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Abstract

Gene regulatory networks (GRNs) control cellular function and decision making during tis-

sue development and homeostasis. Mathematical tools based on dynamical systems theory

are often used to model these networks, but the size and complexity of these models mean

that their behaviour is not always intuitive and the underlying mechanisms can be difficult to

decipher. For this reason, methods that simplify and aid exploration of complex networks

are necessary. To this end we develop a broadly applicable form of the Zwanzig-Mori projec-

tion. By first converting a thermodynamic state ensemble model of gene regulation into

mass action reactions we derive a general method that produces a set of time evolution

equations for a subset of components of a network. The influence of the rest of the network,

the bulk, is captured by memory functions that describe how the subnetwork reacts to its

own past state via components in the bulk. These memory functions provide probes of near-

steady state dynamics, revealing information not easily accessible otherwise. We illustrate

the method on a simple cross-repressive transcriptional motif to show that memory functions

not only simplify the analysis of the subnetwork but also have a natural interpretation. We

then apply the approach to a GRN from the vertebrate neural tube, a well characterised

developmental transcriptional network composed of four interacting transcription factors.

The memory functions reveal the function of specific links within the neural tube network

and identify features of the regulatory structure that specifically increase the robustness of

the network to initial conditions. Taken together, the study provides evidence that Zwanzig-

Mori projections offer powerful and effective tools for simplifying and exploring the behaviour

of GRNs.

Author summary

Gene regulatory networks are essential for cell fate specification and function. But the

recursive links that comprise these networks often make determining their properties and

behaviour complicated. Computational models of these networks can also be difficult to

decipher. To reduce the complexity of such models we employ a Zwanzig-Mori projection

approach. This allows a system of ordinary differential equations, representing a network,
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to be reduced to an arbitrary subnetwork consisting of part of the initial network, with

the rest of the network (bulk) captured by memory functions. These memory functions

account for the bulk by describing signals that return to the subnetwork after some time,

having passed through the bulk. We show how this approach can be used to simplify anal-

ysis and to probe the behaviour of a gene regulatory network. Applying the method to a

transcriptional network in the vertebrate neural tube reveals previously unappreciated

properties of the network. By taking advantage of the structure of the memory functions

we identify interactions within the network that are unnecessary for sustaining correct

patterning. Upon further investigation we find that these interactions are important for

conferring robustness to variation in initial conditions. Taken together we demonstrate

the validity and applicability of the Zwanzig-Mori projection approach to gene regulatory

networks.

Introduction

Biological systems are complex, comprising multiple interacting components. In many cases

this complexity makes it difficult to identify underlying mechanisms and to understand the

function of a system. Gene regulatory networks (GRNs) are an example of this problem [1].

A GRN comprises the set of interacting genes responsible for the development, differentiation

or homoeostasis of a tissue and provides a formal system-level, causative explanation for gene

regulation. In physical terms, a GRN consists of modular DNA sequences—cis regulatory ele-

ments—that bind to specific sets of transcriptional activators and repressors, which control the

expression of associated genes. Some of the regulated genes are themselves transcriptional reg-

ulators. Thus, at the core of a GRN is a recursive set of regulatory links that forms a transcrip-

tional network, the dynamics of which is responsible for the spatial and temporal patterns of

gene expression.

Attempts have been made to map large transcriptional networks, yet even for relatively

small networks, the number of links and the feedback within the system make intuitive under-

standing difficult to obtain. Various computational models have been developed to address

this. Logical models, which describe regulatory interactions qualitatively, provide a flexible

and simplifying formalism to explore and understand the behaviour of a network [2]. How-

ever, these approaches are unable to capture subtler features of a network that depend on

specific aspects of the timing or concentration of components of the network. For this,

continuous models based on, for example, ordinary differential equations (ODEs) are often

employed [3, 4]. These models describe gene regulation in much greater detail, and there are

well-developed mathematical theories that provide powerful tools to distill the dynamical

details of such systems. These have been used successfully to gain insight into the operation of

GRNs and suggest explanations for otherwise difficult to understand behaviours, including

emergent phenomena such as self-organisation, oscillations, spatial patterning, and scaling

of pattern size [5–8]. A disadvantage of this approach, however, is that ODE models often

require a large number of parameters, including binding affinities, degradation rates, produc-

tion rates, etc. While it is often possible to numerically analyse large systems, the power of ana-

lytical tools is in many cases lost due to lack of knowledge of parameters or the complexity of

the network.

Various techniques have been developed to reduce the complexity of models yet preserve

specific features of the behaviour of the system. For Boolean networks it is possible to remove

specific components while restructuring other parts of the network to conserve the logical
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structure, but this requires quite specific network topologies [9]. In the case of mass action

reactions, one approach to simplification is to generate intermediate species in a systematic

way such as to make different systems comparable. This then allows the identification of

motifs that can be simplified. This approach comes with the natural limitation that the species

involved cannot be chosen a priori and must conform to a particular network structure [10].

Other methods to reduce complexity involve removing nodes or perturbing the system and

analysing a posteriori the effect that this has on the dynamics of the network. This can be help-

ful to develop intuition, but generally requires the investigation of a large number of combina-

tions of perturbations [11, 12]. A further approach, although applicable only in rather specific

cases, is to enforce a timescale separation between network nodes that is chosen not to perturb

the dynamics significantly [13]. One can find “morphisms” that relate network structure to

function in order to then simplify a set of nodes into potentially simpler motifs; this can reveal

an interpretation of how certain motifs work but does not provide a direct conversion from

the original network [14]. Less formal methods for replacing well understood network motifs

with simpler motifs producing similar behaviour have also been extensively explored [15].

Along similar lines, entire parts of a network can be substituted with effective nodes with more

complicated dynamics that produce similar output for a set of chosen species, although the fea-

siblity of this depends on network structure and the complexity of the original dynamics [16].

We focus in this paper on reducing model complexity by tracking a subnetwork that is

embedded within the remainder—or “bulk”—of a larger system. Analysing the behaviour of

the subnetwork and its interaction with the bulk can help reveal and rationalise the properties

of the entire network. With any coarse graining approach, including those discussed above, a

compromise must be reached between the precision of the method, i.e. how well it captures

the dynamics of the full network, and the simplicity and interpretability of the resulting

description. For example, the introduction of intermediate species can produce model reduc-

tions with high precision but these may not be interpretable [10], while morphism approaches

provide interpretable insights into the structure but capture the full model dynamics only for

specific initial conditions and system parameters [14]. We consider important for interpret-

ability the ability to choose a subnetwork, guided by biological relevance or the availability of

data; none of the methods described above allow this and instead identify a subnetwork based

on their internal criteria.

One class of methods that offers the potential to balance accuracy and interpretability are

Zwanzig-Mori projections [17, 18]. Originally developed to allow the extraction of macro-

scopic equations from a microscopic description of the dynamics—a brief overview can be

found in e.g. [19]—these methods have since been used to separate a network into an arbitarily

chosen subnetwork and bulk in ways that preserve substantial features of the original temporal

dynamics [20, 21]. Used in this way, the approach describes the concentration of components

in the subnetwork in detail, while the activities of the species in the bulk are replaced with so-

called ‘memory functions’. These memory functions are derived from the detailed kinetic

description of the remainder of the network and summarise how, by acting via the bulk, the

past behaviour of the subnetwork influences its current state (Fig 1). The resulting memory

functions are functions of time difference, describing the amplitude of a signal returning from

the bulk some specified time after the original signal left the subnetwork. Additionally, it is

possible to separate each memory function in order to analyse through which bulk species the

signal is flowing, thus providing a means to gain a more systematic understanding of a system.

Evolving from its original applications to critical dynamics and supercooled liquids near

the glass transition [22], this approach has been applied to biochemical networks [20], where

it has been used to analyse the dynamics of signaling in the EGFR (epidermal growth factor

receptor) network. It has since been developed further to include also enzymatic Michaelis-
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Menten reactions [21]. Here we apply the Zwanzig-Mori approach to the analysis of GRNs.

We derive a general method that is applicable to any thermodynamic state ensemble represen-

tation of protein dynamics including transcriptional networks. These thermodynamic equa-

tions mechanistically represent interactions between proteins via transcriptional regulation

[23] and can be expanded into mass action reactions to which the Zwanzig-Mori projection

formalism can be applied. This approach not only justifies a heuristic method where the ther-

modynamic equations are expanded to quadratic order around a steady state to obtain a set

of effective unary and binary reactions, but also opens up the possibility of developing more

advanced projection approximations. We test the method on a cross repressive motif, where

we show that we are able to qualitatively reproduce the dynamics of the system and obtain a

simple intuitive interpretation of the memory functions. Finally, we use the approach on a

GRN from the vertebrate neural tube, a well characterised developmental GRN composed

of four interacting transcription factors [24]. This reveals the importance of specific links

within the network and identifies features that appear to be present primarily to increase the

robustness of the network to initial conditions, rather than maintain the steady states. Taken

together, the study provides evidence that Zwanzig-Mori projections are a powerful and effi-

cient method to simplify and explore the behaviour of gene regulatory networks, with memory

functions providing new tools for probing the dynamics near steady state.

Methods

Thermodynamic state ensemble models for gene regulation dynamics

Several classes of model have been developed to describe gene regulation. One such class con-

sists of thermodynamic state ensemble models in which equations are constructed that relate

interactions between key components of the regulatory mechanism to gene expression [23, 25,

26]. In these models, all possible states of a regulated gene are enumerated. Each state consists

of a specific set of transcription factors bound to a DNA cis-regulatory element, weighted by

the affinity of interactions. The rate at which a protein is produced is then represented as a

Fig 1. Sketch describing the concept of memory within a reaction network. A network is divided into bulk and subnetwork, x axis represents time. Concentration

changes in the subnetwork act as signals that leave the subnetwork and travel into the bulk. There they interact with other bulk species and return at a later timepoint

via bulk-to-subnetwork interactions. The net effect of such interactions is thus that the subnetwork reacts to its own past. The precise influence of past subnetwork

states is governed bymemory functions that depend on the time difference, i.e. on how long ago the relevant signal has left the subnetwork.

https://doi.org/10.1371/journal.pcbi.1006003.g001

Memory functions reveal structural properties of gene regulatory networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006003 February 22, 2018 4 / 25

https://doi.org/10.1371/journal.pcbi.1006003.g001
https://doi.org/10.1371/journal.pcbi.1006003


ratio of the weight of the subset of states that promote gene expression, to the total weight of

all states. We define the vector x such that it contains the protein concentrations for each gene.

We can then generically define the time evolution for any protein concentration, indexed by j,
as

@txj ¼
X

n

xðj;nÞaðj;nÞ � xjbj ð1Þ

xðj;nÞ ¼
wðj;nÞ

Q
i x

ni
i

P
n0 wðj;n0Þ

Q
i x

n0i
i

ð2Þ

Here βj is the decay rate of protein j. We use the summation over n to represent all possible

binding conformations for the DNA that produces protein j. The term α(j,n) represents the pro-

duction rate of protein j from a particular DNA conformation n. The factor w(j,n) is the specific

affinity for individual proteins to the DNA that produces species xj. Finally x(j,n) is the concen-

tration of DNA producing protein j and in conformation n. This is assigned in (2) as the

weight of the conformation, dependent on the protein concentrations in a mass-action form,

normalised by the total weight of all conformations. This ensures that x(j,n) lies in the range

[0, 1], so it is not an absolute concentration; any overall DNA concentration scale is therefore

to be understood as incorporated into the protein production rates α(j,n). Accordingly one can

also think of x(j,n) as the probability of finding a certain conformation n of the DNA producing

protein j. As made explicit in (2), the DNA conformation label n is a collection of integers ni
counting how many copies of protein i are bound to the DNA.

Setup of projection method

The Zwanzig-Mori method in general starts from the choice of a set of observables for which

dynamical equations are to be obtained. Initially we select, as the simplest possible observables,

the deviations from steady state of the concentrations of the chosen subnetwork species. For

these observables the Zwanzig-Mori projection leads to a set of dynamical equations of the

form

@tdxi ¼
XNs

j¼1

dxjOji þ

Z t

0

dt0
XNs

j¼1

dxjðt
0ÞMjiðt � t

0Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Memory function

0

B
@

1

C
Aþ riðtÞ ð3Þ

Here δxi are the subnetwork concentration deviations as defined explicitly below and Ns indi-

cates the number of subnetwork species. The Oji define a rate matrix O that represents subnet-

work interactions. The ri(t) are so-called random forces that arise from the uncertainty about

the initial (time t = 0) state of the bulk concentrations. (For the linear dynamics they can be

expressed in closed form [20] but this is not useful in our context as discussed in Sec.Nonlinear
projected equations below.)

The key quantities in the eq (3) are the memory functions Mji(Δt), which describe how past

concentration fluctuations δxj(t0) influence the current time evolution. However, while the

projected equations are formally exact, it is in general impossible to evaluate these memory

functions explicitly. One scenario where this can be done is a network of unary reactions,

where the full reaction equations are linear in the concentrations [20]. This suggests a heuris-

tic approach to calculating memory functions in the current context, which is to linearize the

thermodynamic equations. One can think of this as generating a set of effective unary reac-

tions (at least loosely; see Sec. Justifying the heuristics: Network expansion). Explicitly, one
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linearly expands the time evolution eqs (1) with (2) inserted. The expansion is performed

around a steady state with concentrations yi, i.e. in terms of the deviations δxi = xi − yi. The r.

h.s. of (1) then contains only linear terms in the δxi since constant terms cancel out because

of the steady state condition. One can therefore write the time evolution equations in matrix

form [20]

@tdxi ¼
XNs

j¼1

dxjLji ð4Þ

for an appropriately defined matrix L with entries Lji.

Projected equations for linearised dynamics

From the matrix L one can calculate the terms in the (linear) projected dynamics of the sub-

network concentrations from (3) as shown in [20]. We summarize the method here. One

separates the set of all (linear in concentration) observables into subnetwork (s) and bulk

(b), and assumes as above that these concentration deviations δxi are numbered so that

the first Ns are the subnetwork observables while the rest are the bulk observables. The

matrix L for the linearised dynamics then separates into blocks according to the different

observables:

ð5Þ

where labels S and B represent respectively the set of species in the subnetwork and in the

bulk.

We use the labels S and B here to represent subnetwork and bulk species respectively, this

will be useful once more subnetwork and bulk observables arise (see Sec.Mathematical results).
The rate matrix O with entries Oji in the projected eq (3) is then simply the subnetwork block

of L,

Ω ¼ LS;S ð6Þ

The memory functions similarly form the elements of a memory matrix, which can be

expressed in terms of the blocks of L as [20]

MðDtÞ ¼ LS;BeLB;BDtLB;S ð7Þ

This form allows straightforward evaluation of the memory functions starting from any given

matrix L describing the linearised dynamics.

Nonlinear projected equations

To capture the leading nonlinear corrections to the subnetwork dynamics, it is natural to

enlarge the set of subnetwork observables by adding quadratic observables, i.e. products of
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concentration deviations. The projected equations then become

@tdxi ¼
XNs

j¼1

dxjOji þ
XNs

1�j�k�Ns
dxjdxkOðjkÞi

þ

Z t

0

dt0
XNs

j¼1

dxjðt0ÞMjiðt � t
0Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Linear memory

þ
XNs

1�j�k�Ns
dxjðt0Þdxkðt0ÞMðjkÞiðt � t

0Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Nonlinear memory

0

B
@

1

C
A

þ riðtÞ

ð8Þ

This form is analogous to (3) but now includes the quadratic observables that we have retained,

both in the subnetwork interactions (rate matrix terms) and in the memory terms. Once again

ri(t) represents the random forces but in this nonlinear case further characterization would

require knowledge of the statistics of the initial bulk fluctuations, which is not generally avail-

able. We therefore disregard these terms, making (3) a closed system of equations for the time

evolution of the subnetwork concentrations. Note that neglecting the random forces is equiva-

lent to assuming that the bulk concentrations are at their steady state values at the initial time.

Formally these initial bulk concentrations should be random rather than deterministic to

make the Zwanzig-Mori projection well defined; we follow the strategy of [20] here and use

initial Poisson distributions in the limit of vanishing variance. This limit has already been

taken in the results above [20]. How large protein copy numbers have to be to allow stochastic

effects to be safely neglected is something that could be studied in future work; the answer will

depend, among other things, on the degree of nonlinearity of the GRN time evolution equa-

tions [27].

Moving on to the nonlinear memory functions, we are again faced with the difficulty that

these cannot in general be evaluated explicitly. However, previous work [20] has developed a

systematic approximation technique, which is applicable to the case of reaction networks with

unary and binary reactions described by mass action kinetics. In such networks the time evolu-

tion equations for linear observables have linear and quadratic terms on the r.h.s. Inserting

these into the equations for quadratic observables using the product rule gives e.g.

@tðdx1dx2Þ ¼ ð@tx1Þdx2 þ dx1ð@tdx2Þ ð9Þ

and one sees that cubic terms arise. The approximation in [20] neglects these terms in the spirit

of an expansion to second order in the changes from steady state δx. These changes are there-

fore implicitly assumed to be small. Defining a vector z that collects all δx variables and their

products such as dx2
1
, δx1 δx2, one can now again write a matrix form of the time evolution

equations:

@tza ¼
X

b

zbLba ð10Þ

The rate matrix entries and memory functions can then be calculated [20] from the general

formulae (6 and 7), applied to the expanded L matrix constructed as explained above. Because

the subnetwork block S now contains linear {s} and quadratic observables {ss}, the matrices

have the corresponding block structures. The coefficients Oji are collected in the block Os,s, for

example, and the O(jk)i in the block Oss,s of the overall rate matrix O. The memory functions

Mji(Δt) andM(jk)i(Δt) are similarly contained in blocks Ms,s and Mss,s of the memory matrix M.

To apply the above technique in order to derive nonlinear projected subnetwork equations

for GRN dynamics, the obvious heuristic route is again to expand the dynamical eq (1), this

time to second order in the δxi, to obtain an effective set of unary and binary reactions. This
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set defines the matrix L, from which the rate matrix and memory functions can then be found

as explained above.

Justifying the heuristics: Network expansion

The heuristic method set out above for deriving linear or nonlinear subnetwork equations for

GRN dynamics is a useful practical recipe, but its mathematical basis is not obvious. One diffi-

culty is that the thermodynamic GRN eq (1) involve rational functions of the concentrations

such as 1/(1 + x1), and while these can be Taylor expanded they have only finite radius of con-

vergence. Not only does the heuristic method then have to throw away an infinite number of

higher order terms when truncating the Taylor expansion after linear or quadratic order, but it

may implicitly be using the resulting approximation outside the regime where the expansion is

even convergent. In addition, while we have loosely talked about the expanded time evolution

equations as representing networks of effective reactions, such an interpretation is in no way

assured as there is no underlying mechanistic model and hence no constraints that would

ensure an appropriate stoichiometry or even positivity of rate constants.

Our mathematical contribution in this paper is to demonstrate that the above limitations

can be resolved, and the heuristic approach justified, by initially expanding the thermodynamic

eqs (1 and 2) into a network of well-defined unary and binary reactions. The way to achieve

this is already suggested by (2): we represent each possible existing DNA conformation as

an additional species whose concentration has its own dynamical evolution, such that in an

appropriate limit of fast DNA binding and unbinding, it reaches the quasi-steady state (QSS)

values of the DNA conformation concentrations (2). The prefix “quasi” refers to the fact that

this steady state is for given protein concentrations, which themselves change slowly in time.

We can then apply the Zwanzig-Mori method to this network to extract memory functions for

the chosen subnetwork. In doing this we can justify removing higher order terms as in [20] as

the system is composed of only first and second order reactions. Finally the limit of fast DNA

binding and unbinding has to be taken. Our result is that this procedure results in exactly the

same projected equations as the heuristic approach described above, thus putting the method

on a firm mathematical footing. The conclusion applies not only in the context of GRNs but in

all networks with the appropriate timescale separation, provided that all fast observables are

treated as part of the bulk. More sophisticated projection methods can then be derived by

retaining some fast observables (in our case, subnetwork DNA) in the subnetwork. For the

case of Michaelis-Menten dynamics, previous work has shown that such an approach allows

one to derive projected equations that retain all subnetwork nonlinearities [21]. More gener-

ally, by embedding GRN models based on thermodynamic state ensembles into the broad

class of mass action reaction networks, our network expansion method opens up the possibil-

ity of incorporating stochastic effects and of applying a broad range of other approximation

and model reduction techniques [28].

Results

In this section we first provide our mathematical results, where we use a network expansion

technique to provide a justification for the heuristic approach to finding memory functions for

GRNs that was described in Secs. Projected equations for linearised dynamics and Nonlinear
projected equations above. We then demonstrate applications of the approach with case studies.

We first illustrate the memory function method on a simple example system. Finally, the

results from the biological application to neural tube patterning are given in Sec. Application to
neural tube network onwards.
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Mathematical results

Network expansion applied to a protein-DNA binding mechanism. Our network

expansion approach necessitates defining new reaction rates for binding and unbinding of

protein to/from DNA that are consistent with the affinities w from the thermodynamic

description. To be explicit, we define kpþðj;nÞ as the rate constant for protein p to bind to DNA

coding for protein j and in binding conformation n, with a similar meaning for kp�ðj;nÞ. These

rates will thus describe the interaction each DNA species has with the protein species that bind

to it. With these rate constants we write down an equation for the time evolution of each DNA

concentration x(j,n):

@txðj;nÞ ¼
X

p

ðkpþðj;n� epÞxðj;n� epÞxp � k
pþ
ðj;nÞxðj;nÞxp þ k

p�
ðj;nþepÞ

xðj;nþepÞ � k
p�
ðj;nÞxðj;nÞÞ ð11Þ

The first term on the r.h.s. of (11) represents binding of protein p to DNA conformation

(j, n − ep) to make DNA conformation (j, n). Here ep is a unit vector whose i-th entry is δip, i.e.
a 1 at position p and zeros elsewhere. Similarly the third term on the right of (11) describes

unbinding of protein p. The other two terms capture how DNA in conformation (j, n) can be

lost by these two processes.

We next establish the relationship between the rate constants k in the mass action represen-

tation (11) and the affinities w of the thermodynamic form. The rate constants need to be cho-

sen to ensure the QSS (2) of the DNA concentrations. The simplest assumption is detailed

balance, which requires that in this steady state the net change in DNA concentration from

any individual pair of binding and unbinding reactions between two conformations vanishes.

Detailed balance means, in particular, that where there are multiple reaction paths from one

DNA conformation to another, which might be distinguished by the order in which the vari-

ous proteins bind, each path carries zero reaction flux rather than having a preferred forward

or backward reaction direction. Balancing in this way the net change from binding of protein

p to DNA in conformation (j, n) with the reverse unbinding transition, for the QSS concentra-

tions (2), gives

kpþðj;nÞxpwðj;nÞ
Y

i

xnii ¼ k
p�
ðj;nþepÞ

wðj;nþepÞ
Y

i

xniþdip
i ð12Þ

The protein concentrations cancel from this as they should and we are left with a constraint on

the rate constants:

kpþðj;nÞ
kp�ðj;nþepÞ

¼
wðj;nþepÞ
wðj;nÞ

ð13Þ

To finish our construction, we need to ensure that the DNA concentrations reach the QSS val-

ues that we have imposed above with the detailed balance constraint (13). This requires that

we make all DNA binding and unbinding reactions fast. Formally we introduce a fast rate fac-

tor γ and write all rate constants in the form kp�ðj;nÞ ¼ g~kp�ðj;nÞ, with the understanding that we will

take the limit γ!1 at fixed ~k. This construction is analogous to the one previously used for

Michaelis-Menten reactions [21]. As there, we also need to ensure that the changes to protein

concentrations from binding to DNA are negligible, as such effects are not described by the

original thermodynamic eq (1). (We do, however, include them in the finite-γ numerics of Fig

2B.) This is achieved by scaling all DNA concentrations as xðj;nÞ ¼ ~xðj;nÞ=g0. The intuition for

this construction is that the amount of protein bound to DNA is, at most, of the order of the
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Fig 2. Example of application of Zwanzig-Mori projection. (A) Illustration of the methodology, for the example of a cross repressive motif. First the nonlinear

thermodynamic reactions (left) are expanded into mass action reactions with an appropriate timescale separation (centre). This generates additional nodes that

represent the possible DNA conformations for both proteins, with e.g. g1DNA/g2Prot indicating DNA for gene 1 with protein 2 bound to it. To the expanded network

we can apply the projection approach, retaining only the concentration of protein 1 in the subnetwork. The effect of the rest of the network—the bulk—is captured via

memory terms (right). (B) Comparison of the cross repressive motif described via the original thermodynamic equations and the expanded mass action equations with

and without timescale separation. Already for a moderate fast rate factor of γ = 10 the mass action and thermodynamic time evolutions are visually indistinguishable.

Two time courses are plotted in Fig. (B-D), for g1Prot & g2Prot. (C-D) Demonstration of the projection approach with g1Prot in subnetwork and g2Prot in bulk. The

projected equations track the dynamics of the original thermodynamic equation with a reduced system that contains memory functions. However, one can observe in
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total concentration of DNA, which vanishes for γ0 !1. Finally, to compensate for the DNA

concentration scaling, protein production rates have to be scaled as aðj;nÞ ¼ g0~aðj;nÞ.

With the above rescalings, the limit γ!1 ensures that the “fast” species, i.e. the DNA

concentrations are always in QSS with respect to the “slow” protein concentrations. The limit

γ0 !1, on the other hand, means that the effects of binding to, and unbinding from, DNA

can be neglected in the equations for the protein concentrations. These statements can be

shown mathematically along the lines of the arguments in [21]. After dropping all tildes on

rates and concentrations again—this is the notational convention we adopt for the rest of the

paper—the time evolution of the concentrations in our expanded network is given by (1) for

the protein equations, while for the DNA species one has

@txðj;nÞ ¼ g
X

p

ðkpþðj;n� epÞxðj;n� epÞxp � k
pþ
ðj;nÞxðj;nÞxp þ k

p�
ðj;nþepÞ

xðj;nþepÞ � k
p�
ðj;nÞxðj;nÞÞ ð14Þ

Note that in the above argument we do not require a specific relation between γ and γ0. In real-

ity the rate for producing a single protein from the appropriate DNA, which is of order γ0, is

lower than the DNA binding/unbinding rates, which are O(γ). However, quantifying this

would be non-trivial as the model described here simplifies many biological steps into each

of the two elementary processes of protein production and binding/unbinding. In any event,

for our argument to hold we only need both γ and γ0 to be large, and for simplicity we take

then γ = γ0 as was done in [21].

Obtaining linearised projected equations. We now proceed to use the expanded network

to derive linearised projected equations. After the expansion, this requires us to keep track of

deviations from steady state of all protein and DNA concentrations. We label these observables

by “s” and “b” for subnetwork and bulk proteins as before, and “a” for DNA. Below we will

refer to the DNA species in the system as “fast”, as expressed mathematically by the factor γ on

the r.h.s. of (14), while protein species are “slow”. Note that the rate constants for protein pro-

duction are also fast, of order γ0, but that the resulting changes to protein concentrations are

slow because of the low concentration of (protein-producing) DNA.

We construct our L matrix by placing the DNA in the bulk, such that S = {s} and B = {b, a},

giving the block form

ð15Þ

The expression (7) for the resulting memory function now explicitly involves the fast rate fac-

tor γ and the rate constants ~kp�ðj;nÞ used in the construction of our expanded network. These

parameters appear in the third column in the second expression for L in (15), which encodes

the time evolution equations for the DNA species. Our remaining task is to take the limit

γ!1, with the aim of obtaining an expression for the memory function that only involves

parameters of the original thermodynamic eqs (1 and 2). To take this limit, one notes that all

blocks in the third column of (15) are proportional to γ. As the memory function contains an

exponential of L, it will then have contributions decaying for time differences of order 1/γ,

(C) that accuracy can be lost in the transient if the system is initiated too far away from the fixed steady state. (D) Starting nearer to the steady state (at t = 1)

substantially increases the accuracy of the projected description. (E) Example of memory functions of protein 1 to itself, decaying with time difference. The linear

memory function is positive as expected from the network (positive feedback loop), while the nonlinear term is negative to correct for range-limiting nonlinearities

that the linear terms cannot capture. Parameters used are α1 = 1, α2 = 1, wp1 = 1, wp2 = 2, w1 = 2, w2 = 2, β1 = 1/2, β2 = 1/2.

https://doi.org/10.1371/journal.pcbi.1006003.g002
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arising from the DNA dynamics, as well as slow contributions decaying on timescales of order

unity.

For γ!1 the fast memory function contributions become effectively instantaneous and

add to the rate matrix, and only the slow contributions remain in the memory function. This

separation into fast and slow pieces of the memory can be performed using the method in [21]

because L has exactly the same division into fast and slow blocks as there. It leads to the simple

result that the final rate matrix and (slow) memory function for γ!1 can be calculated from

an effective L-matrix no longer involving the fast degrees of freedom. To state the expression

for the effective L, we first isolate the slow piece of our original L:

ð16Þ

(The zero blocks here arise from the fact that subnetwork and bulk proteins do not interact

directly in our GRN setting, but only via the DNA species.) The effective L-matrix that gives us

the rate matrix and memory function for γ!1 is then of the form Leff = Lna + ΔLna, which

written out reads:

ð17Þ

Here the second term including the minus is the additional contribution ΔLna from the fast

degrees of freedom. The matrix Leff can be inserted directly into (6 and 7) to obtain the pro-

jected equations for linearised dynamics, with the fast rate limit already taken.

Fast binding limit as quasi-steady state elimination. As in [21], the result (17) has a

simple interpretation: Leff can be obtained by eliminating the fast degrees of freedom from

the linearised time evolution equations using a QSS condition. Using the block form (5), these

equations can be written as

@tδx
sT ¼ δxsTLs;s þ δxaTLa;s ð18aÞ

@tδx
bT ¼ δxbTLb;b þ δxaTLa;b ð18bÞ

@tδx
aT ¼ δxsTLs;a þ δxbTLb;a þ δxaTLa;a ð18cÞ

where δxsT, δxbT and δxaT are vectors collecting the concentration deviations of subnetwork

proteins, bulk proteins and DNA species, respectively. All blocks of L appearing in (18c) are

proportional to γ. This justifies elimination of the fast variables using a QSS condition for

these fast (DNA) degrees of freedom, effectively setting the r.h.s. of (18c) to zero. The fast spe-

cies concentrations are then expressed as:

δxaT ¼ � ðδxsTLs;a þ δxbTLb;aÞðLa;aÞ
� 1 ð19Þ

If we now substitute this back into the time evolution eqs (18a and 18b) we obtain:

@tδxsT ¼ δxsTðLs;s � Ls;aðLa;aÞ
� 1La;s

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
DLs;s

Þ þ δxbTð� Lb;aðLa;aÞ
� 1La;s

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
DLb;s

Þ

@tδxbT ¼ δxsTð� Ls;aðLa;aÞ
� 1La;bÞ þ δxbTðLb;b � Lb;aðLa;aÞ

� 1La;bÞ

ð20Þ

Writing these time evolution equations in matrix form gives exactly the effective L-matrix
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Leff defined in (17), as claimed. Two terms have been highlighted here by brackets for later

comparison.

Equivalence to heuristic linearisation. So far we have shown that the rate matrix and

memory functions for the linearised dynamics can be found by applying standard projection

results to a set of time evolution equations for only the slow degrees of freedom. This reduced

set of equations is obtained by first expanding the thermodynamic equations into a set of

mass-action equations, linearising, and finally eliminating the fast variables using a QSS

assumption. We next show that this procedure is equivalent to directly linearising the original

thermodynamic equations, for any case where there is a timescale separation. This generalises

previous work [21] that only considered separate (non-interacting) fast species. To verify the

equivalence, it is useful to write the expanded mass-action equations in the generic form

@txs ¼ Rsðxs; xb; xaÞ; @txb ¼ Rbðxs; xb; xaÞ; g� 1@txa ¼ Raðxs; xb; xaÞ ð21Þ

where xs, xb and xa are generic components of xs, xb and xa, respectively. This expanded

description is constructed so that for γ!1, when the xa can be replaced by their QSS values

x�a , one recovers the original thermodynamic equations. These can therefore be written as

@txs ¼ Rsðxs; xb; xa�Þ ð22Þ

@txb ¼ Rbðxs; xb; xa�Þ ð23Þ

where the dependence of the x�a on xs and xb is defined implicitly by

Raðxs; xb; xa�Þ ¼ 0 ð24Þ

Expanding now the thermodynamic equations to linear order around a steady state one has

@tdxs ¼
X

s0

@Rs
@xs0

dxs0 þ
X

b

@Rs
@xb

dxb

þ
X

s0

X

a

@x�a
@xs0

@Rs
@xa

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
DLs;s

dxs0 þ
X

b

X

a

@x�a
@xb

@Rs
@xa

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
DLb;s

dxb
ð25Þ

Here all derivatives are evaluated at the steady state, and the terms in the second line arise

from the variation of the QSS values of the fast variables. The required coefficients of the type
@x�a
@xs

can be found by differentiating (24) with respect to the relevant slow variable, here xs:

0 ¼
@Ra
@xs
þ
X

a0

@Ra
@xa0

@x�a0
@xs

ð26Þ

We can now show that (25) is identical to (20) derived above. To see this, we note that by line-

arising the expanded mass action eq (21) one can identify the entries of L: for example, Lb,s has

entries @Rs/@xb, Ls,a has entries γ @Ra/@xs etc. The QSS coefficients arising from (26) can then

be written in matrix form as @x�a=@xs ¼ � ðL
s;aðLa;aÞ

� 1
Þsa, with a similar expression for @x�a=@xb.

Inserting these expressions into (25) does indeed lead directly to (20), with matching terms

indicated by the brackets. An exactly analogous argument demonstrates the equivalence for

@t δxb.
With the above arguments we have justified the heuristic method of Sec. Projected equations

for linearised dynamics for obtaining linearised projected equations for the dynamics of a sub-

network within a larger GRN written in thermodynamic form: expand the GRN equations to

linear order in protein concentrations around a steady state. Then construct from this the
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matrix Leff and partition this into “s” and “b” blocks according to the chosen subnetwork–bulk

split. Finally determine the rate matrix and memory function matrix from (6 and 7). We

invoked an expanded network of binary reactions involving DNA conformations to derive that

this is the correct method, but note that its application only requires the original thermody-

namic equations as input. Therefore the resulting projected equations are, as they should be,

independent of the details of the rates ~kp�ðj;nÞ used in the construction of the expanded network.

Derivation of nonlinear projected equations. To capture more of the nonlinearity inher-

ent in GRNs one can extend the approach described in the previous sections, to include terms

that are quadratic in the deviations from a steady state. The memory function then contains

fast and slow contributions, with the former being transformed into additional rate matrix

terms when γ!1. The resulting rate matrix and slow memory functions can be obtained

from an effective L-matrix involving only slow (linear and quadratic) observables. As before,

this Leff can be viewed as arising from a QSS elimination of the fast observables. Finally, one

can show that this explicit elimination of the fast observables is equivalent to directly expand-

ing the original thermodynamic equations to quadratic order in concentration deviations

from the steady state: this justifies the heuristic method given in the Sec. Nonlinear projected
equations.

Except for the last step, the above chain of argument is analogous to the linearised dynamics

case, being based entirely on the identical structure of the partition—compare (5) and (S1

Text, Eq. S.1)—of L into fast and slow blocks. The final reduction to a quadratic expansion of

the thermodynamic equations is more subtle because the projection approach treats quadratic

observables as distinct and not directly tied to products of linear observables. We defer the

details to S1 Text and note only that our derivation there both simplifies and generalises that

in [21], from enzyme species that do not interact with each other to arbitrary interactions of

the fast degrees of freedom.

Case studies

Zwangzig-Mori projection of a cross-repression motif. We applied the Zwanzig-Mori

projection method to a cross repressive motif to illustrate our approach. Fig 2A shows the

expansion procedure for this very simple regulation network: each of two genes is repressed

through one binding site for the other factor. This system can be expanded to represent all

possible DNA conformations, bound and unbound, as shown graphically by the four outer

nodes in the network in the centre of Fig 2A. As the arrows indicate, in the expanded network

unbound DNA can bind protein to form bound DNA; the reverse process is also possible. In

this way one creates a set of reaction equations that has been extended and brought into mass

action form by including the concentration of DNA conformations. The equations used for

Fig 2 are of the form of (1) & (2):

@t½g1Prot� ¼ a1ðw1 þ wp2½g2Prot�Þ� 1
� b1½g1Prot� ð27Þ

and conversely for g2Prot. In numerical simulations of the expanded network we first checked

the fast rate limit, which we control by setting the ratio, γ, of typical DNA reaction rates to pro-

tein production rates. Fig 2B shows that already with a moderate value of γ = 10 the predicted

time courses of protein concentrations are almost identical to those predicted by the thermo-

dynamic equations. As γ!1 the trajectories from the mass action equations and the thermo-

dynamic equations become identical.

We chose to separate the system so that one protein species, g1Prot, is in the subnetwork

and the other, g2Prot, is in the bulk. After expanding into protein and DNA species we pro-

ceeded to place all DNA species along with g2Prot in the bulk. Because we have performed the
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expansion around a steady state, the method is more precise when close to the steady state as

expected (Fig 2D). Note that the cross-repressive motif with one binding site is not bistable.

It could be made bistable by adding binding sites; with the current approach the behaviour

around each steady state would then have to be analysed separately, as we also do in the neural

tube application in the Sec. Application to neural tube network. More general projection meth-

ods can overcome this limitation as detailed in the Discussion, although it is clear that there

are limits of principle here. For example, where the dynamical choice of steady state depends

crucially on the initial concentration of a bulk species, this effect cannot be captured by a sub-

network description that by definition does not track this species.

Next we analyse the memory functions in our cross-repressive example, which can be

thought of as describing the strength of a signal returning from the bulk a specific time after

the original signal entered the bulk from the subnetwork (Fig 2E). The amplitude of the lead-

ing linear memory function—where the signal is δx1(t0)—is positive. This makes sense as, in

the cross repressive motif, a protein is inhibiting its inhibitor, thus promoting its own produc-

tion. The second order memory function governs the effects of the signal dx2
1
ðt0Þ. It is, in this

case, negative and acts as a correction that captures nonlinearities beyond the linear memory.

We observe that the decay in time of the memory functions is determined by the decay rate of

the bulk protein. This is consistent with the memory function describing a protein repressing

its own repressor, hence the effect only lasts as long as the repressor protein is present. Overall,

the memory functions provide compact and readable descriptions of how the bulk modifies

and influences the activity of the subnetwork.

Application to neural tube network. Reducing part of a network into memory functions

offers a way to simplify and analyse the effect of the factors in this bulk part on the remaining

subnetwork. To illustrate this approach we chose to analyse a four gene network involved in

the embryonic patterning of the vertebrate neural tube [29, 30]. The developing neural tube is

a well characterised example of developmental pattern formation. In this tissue, the secreted

molecule, Sonic-Hedgehog (Shh) forms a ventral to dorsal gradient [31]. This in turn generates

discrete domains of gene expression that define the progenitors of the distinct neuronal sub-

types that comprise spinal cord circuitry (Fig 3A and 3B). A transcriptional network has been

identified that is controlled by graded Shh signaling and is responsible for specifying ventral

progenitor domains [30, 32]. Genetic and molecular experiments have determined the activity

of the components of this network (Fig 3C) and documented the temporal dynamics of pattern

formation in vitro and in vivo [24, 30, 33]. For the three most ventral domains of progenitors,

four transcription factors are essential, Nkx2.2, Olig2, Pax6 and Irx3. The most ventral domain

(p3 domain) is characterised by high Nkx2.2 and low levels of the other three proteins; the

domain adjacent to this (pMN domain) has high levels of Olig2, medium levels of Pax6 and

low levels of the other two proteins. Dorsal to this, the p2 domain expresses high levels of Pax6

and Irx3 and low levels of the other two proteins.

Mathematical models have been formulated based on the experimental data and these are

able to replicate key aspects of cell patterning [24, 33] (Fig 3D). We take advantage of these to

develop a Zwanzig-Mori projection of the system (using equations as described in [24] & S3

Text). To this end, we chose Nkx2.2 and Olig2 to be the subnetwork species, given that they

are receiving direct input from Shh (Fig 3C), and replaced Irx3 and Pax6 with memory

functions.

Linear memory analysis. We first examined the properties of the linear memory func-

tions. These are the most substantial contributions, close to the specific steady states, of the

species in the bulk (Pax6 and Irx3) on the temporal changes in the activity of Nkx2.2 and

Olig2. We note that the system is multistable (Fig 3E) and different combinations of steady
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states are available at different positions along the dorsal ventral axis (Shh gradient). We there-

fore analysed each possible steady state along the neural tube. In this case, as the bulk species

are mutual repressors with the subnetwork species, they form a positive feedback loop with the

factors in the subnetwork. As a consequence, each of the linear memory functions is positive

and exponentially decaying on the time-scale of protein degradation of the bulk species. Thus

the relative contribution of each of the memory functions can be assessed by comparing their

amplitude, defined as the memory function value at zero time difference.

We calculated the amplitudes of the memory functions and determined the memory effects

that Nkx2.2 and Olig2 receive over time. Furthermore, we used the method developed in [20]

to decompose the memory into contributions from memory signals passing through the two

Fig 3. Patterning of the vertebrate neural tube. (A) Antibody staining of Wild type (WT) mouse stained for three of the main bands in dorso-ventral patterning.

(Image provided by Katherine Exelby). (B) Illustration of neural tube patterning: ventral Shh secreted from the notocord and floor plate (termed “Source”) generates

patterned domains along the dorso-ventral axis. Each domain is defined by the expression of a characteristic set of genes. (C) GRN that patterns the three most ventral

domains of the neural tube. The chosen separation of bulk (purple) and subnetwork (green) in the application of the Zwanzig-Mori projection is also shown. (D)

Simulations of steady state pattern along the dorsoventral axis using a set of thermodynamic equations of the form of eqs (1 and 2). These equations were taken—along

with appropriate initial conditions of 0 for all species—from [24]. For all plots where x axis represents neural tube position, zero corresponds to the most ventral point.

(E) Full bifurcation diagram illustrating the multistable nature of the network. Shown are steady state concentrations of the four molecular species against neural tube

position, with unstable steady states marked dashed. Colours in (D, E) identify genes/proteins in the same way as in the labelling of the illustration (B) and of the

network nodes in (C). This colour code is used throughout the paper unless otherwise noted.

https://doi.org/10.1371/journal.pcbi.1006003.g003
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different bulk species (Fig 4A–4D). This allowed us to determine the importance of specific

regulatory interactions between transcription factors (TFs) at every position of the neural tube

model, and assess their respective contributions. The results indicate that, for the most part,

there is only a small memory amplitude of Nkx2.2 to the past of Olig2 passing through Pax6

(Fig 4B; note the logarithmic y-axis): the memory of (past) Olig2 on Nkx2.2 is largely domi-

nated by memory through Irx3. The only exception is for steady states that are not reached

during normal neural tube patterning (lower pair of curves in the neural tube position

range� [0.2 . . . 0.45] in Fig 4B). These steady states exist because the system is multistable,

but the initial conditions that lead to them are incompatible with physiological conditions. We

additionally observe in Fig 4A that the memory of Nkx2.2 to itself is for the most part shared

between Irx3 and Pax6, with no particular TF being dominant. There are again exceptions

from this, but only in steady states that are biologically unreasonable. In the case of the mem-

ory of Olig2, it can only be influenced by Irx3 as is clear from the structure of the network in

Fig 3C. Channel decomposition is therefore unnecessary. We observe that the memory effects

of Olig2 to itself are strongest in the p3 domain, and the opposite is true (memory of Nkx2.2

on Olig2 is stronger) in the pMN domain.

We observe in Fig 3 that the order of magnitude of the memory amplitudes changes sub-

stantially with neural tube position. This is a consequence of the system becoming more or less

sensitive to concentration fluctuations of a given species within the network. An example of

this is Nkx2.2 memory to itself via Pax6 in the pMN domain (Fig 4A), where dorsally the lower

levels of Shh mean that the binding sites of Nkx2.2 are less occupied by the active form of Gli

(Gli is the transcriptional effector downstream of Shh that binds to Nkx2.2 & Olig2, see [24]

Fig 4. Memory amplitude and temporal dynamics. (A) Amplitude of memory (memory function at Δt = 0) of Nkx2.2 to itself along the neural tube. There are

multiple lines as the analysis was performed at all possible stable steady states. The vertical axis is logarithmic to make the range of amplitudes easier to appreciate.

Colours identify the memory amplitude contribution from each of the two possible bulk channels, via Irx3 and Pax6, respectively. Thick lines indicate physiological

states, while thin lines indicate states that are not usually observed in vivo. (B) Linear memory amplitude of (past) Olig2 on Nkx2.2 along the neural tube. The memory

via Pax6 is for the most part below the memory via Irx3 in each pair of corresponding curves. (C,D) Memory amplitudes of Olig2 to Nkx2.2 (C) and to itself (D). No

channel decomposition is performed as Olig2 receives memory only via the Irx3 channel. (E) Nonlinear memory of (past) Olig2 squared on Nkx2.2 in the p3 domain,

where dynamics are dominated by Irx3; memory via Pax6 is negligible by comparison. (F) Nonlinear memory function of (past) Olig2 squared on Nkx2.2 from

position 0.2 in (E), plotted to show that the relative contribution of the Pax6 channel is small also for all time differences. (G,H) Nonlinear memory functions of Olig2

to Nkx2.2 (G) and itself (H) in the p2 domain at position 0.7, exemplifying the potential for nontrivial time dependences (including non-monotonicity and sign

changes) in the nonlinear memory functions.

https://doi.org/10.1371/journal.pcbi.1006003.g004
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for details on how this is implemented). Active Gli sets the rate of production of Nkx2.2 and

thus has a direct effect on the amplitude of the memory functions. In addition to this, as one

moves dorsally in the pMN domain, the steady state concentration of Pax6 is increasing (Fig

3E, also observed experimentally). This increase causes the system to become insensitive to

fluctuations of Pax6 proteins as Pax6 binding sites are typically already saturated. This phe-

nomenon is at work also in the other memory function amplitudes that change across neural

tube position as seen in Fig 4A–4D.

Nonlinear memory analysis. We next examined the second order memory functions.

These provide corrections to the linear memory terms and encode information about how the

bulk nodes drive the system towards a steady state. Quantitative accuracy in capturing the

dynamics of the full nonlinear network will also be improved to the extent possible within an

expansion around a steady state, but such accuracy is not our main focus—it is the additional

insights gained from the memory functions that we are after.

It is apparent that once memory terms are included, different trajectories in the subnetwork

plane cross. This is visually most obvious with the full nonlinear memory terms (S1C and S1G

Fig) and consistent with the full dynamics (S1D and S1H Fig). The crossings arise from the

fact that, in the presence of memory, systems in the same state can follow different trajectories

towards a steady state depending on their past. In the full dynamics, the additional information

as to which path a system will take is contained in the bulk species, which effectively hold the

information on the past of the system. In the case of the memory functions, the memory is not

contained in network nodes outside of the subnetwork, but is represented explicitly via the

memory terms, with the time difference dependence of the memory functions indicating, for

example, the timescale of the memory. This offers a useful abstraction: while it is not easy to

visualize the four-dimensional concentration space for the full dynamics, the projection

approach reduces the system to two components with memory of their own past.

In the nonlinear memory functions, we can assess the importance of the link from Olig2 to

Pax6 by considering the squared deviations of Olig2: the Pax6 channel contribution to this

memory necessarily involves signals being propagated via this Olig2!Pax6 link. We find that

the Pax6 channel makes a very small contribution to the nonlinear memory amplitude in com-

parison to the Irx3 channel. This is shown in Fig 4E for the p3 domain but is true also for all

other states. We additionally checked the time-dependence of the memory function: from Fig

4F one sees that the relative contribution of the Pax6 channel to the nonlinear memory of

(past) Olig2 squared on Nkx2.2 remains small at all time-differences. Together with our results

above for linear memory functions, we thus conclude that the repression of Pax6 by Olig2 is

dispensable for maintaining an established dorsal-ventral pattern. We plot an example of non-

linear memory functions (Fig 4G and 4H) to illustrate that their dependence on time differ-

ence can include non-monotonicities and sign changes that mean memory amplitudes do not

tell the full story of the effect of nonlinear memory. The effects of including the memory terms

can be confirmed and further visualised by considering the effective drift vector, which con-

tains the rates of change of the concentrations of Nkx2.2 and Olig2. We describe this approach

in S2 Text, where we also discuss further how specific contributions of the nonlinear memory

affect the dynamics, for example in the approach to the state in the p2 domain.

Exploration of network properties. The analysis of both linear and nonlinear memory

functions in the previous section suggested that the repression of Pax6 by Olig2 is not critical

for the dynamics of the steady states observed in neural tube patterning. We based this on the

observation that the amplitude of memory that is transmitted through this link is relatively

small compared to the other memory functions, for all biologically relevant steady states.

To test this prediction of the memory function analysis, we removed the repressive link from

Olig2 to Pax6 in the full model. Consistent with our prediction of the relative insignificance of
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the link from Olig2 to Pax6, the resulting steady state concentrations of the simulations are sim-

ilar to those in the original system (Fig 5A). The only qualitative change is the increased level of

Pax6 between neural tube position 0.2 and 0.7, which results from the loss of the repressive link.

But the spatial aspects, such as the positional sequence of genes and qualitative concentrations,

of the domains are otherwise unaltered.

Since the repressive link between Olig2 and Pax6 has been experimentally documented

[33–35] but from our analysis is not required for the dynamics around the steady state, we

sought to understand what purpose it might serve during development. We performed simula-

tions from varying initial conditions for both WT (Fig 5B) and the system lacking the link (Fig

5C). These show that the p3 domain is reached from only a small range of initial conditions

following the removal of the repressive link between Olig2 and Pax6. To rationalise this, we

performed a bifurcation analysis (Fig 5D). This indicated that the removal of the Olig2 inhibi-

tion of Pax6 markedly increased the range of positions at which the Olig2 steady state is

Fig 5. Olig2 repression of Pax6 increases robustness to initial conditions. (A) Patterning without the repressive link from Olig2 to Pax6, showing steady states

reached from standard initial conditions. Compared to the full network, the qualitative domain structure is conserved. (B) Patterning for the full network for initial

conditions with high levels of Pax6 and Irx3 is qualitatively identical to low initial levels of Pax6 and Irx3. Initial conditions [Pax6] = [Irx3] = 1. (C) Patterning without

the repressive link from Olig2 to Pax6 for initial conditions with high levels of Pax6 and Irx3. The p3 domain is lost as a consequence of the different initial conditions.

(D) Bifurcation diagram of the network without Olig2-Pax6 repression. The region in which the pMN state (Olig2 high) is stable has expanded ventrally, thus making

the ventralmost region bistable.

https://doi.org/10.1371/journal.pcbi.1006003.g005
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present, thus facilitating its invasion into the Nkx2.2 domain. In particular, under initial condi-

tions of high Pax6 and Irx3, the pMN domain is induced ventrally. In the unperturbed net-

work it is not possible to reach this steady state in the ventralmost part because the system is

monostable, allowing only the p3 domain to arise. On the other hand, in the absence of Olig2

inhibition of Pax6, the ventral region is bistable. Hence, depending on the initial conditions a

pMN fate can be reached (Fig 5D). Taken together, this analysis suggests that the repressive

link from Olig2 to Pax6 contributes to the robustness of the system for patterning the neural

tube.

A potential explanation for the seemingly dispensable regulatory interaction between Olig2

and Pax6 arises from considering the normal development of the neural tube. During embry-

onic neural tube development, neural progenitors are generated by the process of neural

induction and this initiates the expression of neural genes including Pax6 and Irx3. At the

same time, cells of the notochord (which underlies the ventral midline of the neural tube)

begin to secrete Shh. Shh spreads into the neural tube and neural progenitors respond to the

signal. The consequence is that in the ventral neural tube neural progenitors begin responding

to Shh at intermediate levels of Pax6 and Irx3. A more appropriate initial condition, represen-

tative of the in vivo situation, is for Pax6 and Irx3 to be somewhere between 0 and maximum.

Moreover, heterogeneity between cells, as well as variation in the exact timing of developmen-

tal events along the rostral-caudal axis of the embryo, means that the precise initial conditions

—the levels of Pax6 and Irx3 when cells respond to Shh signalling—will vary. Hence the

robustness provided by the Olig2-Pax6 link may play an important role in ensuring reliable

pattern formation in the developing neural tube.

Discussion

We have developed a generally applicable method for applying Zwanzig-Mori projections to

transcriptional networks that allows the analysis of subnetworks extracted from a larger net-

work. We demonstrated the approach on a simple genetic cross repressive motif, to illustrate

the minimal example of a memory function, and on a more complicated, but well-character-

ised, transcriptional network operating in the ventral part of the vertebrate neural tube. This

showed how the method allows the function and importance of specific links within a network

to be defined in an intuitive manner. We used these insights to identify structural features of

the neural tube network that appear primarily to increase the robustness of the network to ini-

tial conditions, rather than maintain its steady state.

The projection technique is straightforward to implement using the methodology described,

and can be applied to any GRN following the thermodynamic formalism (including activation,

repression, competitive and cooperative binding). Further protein-protein interactions could

readily be incorporated as these would be represented by simple first order (unary) or second

order (binary) interactions. Thus, in addition to gene regulation, nonlinear protein-protein

interactions mediated by enzymes such as those found in signal transduction pathways could

be included in the analysis [21]. It would also be possible to include Hill functions as long as

these possess integer exponents [27]. Note that our treatment relies on mass action kinetics,

which implicitly assumes that the different molecular species are well mixed by diffusion pro-

cesses that are faster than any of the reaction kinetics [36]. The size of the matrices involved in

constructing the memory functions scales as the square of the number of bulk species, which in

our experience means that networks with up to 200 nodes can be investigated without difficulty.

Thus, the generality of the method and the ability to implement it algorithmically provide a

comprehensive mathematical toolkit to simplify and analyse dynamical systems describing a

range of cellular and molecular processes.
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In our mathematical treatment we took advantage of an argument of timescale separation

for molecular mechanisms operating in transcriptional networks, in which fast processes

(DNA-protein interactions) are assumed to be in QSS compared to the slow processes

(changes in protein concentration). We also assume the effective concentration of DNA spe-

cies to be small in comparison to that of protein species. We consider these to be reasonable

assumptions because DNA-protein interactions occur at a much faster rate than the changes

in protein concentrations produced by transcription and translation [37]. Moreover, there are

usually at most four DNA copies of each gene per cell, whereas the number of individual pro-

tein molecules is normally considerably higher. The production of individual proteins per

DNA copy number, i.e. the relevant rate constant, can then be large while the resulting relative

changes to protein concentration are slow. These assumptions allowed us to construct an

extended reaction network involving fast molecular (DNA) species and at most binary reac-

tions. This construction is sufficiently general for it to be applicable to other systems with a

timescale separation, as long as they satisfy the above conditions for the relevant concentra-

tions and rate constants.

An important component of this Zwanzig-Mori projection method is that the memory

functions describe all the behaviours of a system in the vicinity of a steady state. Even though

this comes at the cost of predictions becoming increasingly inaccurate the further the system is

from the fixed point, the information around the steady state is sufficient to distil relevant

properties of the network. We therefore employ the method as a tool for probing the dynamics

near a chosen steady state, rather than for tracking dynamics. The benefit is that the resulting

memory functions are substantially simpler than the original system. There is no need to per-

form simulations to analyse memory functions or to test different positions in phase space as a

steady state is approached. Moreover, the method can also be applied to an arbitrarily chosen

subnetwork of a generic network whereas other model reduction approaches—as discussed in

the Introduction—do not allow this, and are also more restrictive as they require specific net-

work motifs or functional forms of the dynamics.

The memory functions produced by the Zwanzig-Mori approach allow exploration of the

amplitudes and timescales of the interactions between the subnetwork and bulk. This can

reveal information that is not otherwise easy to discern from the parameters of the full dynam-

ics or from the functional form of the equations. Each memory function represents the total of

the contributions from a given subnetwork component that feeds back to the subnetwork over

time after passing through the bulk. This total memory can be decomposed into channels that

describe the flow of signals through specific components in the bulk. In this way, the channels

that dominate a memory effect can be identified, providing insight into the dynamical mecha-

nisms responsible for achieving and maintaining a steady state. The memory functions thus

help to extract features of the dynamics that would not be readily detectable in direct simula-

tions of the time evolution equations.

An example of the type of insight provided by the projection method came from our analy-

sis of the neural tube network. We focused on a subnetwork comprising Nkx2.2 and Olig2.

Decomposition of the memory functions suggested that an experimentally documented

repression of Pax6 by Olig2 [34] plays only a minor role in sustaining the steady state pattern.

Consistent with this prediction, simulations in which this regulatory link had been eliminated

in the full model showed qualitatively unchanged steady states. We note that removal of the

repressive link between Olig2 and Pax6 is distinct from the removal of Olig2 itself [24, 30, 33].

In the Olig2 mutant, the repressive effect of Olig2 on both Nkx2.2 and Pax6 are eliminated

whereas the removal of the Pax6-Olig2 link leaves the repressive effect of Olig2 on Nkx2.2

intact. The memory function analysis thus raised the question of what purpose the Olig2-Pax6

regulation might serve and prompted us to explore the transient system dynamics, specifically
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the effect of the initial conditions, which are unknown in the in vivo system. Simulations in the

absence of the Olig2-Pax6 repression, compared to the full model, revealed a marked increase

in sensitivity to these initial conditions. Comparison of the bifurcation diagrams of the sys-

tems, with and without the Pax6-Olig2 link, indicated that the well-defined Nkx2.2 monostable

region (p3 domain)—which appears at high levels of Shh signalling in the full system—was

replaced by a region of bistability for Nkx2.2 and Olig2 in the absence of the Olig2-Pax6 regu-

lation. In this latter case the steady state induced by high levels of signal therefore depends on

the initial concentrations of Pax6 and Irx3. This suggests that, while not necessary to maintain

steady states, the Olig2-Pax6 regulation ensures access to the appropriate steady states irrespec-

tive of the initial levels of Pax6 and Irx3. As these may differ between cells and at different loca-

tions along the rostral-caudal axis of the neural tube, the Olig2-Pax6 regulatory link might

make the system less sensitive to these variations. This implies that the primary purpose of

Olig2 repression of Pax6 is to increase the robustness of pattern formation.

Alternative implementations of the Zwanzig-Mori projection [38–40] have been developed

that do not rely on expanding around a fixed steady state and we are currently adapting these

for transcriptional networks. While these alternative methods may provide a solution to the

specific limitations of our current Zwanzig-Mori projection method, the nonlinear memory

functions they produce are much richer. Further work will be needed to fully understand the

more complex information they encode. Projection methods might also provide a way to ana-

lyse systems for which only partial information is available. Given a known subnetwork that is

not able to fully reproduce experimental observations, the incorporation of memory functions

provides a means to explore the possible effects of unknown factors. This could then be used

to identify plausible network structures that generate these memory functions. Taken together

therefore, the projection approach provides tools to simplify, visualise and explore the behav-

iour of large networks that would otherwise be difficult to analyse in their entirety.

Supporting information

S1 Text. Justification of heuristic method for quadratic observables. In this Appendix we

give the details of the projection method with linear and quadratic observables, applied to an

expanded network as outlined in Sec. Nonlinear projected equations.
(PDF)

S2 Text. Further analysis of memory effects. In this Appendix we give additional detail of the

wide variety of effects that memory functions contribute to the behaviour of a system. Specifi-

cally, we explore the effect of the contributions from nonlinear memory terms and provide an

alternative visualisation using a first order time expansion of the effective drift of the system.

(PDF)

S3 Text. Model details. Equations and parameters used in model of neural tube patterning

network.

(PDF)

S1 Fig. Trajectories approaching a steady state, with and without memory. Trajectories

approaching a high Olig2 state in the pMN domain from a range of initial conditions, with no

memory (A), with only linear memory (B), with linear and nonlinear memory (C), and the full

dynamics (D). Trajectories approaching a low Olig2, low Nkx2.2 state in the p2 domain from

different initial conditions, with no memory (E), with only linear memory (F), with linear and

nonlinear memory (G), and the full dynamics (H). All figures are parametric plots, showing

Nkx2.2 and Olig2 concentrations on the x- and y-axis, respectively, with time as curve parame-

ter. The trajectories are coloured to represent the norm of the drift vector of the system as
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indicated by the colour scale; high values indicate the system is evolving quickly while the

opposite is true for low values. Scalebars on the right apply to the corresponding row. Path

crossing can be seen in (C–D) & (G–H), illustrating the importance of nonlinear memory

terms to reproduce qualitative features of the full thermodynamic equations.

(TIF)

S2 Fig. Nonlinear memory amplitudes. (A-D) Nonlinear memory amplitudes across neural

tube positions within the pMN domain. The plot titles indicate the type of memory, e.g. (C)

shows memory of (past) Nkx2.2 squared fluctuation on Olig2. Memory effects of past Olig2-

fluctuations in the pMN domain are negligible. (E-H) Nonlinear memory amplitudes across

neural tube positions within the p2 domain. Nkx2.2 receives very little quadratic memory

influence in this domain. The x-axis represents neural tube position in all plots. Blue and yel-

low lines indicate the decomposition into Pax6 and Irx3 channels, while green lines indicate

the total memory.

(TIF)

S3 Fig. Effective drift changes as a consequence of memory terms. Colour map and contour

plots of the norm of the effective drift, in conditions identical to those in S1A–S1C Fig for the

first row (pMN domain) and S1E–S1G Fig (p2 domain) for the second row. (A,D) Memoryless

drift, (B,E) drift with linear memory, (C,F) drift with linear and nonlinear memory. The scale-

bar on the right applies to each entire row. Effective drift norms have been calculated for time

t = 0.8.

(TIF)
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