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Abstract

Background Structural retinal imaging biomarkers are important

for early recognition and monitoring of inflammation and neurode-

generation in multiple sclerosis (MS). With introduction of spectral

domain optical coherence tomography (SD–OCT) supervised auto-

mated segmentation of individual retinal layers became possible. We

aimed to investigate which retinal layers show atrophy associated

with neurodegeneration in MS when measured using SD-OCT.

Methods In this systematic review and meta–analysis we searched

for articles in Pubmed, Web of Science and Google Scholar between
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Charité Universitätsmedizin Berlin, Berlin, Germany

11Neuroimmunology and MS Research Section, University Hospital Zurich, Switzerland
12Department of Neurology & Dutch Expertise Centre for Neuro–ophthalmology, VU

Medical Center, Amsterdam, The Netherlands

2



November 22nd 1991 and April 19th, 2016 for OCT, MS, demyeli-

nation and optic neuritis. Data were taken from cross–sectional co-

horts as well as from one follow–up point, at least 3 months after

onset, from longitudinal studies. Data on eyes were classified into

healthy controls, MS with associated optic neuritis (MSON) and MS

without optic neuritis (MSNON). Individual layer segmentation per-

formance was rated by random effects meta–analysis for MSNON

versus control eyes, MSON versus control eyes and MSNON versus

MSON eyes.

Findings Of 25497 record identified, 110 articles were eligible

and 40 reported data (of in total 5776 eyes of patients with MS and

1697 eyes of healthy controls), which met published OCT quality con-

trol criteria and were suitable for meta–analyses.

The meta–analyses of SD-OCT data suggests thinning of the peri-

papillary retinal nerve fibre layer (RNFL) in MS associated with optic

neuritis (MSON [N=1030 eyes], mean difference with healthy control

eyes [N=1333] -20.10 µm (95%CI -22.76 to -17.44, p<0.00001) and

-7.41 µm (95%CI -8.98 to -5.83, p<0.00001) in MSNON [N=2463

eyes] if compared to controls [N=1279 eyes]. Longitudinally, the peri-

papillary RNFL atrophy rate ranged from -0.36 to -1.49 µm/year.

Retinal layer segmentation of the macula revealed RNFL thinning

of -6.18 µm (95%CI -4.28 to -8.07, p<0.00001) in MSON and -2.15

µm (95%CI -3.15 to -1.15, p<0.0001) and MSNON compared to con-

trols. Atrophy of the macular ganglion cell layer and inner plexiform
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layer (GCIPL) was -16.42 µm (95%CI -13.60 to -19.23, p<0.00001)

for MSON and -6.31 µm (95%CI -4.87 to -7.75, p<0.00001) for MSNON

compared to controls. A small degree of INL thickening has been

related to inflammatory disease activity in MSON (0.77 µm, 95%CI

0.25 to 1.28, p=0.003). Atrophy was not observed for any of the reti-

nal layers beyond the inner nuclear layer (INL). There was no sta-

tistical difference in outer nuclear layer and outer plexiform (ONPL)

thickness between either MSNON or MSON with controls. There was

a small degree of ONPL thickening comparing MSON and MSNON

eyes (1.21, 95%CI 0.24 to 2.19, p=0.01). Relevant sources of bias

were excluded by Funnel plots.

Interpretation The most robust primary outcomes for neurode-

generation in MSNON and MSON were the peripapillary RNFL and

macular GCIPL. Inflammatory disease activity may be captured by

the INL. Because of the consistency, robustness and large effect

size, we recommend the inclusion of the pRNFL and macular GCIPL

in clinical practice for diagnosis, monitoring of progression and re-

search.

Funding This study was not funded.

Keywords spectral–domain optical coherence tomography, retinal layer

segmentation, optic neuritis, multiple sclerosis.

4



Introduction

Optical coherence tomography (OCT) is a high resolution imaging tech-

nique suitable for sophisticated post–processing1,2. Since our last meta–

analysis3 time domain (TD-) retinal OCT has been overtaken by spectral

domain (SD-) OCT in clinical practise4. The much higher resolution of SD–

OCT now permits for individual retinal layer thickness analyses5–8. This

has added an additional ten retinal layers to the well investigated retinal

nerve fibre layer (RNFL)9. Five of these layers have been analysed sys-

tematically in patients with MS. These are the ganglion cell layer (GCL),

the inner plexiform layer (IPL), the inner nuclear layer (INL), the outer plex-

iform layer (OPL) and the outer nuclear layer (ONL). The present meta–

analysis investigated what additional information can be derived by reti-

nal layer segmentation in multiple sclerosis (MS) and MS associated optic

neuritis (MSON).
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Methods

Search strategy and selection criteria This study was a systematic re-

view and meta-analysis of individual retinal layer thickness in MS. The re-

view of the Dutch, English, French, German, Italian and Spanish literature

was conducted by AP and L Balk on all studies (cross-sectional and longi-

tudinal) using OCT in MS patients since discovery of the method Novem-

ber 22nd 1991 by Huang1 and April 19th, 2016, including manuscripts

published ahead of print. We searched PubMed, Web of Science and

Google Scholar using a hierarchical search strategy. First we searched

for OCT including the brand and device names of the major commercial

suppliers. Next we refined this search by using the search terms: multi-

ple sclerosis, demyelination, optic neuritis and the abbreviations MS, CIS,

RRMS, SPMS, PPMS, ON and MSON. Articles were reviewed for use of

SD-OCT. A diagnosis of MS and multiple sclerosis associated optic neu-
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ritis (MSON) were defined as per consensus10–13. Articles were excluded

if they did not contain patients with MS; included fewer than ten subjects;

did not use SD-OCT; did not separate MSON from non MSON eyes; were

communications in response to an article; were duplication of data already

published from the same cohort; reported data in a format other than mean

(SD) or mean (SEM; study authors were contacted and asked to supply

this information). Articles which did not contain a group of control patients

were excluded if they did not contain data permitting to compare MSON

eyes with the fellow eye. Conflicts on inclusion of data were resolved by

consensus (AP, LB).

Data analysis Data were independently extracted by two authors (AP,

LB). Extracted data consisted of mean thickness and standard deviations

of individual retinal layers (RNFL, ganglion cell layer [GCL], inner plexi-

form layer [IPL], a combination of GCL and IPL, inner nuclear layer [INL],

7



outer nuclear layer [ONL], outer plexiform layer [OPL] or a combination of

ONL and OPL) of eyes of patients with MS (with and without history of

MSON) and healthy control subjects. Because of the anatomical structure

of the retina (see supplementary text) data were reported for the RNFL at

the optic disc and macula, but for all other layers only at the macula. To

solve conflicts of inclusion for the meta-analysis authors were approached

per mail regarding inclusion criteria, timing of events and presentation of

data (mean, standard deviation, numbers). Key papers excluded from the

meta-anlysis because of unsuitable or duplicate data were still referenced

in the systematic review. No grey literature sources were assessed and

only summary estimates were used. The primary outcome measure was

thickness (in µm) of pRNFL, GLC, IPL, GCIPL, INL and ONPL, in eyes

with MSON and without MSON (MSNON) and in healthy control eyes. Re-

sults were reported as mean difference (in µm, with 95%CI) between the
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MSON, MSNON and control groups for all retinal layers. Variability within

studies (sampling error) and between studies was assessed with the I2

estimate of heterogeneity. Retinal OCT data for different SD-OCT devices

were analysed together. Data were taken from cross-sectional studies and

from one single time point from longitudinal studies. The baseline OCT val-

ues were taken from longitudinal studies which did not include acute optic

neuritis. Because the time lag between onset of MSON and ensuing retinal

layer atrophy, follow-up data was taken from these studies from one single

time point which had to be at least three months after onset of MSON14.

No subgroup analyses according to disease course were performed which

would have led to loss of power and because the new, relevant, classifica-

tion into ’active’ and ’stable’ disease by Lublin et al.15 has not yet been ap-

plied systematically. Data on individual retinal layer thickness were entered

for each group of eyes as mean thickness in µm, with standard deviation in
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order to compare the predefined groups (MSON eyes, MSNON eyes and

eyes of healthy control subjects). Categorization of the groups was done

on eye level, instead of patient level. For OCT research specific quality as-

sessment we used the Advised Protocol for OCT Study Terminology and

Elements (APOSTEL) recommendations9. The APOSTEL recommenda-

tions were based on validated OCT quality control criteria16,17. P values of

0.05 or less were considered significant. Publication bias was assessed

with funnel plots. To account for publication bias, the results of the funnel

plots were reported as Supplementary Data.

The present data analyses on SD-OCT was in design identical to our

previous meta-analysis on time domain OCT3. This will enable better

comparison of the TD-OCT meta–analysis with present SD-OCT meta–

analysis data. We used Cochrane Collaboration’s Review Manager soft-

ware package (Review Manager (RevMan) [Computer program]. Version
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5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collabora-

tion, 2014.) following the guidance of the Diagnostic Test Accuracy (DTA)

Working Group. Retinal layer thickness data were entered as a continu-

ous variable. We used inverse variance, with random effects (DerSimonian

and Laird random-effects). The choice of random effects instead of a fixed

effects analysis was made because of the level of heterogeneity between

studies reported previously3.

Another reason for random effects analyses is related to the different

OCT devices and segmentation algorithms used in the studies. On an

individual patient level they are not directly comparable18. On a group

level the degree of atrophy can still be extracted, but study heterogeneity

will increase. We have therefore colour coded and labelled data derived

by different OCT manufactures.

The results of the meta–analysis were summarised for related retinal
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layers. For each layer subgroup analyses were presented first for the com-

parison of patients with MS and MSON and control subjects. Next, the

comparison of patients with MS who did not experience an episode of

MSON with control subjects. Finally, the comparison of eyes with and

without MSON in patients with MS. The reader is advised that interpreta-

tion of the quantitative statistical data cannot be extrapolated to individual

patients for small retinal layer thickness changes because the axial reso-

lution of current SD-OCT devices used in clinical routine is about 3-7 µm.

Role of the funding source There was no funding source for this study.

The corresponding author had full access to all the data in the study and

had final responsibility for the decision to submit for publication.

12



Results

Figure 1 summarises the selection process of the 110 articles identified

which did use SD-OCT in MS (for full list of references please refer to

supplementary text). Of these articles 40 presented data suitable (five

after contacting the authors) for meta–analysis of retinal layer thickness

between groups6,14,19–56. The study characteristics are presented in Table

1.

The following paragraphs summarise the meta–analysis for SD-OCT of

the pRNFL and also the macular RNFL (mRNFL). All OCT data refer to

number of eyes.

The degree of atrophy of the pRNFL following MSON was highly signifi-

cant and averaged at -20.10 µm (95%CI -17.44 to -22.76, p<0.00001, Fig-

ure 2 A). Findings were significant for each of the 19 studies included6,20–22,24,25,29,30,33,35,36,39,42,43,45,48,53–55.

Data were based on 2363 eyes.

13



Consistent with this finding, there was also significant atrophy of the

mRNFL averaging at -6.18 µm (95%CI -4.28 to -8.07, p<0.00001, Figure

2 A). Data were based on 506 eyes from seven studies6,20,26,32,34,48,54.

In MSNON atrophy of the pRNFL averaged at -7.41 µm (95%CI -5.83

to -8.98, p<0.00001) compared to controls (Figure 2 B). Data were based

on 3742 eyes from 20 studies6,20–22,24,25,27–30,33,35,37,39,42,44,50,54,55,57.

Six studies reported data on the mRNFL6,20,26,32,54,57. The atrophy av-

eraged at -2.15 µm (95%CI -1.15 to -3.15, p<0.0001, Figure 2 B). Data

were based on 1030 eyes.

The atrophy of the pRNFL in eyes from MSNON patients compared to

those with MSON showed a mean difference of -11.25 µm (95%CI -9.50

to -13.00, p<0.00001, Figure 2 C). Data were from 3972 eyes from 22

studies14,19–21,23–25,29–31,33,35,36,39,40,42,46,47,49,50,54,56.

Four studies reported data on the mRNFL20,26,31,32. The atrophy aver-
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aged at -3.68 µm (95%CI -1.27 to -6.10, p=0.003, Figure 2 C). Data were

based on 615 eyes.

Effect sizes for the pRNFL and mRNFL were summarised in 3. Funnel

blots did not reveal a publication bias (see Supplementary data).

The meta-analysis for the GCL and IPL shows that in patients with

MSON there was significant atrophy of the GCL and IPL averaging at 16.42

µm (95%CI -13.60 to -19.23, p<0.00001, Figure 4A). Data were calculated

from 1673 eyes from 17 studies6,20,22,24,26,30,32–35,43,48,50,52–55. Most studies

reported the combined GCIPL thickness6,22,24,26,30,32–35,43,50,52–55 and only

two (Balk et al, Schneider et al) published the GCL thickness20,48.

In patients with MSNON the mean difference compared with the con-

trols in atrophy of the GCL and IPL was -6.31 µm (95%CI -4.87 to -7.75,

p<0.00001, Figure 4B). Data were from 2367 eyes from 18 studies6,20,22,24,26,30,32,33,35,37,44,50–55,57.

Seventeen studies measured the GCIPL6,22,24,26,30,32,33,35,37,44,50–55,57 and
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only one the GCL20.

Atrophy of the GCP and IPL was more marked in MSON eyes com-

pared to MSNON, mean difference -8.81 (95%CI -7.12 to -10.50, p<0.00001,

Figure 4C). Data were calculated from 2319 eyes from 21 studies6,14,19,20,24,26,30–33,35,40,41,46,49,50,52–56.

Eighteen studies measured the GCIPL (also reported as GCIP9)6,19,24,26,30,32,33,35,40,41,46,49,50,52–56

and three Balk et al, Costello et al and Hadhoum et al) the GCL alone14,20,31.

Effect sizes for the GCIPL are summarised in 3. Funnel blots did not

reveal a publication bias (see Supplementary data).

The meta-analysis for the INL does not provide evidence for atrophy

of the INL, but thickness increased modestly following MSON. The mean

difference between the MSON and control groups showed thickening of

the INL after MSON 0.77 µm (95%CI 0.25 to 1.28, p=0.003, Figure 5A).

Data were from 885 eyes published in eight studies6,20,26,32,34,48,52,54.

The INL remained essentially unchanged in MSNON eyes (Figure 5B,
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p=0.18). Compared to control subjects the 95%CI (-0.17 to 0.89 µm) of

the INL in the patient cohort did cross the zero line in the Forest plot. Eight

studies contributed to this analysis of data from 1182 eyes6,20,26,32,37,38,52,54.

A thickened INL was observed in MSON eyes compared to MSNON

eyes. The average thickening was small (mean difference 0.65 µm, 95%CI

0.23 to 1.08, p=0.003, Figure 5C). Data were available from 1075 eyes

from seven studies19,20,26,31,32,46,52,54. Effect sizes for the INL are sum-

marised in 3. Funnel blots did not reveal a publication bias (see Sup-

plementary data).

The meta-analysis for the ONPL shows that following MSON the av-

erage ONPL was marginally thickened in eyes with MSON and control

eyes (Figure 5D, p=0.23). Data were based on 645 eyes from four stud-

ies20,48,53,54.

In MSNON eyes, the ONPL was minimally thinner compared to con-
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trol eyes (Figure 5E, p=0.14). Data were based on 954 eyes from five

studies20,37,53,54,57.

The ONL appeared to be mildly thickened in MSON eyes compared to

MSNON eyes (Figure 5F). The average increase of ONPL thickness was

1.21 µm (95%CI 0.24 to 2.19, p=0.01). Data were based on 1071 eyes

from six studies19,20,31,46,53,54.

Effect sizes for the ONPL are summarised in 3. Funnel blots did not

reveal a publication bias (see Supplementary data).

Discussion

In this meta-analysis, the data suggest that MSNON and MSON eyes are

associated with atrophy of the retinal ganglion cells (GCL and GCIPL)

and their axons (pRNFL and mRNFL). Importantly, the effect sizes shown

for the present SD-OCT based meta–analysis of the pRNFL very closely
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matched the effect sizes from an earlier TD–OCT based meta–analysis3.

This emphasises the robustness and accuracy of the pRNFL as a mea-

sure for neurodegeneration in MS and MSON spanning two generations

of OCT device technology. Although the meta-analyses in this review is

the first providing a valuable summary of available data on individual retinal

layer thickness patients with MS, it should be noted that meta-analyses are

based on solely observational studies, which is not without limitations58,59.

It was not possible to accurately resolve individual layers of the mac-

ular with TD-OCT3,60. This study shows that using SD-OCT, the mRNFL,

GCL/GCIPL, INL and ONL/ONPL can now be reliably quantified with data

suitable for meta-analyses. These new quantitative layer segmentation

data extend on earlier pRNFL data by demonstrating that inner retinal layer

atrophy is severe after MSON, but still considerable and significant in pa-

tients with MS who never experienced MSON compared to controls. Inter-
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estingly, on a group level different segmentation algorithms deliver compa-

rable data. This is consistent with an earlier head-to-head comparison of

OCT devices in patients with MS61.

In human vision the first-, second-, and third-order neurons and their

axons are hard–wired into the human brain and transmit analogue and dig-

ital signals62. This hard-wired single pathway enables the retinotopic map

of the human visual cortex63. Anatomically the GCL, mRNFL and pRNFL

represent the first unit within this hard–wired pathway. Axonotmesis at any

point in this hard–wired pathway is understood to give rise to retrograde

trans–synaptic axonal degeneration which will inexorably cause inner reti-

nal layer atrophy64. Trans–synaptic degeneration affects the dorsal LGN,

but stops at the INL (detailed discussion in supplementary text).

Six studies reported longitudinal data41,46,65–68. Talman using TD-OCT

reported an annual atrophy rate of -1.4 µm/year in 381 patients with MS,
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which was closely matched by the SD-OCT data (-1.49 µm/year, n=96)

from Narayanan41,67. Later studies found the annual pRNFL atrophy rate

to be about 66% less marked averaging at -0.36 µm/year (n=107)46, -0.5

µm/year (n=45)66 and -0.53 µm/year (n=168)65. One study (n=58) found

no significant changes over a two year period68.

The differences in annual atrophy rates may partly be explained by

differences of the demographic data. The highest annual atrophy rate

was found in patients without MSON and a shorter disease duration65.

A plateau effect was observed in patients with a longer disease duration

(> 20 years)65. Likewise presence of MSON resulted in a higher annual

atrophy rate in eyes with MSON (-0.91 µm/year) compared to eyes with-

out MSON (-0.53 µm/year)66. But this was opposite to what Narayanan

had reported with a lower annual atrophy rate in eyes with MSON (-1.27

µm/year) compared to eyes without MSON (-1.49 µm/year)41.
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A conservative estimate from these data is that or a 1 µm loss every

1-2 years with an OCT device accuracy threshold of about 2–3 µm, a trial

of 2–3 years with active patients would be powered for probing a neuropro-

tection against pRNFL atrophy. During the early disease course a shorter

trial duration may be sufficient65. Good mechanisms to be target by trials

with the pRNFL as an outcome measure are inflammatory disease activity

in MS57,69,70 as well as non–demyelinating mechanisms such as for ex-

ample mitochondrial dysfunction71,72. Finally, SD–OCT segmentation has

been used as an outcome marker in a recent remyelination trial73.

A limitation of pRNFL data not directly evident from the meta-analyses

is caused by disc oedema at presentation74. The elegant longitudinal study

buy Kupersmith et al. clearly demonstrated superiority of the GCIPL layer

compared to the pRNFL for detection of early atrophy following MSON.

This notwithstanding, the averaged atrophy of the pRNFL following MSON
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was 20.38 µm (95% CI 17.91 to 22.86) for TD-OCT data and 20.10 µm

(95%CI 17.44 to 22.76) for SD-OCT data. In MS without MSON averaged

atrophy of the pRNFL was 7.08 µm (95%CI 5.52 to 8.65) for TD-OCT data

and 7.41 µm (95%CI 5.83 to 8.98) for SD-OCT data. Finally, comparison

of MSON and non MSON eyes showed averaged pRNFL atrophy of 13.84

µm (95%CI 11.72 to 15.97) for TD-OCT and 11.25 µm (95%CI 9.50 to

13.00) for SD-OCT data. The almost identical findings for TD- and SD-

OCT data highlight that the pRNFL is well suited for use as a outcome

measure in clinical trials. There is new evidence that achievement of no

evident disease activity (NEDA) with disease modifying treatment is re-

lated with less marked atrophy of the pRNFL longitudinally57.

Consistent with the data from the RNFL there is a grading of atrophy of

the GCL and IPL, which is most severe in MSON, followed by eyes of MS

patients without MSON and control subjects. Because of the poor image
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contrast between the GCL and the IPL most studies reported a combined

measurement of these two layers.

An important advantage of the GCIPL compared to the pRNFL is that

atrophy becomes detectable much earlier74,75. Already one month after

MSON thinning of the GCIPL becomes quantifiable compared to baseline

values, whilst for the pRNFL the advice is to wait at least three months. Re-

assuringly, this finding is corroborated by a different meta-analysis which

also included neuromyelitis optica and which was published whilst present

manuscript was under review76.

In addition, the retinal ganglion cell layer complex is the thickest in the

macula. Therefore, this layer has a large dynamic range and it appears

that because most of the MS related damage includes the macula, the

GCIPL is a good biomarker for neurodegeneration in the visual pathway in

MS. In cases with severe atrophy of the pRNFL following MSON a flooring
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effect may prevent observation of further atrophy around the optic disc, but

the GCIPL will still be useful.

There was no atrophy observed for the INL. In contrast thickening of

this layer was significant more substantial following MSON compared to

MS without MSON. A relationship between INL thickening as a sign of

inflammatory activity has also been reported57,69. Importantly, longitudi-

nal data demonstrated that INL microcysts were mostly (>80%) transient

(dynamic)77,78. A transient increase of INL thickness may be a sign of reti-

nal inflammation or failure of maintaining the retinal fluid homeostasis79,

consistent with the original description of MMO in MS80. There are now

several independent lines of evidence suggesting existence of a retinal

glymphatic system with a prominent role for the INL79,81,82. Segmentation

of the INL will be relevant for studies on the effect and treatment of inflam-

matory disease activity in MS. Future developments in this field will include
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OCT angiography79,81,82.

Taken together the meta-analyses suggest that there are no signifi-

cant changes of the ONPL in either MSON eyes or eyes of patients with-

out MSON compared to controls. There was however, a small degree of

ONPL thickening in MSON eyes compared to non MSON eyes which is

caused by a very mild degree of thickening in the former and thinning in

the latter. This is a consistent observation from the literature on MSON

and other forms of acute optic neuritis (neuromyelitis optica, anti-MOG),

typically during the acute phase11. This is now confirmed by new prospec-

tive evidence for ONL thickening in anti-MOG ON83. An increased MRI

DIR signal has also been associated with ONPL thickening31. It has been

hypothesised that ONPL thickening might be caused by traction, inflam-

mation and oedema19,84. The need for rigorous OCT quality control16,85

here cannot be overemphasised because the outer retinal layers are par-
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ticularly vulnerable to an easily overlooked artefact caused by placement

of the measurement beam86,87. We anticipate that recognition of outer

retinal layer volume changes will become more relevant for the differential

diagnosis of MSON from other causes of optic neuritis63,83,88.

A limitation to current date studies is the difficulty obtaining retinal tis-

sue for detailed histological investigations89. A potential advantage is the

availability of electrophysiological techniques49,90. Clinically it is well recog-

nised that conduction block can be caused by any structural or inflamma-

tory lesion affecting the optic pathways. Typically these lesions are nowa-

days revealed by MRI brain imaging. Therefore the application of MRI

based diagnostic criteria for MS10 to the cohorts subject to present meta–

analysis render this type of study contamination most unlikely. The po-

tential to combine now OCT with pattern and multifocal electroretinogram,

visual evoked potentials and MRI provides a powerful tool for the com-
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bined assessment of structure and function in cohorts of homogeneous

pathology4,11.

Will all segmented retinal layers be needed for clinical practise and

trials? Probably not. For practical reasons a reasonable minimalistic ap-

proach will suffice with the pRNFL if taken at an appropriately chosen time

point. At least three months after MSON. For clinical trials and longitudi-

nal studies on neurodegeneration one would recommend as a minimum

the pRNFL and mGCIPL91. Those studies focusing on inflammation as

well are advised to consider the INL as well. The mRNFL is, given effect

size and error bar distribution (Figure 3) the least sensitive measure. The

mRNFL may however be regarded as a “backup” in those patients were

imaging of the optic disc proofs technically too difficult.

In summary, SD–OCT based layer segmentation has unravelled the

progression of neurodegeneration on a structural level. Atrophy affects

28



axons and neurons of the hard–wired visual pathway, namely the pRNFL,

mRNFL and GCIPL. A new physiological barrier to retrograde trans–synaptic

axonal degeneration has been confirmed, namely the INL. On basis of this,

transient INL volume changes may be indicative of inflammatory disease

activity and response to disease modifying treatment in MS.
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25497 records identified in first step of hierarchical database

using PubMed

20624 removed because not spectral domain

4873 spectral domain OCT studies

4775 removed because not demyelination, 

MS, MS subtuype, ON or MSON

98 on target disease spectrum

12 identified through review

of references

110 full text articles assessed for eligibility

40 studies included in meta-analysis

70 excluded after full review

      Editorials

      Single case reports

      Data in wrong format and not retrivable

               from authors

      Review or similar

      Previously published data

Figure 1: Study selection.
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(A)
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pRNFL mRNFL

pRNFL mRNFL

pRNFL mRNFL

Figure 2: Meta–analysis of peripapillary (pRNFL) and macular RNFL
(mRNFL) SD–OCT data in MS patients who (A) did suffer from MSON,
(B) never suffered from MSON and (C) comparison of MSON and MSNON
eyes. The overall averaged RNFL (mean±SD) and number of eyes in-
cluded is shown for patients and normal subjects. The micron difference
in RNFL thicknesses is shown to the right with the length of de horizon-
tal bar indicating the 95% confidence interval. The four SD–OCT devices
used were indicated as H (Spectralis, Heidelberg Engineering), Z (Cirrus,
Zeiss), O (RTVue, Optovue) and T (3D OCT-2000, Topcon). In the graph
“favours” indicates greater atrophy in the group named in brackets. For
corresponding Funnel plots see Supplementary data.
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Figure 3: SD-OCT layer segmentation performance rating in patients with
MSON versus controls (squares), MSNON versus controls (circles) and
MSNON versus MSON (diamonds). Head-to-head OCT layer segmenta-
tion performance based on average effect sizes. Segmented layers shown
in green (pRNFL), purple (GCIPL) and blue (mRNFL) are significant with
good effect sizes. The effect size was small for the INL and only in pres-
ence of MSON (red). The effect size was minimal for the ONPL compar-
ing MSON with MSNON (brown). Effect sizes shown in grey were non-
significant. The patient to control effect size were all shown as positives to
allow for a clear comparison between individual layers. The bars indicate
the 95% CI. The grey shaded areas indicate layers with atrophy (thinning)
or increase (thickening). 39



(A)

(B)

(C)

Figure 4: Meta–analysis of macular GCL and IPL SD–OCT data in MS
patients who (A) did suffer from MSON, (B) never suffered from MSON and
(C) comparison of MSON and MSNON eyes. For corresponding Funnel
plots see Supplementary data.
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Figure 5: Meta–analysis of macular INL SD–OCT data in MS patients who
(A) did suffer from MSON, (B) never suffered from MSON and (C) com-
parison of MSON and MSNON eyes. Meta–analysis of macular OPL and
ONL (ONPL) SD–OCT data in MS patients who (D) did suffer from MSON,
(E) never suffered from MSON and (F) comparison of MSON and MSNON
eyes. For corresponding Funnel plots see Supplementary data.
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