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The effect of price volatility on judgmental forecasts: The correlated response model 

Daphne Sobolev 

Abstract 

Traders often employ judgmental methods when making financial forecasts. To characterize 

judgmental forecasts from graphically presented time series, I propose the correlated response 

model, according to which properties of judgmental forecasts are correlated with properties of the 

forecasted series. To test the model, participants were presented with graphs depicting synthetic 

price series. In Experiment 1, participants were asked to make point forecasts for different time 

horizons. Participants could control the graphs’ time scale. In Experiment 2, participants made multi-

period forecasts. They could apply moving average filters on the graphs. Dispersion of point 

forecasts between participants (the standard deviation of participants’ point forecasts) and 

variability of individual participant’s multi-period forecasts (local steepness and oscillation) were 

extracted. Both forecast measures were found to be significantly correlated with variability 

measures of the original, scaled, and smoothed data graphs. Thus, the results supported the 

correlated response model and provided insights into forecasting processes. 

 

Key words: trading; financial decisions; forecasts; dispersion; horizon; fractal; Hurst exponent; 

scaling; moving average. 

Print: black-and-white (the paper does not contain any color figures. Black-and-white figures are 
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1. Introduction  

A high percentage of market participants base their trades on methods which involve extrapolation 

and pattern recognition of graphically presented financial time series (Batchelor, 2013; Batchelor 

and Kwan, 2007; Cheung and Chinn, 2001; Taylor and Allen, 1992). Furthermore, it was found that 

technical analysis techniques are incorporated in decision making processes of the majority of FX 

dealers (Gehrig and Menkhoff, 2006) and fund managers (Menkhoff, 2010). Nevertheless, the 

dependence of forecasts from graphically displayed price series on the properties of the data series 

has not been studied within Finance and has been understudied within Judgmental Forecasting. In 

particular, the way data graphs’ properties affect forecast dispersion (the extent to which 

forecasters disagree about their forecasts) and forecast variability (the local steepness and 

oscillation of individual forecaster’s multi-period forecasts) has not been explored.  

The aim of this paper is to understand the way properties of graphically presented time series affect 

forecast variability and dispersion. I suggest that the variability of the given time series is correlated 

with the forecast dispersion of point forecasts and the variability of multi-period forecasts. 

Moreover, this effect is robust across different time series, forecast horizons or multi-period forecast 

densities, and when the forecasters are given the option to scale or smooth the graphs. To provide a 

theoretical justification for this relation, I propose the correlated response model, described in 

Section 1.1. The experimental hypotheses are described in Section 1.2.   

 

1.1. The correlated response model: Background and definition 

During the past twenty years, a large body of research about the way people make forecasts from 

graphically presented time series has accumulated. Harvey (1995) showed that when people make 

multi-period forecasts from graphically presented time series, they tend to imitate the noise 

component of the time series. The noise level of the forecasts was correlated with the noise level of 



3 
 

the data. Bolger and Harvey (1993) hypothesized that people imitated noise in order to make their 

forecasts representative of the data series.  Furthermore, Harvey, Ewart and West (1997) showed 

that participants had a strong tendency to imitate the noise component of the data. In one of their 

experiments, the following instructions were given (page 126): “Put six crosses on the graph to show 

us your forecasts. Obviously you cannot be certain where these future points will be but try to 

ensure that your forecasts show the most likely positions for them. For example, if you feel that a 

particular point could lie within a range of values, put your cross in the centre of that range if you 

feel that this is the most likely position for the true point within the range. Your aim is to maximize 

the probability that your forecasts will be correct.” Nevertheless, participants in their experiment 

imitated the noise of the data series.  

Lawrence and Makridakis (1989) showed that, though people tend to damp trends, judgmental 

forecasts correspond to the slope of the given data. Similar results were obtained in other studies 

(e.g. Bolger and Harvey, 1993). A comprehensive survey about the influence of data characteristics 

on forecasts was written by Lawrence, Goodwin, O’Connor and Önkal (2006). 

Forecast dispersion has not been the topic of studies in Judgmental Forecasting. However, Reimers 

and Harvey (2011) studied the effect of random noise on judgmental forecasts and mentioned that 

their experiment “shows that the participants were more variable in their responses when the noise 

was higher” (see the Result Section of Experiment 1, page 1202 in Reimers and Harvey, 2011). The 

same result was replicated in their second experiment. Similar relationship between data variability 

and forecast dispersion was observed for the case of inflation forecasts by Cukierman and Wachtel 

(1979; 1982). That may be because noisy data is characterized by a high variability and uncertainty. 

Therefore, it is likely to enable the expression of individual differences more than data with low 

variability levels. Indeed, in contexts other than forecasting, Caspi and Moffitt (1993) suggested that 

“individual differences are most likely to be accentuated by unpredictability, when there is a press to 

behave but no information about how to behave adaptively. Such transition situations are revealing 



4 
 

because during these periods […] individuals must summon their resources.” Drawing on Caspi and 

Moffitt (1993), Yang (2012) contended that “individual differences are accentuated when individuals 

face ambiguous and uncertain events with insufficient information to allow adaptive behaviour”. As 

highly variable data emphasizes individual differences more than data characterized by low 

variability, it is, in particular, likely to highlight individual differences in forecasting. However, the 

latter is expected to result in large group forecast dispersion. Thus, differences in the expression of 

individual differences in forecasting may explain the relationship between the variability of the given 

data and forecast dispersion. This explanation is in line with Cukierman and Wachtel (1979), who 

suggested that differences in the interpretation of volatile data affect forecast dispersion. 

Each of the experimental forecasting papers mentioned above examined a highly specialized aspect 

of forecasting and, thus, contributed to the understanding of forecasting biases and errors. 

However, their results have not been united into a single model. Beyond identification of biases, 

these papers show that, to different levels of accuracy, judgmental forecasts from graphically 

presented series preserve properties of the given data series. A possible explanation of this 

preservation may be that imitation is one of the most powerful human learning processes (Bandura 

and Barab, 1971). In contexts other than forecasting, it was shown that people have an innate 

tendency to imitate stimuli (Heyes, 2011). 

Uniting the results of the experimental papers mentioned above, and generalizing them further, I 

suggest the correlated response model, formulated below. 

The correlated response model. In judgmental forecasting tasks, which involve forecasts from 

graphically presented time series, people’s responses are correlated with properties of the given 

series. In particular: 

1. The trend of the data series and the trend of the forecast are positively correlated (Lawrence 

and Makridakis, 1989; Bolger and Harvey, 1993). 
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2. The variability of multi-period forecasts and the variability of the data series are positively 

correlated (Harvey, 1995; Bolger and Harvey, 1993; Harvey, Ewart, and West, 1997).  

3. The forecast dispersion of single point forecasts is correlated with the variability of the data 

(Reimers and Harvey, 2011). 

In this study, the main measure of forecast dispersion of single point forecasts is the standard 

deviation of the point forecasts made by independent forecasters. (Two other measures of forecast 

dispersion are examined, too, as described in Section 2.2.1). Two main data variability measures are 

used: local steepness and oscillation. The local steepness of a graph is defined as the average of the 

absolute value of the gradients of the graph. The graphs’ oscillation is defined as the difference 

between the maximum and minimum values of the graph over a given interval (Trench, 2002).  

As this paper aimed at understanding the way properties of graphically presented time series affect 

forecast variability measures, I concentrated on Sections 2 and 3 of the correlated response model. 

 

1.2 Hypotheses 

The tasks in the experimental studies described in Section 1.1 were not designed to simulate 

financial situations. For instance, the contexts of the experimental tasks of Reimers and Harvey 

(2011) were sales forecasts (Experiment 1) and profit forecast (Experiments 2 and 3). In addition, the 

number of data points presented to the participants in each time series was 50, whereas financial 

data is abundant and complex. Furthermore, both moving average filters and scaling are commonly 

offered as options in financial data analysis programs. For instance, Yahoo! Finance 

(http://finance.yahoo.com/) enables users to choose the time scale on which data would be 

presented and to present different technical indicators, including the moving window average. 

Moving window averaging filters are applied to smooth graphs. Investors and traders use these 

options frequently (Glezakos and Mylonas, 2003). However, the experimental settings used by 

http://finance.yahoo.com/
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Reimers and Harvey (2011) did not allow participants to change the scale of the presented data or to 

smooth it. Finally, market participants and trading tasks are heterogeneous (Müller, Dacorogna, 

Davé, Pictet, Olsen, and Ward, 1993). In particular, forecasting tasks may involve different trading 

horizons and multi-period forecast densities. 

I suggest that the correlated response model holds in situations which simulate financial situations in 

addition to the previously studied scenarios. I conjecture that when people are asked to make 

forecasts from graphically presented price series, the dispersion and variability of the forecasts are 

correlated with the variability of the data series. Thus, I suggest the following hypotheses: 

H1: Point forecast dispersion is positively correlated with the local steepness and the oscillation of 

the data graphs.  

H2: The local steepness and the oscillation of multi-period forecasts are positively correlated with the 

corresponding variability measures of the data graphs. 

In Experiment 1, Hypothesis H1 is tested. In particular, I examine its robustness across a wide range 

of data series, different forecast horizons and when participants are given the option to scale the 

given data. In Experiment 2, Hypothesis H2 is tested. I investigate its robustness across a wide range 

of data series, different forecast densities and when participants are given the option to apply 

moving average filters on the presented series. 

Experiments 1 and 2 are described in Sections 2 and 3. The general discussion is presented in Section 

4. 

2. Experiment 1 

In Experiment 1, participants were presented with a sequence of graphs representing price series. 

Participants could control the time interval of the graph by using a slider. Similar scaling options are 

available in financial data analysis programs. Participants were asked to choose the time interval 

they considered the most appropriate for making financial forecasts and decisions, and then to make 
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them based on the time-scaled graph. Two variables were manipulated: the variability of the original 

data graphs, and the required forecast horizon. Figure 1 depicts the task window of Experiment 1.  

_________________________ 

Figure 1 about here 

__________________________ 

2.1 Method 

2.1.1. Participants 

 Thirty-four people (15 men and 19 women) with an average age of 23.29 years acted as 

participants. Participants’ decisions were used to determine their fees: they were paid a flat fee of 

£3.00 and a further £1.00 if their financial decisions were more than 65% correct. Correctness was 

determined by participants’ performance with respect to the generated graphs. For instance, if 

prices at the required forecast day were higher than the price on day 200 by more than 5%, a ‘buy’ 

decision was considered correct and both ‘sell’ and ‘hold’ decisions were considered wrong.  

2.1.2. Stimulus materials 

The time series presented to the participants were fractional Brownian motions (fBm). Fractal graphs 

are considered by many researchers adequate for modeling price series, as they attribute more 

realistic probabilities to financial crises than the random walk model does (Mandelbrot and Hudson, 

2004; Mihajlovsky, 2013; Parthasarathy, 2013; Malavoglia, Gaio, Júnior and Lima, 2012; Panas and 

Ninni, 2010; Sun, Rachev and Fabozzi, 2007; In and Kim, 2006). This is due to the ‘fat tails’ of a large 

set of fBm series. Fat tails assign to rare events higher probabilities than those attributed by the 

normal distribution (Mandelbrot and Hudson, 2004).  

Fractional Brownian motions depend on a constant termed the Hurst exponent (H). The range of the 

Hurst exponent of time series is [0,1], where the value H=0.5 corresponds to the random walk model 
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(Peitgen and Saupe, 1988). In this sense, the fractal model can be considered a generalization of the 

random walk model. However, it was shown that the Hurst exponent of most stocks is in the interval 

[0.3,0.7] (Sang, Ma, and Wang, 2001).  

Examples of fBm series are presented in Figure 2. As can be seen in Figure 2, time series with low 

Hurst exponent values look noisier and more volatile than graphs with high Hurst exponents. Indeed, 

the Hurst exponent is negatively correlated with variability measures of the series, including the 

local steepness, oscillation, and standard deviation (provided that the series were generated by the 

same algorithm).  Gilden, Schmuckler and Clayton (1993) and Kumar, Zhou, and Glaser (1993) 

showed that people are highly sensitive to the Hurst exponent of fBm graphs. 

________________________ 

Figure 2 about here 

________________________ 

In line with the results of Sang, Ma, and Wang (2001), stimulus graphs comprised five sets of three 

time series with Hurst exponents H = 0.3, 0.5, and 0.7. Time series were produced using the Spectral 

method described by Saupe (Peitgen and Saupe, 1988). All series included 62831 (~1000∙2π) points. 

This large number of points was chosen to enable scaling and examination of forecast quality. 

However, participants were not presented with all data points. The series were presented to the 

participants as asset price graphs. A constant was added to them to ensure that they were positive. 

To increase measurement precision by encouraging participants to make forecasts using more than 

one significant digit, they were also multiplied by 100. 
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2.1.3. Stimulus presentation and control  

Stimulus graphs were presented using a Matlab program that enabled participants to scale the data 

along the time axis, to make forecasts for a specified horizon, and to express their financial decisions 

(see Figure 1). Examples of scaled fBm graphs are presented in Figure 2. 

Time scaling was accomplished using a slider. At the beginning of each trial, each graph was 

presented on the time interval [100, 200]. The scaling slider’s range varied from a time interval of 

four days at the maximal zoom-in side of the slider (presentation of price data from days 196 to 200) 

to 200 days at the maximal zoom-out side of the slider (presentation of price data from days 0 to 

200). Thus they could scale the graphs by a factor of 50 (i.e. 200/4).  

Participants made single point forecasts by entering a number into a text box. Forecast horizon was 

set to 2, 15, or 100 days, making the factor by which horizons varied (i.e. 100 / 2) identical to that by 

which scaling could vary (i.e. 200 / 4).  

Participants then made a financial decision to buy another share of the presented asset, to sell their 

share, or to do neither of these. On each trial, they could change the time interval shown on the 

graph until they clicked the button “When you are ready, please press OK”. They could edit their 

forecasts until they clicked the button “Save forecast”.  

2.1.4. Design  

Participants were presented with 48 graphs: three familiarization graphs and 45 experimental 

graphs. Only experimental graphs were included in the analysis. Each graph required three 

responses: the first was choice of time interval; the second was to forecast the asset’s future price; 

the third was to make a financial decision.  

Each participant saw all 15 graphs. Each one was presented three times in different contexts that 

varied according to the required forecast horizon (2, 15, and 100 days). The order of the graphs and 
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the required forecast horizons were randomly chosen. This combination produced a three (forecast 

horizons) by three (Hurst exponent values) by five (instances of time series with the same Hurst 

exponent values) within-participants design. 

2.1.5. Procedure  

Participants were instructed to assume that the experiment day was day 200 and asked to read the 

following instructions: 

“In the following experiment, you are asked to imagine that you are a financial analyst. You have 45 

clients. Each of your clients has one share of a single asset. Clients differ in their trading frequency: 

some clients trade every two days, some trade every 15 days, and some every 100 days. Your aim 

should be to increase the total value of their portfolios as your fees will depend on your 

performance. 

In order to make your decisions, you will be presented with the price graphs of each of these assets. 

You will be able to control the time range of each graph by changing its zoom.  

For each asset you will be asked to:  

1. Notice the trading frequency of your client and the day you will be asked to make financial 

forecast for. Look at the price graph of the asset carefully. 

2. Choose for each graph a time range which you consider the most appropriate for the 

purpose of making a financial forecast. 

3. Write your forecast for the price of the asset on the required day. 

4. Advise to your clients whether to buy another share of the asset, sell their share, or hold it.” 

Participants could choose the time range of the data graphs by dragging a slider. Forecasts were 

made by entering a number to a text box. Participants could advise their clients whether to buy, sell, 
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or hold their shares by clicking one of three buttons. All tasks had to be completed before 

participants could continue to the next graph. 

2.2. Results 

I excluded from the analysis participants whose means of choices of time scaling factor were more 

than three standard deviations greater than that of the average for the rest of the group and those 

whose forecasts were different from the mean of the group by more than two standard deviations. 

This reduced the size of the sample from 34 to 30 participants, leaving a total of 1350 graphs for the 

analysis.  

Variables of primary interest were the dispersion of participants’ forecasts and the local steepness 

and oscillation of the original graphs. In addition, to assess the extent to which participants used the 

scaling option and the effect of the scaling on the graphs, the chosen time scaling factor and the 

local steepness and oscillation of the scaled graphs were extracted.  

2.2.1. Forecast dispersion  

For each combination of Hurst exponent value and forecast horizon, participants were presented 

with five different graphs (instances). That was taken into account when calculating the forecast 

dispersion by incorporating different reference level. 

Denote by 𝐻 = [0.3,0.5,0.7] the Hurst exponents of the presented graphs, by 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 =

[1,2,3,4,5] the graph set labels (in each set, all graphs had the same Hurst exponent value), and by 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = [2,15,100] the required forecast horizons. 𝐹𝑖,𝑗,𝑘,𝑙 denotes participant 𝑖’s forecast in the 

condition in which the Hurst exponent of the graph was 𝐻𝑗, the graph was chosen from set 

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 , and the participant was asked to make a forecast for the horizon 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑙. The ranges 

of these indices are: 𝑖 = 1, . . ,30, 𝑗 = 1,2,3, 𝑘 = 1, … ,5, 𝑙 = 1,2,3. Denote by 

𝑆𝑒𝑟𝑖𝑒𝑠𝑉𝑎𝑙𝑢𝑒 𝑜𝑛𝐷𝑎𝑦200𝑗,𝑘 the last point of the data series with 𝐻 = 𝐻𝑗 from set 𝑘 which 

participants were presented with (the value of the series on day 200), and by 
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𝑆𝑒𝑟𝑖𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑂𝑛𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐷𝑎𝑦𝑗,𝑘,𝑙   the value of the simulated series on the required forecast day. 

When an index is omitted, the measure is averaged over the corresponding variable. The following 

variables were extracted: 

1. 𝐷1𝑖,𝑗,𝑘,𝑙 = 𝐹𝑖,𝑗,𝑘,𝑙 − 𝐹𝑗,𝑘,𝑙. 𝐷1 was used to calculate the forecast dispersion with respect to 

the mean of the forecasts. 

2. 𝐷2𝑖,𝑗,𝑘,𝑙 = 𝐹𝑖,𝑗,𝑘,𝑙 −  𝑆𝑒𝑟𝑖𝑒𝑠𝑉𝑎𝑙𝑢𝑒 𝑜𝑛𝐷𝑎𝑦200𝑗,𝑘 . 𝐷2 was used to calculate the forecast 

dispersion with respect to the present price of each asset. 

3. 𝐷3𝑖,𝑗,𝑘,𝑙 = 𝐹𝑖,𝑗,𝑘,𝑙 −  𝑆𝑒𝑟𝑖𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑂𝑛𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐷𝑎𝑦𝑗,𝑘,𝑙. 𝐷3 was used to calculate 

participants’ forecast error with respect to the produced time series. 

Direct forecast dispersion measures are given by the standard deviations of 𝐷1, 𝐷2, and 𝐷3. The 

standard deviations of each of these measures in each of the experimental conditions are given 

in Table 1. As the table shows, when the forecast horizon was 15 days, the standard deviation of 

𝐷1 decreased when the Hurst exponent increased. For 𝐷2 and 𝐷3, similar patterns were found 

for forecast horizons of two and 15 days.  

________________________ 

Table 1 about here 

________________________ 

To examine Hypothesis H1, 𝐹𝐷1 = |𝐷1|, 𝐹𝐷2 = |𝐷2| and 𝐹𝐷3 = |𝐷3|  served as forecast dispersion 

measures. In addition, the local steepness and oscillation of the original graphs (before scaling) were 

calculated. To measure the perceived local steepness of a scaled time series, I extracted the average 

of the absolute value of the gradient at each series point. Then, I multiplied this value by the ratio of 

the observed time interval and the number of pixels along the time axes of the graph (600) (local 

steepness measures for the data series after participants’ scaling were calculated similarly). The 

oscillation of each graph was the difference between the graph’s minimum and the maximum. 
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The correlations between 𝐹𝐷1, 𝐹𝐷2 and 𝐹𝐷3 and local steepness and oscillation of the original and 

scaled graphs were significant. These results support Hypothesis H1. The correlations are 

summarized in Table 2. Figure 3 depicts the means of 𝐹𝐷1𝑗,𝑘 = |𝐷1𝑗,𝑘| for the different 

experimental conditions. 

________________________ 

Table 2 about here 

________________________ 

________________________ 

Figure 3 about here 

________________________ 

In addition, I carried out for each of the dispersion measures a three-way repeated measures ANOVA 

using the variables Horizon, Hurst exponent, and ‘instance’ as within-participant variables. I report 

here the results of the analysis of 𝐹𝐷1. The results of the analysis of 𝐹𝐷2 and 𝐹𝐷3 were similar. 

For 𝐹𝐷1, sphericity assumption was violated for all variables apart from the Hurst exponent and the 

‘instance’. The analysis revealed that 𝐹𝐷1 was larger when the Hurst exponent was smaller (F (2, 58) 

= 10.32; p < .001; partial η2 = .26), supporting Hypothesis H1 (the Hurst exponent is negatively 

correlated with variability measures). 𝐹𝐷1 was larger when forecast horizon was longer (F (1.39, 

40.42) = 84.67; p < .001; partial η2 = .75). There was also a significant effect of ‘instance’ on forecast 

dispersion, indicating that participants reacted to graph characteristics other than the Hurst 

exponent, too (F (4, 116) = 16.91; p < .001; partial η2 = .37).   

All possible interactions between these variables were significant, with F > 5.44 (p ≤ .002; partial η2 > 

0.16).   I report the results of the interactions and the corresponding simple tests in Table A in the 

Appendix. None of these interactions contradicted H1. 
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2.2.3. Choice of time-scaling factor and properties of the scaled graphs.  

To examine whether participants used the scaling option and the effect of the scaling on the graphs, 

I analyzed the time scaling factors participants chose, as well as the local steepness and oscillation of 

the scaled graphs.  

I refer to the location on the scaling-slider which participants chose for each graph as the time-

scaling factor. This measurement could vary between 0, corresponding to four days and 1, 

corresponding to 200 days (the transformation used to translate time-scaling factors to the actual 

day number presented on the graphs was: day number = 196 * (time-scaling factor) + 4). The mean 

time-scaling participants chose was 0.40, and the standard deviation was 0.37.  

T-tests performed on participants’ choices of scaling factors showed that the mean value was 

significantly different from 0.5 (the initial setting): t (1349) = 9.74, p < .001, from 0.0 (maximal zoom-

in):  t (1349) = 40.05, p < .001, and from 1.0 (using information from the maximal available time-

interval): t (1349) = 59.53, p < .001. Therefore, it can be concluded that participants used the scaling 

option. 

The local steepness of the scaled graphs was significantly correlated with the local steepness of the 

original graphs (r = .58; p < .01). Similarly, the oscillation of the scaled graphs was significantly 

correlated with the oscillation of the original graphs (r = .58; p < .01). These results show that 

participants scaled the graphs in a way that preserved the original variability of the graphs. 

Figure 4 depicts the mean local steepness and oscillation of the time-scaled graphs for the different 

conditions of the Hurst exponent and the forecast horizon. To conclude, variability measures of the 

scaled graphs were correlated with the corresponding variability measures of the data graphs. 
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________________________ 

Figure 4 about here 

________________________ 

2.2.4. Additional analysis: A comparison between human forecast dispersion and linear regression 

prediction intervals for an individual value.  

As a benchmark for the assessment of participants’ forecast dispersion, the 95% prediction interval 

for an individual value of a linear regression (𝑃𝐼) was calculated. The length of a 95% 𝑃𝐼 of a linear 

regression is given by  

𝑃𝐼 = 2 ∙ 1.96𝑆𝑒√1 +
1

𝑁
+

(𝑥 − 𝑥̅)2

(𝑁 − 1)𝑆𝑥
2, 

where 𝑁 is the number of data series points,  𝑥̅ is the mean of these points, 𝑆𝑥 is the standard 

deviation of the points, and 𝑥 is the forecast point (taking into account the forecast horizon). 𝑆𝑒 is 

given by 𝑆𝑒 = √
1

𝑁−2
∑ 𝑒𝑖

2𝑁
𝑖=1 , where 𝑒𝑖  is the regression line error, calculated for all data series points 

(Hyndman and Athanasopoulos, 2014). Here, 𝑃𝐼  was calculated with respect to the time interval 

participants were initially presented with (the period between day 100 and 200), taking into account 

𝑁 = 15,000 points. The prediction interval lengths, averaged over all graphs presented in each 

condition, are presented in Table 1.  

In order to compare participants’ forecast dispersion with 𝑃𝐼, the standard deviation of 𝐷1 was 

multiplied by a factor of 2 ∙ 1.96. This is because, assuming normality, the measure 2 ∙ 1.96 ∙

𝑠𝑡𝑑(𝐷1) represents a 95% confidence interval for 𝐷1. The values of 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(𝐷1) are 

presented in Table 1. A comparison of 𝑃𝐼 to 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(𝐷1) reveals that the 95% prediction 

interval for an individual value of a linear regression is smaller than the human dispersion measure 

2 ∙ 1.96 ∙ 𝑠𝑡𝑑(𝐷1)  (the same holds also for 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(𝐷2) and 2 ∙ 1.96 ∙ 𝑠𝑡𝑑(𝐷3)). Thus, 
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participants’ forecast dispersion is larger than linear regression prediction intervals for an individual 

value. Hence, human forecast dispersion is not statistically optimal, as could be expected from 

rational forecasters.  

 

3. Experiment 2 

 

In Experiment 2, participants were presented with a sequence of time series. Each sequence was 

shown on a separate trial. At the beginning of each trial, two identical copies of the same time series 

were presented on the same axes. Both copies remained visible during the whole duration of each 

trial. However, the task window enabled participants to smooth one of the graphs. The other graph 

remained fixed. That made it possible for the participants to smooth each price data graph while 

seeing the original data. Participants were asked to choose the smoothness level they considered 

the most appropriate for making financial decisions from it, and then to make forecasts based on the 

smoothed graph. Two variables were manipulated: the Hurst exponent of the original data graphs 

(and thus also their local steepness and oscillation), and the number of required forecast points, or, 

equivalently, the forecast density. Figure 5 depicts the task window of Experiment 2. It shows a 

graph of the original data and the corresponding smoothed graph (on the same axis).  

________________________ 

Figure 5 about here 

________________________ 

3.1. Method 

3.1.1. Participants  

Thirty-four people (15 men and 19 women) with an average age of 26.4 years acted as participants. 

They were paid a flat fee of £3.00.  
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3.1.2. Stimulus materials and the presentation program 

Stimulus graphs included six sets of five fBm time series with Hurst exponents H = 0.3, 0.4 , 0.5, 0.6, 

and 0.7. As in Experiment 1, the time series were produced using the Spectral method described by 

Saupe (Peitgen and Saupe, 1988). All of the time series included 3600 points and were presented to 

participants as asset price graphs. 

Stimulus graphs were presented using a Matlab program. The experimental program enabled 

participants to apply an averaging filter to the price graphs, while viewing the original price graphs 

and to make forecasts on pre-specified dates (see Figure 5). Examples of smoothed fBm series are 

presented in Figure 6. 

____________________________ 

Figure 6 about here 

_____________________________ 

Application of the averaging filter was done using a slider. The filter’s range was from an averaging 

window of size 2 (averaging over every two adjacent elements of the series) to averaging over the 

whole series, the latter resulting in a constant line. To enable participants to both express fine 

details at the lower end of the scale and reach the maximum averaging, the slider was exponentially 

calibrated.  

The experimental program required participants to make forecasts on dates designated by vertical 

lines. There were 6, 12, 24, or 36 lines. In each task, participants could change smoothing level until 

they ticked the box “Completed choice of smoothing level?”. They could edit their forecasts by 

clicking the mouse again on any bar, until they ticked the box “Completed your forecast?”.  
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3.1.3. Design 

 Participants were presented with 23 graphs: three familiarization graphs and 20 experimental 

graphs. Only experimental graphs were taken into account during the analysis stage. Each graph 

required two responses. The first response was a choice of smoothing level. The second response 

was to forecast the asset’s future prices.  

 For each participant, four graphs with each value of Hurst exponent (H=0.3, 0.4, 0.5, 0.6, 0.7) were 

randomly chosen from the stimulus sets. For each value of Hurst exponent, the density of the 

required forecast was manipulated, and was set to a value of 6, 12, 24, or 36 forecasts within a 

three-year period. That gave rise to a five (Hurst exponent) by four (forecast density) design. 

Ordering of trials with different Hurst exponents and forecast densities was random. 

Procedure Participants were asked to read the following instructions: 

“In the following task, you are asked to imagine that you are a financial analyst working at an 

investment company. Your clients ask you to give them a three year forecast. Each client asks for a 

forecast of a different resolution: some clients need a monthly forecast (a total of 36 points), some 

require a forecast point every 6 months (a total of 6 points), and some are interested in an 

intermediate number of forecast points (a total of 12 points or 24 points). 

You will be presented with a series of 3 practice graphs and 20 experiment graphs representing 

prices of different assets. The program will enable you to set the smoothness level of the data 

graphs. You are asked: 

1. to look at the graphs carefully,  

2. for each of the graphs, to determine the smoothness level you consider the most 

appropriate for making financial decisions from it, 
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3. to predict the prices on a series of time points based on the smoothened graph. The number 

of forecasts will be 6, 12, 24, or 36 points according to the request obtained from each of 

your clients.” 

Participants chose a smoothness level of data graphs by dragging a slider. The smoothed graph was 

presented in red. The original graph was presented in blue.  

Forecasts were made by clicking a mouse at specific dates, designated by vertical lines. Participants 

had to complete the forecasts on all vertical lines (dates) before they could continue to the next 

graph. 

3.2. Results 

Participants whose means of smoothing level choices were more than two standard deviations 

greater than that of the average for the rest of the group were excluded from the analysis. This 

reduced the size of the sample from 34 to 32 participants. Three additional extreme measurements 

(out of the original 20 * 34 = 680 measurements), in which participants chose smoothing levels more 

than four standard deviations greater than that of the mean of the experimental condition were 

removed as well. Therefore, 637 graphs were used for the analysis. 

The variables of primary interest were the local steepness and oscillation of the forecasts and the 

original data graphs. The standard deviation of participants’ forecasts was extracted to provide 

comparison of the results with an additional variability measure. As in Experiment 1, the local 

steepness and oscillation of smoothed graphs were calculated. The chosen smoothing factors were 

extracted, too, as they could indicate the window sizes of the moving average filters which 

participants applied on the data. The local steepness and the oscillation of smoothed graphs were 

used to assess the similarity between the original and smoothened data. 
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3.2.1. Properties of participants’ forecasts  

To examine Hypothesis H2, the local steepness and oscillation of the forecasts and the original data 

graphs were extracted. Significant correlations were found between the local steepness of the 

forecasts and the local steepness of the data before and after the smoothing (r = 0.39; p < .01, and r 

= .33; p < .01 respectively). Significant correlations were found between the oscillation of the 

forecasts and the oscillation of the data both before and after smoothing (r = .43; p < .01, and r = 

.40; p < .01 respectively). Positive correlations were found between the standard deviation of the 

forecasts and the local steepness and oscillation of the data graphs before smoothing (r = 0.375; p < 

.01, and r = .443; p < .01 respectively). These results support Hypotheses H2. They suggest that 

participants imitate properties of the data when making judgmental forecasts from graphs, hence 

provide further support for the correlated response model. In addition, they are in line with Harvey’s 

finding, that people tend to add noise to their forecasts (1995). This tendency is irrational in the 

sense that trend-line statistical forecasts are characterized by superior accuracy (Harvey, Ewart, and 

West, 1997).   

To obtain further support for H2, I carried out a two-way repeated measures ANOVA on the standard 

deviation of participants’ forecasts using the Hurst exponent and forecast density as within-

participant variables. Huynh-Feldt test showed that the standard deviation of participants’ forecasts 

was larger when Hurst exponent of the data graphs was smaller (F (3.58, 110.97) = 32.95; p < .01; 

partial η2 = .52). (The effect of the forecast density on forecast dispersion was insignificant, p = 

0.057). Figure 7 depicts the standard deviation of participants’ forecasts against the required 

forecast density for the given values of the Hurst exponent.  

___________________________ 

Figure 7 about here 

_________________________ 
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3.2.2. Choice of smoothness level and properties of the smoothed data graphs 

 The mean smoothness level participants chose was 59.09. The standard deviation was larger than 

the mean: 82.61. A t-test performed on participants’ choices of smoothness levels showed that it 

was significantly larger than 1 (a trivial filter): t (636) = 17.76 (p < .01).  

The correlation between the oscillations of the smoothened and original data graphs was r = .88; p < 

.01. That suggests that participants smoothed the graphs in a way that maintained a correlation 

between variability measures of the smoothed graphs and the original graphs.  

Figure 8 depicts the local steepness and mean oscillation of the smoothed data graph for the 

different values of the Hurst exponent and the different numbers of required forecast points.  

___________________________ 

Figure 8 about here 

__________________________ 

 

4. General discussion 

In the book “An Engine, Not a Camera: How Financial Models Shape Markets”, MacKenzie (2006, 

page 12) wrote: “Financial economics, I argue, did more than analyze markets; it altered them. It was 

an “engine” [...]: an active force transforming its environment, not a camera passively recording it”. I 

suggest that a central component of the engine of the market – the way people perceive financial 

data and make forecasts from it - is not as passive as a camera; yet, it preserves important 

properties of the data. 
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The way people perceive graphically presented price series was examined through their choices of 

scaling and moving window averaging.  Both techniques are highly popular among investors and 

traders (Batchelor, 2013; Batchelor and Kwan, 2007; Cheung and Chinn, 2001; Gehrig and Menkhoff, 

2006; Menkhoff, 2010; Taylor and Allen, 1992). The results of this study indicate that, though there 

is a large variability among people in the choice of scaling and moving window averaging 

parameters, there are significant correlations between the local steepness and oscillation of the 

transformed data graphs, and the local steepness and oscillation of the original price graphs.  

Two properties of forecasts were examined: forecast variability and forecast dispersion. Significant 

correlations were found between both of these measures and the local steepness and oscillation of 

the original price graphs. Furthermore, the Hurst exponent had a significant effect on participants’ 

forecasts variability and dispersion. These results were in line with previously reported findings 

(Reimers and Harvey, 2011; Harvey, 1995; Bolger and Harvey, 1993; Harvey, Ewart, and West, 1997), 

and were robust across a wide range of data series, different tasks (point and multi-period forecasts) 

and when participants could scale or smooth the data. The robustness of these findings with respect 

to scaling and smoothing can be partially explained by the correlations between variability measures 

of the scaled and smoothed graphs and the original data graphs.  

4.1. Contribution  

This paper contributed to two fields: Finance and Judgmental Forecasting. As forecast dispersion was 

shown to be a predictor of important financial variables (Li and Wu, 2014; Athanassakos and 

Kalimipalli, 2003) many studies focused on the determinants of forecast dispersion (e.g. Platikanova 

and Mattei, 2016; Kwon, 2002). However, the effect of the properties of the data on forecast 

dispersion was overlooked. Given that a large percentage of market participants incorporates in 

decision making processes financial graph analysis (Menkhoff, 2010; Gehrig and Menkhoff, 2006), it 

was important to examine the effect of price graph properties on forecast dispersion. The results 
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presented here indicate that forecast dispersion is significantly correlated with historical price 

variability measures.  

Research in Judgmental Forecasting tended to focus on the identification of specific biases and the 

estimation of forecast errors. Uniting the results of a few classical papers (Reimers and Harvey, 

2011; Harvey, 1995; Bolger and Harvey, 1993; Harvey, Ewart, and West, 1997), I suggested the 

correlated response model, according to which, in judgmental forecasting tasks from graphically 

presented time series, people tend to imitate the given data.  This tendency may be perceived as 

irrational, in the sense that participants included noise in their forecasts. In addition, human point 

forecast dispersions were larger than 95% prediction intervals of linear regressions. 

Furthermore, the experiments described in this study explored the effects of a few factors which had 

not been studied before, including scaling and smoothing of data graphs. Aiming at high external 

validity, complex time series resembling financial price series were utilized as stimuli (Mandelbrot 

and Hudson, 2004).  

 

4.2. Limitations and further research 

Though price series volatility changes dynamically, it is approximated many times by a slowly varying 

function (Zhu and Chen, 2011), or a piecewise constant function (Lu, 2010). The results presented 

here showed that forecast dispersion is correlated with past volatility measures. However, forecast 

dispersion is likely to be also correlated with volatility of future returns (Athanassakos and 

Kalimipalli, 2003; Lobo and Tung, 2000). Therefore, judgmental forecasts may serve as a mechanism 

which helps stabilize price series volatility. A field research exploring this conjecture could yield an 

important insight into the nature of volatility. 

Participants in Experiments 1 and 2 were lay people. Research comparing financial forecasts of lay 

people and practitioners has typically found only small differences between the two groups 
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(Zaleskiewicz, 2011; Muradoǧlu and Önkal, 1994). Bodnaruk and Simonov (2015) have recently 

showed that financial experts (fund managers) do not make better investment decisions than other 

investors. Moreover, during the last years, the internet has made trading easier for lay people 

(Muradoglu and Harvey, 2012) and inexperienced investors (Barber and Odean, 2001). Nevertheless, 

lack of expertise in the sample could limit the generality of the results. Therefore, I consider the 

study of the effects of expertise on performance in the tasks employed here worthwhile. 

The stimulus graphs utilized in this study displayed synthetic fractal series. The choice of fractals 

aimed at a high external validity: though previous studies in judgmental Forecasting usually utilized 

less complex series as experimental stimuli, fractals were employed in many financial studies and 

especially those which dealt with trading horizons (e.g. Kristoufek, 2012). However, it is important to 

note that not all researchers accept the fractal market hypothesis (Onali and Goddard, 2011). 

Therefore, it is important to replicate the experiments performed here using real-life price series. It 

could be also beneficial to examine the effect of the graphical interface on participants’ responses. 

The graphical interfaces developed for the experiments may limit the generality of the results. 

Furthermore, the graphs that participants were presented with did not depict special financial 

situations, such as financial crises and bubbles. I consider it essential to explore participant behavior 

in such cases. 

Finally, in Experiment 1, trading horizon and the Hurst exponents of the graphs were treated as 

independent variables. However, this assumption may not hold in all conditions (Vácha and Vošvrda, 

2005).  
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_______________________________ 

Table A about here 

_______________________________ 
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