to transmit 

that data to another controller “without hindrance.”209 Data portability is 

conceptually a sibling right to Article 17. In theory, a data subject can ask 

for their data to be erased from one site (e.g. Google) and at the same time 

ported into their own hands.210 Data subjects can also ask for data to be 

ported directly from controller A, who currently is processing it, to a 

controller B of their own choice.211 Data portability is aimed at explicitly 

allowing data subjects to gain greater control over their personal data for 

consumer protection more than privacy purposes—e.g. by allowing them to 

retrieve billing or transaction data from energy companies or banks—and 

re-use it in their own preferred ways to save money or gain advantages.212 

 In the context of ML, it is possible to imagine Article 20 rights 

being used to facilitate user control over their personal data and possibly, 

the inferences drawn from it. It has often been suggested that data subjects 

might safeguard their privacy by adopting use of what are sometimes 

known as Personal Data Containers (PDCs). Using these technologies, 

personal data does not have to be shared to secure desired services from 

giants such as Google or Facebook. These companies do not use this data 

for their own profiling purposes, but rather the subject only provides an 

index of the data, keeping their own data either on their own server or 

                                                      
208 GDPR, art. 17(2). 
209 GDPR, art. 20(1). 
210 GDPR, art. 20(3). But note the right to erasure covers data “concerning” a data subject 

rather than as here, merely “provided” by the data subject. This is considerably more 

restrictive. 
211 GDPR, art. 20(2). 
212 It is also often said that art. 20 is intended to be more of an atypical competition remedy 

than a privacy remedy. See A Diker Vanberg and MB Ünver, "The right to data portability in 

the GDPR and EU competition law: odd couple or dynamic duo?" 8 EUR. J. OF LAW AND 

TECH. 1, (2017). See also the UK’s voluntary midata scheme which preceded art. 20. 
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perhaps in a trusted cloud storage. The philosophy behind this goes back 

several decades, to the idea that an “end-to-end” principle on the internet 

would empower the edges of a network, and avoid centralisation.213 

Proponents of data containers, which encompass research projects such as 

DataBox and Hub of all Things (HaT),214 argue that these devices in your 

own homes or pockets might help you to archive data about yourself, 

coordinate processing with your data, and guard against threats.215 Article 

20 rights might enable data subjects to withdraw their personal data into 

PDCs in order to establish more informational self-determination in 

comparison to suffering the vagaries of profiling. However, as Hildebrandt 

points out, what we increasingly want is not a right not to be profiled—

which means effectively secluding ourselves from society and its benefits—

but to determine how we are profiled and on the basis of what data—a 

“right how to be read.”216 Using Article 20 portability rights, a data subject 

might choose to take their data to a controller whose model appealed to 

them from a market of choices: perhaps on the basis of a certification 

against particular values (see below)—rather than simply accept the model 

used by Google or its ilk. 

 This is no panacea, and there are a number of clear problems with 

using Article 20 this way. First, is it likely the ordinary consumer would 

have either the information or the motivation to “shop around” for models 

in this way? Given the well-known inertia of consumers even about quite 

straightforward choices (e.g. switching energy suppliers, ISPs or banks to 

save money or get better service), it seems difficult to believe they could 

make this fairly esoteric choice without considerable improvements such as 

labelling or certification of algorithms.217 It will take a long time for a 

competing marketplace of algorithmic model choices to emerge and indeed 

it is hard to see the current marketplace taking to such voluntarily. 

Sometimes, as in criminal justice systems, it is hard to see how competing 

suppliers of models could emerge at all. On a practical point, it is quite 

possible that although the data subject may in theory gain greater control 

over their personal data, in reality they may not have the knowledge or time 

to safeguard their data against emerging threats. 

                                                      
213 See LARRY LESSIG, CODE 2.0. 111 (Basic Books, 2006); see also visions of this in the 

marketing literature, such as ALAN MITCHELL, RIGHT SIDE UP 6 (HarperCollins, 2002). 
214 See discussion in Lachlan Urquhart et al., Realising the Right to Data Portability for the 

Internet of Things (March 15, 2017), doi:10.2139/ssrn.2933448. 
215 Richard Mortier et al., The Personal Container or Your Life in Bits, DIGITAL FUTURES 

‘10, OCTOBER 11–12, 2010, NOTTINGHAM, UK (2010). 
216 Hildebrandt, supra note 59. 
217  See infra Section V. 
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 Secondly, from a legal perspective, Article 20, much like Article 

22, is hedged around with what often seem capricious restrictions. It only 

applies to data the subject “provides.” There seems to be no clear consensus 

on whether this covers just the explicit data a person provides (e.g. name, 

hobbies, photos etc. on Facebook); metadata supplied unknowingly (e.g. 

which pictures they look at, what links they click on, who is in their friends 

graph); or most damningly, the inferences that are then drawn from that data 

by the ML or profiling system itself. The Article 29 Working Party suggests 

that both the data a data subject provides directly, and data provided by 

“observing” a data subject, is subject to portability; but data inferred from 

these are not.218 Furthermore, Article 20 only applies to data provided by 

“consent”219—accordingly if data has been collected and profiled under 

another lawful ground such as the legitimate interests of the data controller, 

no right to portability exists.220 Lastly, it is worth emphasising this right 

only covers data which was being processed by “automated means”221—

though not, as in Article 22, “solely” automated means, which sets it up as a 

fundamentally more useful provision concerning algorithms-as-decision-

support, rather as decision-makers. 

V. BEYOND INDIVIDUAL RIGHTS IN THE GDPR: PRIVACY BY DESIGN 

 The General Data Protection Regulation discussion so far has 

revolved around rights given to individual data subjects. Although section 

I.B above demonstrates that algorithms create societal harms, such as 

discrimination against racial or minority groups, a focus on data protection 

remedies makes an individual’s rights approach inevitable. Data protection 

is a paradigm based on human rights which means it does not contemplate, 

as discussed above, remedies for groups (or indeed, for non-living persons 

such as corporations, or the deceased).222 

 This means that even if the rights we have discussed above—

become valuable tools for individuals to try to “enslave” the algorithm, it is 

still up to individual data subjects to exercise them. This is not easy, as we 

noted in our section IV.A on “notice and choice” and transparency fallacies. 

This is even truer perhaps in the EU where consumers are on the whole far 

less prepared and empowered to litigate than in the US. The UK and many 

                                                      
218 See A29WP: A29 WP, GUIDELINES ON THE RIGHT TO DATA PORTABILITY, 16/EN. WP 242 

(Dec. 13, 2016). 
219 GDPR, art. 20(1)(a). 
220 This bizarre choice can only be explained by thinking of art. 20 as a solution to promote 

competition by allowing data subjects to make active choices to retrieve their voluntarily 

posted data from social networks. 
221 GDPR, art. 20(1)(b). 
222 Lilian Edwards & Edina Harbinja, Protecting Post-Mortem Privacy: Reconsidering the 

Privacy Interests of the Deceased in a Digital World, 32 CARDOZO ARTICLES & ENT. LAW J. 

102, 113 (2013). 
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other EU nations have no generic system of class actions. Although this has 

been viewed as a problem for many years, attempts to solve it on an EU 

wide basis have repeatedly stalled. Individuals are further hampered in 

meaningfully attaining civil justice by a general prejudice against 

contingency lawyering combined with dwindling levels of civil legal aid. 

Some options are emerging in the GDPR to provide a semblance of class 

action remedies, such as mandating third party bodies to act in court around 

data protection issues on a data subjects’ behalf, or, with specific 

derogations by member states, for third party bodies to act without being 

mandated on behalf of a particular sector. However, bodies that are not 

mandated by a data subject have no ability to claim compensation under DP 

law, leaving them still far from a US-style class action, and their utility is 

still to be seen.223 

 The data protection regime contemplates that individual data 

subjects may find it hard to enforce their rights by placing general oversight 

in the hands of the independent regulator each state must have224 (its Data 

Protection Authority or DPA). However, DPAs are often critically 

underfunded since they must be independent of both state and commerce. 

They are often also significantly understaffed in terms of the kind of 

technical expertise necessary to understand and police algorithmic harms. In 

fact, financial constraints have in fact pushed DPAs such as the UK’s ICO 

towards a much more “public administrative” role than one would expect, 

where problems (e.g. spamming, cold calling, cookies) are looked at more 

in the round as societal ills, than via championing individual data subject 

complaints. 

 Is it possible to derive any ways forward from the GDPR that are 

more likely to secure a better algorithmic society as a whole, rather than 

merely providing individual users with rights as tools which they may find 

impossible to wield to any great effect? 

A. “Big Data Due Process” and Neutral Data Arbiters 

 From a European perspective, it is interesting to observe how the 

predominant North American legal literature has tried to solve the problems 

of algorithmic governance without the low-hanging fruit of a data 

protection–based “right to an explanation.” One notable bank of literature 

explores the idea of “big data due process.” Crawford and Schultz,225 

drawing on early work by Citron,226 interestingly attempt to model how due 

process rights already familiar to US citizens could be adapted to provide 

fairness, agency and transparency in cases around algorithmic automated 

                                                      
223 See GDPR, art. 80. 
224 See GDPR, art. 51. 
225 Crawford & Schultz, supra note 12 at 123. 
226 Citron, supra note 14. 
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systems in the governmental sector. Citron’s work argues227 for a number of 

radical adaptations to conventional due process which might include: 

• extra education about the biases and fallacies of 

automation for government agencies using automated 

systems;228 

• agencies to hire “hearing officers” to explain in detail 

their reliance on the outputs of such systems to make 

administrative decisions, including any “computer 

generated facts or legal findings”;229 

• agencies to be required to regularly test systems for 

bias and other errors;230 

• audit trails to be issued by systems and notice to 

subjects that they have been used to make decisions, 

such that judicial review is possible.231 

 Crawford and Schultz take these ideas of re-modelled due process 

and note they fit better into a model of structural rather than individualised 

due process.232 For opaque predictive systems where data subjects never 

become aware of opportunities they might have had, reliance on individual 

rights and awareness is deeply problematic. In a structural approach, 

oversight and auditing can primarily be driven by public agencies. They 

suggest a “neutral data arbiter” with rights to investigate complaints from 

those whose data is used in predictive automatic systems, and provide a 

kind of “judicial review” by reviewing audit trails to find bias and 

unfairness that might render automated decisions invalid. This idea of an 

external regulator or audit body which might investigate complaints and 

provide mediation or adjudication is one with clear appeal in the literature: 

Crawford and Schultz suggest the FTC might act as a model but Tutt, for 

example, suggests an “FDA for algorithms.”233 

 Seen through European eyes, two problems quickly emerge. One, 

the EU data protection regime applies to private and public sector alike and 

                                                      
227 Interestingly, she rejects as part of the “opportunity to be heard” a simple right to access 

to the algorithm’s source code and/or a hearing on the logic of its decision as too expensive 

under the balancing test in Matthews v. Eldridge (Citron, supra note 14 at 1284). 
228 Id. at 1306. 
229 Id. at 1307. 
230 Id. at 1310. 
231 Id. at 1305. 
232 Crawford & Schultz, supra note 12 at 124. 
233 See Tutt, supra note 13. Other suggestions for algorithmic audit are usefully compiled by 

Brent Mittelstadt, Auditing for Transparency in Content Personalization Systems, 10 

INTERNATIONAL JOURNAL OF COMMUNICATION 4994 (2016). 



77                          SLAVE TO THE ALGORITHM?  [Vol. 16 

in the private sector, it is harder to see these “due process” measures being 

taken on-board without compulsion or external funding. As we noted above, 

whereas transparency is a default in the public sector, the opposite is true in 

the private sector. Two, we essentially already have “neutral data arbiters” 

in the form of the state DPAs, and as just discussed, they are already 

struggling to regulate general privacy issues now let alone these more 

complex and opaque societal algorithmic harms. 

B. Data Protection Impact Assessment and Certification 

Schemes 

 However, the GDPR introduces a number of new provisions which 

do not confer individual rights but rather attempt to create an environment 

in which less “toxic” automated systems will be built in future. These ideas 

come out of the long evolution of “privacy by design” (PbD) engineering as 

a way to build privacy-aware or privacy-friendly systems, starting from the 

beginning of the process of design rather than “tacking privacy on at the 

end!.” They recognize that a regulator cannot do everything by top down 

control, but that controllers must themselves be involved in the design of 

less privacy-invasive systems. These provisions include requirements that: 

• controllers must, at the time systems are developed as 

well as at the time of actual processing, implement 

“appropriate technical and organisational measures” to 

protect the rights of data subjects.234 In particular, 

“data protection by default” is required so that only 

personal data necessary for processing are gathered. 

Suggestions for PbD include pseudonymisation and 

data minimisation; 

• when a type of processing using “new” technologies is 

“likely to result in a high risk” to the rights of data 

subjects, then there must be a prior Data Protection 

Impact Assessment (DPIA);235 

• every public authority and every “large scale” private 

sector controller and any controller processing 

“special” categories of data236 (sensitive personal data) 

must appoint a Data Protection Officer (DPO);237 

DPIAs especially have tremendous implications for ML design. PIAs (as 

they were formerly known) have traditionally been voluntary measures, in 

                                                      
234 GDPR, art. 25. 
235 GDPR, art. 35. 
236 GDPR, art. 9. 
237 GDPR, art. 37. 
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practice largely taken up by public bodies bound to compliance and audit, 

such as health trusts. Attempts to expand their take up in Europe into areas 

like radio-frequency identification (RFID)238 and the Internet of Things239 

by the private sector have in the main been unsuccessful. However, the new 

Article 35 is compulsory, not voluntary, and its definitions of “high risk” 

technologies are almost certain to capture many if not most ML systems. 

The GDPR requires a DPIA where in particular there is a “systematic and 

extensive evaluation of personal aspects relating to natural persons  . . . 

based on automated processing, including profiling . . . and on which 

decisions are based that produce legal effects concerning the natural person 

or similarly significantly affect the natural person.”240 

 This is almost identical to the formulation used in Article 22 around 

automated decision-making. The ICO241 note firmly that “potential privacy 

risks” have already been identified with “the use of inferred data and 

predictive analytics.” Accordingly, they provide a draft DPIA for big data 

analytics.242 It seems clear that, despite the uncertainty of the “high risk” 

threshold, DPIAs are quite likely to become the required norm for 

algorithmic systems, especially where sensitive personal data, such as race 

or political opinion, is processed on a “large scale.”243 

 Where a DPIA is carried out and indicates a “high risk,” then the 

local member state DPA must be consulted before the system can be 

launched. The impact assessment must be shared and the DPA must provide 

written advice to the controller and can use their powers to temporarily or 

permanently ban use of the system.244 Given the fines that can also be levied 

against non-compliant controllers under the GDPR (in the worst cases, up to 

                                                      
238 See EUROPEAN COMMISSION, PRIVACY AND DATA PROTECTION IMPACT ASSESSMENT 

FRAMEWORK FOR RFID APPLICATIONS (Jan. 12, 2011), http://cordis.europa.eu/fp7/ict/enet/ 

documents/rfid-pia-framework-final.pdf. 
239 See The Data Protection Impact Assessment Template supported by Commission 

Recommendation 2014/724/EU, Smart Grid task Force 2012-14, Expert Group 2: Regulatory 

Recommendations for Privacy, Data Protection and Cybersecurity in the Smart Grid 

Environment, Data Protection Impact Assessment Template for Smart Grid and Smart 

Metering Systems (Mar. 18, 2014). 
240 GDPR, art. 35(3)(a). 
241 ICO, supra note 4. 
242 ICO, supra note 4, annex 1. 
243 GDPR, art. 35(3)(b). See also DATA PROTECTION WORKING PARTY, Guidelines on Data 

Protection Impact Assessment (DPIA) and Determining Whether Processing Is “Likely to 

Result in a High Risk” for the Purposes of Regulation 2016/679, Art. 29, WP 248 (Apr. 4, 

2017). Judging by this guidance, almost every ML system seems likely to require a DPIA. 
244 GDPR, art. 36(2). 
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4% of global turnover245) this is potentially a very effective method to tame 

unfair ML systems.246 Binns describes this as a kind of regulatory 

“triage.”247 

 The voluntary measures of the GDPR may be equally influential for 

ML systems. Article 42 proposes voluntary “certification” of controllers and 

processors to demonstrate compliance with the Regulation, with 

“certification mechanisms” and the development of “seals and marks” to be 

encouraged by EU member states.248 In the UK, a tender has already been 

advertised by the ICO for a certification authority to run a UK privacy 

seal,249 although progress has been interrupted by the vote to exit the 

European Union, and the subsequent political turmoil. 

 Taken together, these provisions offer exciting opportunities to 

operationalise Citron’s “big data due process” rights and Crawford and 

Schultz’s “procedural due process.” Certification could be applied to two 

main aspects of algorithmic systems: 

1. certification of the algorithm as a software object by 

a. directly specifying either its design specifications or the 

process of its design, such as the expertise involved 

(technology-based standards, assuming good practices lead 

to good outcomes) 

b. and/or specifying output-related requirements that can be 

monitored and evaluated (performance-based standards); 

2. certification of the whole person or process using the system to 

make decisions, which would consider algorithms as situated in the 

context of their use. Citron’s “hearing officers,”250 for example, 

might be provided by such provisions, perhaps as a form of 

alternate dispute resolution. 

                                                      
245 GDPR, art. 83. Maximum fines are the higher of €10m or 2% of global turnover for less 

severe transgressions, €20m or 4% for more severe ones. 
246 In other work, one author has suggested that PIAs could be developed into more holistic 

Social Impact Assessments (SIAs) and although this was developed to deal with the IoT it 

might also have considerable application to ML systems: see Lilian Edwards et al., From 

Privacy Impact Assessment to Social Impact Assessment, in 2016 IEEE SECURITY AND 

PRIVACY WORKSHOPS (SPW), 53–57 (2016), doi:10.1109/SPW.2016.19.  
247 Reuben Binns, Data Protection Impact Assessments: A Meta-Regulatory Approach, 7 

INTERNATIONAL DATA PRIVACY LAW 22, 28 (2017). 
248 For an early analysis, see Rowena Rodrigues et al., Developing a Privacy Seal Scheme 

(That Works), 3 INTERNATIONAL DATA PRIVACY LAW 100 (2013). 
249 Gemma Farmer,  What’s the Latest on the ICO Privacy Seals?, INFO. COMMISSIONER’S 
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In these cases, not only could fairness and discrimination issues be 

considered in the standards to certify against,251 but it could be an 

opportunity to proactively encourage the creation of more scrutable 

algorithms. 

 One notable advantage is that certification standards could be set on 

a per-sector basis. This is already very common in other sociotechnical 

areas, such as environmental sustainability standards, where the standards 

for different environmental and labour harms in different certification 

systems such as SAN/Rainforest Alliance and Fair Trade also differ by 

crop. As we have noted in this paper, explanations and their effectiveness 

differ strongly by type, domain, and the user seeking explanation, and it is 

likely that the exact form of any truly useful explanation-based remedy 

would vary strongly across both these and other factors. Certification could 

be augmented by the development of codes of conduct252 for any specified 

sector, such as for algorithms considering housing allocation systems, 

targeted advertising, tax fraud detection or recidivism. 

 Promising as this may sound, voluntary self-or co-regulation by 

privacy seal has had a bad track record in privacy, with recurring issues 

around regulatory and stakeholder capture. The demise of the EU–US data 

agreement Safe Harbor alone,253 which was externally validated for years 

by trust seals like TrustE, means that many Europeans will be rightly 

sceptical about the delivery of real corporate change and substantive 

compliance with privacy rights by certification.254 

 Another issue is that DPIAs, PbD, certification and the general 

principle of “accountability”255 in the GDPR bring with them a real danger 

of formalistic bureaucratic overkill alongside a lack of substantive change: a 

happy vision for more form-filling jobs and ticked boxes, but a sad one for a 

world where automated algorithms do their jobs quietly without imperilling 

human rights and freedoms, especially privacy and autonomy.  

CONCLUSION 

 Algorithms, particularly of the ML variety, are increasingly used to 

make decisions about individuals’ lives but have caused a range of 

                                                      
251 Issues of algorithmic fairness are specifically discussed in GDPR, recital 71. Tristan 

Henderson in private correspondence has suggested that a certifying authority might well 

under art. 42 be given the power to require explanation facilities, thus side stepping the 

Article 22/15(h) debate. 
252 GDPR, arts. 40 and 41. 
253 See Schrems v. Data Prot. Comm’r of Ir., Case C-362/14, 6 October 2015. 
254 TrustE and similar privacy seals failed to meet European privacy standards. See Andrew 

Charlesworth, Data Privacy in Cyber Space, LAW AND THE INTERNET (2000). 
255 GDPR, art. 5(2). This may lead to a new world of form-filling for data controllers. 
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concerns. Transparency in the form of a “right to an explanation” has 

emerged as a compellingly attractive remedy since it intuitively presents as 

a means to “open the black box,” hence allowing individual challenge and 

redress, as well as possibilities to foster accountability of ML systems. In 

the general furore over algorithmic bias, opacity and unfairness laid out in 

section I, any remedy in a storm has looked attractive. 

 In this article, we traced how, despite these hopes, a right to an 

explanation in the GDPR seems unlikely to help us find complete remedies, 

particularly in some of the core “algorithmic war stories” that have shaped 

recent attitudes in this domain. A few reasons underpin this conclusion. 

First, the law is restrictive on when any explanation-related right can be 

triggered, and in many places is unclear, or even seems paradoxical. 

Secondly, even were some of these restrictions to be navigated (such as 

with decisive case law), the way that explanations are conceived of 

legally—as “meaningful information about the logic of processing”—is 

unlikely to be provided by the kind of ML “explanations” computer 

scientists have been developing. 

 ML explanations are restricted both by the type of explanation 

sought, the multi-dimensionality of the domain and the type of user seeking 

an explanation. However, “subject-centric’ explanations (SCEs), which 

restrict explanations to particular regions of a model around a query, show 

promise. In particular, we suggest these are not just usable, as Wachter et al. 

argue, “after an automated decision has taken place,” 256 but might be put 

into interactive systems that allow individuals to explore and build their 

own mental models of complex algorithms. Similarly, “pedagogical” 

systems which create explanations around a model rather than from 

decomposing it may also be useful and benefit from not relying on 

disclosure of proprietary secrets or IP. 

 As an interim conclusion then, while convinced that recent research 

in ML explanations shows promise, we fear that, given the preconceptions 

in the legal wording of provisions like the GDPR Article 15(h), the search 

for a legally enforceable right to an explanation may be at best distracting 

and at worst nurture a new kind of “transparency fallacy” to match the 

existing phenomenon of “meaningless consent.”257 So, as our last exercise, 

we turned our focus to the other legal rights of the GDPR which might aid 

those impacted adversely by ML systems. We noted with caution some 

possible uses of the GDPR’s “right to erasure” and the “right to data 

portability” to “slave” the algorithm, but found that, like the “right to an 

explanation,” these rely too much on individual rights for what are too often 

group harms. 
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257 See supra Section V. 
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 However, radically, in section IV we found that some of the new 

tools in the GDPR, in particular the mandatory requirements for Privacy by 

Design and DPIAs, and opportunities for certification systems, might go 

beyond the individual to focus a priori on the creation of better algorithms, 

as well as creative ways for individuals to be assured about algorithmic 

governance e.g. by certification of performance, or of the professionals 

building or using algorithms. Starting from a notion of creating better 

systems, with less opacity, clearer audit trails, well and holistically trained 

designers, and input from concerned publics258 seems eminently more 

appealing than grimly pursuing against the odds a “meaningful” version of 

the interior of a black box. 

A. Further Work 

 There are other matters which have only been hinted at in this 

already long article and which we hope to explore in further work. One is 

oversight and audit. Any system based on GDPR rights ultimately puts the 

supervisory burden on the state DPA. Is this correct? We have already seen 

that DPAs are overwhelmed by the task of managing privacy enforcement 

in the digital era. Is every algorithmic harm also their bailiwick? Does this 

extend to datasets steeped in societal racial bias, driverless trolley-cars that 

cannot understand whether to mow down one person or five,259 

identification systems that think only light skinned people are beautiful260 

and social media algorithms that distribute fake news? All of these involve 

the processing of personal data at some level, but they do not relate to 

privacy except in the loosest sense. There is an overarching issue here about 

whether simply because “data protection” has the word data in it, should it 

acquire hegemony over all the ills of data-driven society? 

 Furthermore, what about ML systems that mainly deal with non-

personal data? Should they be excluded from any data protection based 

governance system? The EU already thinks, from an economic perspective, 

that the lack of rights over non-personal data is a problem waiting to 

happen.261 On the other hand, the limitation of scope to personal data could 

                                                      
258 See GDPR art. 35(7)(9) which suggests when conducting a DPIA that the views of data 

subjects shall be sought when appropriate but (always a catch) “without prejudice to” 

commercial secrecy or security. 
259 See passim the glorious Trolley problem memes page at www.facebook.com/ 

TrolleyProblemMemes/. 
260 See Dave Neal, FaceApp Sorry for Suggesting that Light Skin is 'Hotter' than Dark Skin, 

THE INQUIRER (Apr. 25, 2017), https://www.theinquirer.net/inquirer/news/3008961/faceapp-

sorry-for-suggesting-that-light-skin-is-hotter-than-dark-skin. 
261 European Commission, Public Consultation on Building the European Data Economy 

(Jan. 10, 2017), https://ec.europa.eu/digital-single-market/en/news/public-consultation-

building-european-data-economy. 
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be seen as an advantage: in a recent UK Parliamentary consultation on how 

to regulate algorithms, the Royal Society complained that: 

Machine learning algorithms are just computer programs, and the 

range and extent of their use is extremely broad and extremely diverse. 

It would be odd, unwieldy, and intrusive to suggest governance for all 

uses of computer programming, and the same general argument would 

apply to all uses of machine learning. 

. . . In many or most contexts machine learning is generally 

uncontroversial, and does not need a new governance framework. How 

a company uses machine learning to improve its energy usage or 

warehouse facilities, how an individual uses machine learning to plan 

their travel, or how a retailer uses machine learning to recommend 

additional products to consumers would not seem to require changes to 

governance. It should of course be subject to the law, and also involve 

appropriate data use. 

Many of the issues around machine learning algorithms are very 

context specific, so it would be unhelpful to create a general 

governance framework or governance body for all machine learning 

applications. Issues around safety and proper testing in transport 

applications are likely to be better handled by existing bodies in that 

sector; questions about validation of medical applications of machine 

learning by existing medical regulatory bodies; those around 

applications of machine learning in personal finance by financial 

regulators.262 

 We have already noted that sectors are likely to have specific needs 

for explanation and that a sectoral approach might be fostered by 

certification. In a world apparently scrambling to create as many new bodies 

as possible for various types of oversight of AI, ML and algorithmic 

decision making in embodied forms such as robots,263 it is worth keeping a 

sector-specific, purpose-driven sentiment in mind. 

 As we have already noted, many of the problems with algorithms 

are more problems for groups than for individuals. Remedies aimed at 

empowering or protecting groups—remedies such as “an FDA for 

algorithms” or a “supercomplaint” system to empower third party 

organisations, or a European-style ombudsman body—may be more useful 

                                                      
262 This submission is primarily drawn from The Royal Society, supra note 4.  
263 See Commons Science and Technology Committee, The Big Data Dilemma (UK 

Parliament, 2016); Commons Science and Technology Committee, Robotics and artificial 

intelligence, (UK Parliament, 2016); The Conservative Party, The Conservative and Unionist 

Party 2017 Manifesto (2017) at 79; European Parliament, Report with Recommendations to 

the Commission on Civil Law Rules on Robotics, 2015/2103(INL). 
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things to consider and reinvent than struggling to transform the individual 

rights paradigm of DP. 

 Finally, this work has been a true, and sometimes heated, 

interdisciplinary collaboration between (reductively) a data protection 

lawyer and an ML specialist. Any attempts to increase the transparency or 

explicability of ML systems, and indeed, in general to better harness them 

to social good, will not function effectively without this kind of 

interdisciplinary work. We need to consider algorithms in the sociotechnical 

context within which they work. We will, as Mireille Hildebrandt describes, 

“have to involve cognitive scientists, computer engineers, lawyers, 

designers of interfaces and experts in human-computer interaction with a 

clear understanding of what is at stake in terms of democracy and the rule of 

law.”264 

 We thus end with a reiteration of the common plea for collegiate 

work not only across different legal jurisdictions and across different 

disciplines, but also between academics and practitioners. In relation to 

applied domains in particular, we fear that the situation is becoming more 

adversarial than collaborative, and that colleagues risk burning bridges with 

the very practitioner communities they should be working with, rather than 

against. Only with continuing trans-disciplinary collaboration can we hope 

not just to enslave the algorithm, but to create a more legitimate, more 

comprehensible and in the end more useful algorithmically-mediated 

society. 

                                                      
264 Hildebrandt, supra note 9 at 54. 


