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The synthesis of lead sulfide nanocrystals within a solution
processable sulfur ‘inverse vulcanization’ polymer thin film
matrix was achieved from the in situ thermal decomposition
of lead(II) n-octylxanthate, [Pb(S2COOct)2]. The growth of
nanocrystals within polymer thin films from single-source
precursors offers a faster route to networks of nanocrystals
within polymers when compared with ex situ routes.
The ‘inverse vulcanization’ sulfur polymer described herein
contains a hybrid linker system which demonstrates high
solubility in organic solvents, allowing solution processing
of the sulfur-based polymer, ideal for the formation of thin
films. The process of nanocrystal synthesis within sulfur films
was optimized by observing nanocrystal formation by X-ray
photoelectron spectroscopy and X-ray diffraction. Examination
of the film morphology by scanning electron microscopy
showed that beyond a certain precursor concentration the
nanocrystals formed were not only within the film but also
on the surface suggesting a loading limit within the polymer.
We envisage this material could be used as the basis of a
new generation of materials where solution processed sulfur
polymers act as an alternative to traditional polymers.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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1. Introduction
The in situ growth of nanomaterials from single-source precursors in polymers offers a potentially shorter
route to thin films of bi-continuous phases of inorganic nanocrystals and polymers, by growing the
nanocrystals in the polymer rather than synthesizing them ex situ followed by incorporation into the
polymer. The technique involves the dissolution of a precursor for the inorganic nanocrystals and a
polymer in a mutual solvent, before coating a desired substrate [1]. The substrate is then heated causing
the decomposition of the precursor to given nanocrystals in the polymer film (scheme 1). This has the
advantage over ex situ routes as surface ligands, a necessity for colloidal stability, can be avoided thus
improving contact between the particles and polymer in the film, a particular advantage when producing
bulk heterojunction photovoltaics [1]. The wide range of single-source precursors and polymers available
make the growth of nanomaterials directly within polymers an attractive route for the synthesis of
composite thin films and has been used for PbS [2], CdS [3–7], Bi2S3 [8], CuInS2 [9,10], Sb2S3 [11]
in photovoltaic and thermoelectric devices, e.g. PbS in semiconducting polymers for photovoltaics.
Potential applications for nanocrystal-containing thin films include: solar cells [9,10,12–15], catalysis
[16–18], absorptive optical filters [19,20], sensors [21–25] and antimicrobial surfaces [26–29].

Single-source precursors are well established for the production of nanoscale metal chalcogenide thin
films and particles due to their ease of synthesis and clean decomposition [30–36]. In the case of lead(II)
sulfide precursors [32], examples of such species include: xanthates [37–40], dichalcogocarbamates
[41–43], acylchalcogoureas [42,44], dichalcogenophosphinates [45], dichalcogenophosphates [46] and
dichalcogenidoimidophosphinates [47,48]. In particular, metal xanthates are ideal for decomposition
within polymers and melts due to their volatile by-products produced from the Chugeav elimination,
i.e. H2S, SCO and an alkene. At the breakdown temperatures used the products are not found within the
films produced.

The use of sulfur as a feedstock for polymeric materials has arisen due to the abundance of elemental
sulfur, with approximately 60 million tons produced annually [49–51]. Sulfur polymers are known
as ‘inverse vulcanization’ materials due to the reaction of elemental sulfur at elevated temperatures
with divinylic species [52–54], forming sulfur chains cross-linked with organic linkers, in contrast with
traditional vulcanization used to strengthen rubber where poly(isoprene) chains are cross-linked with
di-sulfide bridges. These polymeric materials have potential as battery materials [55,56], infrared lenses
[57,58] and as effective filters for heavy metal ions [59–61] due to their ease of manufacture, chemical
inertness and optical translucence. These materials are worth investigating due to the large quantity
of sulfur waste created from petroleum refining, thus alleviating pressure on traditional polymer
feedstocks, namely crude oil.

We present the synthesis of PbS nanocrystals in a solution processable sulfur polymer from the in situ
decomposition of lead(II) n-octylxanthate, [Pb(S2COOct)2]. This new material has the potential to replace
conventional polymer–nanocrystal materials by taking advantage of elemental sulfur as an alternative
feedstock. The nanocrystal–polymer thin films have potential as absorptive optical filters, or colour gels,
where the traditionally used polycarbonate or polyester has been replaced with a solution processable
sulfur polymer. By variation of the ratio of polymer to precursor prior to spin coating, decomposition
temperature and polymer composition, the influence on film morphology has been explored. The
suitability of the sulfur polymer for thin film formation was optimized through the addition of bisphenol
A dimethacrylate to the 1,3-diisopropenylbenzene linker, which raised the melting and decomposition
temperatures as well as the hardness of the polymer, a key advantage for the formation of robust
polymer–nanocrystal thin films [62].

2. Material and methods
2.1. Reagents
Sulfur (98%), sodium hydride (dry, 95%), n-octanol (anhydrous, greater than or equal to 99%), carbon
disulfide (low benzene, greater than or equal to 99.9%), lead acetate trihydrate (greater than or equal
to 99.9%) and bisphenol A dimethacrylate (greater than 98%) were purchased from Sigma-Aldrich
Ltd. 1,3-Diisopropenylbenzene (greater than 97.0%) was purchased from TCI Chemicals and potassium
hydroxide (greater than 85%) was purchased from Fisher Scientific Ltd.

Solvents were purchased from Sigma-Aldrich Ltd and used as received. Deionized (DI) water with a
resistivity of not less than 18.2 MΩ cm−1 (Millipore, UK) was used for aqueous solutions.
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Scheme 1. The processing of precursor and polymer to form PbS nanocrystals within the sulfur polymer.

2.2. Methods

2.2.1. Synthesis of lead(II) n-octylxanthate, [Pb(S2COOct)2]

Sodium hydride (1.2 g, 50 mmol) and n-octanol (7.89 ml, 50 mmol) were mixed with 50 ml of diethyl ether
at 0°C. Carbon disulfide (3.0 ml, 50 mmol) was added dropwise under vigorous stirring giving a yellow
solution. After approximately 1 h equilibration at room temperature, lead acetate trihydrate (9.48 g,
25 mmol) dissolved in 50 ml of DI water was added dropwise, forming a cream-coloured precipitate.
The precipitate was collected by filtration, washed with DI water and dried in vacuo. Elemental analysis
calculated for [Pb(S2COOct)2]: C, 34.99; H, 5.55; S, 20.76. Found: C, 35.01; H, 5.61; S, 20.73. 1H NMR
(400 MHz, CDCl3) δ = 4.63 (t, J = 6.7 Hz, 4H; CH3), 1.94−1.80 (m, 4H; CH2), 1.47−1.36 (m, 4H; CH2),
1.36−1.20 (m, 16H), 0.88 (t, J = 6.9 Hz, 6H; CH3). M.p. = 77−78°C.

2.2.2. Synthesis of poly(sulfur-co-1,3-diisopropenylbenzene), 50 wt% ratio of linker (1)
Poly(sulfur-co-1,3-diisopropenylbenzene) was prepared according to Chung et al. [62]. Briefly, elemental
sulfur (S8, 2 g, 7.81 mmol) was added to a glass vial and heated to 185°C in a graphite bath under vigorous
stirring. Once 185°C was reached, 1,3-diisopropenylbenzene (2.16 ml, 12.6 mmol) was injected, the whole
mixture agitated with a glass rod and stirred for 4–5 min. The temperature was then raised to 200°C and
the polymer was allowed to cure at that temperature for 30 min.

2.2.3. Synthesis of poly(sulfur-co-bisphenol A dimethacrylate) (2)
Poly(sulfur-co-bisphenol A dimethacrylate) was synthesized using the procedure for (1), except that
bisphenol A dimethacrylate (4.59 g, 12.6 mmol) was used instead of 1,3-diisopropenylbenzene, and
vigorous mechanical stirring was required to ensure full mixing of the monomer and the molten sulfur.

2.2.4. Synthesis of poly(sulfur-co-bisphenol A dimethacrylate-co-1,3-diisopropenylbenzene) (3) and (4)
Poly(sulfur-co-bisphenol A dimethacrylate-co-1,3-diisopropenylbenzene) was synthesized using the
procedure outlined for poly(sulfur-co-bisphenol A dimethacrylate), except that differing ratios of the 1,3-
diisopropenylbenzene and bisphenol A dimethacrylate linkers were used. For (3), S8 (4 g, 15.6 mmol),
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bisphenol A dimethacrylate (2.25 g, 6.17 mmol) and diisopropenylbenzene (3 ml, 17.5 mmol) and for (4),
S8 (4 g, 15.6 mmol), bisphenol A dimethacrylate (6.38 g, 17.5 mmol) and diisopropenylbenzene (1.06 ml,
6.17 mmol) were used.

2.2.5. Synthesis of poly(sulfur-co-linker)-lead sulfide thin films

Poly(sulfur-co-linker)-lead sulfide thin films were synthesized using a protocol outlined by Lewis et al.
[2]. Briefly, poly(sulfur-co-bisphenol A dimethacrylate-co-1,3-diisopropenylbenzene) (85 mg) (4) was
dissolved in chloroform (2.5 ml) by heating and swirling at 50°C for an hour. [Pb(S2COOct)2] (60 mg,
0.1 mmol) was then added, resulting in a dark brown solution. Glass slides (20 × 15 × 1 mm) were cleaned
by sonication in 2-propanol, and dried in air. A total of 100 µl of the lead(II) n-octylxanthate-polymer
solution was coated onto the glass slide by spin coating at 1250 r.p.m. for 20 s followed by 4000 r.p.m. for
10 s. The films were loaded into a quartz tube for heating and placed under N2 using standard Schlenk
techniques. The tube was inserted into the furnace preheated at 150°C and held at the chosen temperature
for the specified time. Once finished, the tube was removed from the furnace and allowed to cool in air
taking approximately 3 min.

2.3. Instrumentation
High-resolution transmission electron microscopy (HRTEM) measurements were conducted using an
FEI Tecnai G20 TEM with a LaB6 source operating at an acceleration voltage of 200 kV. EDS spectra
were taken with an Oxford XMax 80 TLE. TEM samples were prepared dissolving the films in 1,2-
dichlorobenzene followed by drop casting. UV/visible absorption spectra were recorded using a
Shimadzu UV-1800 instrument over a range of 350–1000 nm. X-ray photoelectron spectroscopy (XPS)
was undertaken using a Thermo Scientific K-alpha spectrometer with monochromated Al Kα radiation,
a dual beam charge compensation system and constant pass energy of 50 eV (spot size 400 µm).
Survey scans were collected in the range of 0–1200 eV. High-resolution peaks were used for the
principal peaks of S (2p), O (1 s) and C (1 s) and fitted with CASA XPS software. Elemental analysis,
thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC) and temperature cycling
DSC were performed by the University of Manchester Microanalytical Laboratory on a Mettler Toledo
TGA/DSC 1 Stare System (between 30°C and 1000°C) and a Perkin Elmer—Jade DSC (between 0°C and
200°C), respectively. Grazing incidence X-ray diffraction (XRD) patterns were acquired using a Bruker
D8 Advance diffractometer, using a Cu Kα (λ = 1.5418 Å) source with a Göbel mirror optic and Soller
slits on the detector side. Scans were acquired at a grazing incidence of 3° over a 2θ range of 10−80°
with 0.02° steps and 3 s per step. Scanning electron microscopy (SEM) images were acquired using an
FEI Quanta 650 SEM using an accelerating voltage of 20 kV.

3. Results and discussion
3.1. Solution processable sulfur polymer synthesis and characterization
Bisphenol A dimethacrylate was reacted with sulfur in conjunction with 1,3-diisopropenylbenzene in an
‘inverse vulcanization’ process to create a sulfur-based polymer that was more robust with a higher
melting point and decomposition temperature than pure poly(sulfur-co-1,3-diisopropenylbenzene),
shown in scheme 2. This combination of cross-linkers results in the increased solubility in organic
solvents due to the formation of a suspected hyperbranched structure allowing solution processing [63].
Derivatives of bisphenol A are a common component of epoxy resins, acting as the cross-linking polymer
backbone to hardeners such as aliphatic amines in the epoxy blend [64]. It was found that molten sulfur
and bisphenol A dimethacrylate exhibit poor miscibility, with constant, strong mechanical agitation
required to form the polymer. The miscibility improved upon addition of 1,3-diisopropenylbenzene to
the sulfur/bisphenol A dimethacylate mixture.

On heating, yellow sulfur S8 rings melt between 120°C and 124°C [65,66] before the critical
temperature of approximately 159°C, the λ-transition, at which the specific heat capacity, viscosity,
density and thermal expansion all change dramatically. The changes are due to the ring opening of
S8, forming long-chain oligomeric short and long [–S–S–]x chains with radical end groups [62]. This
is accompanied by a darkening in colour to red potentially due to organic impurities within the
sulfur [62,65]. The radical end-groups react with divinylic species of the bisphenol A dimethacrylate
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hot injection
185°C/200°C

30 min

cross-link

cross-link

cross-link

where cross-link can be DIB,
BPAD or a copolymer of one or both

Scheme 2. The ‘inverse vulcanization’ polymerization used to produce the sulfur-based polymer cross-linked with
1,3-diisopropenylbenzene and bisphenol A dimethacrylate.

and 1,3-diisopropenylbenzene forming the ‘inverse vulcanization’ sulfur polymer. NMR spectra of
the monomers and the sulfur copolymers showed incorporation of the aromatic regions from the
cross-linkers and the disappearance of the alkene region indicating polymerization had occurred (see
electronic supplementary material, figure S1). The polymerization was also confirmed by Fourier
transform IR spectroscopy (see electronic supplementary material, figures S2 and S3). The IR spectrum
of 1,3-diisopropenylbenzene shows three peaks corresponding to C=C absorptions at 1628.8, 1594.8
and 1573.5 cm−1 (see electronic supplementary material, figure S3a). The absorption at 1628.8 cm−1

corresponds to the unsaturated alkene with lower wavenumber peaks coming from the benzene ring.
Upon polymerization with elemental sulfur the alkene peak at 1628.8 cm−1 disappears and the benzene
C = C absorptions shift to 1601.5 cm−1 and 1584.2 cm−1 caused by the reduction in the size of the
aromatic system following polymerization (see electronic supplementary material, figure S3f ). The
IR spectrum of unreacted bisphenol A dimethacrylate possesses a carbonyl stretch at 1726.5 cm−1

(electronic supplementary material, figure S3b) which upon reaction of the adjacent alkene causes the
carbonyl stretch to shift to 1746.7 cm−1 as expected with the size reduction of the aromatic system
following polymerization (see electronic supplementary material, figure S3e). The C = C of the alkene
at 1634.4 cm−1 in bisphenol A dimethacrylate disappears and the C= C of the benzene shifts from 1600.4
to 1648.8 cm−1 when polymerized. The S-polymers using both cross-linkers, (3) and (4), display the
shifted aromatic C–C stretches for both of the cross-linkers and also the shift in the BPAD carbonyl signal
as observed in the polymers using only a single cross-linker (see electronic supplementary material,
figure S3c,d).
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Figure 1. TGA profiles of: (a) pure poly(sulfur-co-1,3-diisopropenylbenzene) (1), (b) pure poly(sulfur-co-bisphenol A dimethacrylate)
(2), (c) poly(sulfur-co-bisphenol A dimethacrylate-co-1,3-diisopropenylbenzene), higher ratio of 1,3-diisopropenylbenzene (3) and
(d) poly(sulfur-co-bisphenol A dimethacrylate-co-1,3-diisopropenylbenzene), higher ratio of bisphenol A dimethacrylate (4).

TGA and DSC were used to examine the thermal properties of the copolymers and showed that
the addition of the bisphenol A increases the onset of decomposition for the polymer (figure 1). For
example, the melting point range (from capillary melting point apparatus) of pure poly(sulfur-co-1,3-
diisopropenylbenzene) (1) at 50 wt% organic content is 15°C–35°C compared to that of 190°C–245°C
(starts to decompose) for pure poly(sulfur-co-bisphenol A dimethacrylate) (2). Composite polymers
(3) and (4) were shown to have intermediate melting temperatures (180°C–200°C for (3) and 205°C–
225°C for (4)), commensurate with the molar ratios of 1,3-diisopropenylbenzene to bisphenol A
dimethacrylate.

Transition temperatures were determined from the DSC traces in electronic supplementary material,
figure S4. There is a large decomposition step present in all of the polymer traces: onset 228.5°C for
polymer (1), 250.7°C for polymer (2), 263.5°C for polymer (3) and 247.4°C for polymer (4) commensurate
with elemental sulfur leaching out of the structure and carbonization [61] as well as direct evidence that
the presence of bisphenol A dimethacrylate contributes to the thermal stability of the polymer. Owing to
the presence of this decomposition at temperatures less than 200°C, DSC thermal cycles were undertaken
between 0°C and 200°C at a heating rate of 10°C min−1 before cooling to 0°C at 10°C min−1 before
undertaking a second heating cycle. Polymer (1) showed a small feature at 32.2°C which was assigned as
the Tg of the polymer, and is comparable with the Tg observed for the 50 wt% 1,3-diisopropenylbenzene
sulfur polymer by Pyun et al. [62] of 28.4°C (see electronic supplementary material, figures S5 and S6).
The DSC curves for polymers (2), (3) and (4) showed no Tg peaks on the heating or cooling curves,
and only small melting transitions observed on the heating curves. There were no corresponding
peaks on the cooling curves for polymers (3) and (4), indicating the properties of the material do
not change with temperature until the onset of decomposition (see electronic supplementary material,
figures S7, S8 and S9).

Powder XRD of polymers (1)–(4) showed no reflections indicating that the polymers are amorphous
and that the polymerization has gone to completion as no residual S6 or S8 is present (see electronic
supplementary material, figure S10).

The solubility of a polymer is of vital importance for applications that require solution processing.
Bear et al. [50] reported that higher sulfur content poly(sulfur-co-1,3-diisopropenylbenzene) was
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insoluble in all organic solvents except for very limited solubility in 1,2-dichlorobenzene. When linker
content is near 50 wt%, solubility in chlorinated solvents increases, making chloroform an ideal solvent
for dissolution of the polymer and allows solution processing with [Pb(S2COOct)2]. Work by Pyun
et al. indicated that the reactor in which the ‘inverse vulcanization’ polymer was synthesized played
an important role in the solubility of the 1,3-diisopropenylbenzne-sulfur polymers [57]. Other groups
have published examples of ‘inverse vulcanization’ polymers with solubility in a wider range of organic
solvents using different linkers including: divinylbenzene [67], allyl functionalized benzoxazine [68],
S-farnesol [69] and S-limonene [60]. In this work, polymers (1) and (3) exhibited solubility in a wide range
of organic solvents including: n-hexane, 1,2-dichlorobenzene, chloroform, toluene and dichloromethane.
Polymers (2) and (4) dissolved partially, leaving a transparent, insoluble loose residue in an otherwise
clear orange solution. These polymers had a high weight fraction of bisphenol A dimethacrylate, and
potentially difficulties in obtaining a homogeneous reaction mixture may have contributed to poor
incorporation of bisphenol A dimethacrylate causing the partial solubility.

Polymer (1), however, has a Tg close to room temperature [62] and is very tacky, which limits the
use for formation of robust thin films. Upon heating (1) did not withstand the elevated temperatures
required for the rapid decomposition of [Pb(S2COOct)2]. The only PbS nanocrystal–polymer film created
using (1) was annealed at 70°C for 72 h, yielding a film with irregular substrate coverage (see electronic
supplementary material, figure S11). Therefore, polymer (3) was used for temperature and concentration
studies in PbS nanocrystal–polymer film formation.

3.2. Polymer thin film synthesis and characterization
The influence of breakdown temperature was investigated by fixing the S-polymer:[Pb(S2COOct)2] mass
ratio at 6:1 (90 mg or 0.15 mmol of xanthate). Four identical films and a polymer control of (3) were
heated at 50°C, 100°C and 150°C for 15 min. The effect of varying the [Pb(S2COOct)2] concentration was
also investigated, with 0.05, 0.1, 0.15 and 0.2 mmol of precursor heated at 150°C for 15 min.

3.3. Variable temperature study
A series of decomposition temperatures (namely 25°C (room temperature), 50°C, 100°C and 150°C)
were investigated to ensure the complete breakdown of precursor within a fixed time, i.e. 15 min, and
the progress of the reaction was followed using XPS and XRD. XPS for all heated films demonstrated
characteristic peaks for lead(II) sulfide, with added sulfur environments attributed to the sulfur polymer,
vide infra. The valence spectra of the variable temperature samples showed a change in the Fermi
level from the precursor-in-polymer control to the 150°C sample, which is characteristic of lead sulfide,
figure 2d [70].

The Pb 4f XPS spectrum, figure 2c, was typical of the composite films heated at 150°C, regardless
of the ratio of [Pb(S2COOct)2] to polymer. The envelope exhibited two environments, with the main
region at 137.3 eV (Pb4f7/2) assigned as PbS (galena) [71–75] and the second region (138.6 eV) as a lead
sulfate, PbSOx [76]. With increasing temperature, the binding energy of the Pb4f7/2 region decreases:
138.0 eV (50°C), 137.7 eV (100°C) and 137.3 eV (150°C). This is due to the decomposition of a greater
proportion of [Pb(S2COOct)2] at higher temperatures and the resulting change in the overall Pb chemical
environment.

The S2p region of the XPS spectra with variable temperature allows monitoring of the decomposition
of [Pb(S2COOct)2] at the different heating temperatures (see electronic supplementary material,
figure S12). Electronic supplementary material, figure S12 shows S2p scans from sulfur in the native
polymer (S2p3/2, 167.6 eV) and scans from the different temperatures which show the emergence of
another feature from the formation of PbS (160.2 eV). A fitted example of an S2p region, electronic
supplementary material, figure S13, after heating at 150°C, contains fitted regions for PbS (160.8 eV),
elemental sulfur (S8, 163.5 eV) and SOx (167.6 eV) (quoted values are position of S2p3/2) [71,72,77]. The
regions attributed to PbS are not observed below 100°C.

The formation of PbS was also followed using XRD (figure 3). The decomposition temperature had a
marked effect on the amount of PbS produced in the 15 min heating time, with 150°C yielding phase-pure
lead sulfide. At 50°C, only reflections from unreacted [Pb(S2COOct)2] in S-polymer were found; 100°C
showed intermediate decomposition and 150°C showed complete decomposition with no reflections
from the precursor present.
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3.4. Variable concentration study
Different concentrations of [Pb(S2COOct)2] were investigated when decomposed in (4) to investigate
the effect on film and nanocrystal morphology. From the variable temperature study, a decomposition
temperature of 150°C and a reaction time of 15 min were used to achieve complete precursor
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Figure 4. BSE-SEM images at two magnifications of the PbS nanocrystal networks formed within the S-polymer when using (a)
0.05 mmol, (b) 0.1 mmol, (c) 0.15 mmol and (d) 0.2 mmol of [Pb(S2COOct)2].

decomposition. In all cases, XRD patterns yielded reflections for PbS (see electronic supplementary
material, figure S14), and identical XPS spectra to those obtained for the variable temperature study
at 150°C. EDS analysis was also consistent, showing the presence of PbS (see electronic supplementary
material, figure S15).

Backscatter electron (BSE) SEM was used to examine the morphology of the networks of PbS
nanocrystals formed within the sulfur polymer films (figure 4). Use of the BSE allows for greater Z
contrast and a deeper sampling region, ideal for the examination of Pb-containing nanocrystals within a
polymer film. Figure 4a–d shows the influence on the resulting film of increasing the concentration of the
lead(II) octylxanthate. The proportion of PbS nanocrystal rich domains, shown as white regions, increases
from figure 4a to 4d as the amount of [Pb(S2COOct)2] increases from 0.05 to 0.2 mmol (30–120 mg). The
increased proportion of PbS nanocrystal rich sites increases in parallel with the observed increase in
film reflectivity as seen in the photographs (see electronic supplementary material, figure S11). The SEM
images show that the nanocrystals are incorporated within the S-polymer in the same manner as when
grown in polystyrene according to our previous report [2].

TEM of PbS nanocrystals extracted from the sulfur polymer films followed by dissolution
in chloroform showed well-defined cubes with occasional slight elongation forming irregular
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Figure 5. TEM images and corresponding size analysis of the extracted PbS nanocrystals formed within the S-polymer when using
(a) 0.05 mmol, (b) 0.1 mmol, (c) 0.15 mmol and (d) 0.2 mmol of [Pb(S2COOct)2].

cuboids (figure 5a–d). The nanocrystal size showed no trend with increasing concentration although
all nanocrystals produced were under 80 nm in edge length. When using 0.1 mmol (60 mg) of
[Pb(S2COOct)2] the nanocrystals formed showed the greatest monodispersity and lowest mean size
(28.6 nm) (figure 5b). This suggests that 0.1 mmol of [Pb(S2COOct)2] is the optimal amount of precursor
quantity in terms of particle monodispersity. HRTEM also confirmed that the cubes were PbS by lattice
fringes showing (200) and fast Fourier transform showing (200), (220) and (400) reflections, figure 6,
which was further supported by selected area electron diffraction (SAED) (see electronic supplementary
material, figure S16).

3.5. Optical characterization
UV/visible spectra of the films allowed observation of the concentration of nanocrystals within the
films upon variation of [Pb(S2COOct)2]:S-polymer (polymer (4)) concentration ratios (figure 7). All
films exhibited broad absorption over the entire visible range, which is typical of PbS (see electronic
supplementary material, figure S17). The broad absorption increased between samples of polymer
(3), an unreacted film of polymer (3) containing [Pb(S2COOct)2] and film of polymer (3) containing
[Pb(S2COOct)2] heated at 150°C under nitrogen for 15 min. Introduction of the PbS nanocrystals
generally increases the absorption of the thin films across the visible as expected due to the intense black
colour of PbS demonstrating the ability to use the PbS embedded S-polymer films as absorptive optical
filters.
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Figure 6. (a) HRTEM image of a PbS nanocrystal extracted from the film using 0.2 mmol of [Pb(S2COOct)2]. (b(i)) Expanded image from
the white box region showing the 〈200〉 plane of PbS (galena) and (b(ii)) fast Fourier transform of the selected region.
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Figure 7. UV/visible spectra of films containing different concentrations of [Pb(S2COOct)2]: 0.1 mmol in polymer (4) prior to
decomposition (black), and after heating 0.05 mmol (blue), 0.1 mmol (red), 0.15 mmol (pink) and 0.2 mmol (green).

4. Conclusion
Films of a solution processable sulfur polymer containing networks of PbS nanocrystals have been
produced via spin coating of sulfur polymers with lead(II) n-octylxanthate, [Pb(S2COOct)2], and the
subsequent heating of the films. The solubility of the sulfur polymer was optimized for solution
processing by the addition of bisphenol A dimethacrylate and 1,3-diisopropenylbenzene to molten
elemental sulfur in an ‘inverse vulcanization’ process to form poly(sulfur-co-bisphenol A dimethacrylate-
co-1,3-diisopropenylbenzene). Upon heating films of sulfur polymer and lead(II) n-octylxanthate, PbS
nanocrystals were found to form within the sulfur polymer film. Monitoring the formation of PbS with
XPS and XRD showed the optimum temperature for the breakdown of [Pb(S2COOct)2] was 150°C. The
influence of the ratio of sulfur polymer to [Pb(S2COOct)2] on the morphology of the films showed that a
limit of PbS nanocrystals within the polymer was passed when 0.05 mmol of [Pb(S2COOct)2] was added
resulting in a 79.8 wt% film of PbS in polymer. Above this value ejection of PbS nanocrystals from the
film occurred causing formation of nanocrystals on the surface. The edge length and monodispersity
of the PbS nanocrystals showed a minimum when 0.1 mmol of [Pb(S2COOct)2] was used. The thin
films produced allow the growth of PbS nanocrystals within the S-polymer distributed in the film
similar to our previous report when using lead(II) alkylxanthates and polystyrene. The development of a
solution processable process to thin films of sulfur-based polymers containing highly optically absorbent
inorganic nanocrystals demonstrates the potential for the use of sulfur-based polymers as an alternative
to traditional polymers for absorbent optical filters, or colour gels.

Data accessibility. The additional XPS spectra, XRD patterns, DSC curves, NMR spectra, EDS spectra, SAED patterns,
photographs and UV–visible spectra referenced in the text are included in the electronic supplementary material.
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