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Abstract

We present an in-silico model of avascular poroelastic tumour growth coupled with a multi-

scale biphasic description of the tumour–host environment. The model is specified to in-vitro

data, facilitating biophysically realistic simulations of tumour spheroid growth into a dense

collagen hydrogel. We use the model to first confirm that passive mechanical remodelling of

collagen fibres at the tumour boundary is driven by solid stress, and not fluid pressure. The

model is then used to demonstrate the influence of collagen microstructure on peritumoural

permeability and interstitial fluid flow. Our model suggests that at the tumour periphery,

remodelling causes the peritumoural stroma to become more permeable in the circumferen-

tial than radial direction, and the interstitial fluid velocity is found to be dependent on initial

collagen alignment. Finally we show that solid stresses are negatively correlated with peritu-

moural permeability, and positively correlated with interstitial fluid velocity. These results

point to a heterogeneous, microstructure-dependent force environment at the tumour–peri-

tumoural stroma interface.

Introduction

The importance of mechanics in cancerous growth, invasion and metastasis is well-established

([1], [2]). In terms of cancer mechanobiology, of particular interest is how interactions

between a tumour and its host tissue influence its behaviour [3]. These interactions occur

across multiple length and time scales, and include—among other factors—solid stress genera-

tion induced by host tissue displaced during growth, collagen remodelling in the extracellular

matrix (ECM) at the tumour periphery, and interstitial fluid flow between the tumour and the

host tissue. Recent observations have shown that microstructural properties of the host tissue

—such as collagen fibre density, alignment and cross-link density—are instrumental in the

development and progression of solid tumours [4] and are subject to remodelling during

tumour progression [5]. Similarly, interstitial fluid flow is induced and altered by both the

growth itself and the associated tumour-host interactions [6], [7].

PLOS ONE | https://doi.org/10.1371/journal.pone.0184511 September 13, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wijeratne PA, Hipwell JH, Hawkes DJ,

Stylianopoulos T, Vavourakis V (2017) Multiscale

biphasic modelling of peritumoural collagen

microstructure: The effect of tumour growth on

permeability and fluid flow. PLoS ONE 12(9):

e0184511. https://doi.org/10.1371/journal.

pone.0184511

Editor: Krishna Garikipati, University of Michigan,

UNITED STATES

Received: May 10, 2017

Accepted: August 27, 2017

Published: September 13, 2017

Copyright: © 2017 Wijeratne et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: PAW, JHH, DJH received funding from

EPSRC grant “MIMIC”: EP/K020439/1 and EU FP7

Virtual Physiological Human grant: “VPH-PRISM”

(FP7-ICT-2011-9, 601040). VV received funding

from Marie-Curie Fellowship (FP7-PEOPLE-2013-

IEF, 627025). TS received funding from the

European Research Council (FP7/2007-2013)/ERC

https://doi.org/10.1371/journal.pone.0184511
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0184511&domain=pdf&date_stamp=2017-09-13
https://doi.org/10.1371/journal.pone.0184511
https://doi.org/10.1371/journal.pone.0184511
http://creativecommons.org/licenses/by/4.0/


Given the potentially correlated nature of these observations, it is instructive to build a

reductionist mathematical model with which to isolate and test each component separately. In

order to make such a model biologically relevant, it should be parametrised by measurable bio-

physical properties at multiple scales. This motivates the development of a multiscale, multi-

phase model that can be coupled with a model of tumour growth. A brief overview of

pertinent models is given here; see e.g. [8], [9] for comprehensive reviews of mathematical

tumour modelling.

Pioneering work by [10] investigated the role of the ECM in interstitial fluid transport in

tumours using a biphasic continuum model. A poroelastic continuum model was proposed by

[11], specified to experimental data and used to test the effect of solid stress on growth. Mix-

ture modelling was utilised by [12] to develop a thermodynamically-consistent continuum

model of multispecies tumour growth. This model was then used to investigate tumour inva-

sion, morphology and angiogenesis [13]. More recently, a review of competing continuum

models was performed [14] and judged a multiphase flow model in a deformable porous ECM

to require the least number of assumptions in its derivation, and have the most potential for

development. A similar model was employed by [15], [16], with an adapted formulation that

accounted for residual stress. This model was used to recapitulate observed effects of solid

stress on tumour growth, and showed that both cells and blood vessels can be compressed by

growth-induced stress.

To our knowledge there exists no multiple length scale description of biphasic tumour

growth. The model we present here uses the biphasic formulation proposed by [17] to extend

our previous work [18], which was solely defined in terms of solid mechanics. Therefore while

the individual components of the model are not new, their coupling is, providing a novel

computational model of avascular tumour growth with which we can perform biologically rel-

evant hypothesis tests.

Here we conduct simulations of in-vitro tumour spheroid growth into a collagen hydrogel

to test that i) tumour growth causes passive microstructural remodelling; ii) collagen micro-

structure influences macroscale fluid flow; and iii) solid stress is correlated with tissue perme-

ability and interstitial fluid flow. The paper is structured as follows: ‘Material and methods’

provides a description of multiscale tumour modelling and its numerical implementation,

including a link to our open-source software; ‘Results’ presents the set of hypothesis tests using

the proposed model; and ‘Discussion’ critiques the results and methods.

Materials and methods

Mathematical model

The domain of interest, defined in Fig 1, is comprised of a spherical tumour, OT, embedded in

a shell of peritumoural stroma, OP, with a boundary interface between the tumour and peritu-

moural stroma, ΓI, and an external boundary, ΓE. For simplification, spherical symmetry is

assumed and only one eighth of the total domain is analysed; symmetry surfaces are collec-

tively denoted by ΓS. The tumour is defined at the macroscopic scale only, while the peritu-

moural stroma (PTS) is treated as a multiscale material. As with our previous work [18], and

following [19], volume averaging theory is used to couple the micro and macroscopic scales.

The macroscale is described as a poroelastic continuum, and the microscale is discretised as a

set of three-dimensional cubic domains, ω, with surfaces ξ, termed representative volume ele-

ments (RVEs). Each RVE contains a hydrated collagen fibre network, represented by a scaffold

of one-dimensional incompressible trusses connected at pin joints which permit translations

and rotations, thus mimicking the behaviour of cross-linked collagen fibres. The models and

their coupling are described in the following sections.
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Macroscale model. A mixed U − P formulation is utilised at the macroscale [20]. The con-

servation of linear momentum in a poroelastic continuum, assuming zero inertia and viscosity,

is expressed in a Lagrangian framework as:

r � ðF � S � PÞ � Q ¼ 0 ð1Þ

Where F ¼ I þ @U
@X is the deformation gradient with respect to the initial configuration, S is

the 2nd Piola-Kirchoff stress tensor, P is the fluid pressure and vector Q contains body forces

and source terms (defined later). Throughout we user � @

@X, where U and X are the displace-

ment and position vectors in the Lagrangian frame of reference. Note that the reference config-

uration is assumed undeformed and hence initial stresses are zero.

The conservation of mass in the medium is expressed as:

1

M
@P
@t
þ y

S
r � VS þ y

F
r � VF � QF ¼ 0 ð2Þ

Where VS(F) are the solid (fluid) velocities and QF are body forces and source terms (defined

later). The term 1

M is the Biot storage coefficient; here we define M = κu, the undrained solid

bulk modulus [21]. Finally, θS(F) are the solid (fluid) volume fractions, which obey conserva-

tion:

y
S
þ y

F
¼ 1 ð3Þ

To solve the forward problems for displacement, U, and pressure, P, it is necessary to define

constitutive equations. In the tumour domain, OT, a hyperelastic strain-energy density func-

tion, W, is used to described the solid mechanics [22]:

W ¼
m

2
ðI1 � 3Þ þ

k

2
ðJ � 1Þ

2
ð4Þ

Where for small deformations the material coefficients μ and κ correspond to the drained

shear and bulk moduli, respectively, while invariant I1 ¼ trðFT
e FeÞ ¼ trðCeÞ, and determinant J

Fig 1. A: Schematic representation of the macroscopic domain. From inside out: tumour (ΩT), tumour-peritumoural

stroma interface (ΓI), peritumoural stroma (ΩP), and external boundary (ΓE). The symmetry surfaces referenced in the text

(ΓS) are the set of boundaries with fixed displacements. B: Schematic representation of an example representative

volume element (RVE) from the microscopic domain. The RVE domain is denoted byω, and its outer surfaces are

labelled ξ. Proper boundary conditions are shown in each figure.

https://doi.org/10.1371/journal.pone.0184511.g001
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= det(Fe). To describe growth, we multiplicatively decompose the deformation gradient, F,

into elastic, Fe, and inelastic (growth), Fg, components: F = Fe � Fg [18]. The corresponding 2nd

Piola-Kirchoff stress can then be obtained from the relation S ¼ 2 @W
@Ce

. In the PTS domain, OP,

a multiscale constitutive description is used (see sub-section ‘Scale coupling’).

Following [17], a multiscale form of Darcy’s law is used to describe the fluid mechanics in

both domains:

VF ¼ � K � ðyF
rP þ dÞ ð5Þ

Where K is the positive definite conductivity matrix and d is a source term arising from the

microscale formulation. Here K = ko I and d = 0 in OT, and are derived from the microscale

model in OP (see sub-section ‘Scale coupling’).

The macroscale model is completed with the following initial and boundary conditions:

U ¼ 0; t ¼ 0

½S � n̂� ¼ 0;X 2 GI

U � n̂ ¼ 0;X 2 GS;E

9
>>>=

>>>;

solid

P ¼ 0; t ¼ 0

½VF � n̂� ¼ 0;X 2 GI;S;E

)

fluid

ð6Þ

Here ΓI,E are interface and external boundaries (see Fig 1A), ΓS are the symmetry surfaces

(corresponding to the axial planes in Fig 1A), [�] denotes the change across a boundary (i.e.

½S � n̂� � S1 � n̂ ¼ S2 � n̂, where 1, 2 correspond to contiguous domains), and n̂ is the outward

facing unit vector on a given surface.

Finally, the growth-induced deformation in OT—and hence the progression of interface

ΓI—is introduced through the following expression of isotropic tumour growth:

Fg ¼ f ðtÞI ð7Þ

Where f(t) can be any smooth function in time, t. Here a Gompertz-type expression of the

form f(t) = α exp(−β exp(−γt)) is used [18].

Microscale model. At the microscale, the boundary value problem is established by inter-

polating the macroscale displacement to the RVE boundary nodes, which are defined in

parametric (i.e. dimensionless) space. The balance of linear momentum with respect to the ref-

erence configuration is then solved at each pin joint in each microscale mesh:

r � ðFf � s � pÞ ¼ 0 ð8Þ

Here Ff ¼ I þ @u
@x is the fibre deformation gradient, s is the microscale 2nd Piola-Kirchoff

stress tensor and p is the microscale fluid pressure. As in [18], the collagen fibre constitutive

equation assumes an exponential form with a negative phase to describe fibre compression:

f ¼
af ef

c0

½expðc0�Þ � 1� n̂f ð9Þ

Here f is the axial force along the fibre, af is the fibre cross-sectional area, ef is the fibre stiff-

ness, c0 is a material constant, � is the Green strain and n̂f is the fibre unit vector. Hence s is

given by s = (Ff)−1 � f/af, where af is the fibre undeformed cross-sectional area. Unlike the mac-

roscale, no equation is solved for the fluid pressure; instead, it is interpolated directly from the

macroscale solution (see sub-section ‘Solution method’). Body forces are assumed zero.
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The following initial and boundary conditions complete the microscale model:

u ¼ 0; t ¼ 0

u ¼ �iU i; x 2 Gx

)

solid

p ¼ 0; t ¼ 0

p ¼ ciPi; x 2 o

)

fluid

ð10Þ

The boundary displacements and the pressure are interpolated from the respective macro-

scopic solutions using the quadratic and linear Lagrange polynomials ϕi, and ψi, respectively.

This process is explained in sub-section ‘Solution method’.

Scale coupling. Using volume averaging theory [23], the macroscopic field can be defined

as a volume average of the microscopic fields on the RVE surface:

S ¼
1

V

Z

x

s do ð11Þ

Here V is the RVE volume in the three-dimensional parametric space, S the macroscopic

stresses (as defined in sub-section ‘Macroscale model’) and s ¼ n̂f 
 n̂ � f the microscale

stresses, where n̂ is the outward surface normal. In principal any statistically homogeneous

field is viable. Accordingly, and following [19] and [17] respectively, the equivalent expressions

for the macroscopic source term Q and permeability K are:

Q ¼
1

V

Z

x

ðs � SÞ � u0 � n̂ do ð12Þ

Here u0 is the directional derivative of the microscale displacement, u0 ¼ @u
@x jx2x. Similarly:

K ¼
1

V

X

z

k ð13Þ

Here the sum is over all fibres, z, and k is the fibre permeability, defined as k = (rT � c � r)−1,

where r is the fibre direction cosine matrix (i.e. the mapping between the fibre and fluid

frames) and c is the diagonalised fibre drag coefficient matrix. The diagonal components are

set equal to expressions previously derived for parallel [24] and perpendicular [25] steady flow

in a square array of cylinders:

c11 ¼
4p‘

� lnðyS
Þ � 1:476þ 2y

S
� 0:5ðy

S
Þ

2

c22 ¼ c33 ¼
8p‘

� lnðyS
Þ � 1:476þ 2y

S
� 1:774ðy

S
Þ

2

ð14Þ

Here ℓ is the fibre length in the current frame. As such, for low solid volume fractions (θS

! 0), c22,33� 2c11. The use of these expressions was justified by [26], who made comparisons

between RVEs of this type and CFD simulations. Following [17], the scale mixing term d is

defined as:

d ¼
1

V

X

z

k � vS
ð15Þ
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Here vS is the displacement rate of the microscale solid phase. Finally, and again following

[17], the fluid source term QF is given by:

QF ¼
af

V

X

z

ðVS � vSÞ � n̂ ð16Þ

Given that the mathematical formulation requires the RVE to be defined in parametric

space, a dimensionalisation term is necessary to convert the upscaled parameters to physical

space. Following [19], this assumes the form:

Z ¼

ffiffiffiffiffiffiffiffi
y

SV
af L

r

Here L is the length sum of all fibres in the RVE. Substituting xdim = η x into the above equa-

tions yields the dimensionalised variables (e.g. dωdim = η3 dω; (vS)dim = η vS; and so on).

Solution method

The weak forms of Eqs (1) and (2) are discretised using the Galerkin finite element (FE)

method [27] with Lagrange polynomials, and solved using an explicit Total Lagrangian

method, whereas at the microscale, Eq (8) is solved using an implicit Total Lagrangian method.

See S1 File for the full set of FE equations.

The algorithmic structure is similar to that detailed in our previous work [18], but extended

to incorporate the multiscale fluid phase. In brief, the following steps are performed:

1. Macroscopic boundary value problem: solve Eqs (1) and (2) for U and P, respectively, using

a Total Lagrangian (TL) explicit solver.

2. Downscale: interpolate macroscale nodal U solutions to RVE boundary nodes, and the P
solutions to every RVE node. This is done by interpolation using Lagrange polynomials: u
= ϕiUi and p = ψiPi, where ϕi, ψi are the interpolation functions and the sum is over all

nodes in the macroscopic FE.

3. Microscopic boundary value problem: apply the displacements prescribed by the downscal-

ing and solve Eq (8) for u using a TL implicit solver.

4. Upscale: use Eqs (11), (12), (13), (15) and (16) to calculate the volume averaged parameters

S, Q, K, d and QF, respectively.

These steps are repeated until the simulation reaches the desired end time point. The algo-

rithm itself is implemented in C++ in an open-source, parallelised finite element solver frame-

work developed by the authors (FEB3: Finite Element Bioengineering in 3D, available upon

request from https://bitbucket.org/vasvav/feb3-finite-element-bioengineering-in-3d/wiki/

Home). The framework incorporates various open-source scientific computing libraries, spe-

cifically: libMesh [28], PETSc [29], blitz++, GSL and MPICH.

The open-source finite element mesh generator Gmsh was employed to produce meshes at

the macroscopic scale. The mesh used for the primary simulations is shown in Fig 2: it com-

prised of 216 hexahedral elements at the macroscale and 326,592 truss elements at the micro-

scale, corresponding to 323 nodes at the macroscale and 308,448 nodes at the microscale,

respectively. Each collagen fibre network was generated separately, resulting in RVEs with ran-

dom orientation, total fibre length and number of cross-links. The number of elements per

RVE ranged between [200, 300], which has previously been shown to render the average stress

independent of the total number of elements [19]. Eight- and two-point Gauss-Legendre

Multiscale biphasic modelling of tumour growth induced remodelling
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quadrature rules were used for the solid mechanics at the macro- and micro-scales, respec-

tively, and a single quadrature point for the fluid mechanics. This reduced order integration

was chosen to avoid volumetric locking whilst maintaining a computationally tractable solu-

tion time.

Results

Values of the model parameters used in the following simulations are provided in S1 Table.

The material properties were chosen to simulate an in-vitro tumour spheroid with radius

0.1mm growing into a dense hydrated collagen gel with thickness 0.5mm; the latter was chosen

to ensure boundary effects were negligible. The tumour was allowed to grow to equilibrium,

which for the chosen collagen stiffness and volume fraction resulted in an increase in radius of

*25%, corresponding to a total peritumoural stroma (PTS) strain of *5%. While this is a rel-

atively small total increase, it is in agreement with previously reported experiments of tumour

spheroid growth into stiff surroundings [30].

Tumour growth causes passive microstructural remodelling

Final state displacements are shown in Fig 3 (top) at both scales. A high level of network com-

pression is observed in the near-field, with deformations dropping to zero approximately half-

way into the PTS. This is in agreement with our previous findings [18], which showed that

compression was mainly localised to the tumour-PTS boundary. Also in agreement with both

our previous findings and experimental observations by others [4] are the network alignments

at the boundary: passive mechanical remodelling causes a shift from an initially random to a

circumferential alignment with respect to the tumour boundary. The principal network

Fig 2. Initial state meshes at both scales. The tumour spheroid octant is shown as a red wire frame and has radius 0.1 mm; the peritumoural stroma is

shown as an opaque blue volume has thickness 0.5 mm; and each RVE has a side length of approximately 20 microns (axes are not to scale).

https://doi.org/10.1371/journal.pone.0184511.g002
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Fig 3. Tumour growth causes collagen remodelling. From top to bottom: final state peritumoural stroma mesh (both scales); final state RVEs from the

(A) 5th, (B) 3rd and (C) 1st layers of the PTS; (D) histograms of the scalar product between the principal network permeability, Kpvec, and principal network

orientation vectors,Ωpvec; and (E) the scalar product between the principal network permeability and interstitial fluid velocity, Vpvec, for each RVE in the 1st

layer of elements in the PTS. The arrows centred on each RVE show the principal eigenvectors of the network orientation (grey) and permeability (red), and

the interstitial fluid velocity (blue).

https://doi.org/10.1371/journal.pone.0184511.g003
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orientation is calculated from the average RVE orientation tensor, Oij, defined as [31]:

Oij ¼

P
ð‘i � ‘jÞ=‘
P
‘

Here ℓi is the projection of a fibre of length ℓ in the i-direction, and the sum is over all fibres

in the RVE. Random networks are approximately isotropic; hence O11� O22� O33 = 1/3. The

scalar product of the principal eigenvector of Oij and the outward facing normal of the finite

element to which the RVE belongs gives the alignment with respect to the boundary: equal to 1

if perpendicular and 0 if parallel. A final state contour map of principal RVE orientations and

a histogram of their alignments in the first layer of the PTS are shown in Fig 4A and 4C,

respectively. Given that our previous model was solely defined in terms of solid mechanics, the

similarity between [18] and Fig 4C suggests that fluid flow does not play a role in this type of

remodelling.

Collagen microstructure influences macroscale fluid flow

To demonstrate the capabilities of the multiscale biphasic model, example hydrated collagen

networks are selected from the first, third and fifth layer of the PTS and shown in Fig 3A-3C,

respectively. Each figure shows the deformed network, corresponding nodal displacements,

and three vectors: the principal network orientation (grey), principal network permeability

(red) and interstitial fluid velocity (IFV) direction (blue). The principal network permeability

is equal to the principal eigenvector of the permeability tensor, K (Eq (13)), and the IFV is cal-

culated from Eq (5). A number of interesting features are predicted:

• The angle between the principal orientation and permeability vectors is generally acute. This

is supported by Fig 3D, which shows a histogram of the scalar product between the principal

network permeability and principal network orientation vectors in each RVE from the first

layer of finite elements in the PTS; its mean is greater than 0.5. These results reflect the con-

stitutive description (Eq (14)), which assumes that fluid flows more easily parallel rather

than perpendicular to fibres.

• The IFV points approximately perpendicular to the permeability in all networks. This is sup-

ported by Fig 3E, which shows a histogram of the scalar product between the principal net-

work permeability and IFV vectors in each RVE from the first layer of finite elements in the

PTS; its mean is less than 0.5. This is a result of radial tumour growth, which produces a

radial gradient of the interstitial fluid pressure (IFP).

• The angle between the IFV and permeability closes as we move radially out. This indicates

that the IFP gradient drives the IFV direction at the boundary, but further out the permeabil-

ity begins to direct the flow.

To further investigate the effect of collagen microstructure on peritumoural IFV, simula-

tions were compared between networks with the default (i.e. random) initial orientation and

prealigned networks, whereby every network was given the same structure and hence orienta-

tion: O11� 0.39, O22� 0.23, O33� 0.38. The resulting alignment contours and histograms are

depicted in Fig 4A-4D. As previously noted, the initially random networks realign circumfer-

entially and the growth produces a dominantly radial IVF at the boundary (Fig 4E). In con-

trast, the prealigned networks remodel into a mix of parallel and perpendicular alignments.

This causes a more irregular tumour morphology, which drives up the circumferential IFP gra-

dients and hence the magnitude of the circumferential IFV (Fig 4F). Comparing Fig 4E and 4F

Multiscale biphasic modelling of tumour growth induced remodelling
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Fig 4. Initial collagen microarchitecture influences final collagen alignment and fluid flow. Row-wise from top: Final state network principal

orientation eigenvectors in the first layer of the PTS, for an initially (A) random and (B) aligned PTS. The colour bar indicates alignment with respect to the

tumour boundary: 0 for circumferential, 1 for perpendicular. Final state network alignments for an initially (C) random and (D) aligned PTS. Final spherical

IFV components near the tumour boundary, for an initially (E) random and (F) aligned PTS.

https://doi.org/10.1371/journal.pone.0184511.g004
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suggests a greater dependency of IFV on the initial orientation of the microstructure than the

final; despite the greater number of final-state circumferentially aligned networks in the default

simulation, the circumferential IFV is larger in the prealigned simulation because of the more

anisotropic tissue deformation.

To facilitate comparison with experimental data, the macroscale solid stress, IFP, perme-

ability and IFV are plotted against space and time in Fig 5 for the simulation into the random

PTS. In the plots with respect to time, variables are integrated over the PTS domain only in

order to focus on peritumoural properties.

• Fig 5A: as expected, compressive solid stresses are observed inside the tumour. At the

tumour boundary the radial component remains negative, while the circumferential compo-

nents become positive: this reflects the stretching of collagen fibres around the tumour

periphery. All components drop to zero in the far field. These predictions support the notion

of a heterogeneous force environment at the boundary, and are consistent with previous

studies of growth-induced solid stress [15], [32]. An approximately flat IFP is observed

inside the tumour, followed by a strongly positive gradient near the boundary. This is in

qualitative agreement with past observations (Fig 2 in [11]; Fig 4A in [33]) and demonstrates

that, during avascular tumour development, IFP in the PTS is driven by tumour growth: it is

elevated at the boundary, where the tissue is most compressed, before falling off and reach-

ing a plateau away from the tumour.

• Fig 5B: radial solid stress increases negatively with time in the PTS, while circumferential

stresses increase positively. This is due to radial compression and circumferential extension

of the fibre networks. IFP increases positively and, as with the solid stresses, follows the

shape of tumour growth.

• Fig 5C: all permeability components decrease with increasing radius, with approximately

two orders of magnitude difference between the tumour and PTS. To examine the effect of

collagen remodelling, the inset plot shows a zoom into the boundary. A sharp decrease in all

permeability components is predicted at the interface due to network compression. Further-

more, a greater decrease is predicted in the radial than circumferential components, reflect-

ing the reorientation of collagen to a circumferential alignment with respect to the tumour

boundary. All components converge to approximately the same value further from the

boundary.

• Fig 5D: the radial component of permeability decreases more rapidly with time than the cir-

cumferential components. This effect is strongest at the boundary; see the inset plot, which

shows the permeability integrated over a region at the tumour-PTS boundary (0.1mm

<r< 0.2mm). As with Fig 5C, this is driven by the passive network remodelling at the

boundary: collagen is remodelled circumferentially at the boundary, making the networks

more permeable in the circumferential direction.

• Fig 5E: IFV is approximately a factor of 100 greater at the boundary than inside or outside

the tumour, and it points inwards. This demonstrates that fluid flows from the PTS inside

the tumour as a result of the tumour being more permeable. The magnitude of the IFV

throughout the PTS is in qualitative agreement with experimental measures of interstitial

fluid flow (0.6 ± 0.2μm/s [34]).

• Fig 5F: the radial component of the IFV is much larger than the circumferential components.

This is due to circumferential deformation being only slightly anisotropic; as the initial dis-

tribution of network orientations is approximately flat, the growth produces an approxi-

mately spherical morphology, and hence the circumferential pressure gradients are small.
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Fig 5. Final state variables in space and time. A: Final spherical solid stress components and IFP over radial distance. B: Final

spherical solid stress components and IFP over time, integrated over the PTS volume. C: Final spherical permeability components over

radial distance; inset shows a zoom into the tumour-PTS boundary. D: Final spherical permeability components over time, integrated over

the PTS volume; inset shows the same for the region 0.1mm <r < 0.2mm. E: Final spherical IFV components over radial distance. F: Final

spherical IFV components over time, integrated over the PTS volume. All time-dependent plots are normalised with respect to the initial

volume of the PTS.

https://doi.org/10.1371/journal.pone.0184511.g005
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Solid stress is correlated with permeability and interstitial fluid velocity

To interrogate the relationship between solid and fluid variables quantitatively, Fig 6 shows

heatmaps of solid stress versus permeability and interstitial fluid velocity (IFV), respectively.

The maps were produced using nodal data from all elements in the PTS. Strong, significant (|t|

> 0.9, p< 0.001) correlations are observed in both cases: solid stress and permeability are neg-

atively correlated, while solid stress and IFV are positively correlated. These observations are

driven by the effect of microstructural remodelling: as collagen is compressed and stretched it

becomes more closely packed, producing a stiffer, less permeable stroma.

Discussion

In this paper we have presented a computational model of avascular poroelastic tumour

growth coupled with a multiscale biphasic description of the host tissue. The model builds on

our previous work to provide a more physiologically-representative description of the biophys-

ical tumour-host environment, allowing us to study the interplay between solid micromecha-

nics and peritumoural fluid flow. To promote the wider use and development of multiscale

cancer models, we have also provided a primer on the mathematical formulation and imple-

mentation of the model.

Simulations were performed using experimental data to specify the model as a tumour

spheroid growing into a dense, randomly organised collagen hydrogel. This produced passive

mechanical remodelling of collagen fibres around the tumour periphery—recapitulating our

previous findings [18] and experimental observations [4]—and revealed that this remodelling

caused the periphery to become more permeable in the circumferential than radial direction.

During growth, however, this effect was outweighed by large radial fluid pressure gradients.

The resulting magnitudes of IFP and IFV agreed qualitatively with previous experiments ([35]

and [34], respectively).

To further examine the effect of collagen orientation on IFV, simulations were compared

between an initially random and a pre-aligned peritumoural collagen microstructure.

Fig 6. Solid stress, permeability and fluid velocity correlations. A: Two dimensional histogram of final state solid stress versus permeability. B:

Two dimensional histogram of final state solid stress versus interstitial fluid velocity (IFV). The Spearman rank correlation coefficient, t, and its

corresponding p-value, p, are shown at the top of each plot. Statistical tests were performed using the SciPy stats module (https://www.scipy.org).

https://doi.org/10.1371/journal.pone.0184511.g006

Multiscale biphasic modelling of tumour growth induced remodelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0184511 September 13, 2017 13 / 17

https://www.scipy.org
https://doi.org/10.1371/journal.pone.0184511.g006
https://doi.org/10.1371/journal.pone.0184511


Different IFV profiles were observed at the boundary, with larger circumferential components

in the latter case, indicating a dependency of IFV on initial collagen orientation. This was pri-

marily due to the pre-aligned PTS causing a heterogeneous remodelling at the boundary and

subsequently a more anisotropic growth, driving up circumferential fluid pressure gradients.

Finally, the relationships between solid stress and permeability and solid stress and IFV at

the tumour-host interface were investigated. Nodal data were used to establish correlations,

showing that solid stress and permeability (IFV) have a negative (positive) correlation. This is

intuitive: as the tissue becomes compressed the solid stress and IFV increases, while the perme-

ability decreases. These results point to a heterogeneous environment of solid and fluid forces

at the tumour-host interface, and hence the necessity for multiphase models.

The validation of the multiscale model presented here is mainly qualitative, and is restricted

to the structural remodelling of the collagen networks. To provide more stringent testing of

the model’s ability to predict passive structural remodelling, the change in collagen structure

could be measured in vitro and in vivo using techniques such as second harmonic generation

imaging [4]. To validate the prediction of increased circumferential to radial permeability at

the boundary it would be necessary to either measure the hydraulic conductivity directly, or

measure the interstitial fluid velocity (IFV). The latter would be easier, as the former requires

model assumptions while measuring the IFV could be achieved by fluorescent labelling and

subsequent imaging of suitably small particles [36]. In addition, these techniques could also be

used to test the prediction that IFV is dependent upon initial collagen structure. There are a

number of three-dimensional in vitro models in the literature that would be suitable for such

experiments: collagen-embedded spheroid models [37], [38]; a spheroid model embedded in a

compressed collagen gel, providing a more biomimetic environment [39]; and a spheroid

model embedded in engineered nanofibrous scaffolds [40], that could enable the fabrication of

specific microstructures.

In terms of integrating the proposed model with other computational models, a strength of

the proposed method is that it is inherently modular: the microstructure is defined in a sepa-

rate domain that is coupled to the macroscale space. As such it can easily be implemented in

any standard finite element solver, or indeed any solver that utilises numerical quadrature e.g.

[41], [42], [33], to name only a few. Furthermore, our model can be compared directly to other

mathematical models that utilise similar computational methods, such as the phase-field for-

mulation proposed by [43] which is solved using isogeometric analysis [44].

It is worth noting the limitations of the current model, particularly with a view to its appli-

cation to in-vivo tumour growth and patient-specific modelling [45]. First, the peritumoural

stroma is modelled as a mixture of collagen and water; in-vivo, the extracellular matrix is also

comprised of other matrix proteins. This can be addressed by simply adding a constitutive

description of the other matrix proteins and assuming superposition of stresses; this “two com-

ponent” model was investigated in our previous work [18]. Similarly, in the current model

only the peritumoural stroma is treated as a multiscale material, which is reasonable for in-

vitro spheroid growth as the spheroids tend to have a low collagen content [30]; what collagen

there is would be unstructured and compressed. The situation is not the same in-vivo, how-

ever, as the tumour grows from within the ECM. Again the model can be extended to accom-

modate this by making the tumour a two component model. Another limitation of the current

model is the assumption of constant solid and fluid volume fractions, which may be expected

to change in-vivo due to active remodelling by ECM cells. However, studies have shown that

lymphatic vessels in the peritumoural stroma can drain fluid that leaks from the tumour [46],

thus maintaining an approximately constant fluid volume fraction. The current modelling

framework can be easily extended to test this by combining it with our existing model of vascu-

lar tumour growth [33].
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in Scientific Computing. Birkhäuser Press; 1997. p. 163–202.

Multiscale biphasic modelling of tumour growth induced remodelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0184511 September 13, 2017 16 / 17

https://doi.org/10.1158/0008-5472.CAN-10-2676
https://doi.org/10.1158/0008-5472.CAN-10-2676
http://www.ncbi.nlm.nih.gov/pubmed/21224346
https://doi.org/10.1002/jcp.22766
http://www.ncbi.nlm.nih.gov/pubmed/10811131
https://doi.org/10.1016/S0026-2862(03)00057-8
https://doi.org/10.1016/S0026-2862(03)00057-8
http://www.ncbi.nlm.nih.gov/pubmed/14609526
https://doi.org/10.1016/j.jtbi.2008.03.027
https://doi.org/10.1016/j.jtbi.2008.03.027
http://www.ncbi.nlm.nih.gov/pubmed/18485374
https://doi.org/10.1016/j.jtbi.2010.02.036
https://doi.org/10.1007/s11831-013-9090-8
https://doi.org/10.1158/0008-5472.CAN-12-4521
http://www.ncbi.nlm.nih.gov/pubmed/23633490
https://doi.org/10.1137/070689504
https://doi.org/10.1007/s10237-015-0745-2
https://doi.org/10.1016/j.cma.2006.06.019
https://doi.org/10.1016/j.cma.2006.06.019
https://doi.org/10.1080/01495739708936700
http://www.ncbi.nlm.nih.gov/pubmed/11264795
https://doi.org/10.1371/journal.pone.0104717
http://www.ncbi.nlm.nih.gov/pubmed/25111061
https://doi.org/10.1016/S0167-6636(99)00020-4
https://doi.org/10.1016/S0167-6636(99)00020-4
https://doi.org/10.1063/1.3021477
https://doi.org/10.1063/1.3021477
https://doi.org/10.1007/s00366-006-0049-3
https://doi.org/10.1007/s00366-006-0049-3
https://doi.org/10.1371/journal.pone.0184511


30. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. Solid stress inhibits the growth of multicel-

lular tumor spheroids. Nature Biotechnology. 1997; 15:778–783. https://doi.org/10.1038/nbt0897-778

PMID: 9255794

31. Stylianopoulos T, Barocas VH. Multiscale, structure-based modeling for the elastic mechanical behavior

of arterial walls. J Biomech Eng. 2007; 129:611–618. https://doi.org/10.1115/1.2746387 PMID:

17655483

32. Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, et al. Causes, con-

sequences, and remedies for growth-induced solid stress in murine and human tumors. PNAS. 2012;

109:15101–15108. https://doi.org/10.1073/pnas.1213353109 PMID: 22932871

33. Vavourakis V, Wijeratne PA, Shipley RJ, Loizidou M, Stylianopoulos T, Hawkes DJ. A validated multi-

scale in-silico model for mechano-sensitive tumour angiogenesis and growth. PLOS Computational

Biology. 2017; https://doi.org/10.1371/journal.pcbi.1005259 PMID: 28125582

34. Chary SR, Jain RK. Direct measurement of interstitial convection and diffusion of albumin in normal and

neoplastic tissues by fluorescence photobleaching. Proceedings of the National Academy of Sciences

of the United States of America. 1989; 86:5385–5389. https://doi.org/10.1073/pnas.86.14.5385 PMID:

2748592

35. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular

endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and

improves drug penetration in tumors. Cancer Research. 2004; 64:3731–3736. https://doi.org/10.1158/

0008-5472.CAN-04-0074 PMID: 15172975

36. Sugii Y, Okuda R, Okamoto K, Madarame H. Velocity measurement of both red blood cells and plasma

of in vitro blood flow using high-speed micro PIV technique Measurement Science and Technology.

2005; 16(5). https://doi.org/10.1088/0957-0233/16/5/011

37. Correa de Sampaio P, Auslaender D, Krubasik D, Failla AV, Skepper JN, Murphy G, English WR. A Het-

erogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting

Angiogenesis PLoS ONE. 2012; 7(2). https://doi.org/10.1371/journal.pone.0030753 PMID: 22363483

38. Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. Embedded multicellular spheroids as a

biomimetic 3D cancer model for evaluating drug and drug-device combinations Biomaterials. 2014; 35

(7):2264–2271. https://doi.org/10.1016/j.biomaterials.2013.11.038 PMID: 24360576

39. Ricketts KPM, Cheema U, Nyga A, Castoldi A, Guazzoni C, Magdeldin T, Emberton M, Gibson AP,

Royle GJ, Loizidou M. A 3D In Vitro Cancer Model as a Platform for Nanoparticle Uptake and Imaging

Investigations Small. 2014; 10(19):3954–3961. https://doi.org/10.1002/smll.201400194 PMID:

24990320

40. Girard YK, Wang C, Ravi S, Howell MC, Mallela J, Alibrahim M, Green R, Hellermann G, Mohapatra

SS, Mohapatra S. A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Develop-

ment PLoS ONE. 2013; 8(10). https://doi.org/10.1371/journal.pone.0075345

41. Zheng X, Wise SM, Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue

invasion via an adaptive finite-element/level-set method Bulletin of Math. Biol. 2005; 67:211.

42. Mohamed A, Davatzikos C. Finite Element Modeling of Brain Tumor Mass-Effect from 3D Medical

Images MICCAI 2005;400–08. PMID: 16685871

43. Xu J, Vilanova G, Gomez H. A mathematical model coupling tumor growth and angiogenesis PLoS

ONE. 2016; 11(2). https://doi.org/10.1371/journal.pone.0149422

44. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement. Comput Meth Appl Mech Eng. 2005; 194(39):4135–4195. https://doi.

org/10.1016/j.cma.2004.10.008

45. Baldock AL, Rockne RC, Boone AD, Neal ML, Hawkins-Daarud A, Corwin DM, Bridge CA, Guyman LA,

Trister AD, Mrugala MM, Rockhill JK, Swanson KR. From patient-specific mathematical neuro-oncology

to precision medicine Front Oncol. 2013; 3(62). https://doi.org/10.3389/fonc.2013.00062 PMID:

23565501

46. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murince

sarcoma: a molecular and functional evaluation. Cancer Research. 2000; 60:4324–27. PMID:

10969769

Multiscale biphasic modelling of tumour growth induced remodelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0184511 September 13, 2017 17 / 17

https://doi.org/10.1038/nbt0897-778
http://www.ncbi.nlm.nih.gov/pubmed/9255794
https://doi.org/10.1115/1.2746387
http://www.ncbi.nlm.nih.gov/pubmed/17655483
https://doi.org/10.1073/pnas.1213353109
http://www.ncbi.nlm.nih.gov/pubmed/22932871
https://doi.org/10.1371/journal.pcbi.1005259
http://www.ncbi.nlm.nih.gov/pubmed/28125582
https://doi.org/10.1073/pnas.86.14.5385
http://www.ncbi.nlm.nih.gov/pubmed/2748592
https://doi.org/10.1158/0008-5472.CAN-04-0074
https://doi.org/10.1158/0008-5472.CAN-04-0074
http://www.ncbi.nlm.nih.gov/pubmed/15172975
https://doi.org/10.1088/0957-0233/16/5/011
https://doi.org/10.1371/journal.pone.0030753
http://www.ncbi.nlm.nih.gov/pubmed/22363483
https://doi.org/10.1016/j.biomaterials.2013.11.038
http://www.ncbi.nlm.nih.gov/pubmed/24360576
https://doi.org/10.1002/smll.201400194
http://www.ncbi.nlm.nih.gov/pubmed/24990320
https://doi.org/10.1371/journal.pone.0075345
http://www.ncbi.nlm.nih.gov/pubmed/16685871
https://doi.org/10.1371/journal.pone.0149422
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.3389/fonc.2013.00062
http://www.ncbi.nlm.nih.gov/pubmed/23565501
http://www.ncbi.nlm.nih.gov/pubmed/10969769
https://doi.org/10.1371/journal.pone.0184511

