Brain Impairment

Social Cognition, Behaviour and Relationship Continuity in Dementia of the Alzheimer Type

Journal:	Brain Impairment
Manuscript ID	BIM-2016-0046.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	30-Nov-2016
Complete List of Authors:	Poveda, Blanca; NHS Lothian, Clinical Neuropsychology Osborne-Crowley, Katherine; University of NSW, Psychology laidlaw, kenneth; University of East Anglia, Clinical Psychology, Faculty of Medicine and Health Sciences macleod, fiona; NHS Tayside, Older People Psychological Therapies Services power, kevin; University of Stirling, Clinical Psychology
Domain:	Executive/social cognition/emotion processing, Behaviour, Family/caregiver, Social skills
Type of Study:	Intervention
Clinical Group:	Dementias, Older adults
Methodology:	Experiment

SCHOLARONE[™] Manuscripts

1	Social Cognition, Behaviour and Relationship Continuity in Dementia of the Alzheimer
2	Туре
3	1. Blanca Poveda, NHS Lothian, Clinical Neuropsychology Dept., Astley Ainslie Hospital,
4	Edinburgh, UK; <u>blanca.poveda@nhslothian.nhs.scot.uk</u> , 0131 5379140
5	2. Katherine Osborne-Crowley, School of Psychology, University of South Wales, Syndney, 2052,
6	Australia k.osbornecrowley@unsw.edu.au,
7	3. Kenneth Laidlaw, Norwich Medical School, Faculty of Medicine and Health Sciences, University
8	of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK; k.laidlaw@uea.ac.uk, 01603 593
9	600
10	4. Fiona Macleod, NHS Tayside Older People, Psychological Therapies Services, Stracathro
11	Hospital, by Brechin, UK; <u>fmacleod@nhs.net</u> , 01356 692806.
12	5. Kevin Power, University of Stirling, University of Stirling, FK9 4LA, UK; kevin.power@nhs.net,
13	01382 306156
14	
15	
16	Abstract
17	Social cognition can be impaired in a range of neurodegenerative conditions, yet the
18	impact of these difficulties on behaviour and social relationships is not yet fully understood.
19	This study assessed social cognition in 27 participants with Dementia of the Alzheimer Type
20	(DAT) and their co-residing partners ($n=27$) and explored the relationships between social
21	cognition, cognitive ability, relationship continuity and behaviour following diagnosis. In line
22	with previous research, participants with dementia scored lower on social cognition tasks
23	compared to their partners. Behaviour changes such as apathy, disinhibition and agitation in
24	participants with dementia were significantly related to relationship continuity, however no
25	significant associations were found with measures of social cognition. The results of this
26	study are discussed within a therapeutic context and in line with current guidelines and
27	policies.

	Social Cognition and Behaviour
28	
29	
30	Keywords: Social cognition, Alzheimer's disease, dementia, Theory of Mind, emotion
31	recognition.
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	

54	The most commonly diagnosed dementia is Dementia of the Alzheimer's Type (DAT)
55	(McKhann et al., 1984). Individuals with a diagnosis of probable DAT typically present with
56	primarily cognitive symptoms such as difficulties with memory, language or visual and
57	spatial functions (McKhann et al., 1984). However, since DAT does entail frontal atrophy,
58	particularly in the later stages of the disease, individuals may also experience difficulties in
59	attention, executive functioning, social cognition and behaviour (McKhann et al., 1984)
60	including agitation, apathy, mood changes, hallucinations or delusions (Jalbert, Daiello &
61	Lapane, 2008). These changes in social and emotional behaviour after dementia are a major
62	risk factor for increased carer burden (Coen et al., 1997; Burke & Morgenlander, 1999;
63	Cohen et al., 1993; Hebert, Dubois, Wolfson, Chambers & Cohen, 2001; Hsieh, Irish,
64	Daveson, Hodges, Piguet, 2013) and are often reported to be more distressing and disabling
65	than cognitive changes (Steele et al., 1990).
66	Importantly, carers for people with dementia are often intimate partners, who may
67	have difficulty adjusting to significant changes in the relationship (Garand et al., 2007). One
68	important variable related to wellbeing of the carer is their perceptions of the
69	continuity/discontinuity of the relationship. Perceived discontinuity refers to perceptions of
70	the relationship as being essentially changed and radically different as a result of dementia,
71	rather than as a continuation of the premorbid relationship. While it is well-established that
72	behavioural changes after dementia are related to carer burden, it is not yet known whether
73	these behavioural changes are associated with perceived discontinuity of the relationship.
74	This relationship might be expected since behavioural changes such as disinhibition,
75	aggression and apathy fundamentally affect the way in which a person interacts with others,
76	which is the cornerstone of interpersonal relationships. The current study was the first to
77	investigate this proposed relationship between behavioural change and discontinuity of
78	relationship.

79	The second aim of this study was to determine whether social cognition deficits
80	underlie these disabling changes in behaviour after DAT. An individual's ability to respond
81	appropriately in a social situation relies on their skilful integration of semantic, syntactic,
82	contextual and paralinguistic information as well as on their pragmatic knowledge and ability
83	to take visual perspectives, understand emotions and utilise theory of mind (ToM) (Shany-Ur
84	et al., 2012). Impairments in these critical social cognitive skills may lead to behaviours such
85	as disinhibition, aggression, or even apathy. For example, if someone struggles to perceive
86	another person's emotions or understand negative social feedback, they may say things that
87	could be perceived as offensive or they may not react to other's feelings. Moreover,
88	difficulties understanding sarcasm or jokes, could lead to defensiveness or aggressive
89	behaviour.
90	Research into the role of social cognition in behaviour change in neurodegenerative
91	conditions is still within its infancy, with the majority of work conducted on bvFTD. Patients
92	with bvFTD not only experience changes in behaviour, personality and motivation
93	(Rascovsky, Hodges, Knopman et al., 2011), but also have severe deficits in emotion
94	processing and emotion recognition (Kumfor, Irish, Hodges, et al., 2015; Lavenu, Pasquier,
95	Lebert et al., 1999; Kipps, Nestor, Acosta-Cabronero et al., 2009). Keane and colleagues
96	(2002) found that five of their individuals with bvFTD were significantly impaired in
97	recognising emotions and suggested that impairments in emotion processing might underpin
98	reported changes in social behaviour. In line with this, Kipps and colleagues (2009a) reported
99	significant correlations between mood sub-scores, performance on an emotion recognition
100	task and the Cambridge Behaviour Inventory (CBI: Bozeat et al., 2000). Similarly, Shany-Ur
101	et al. (2012) reported a link between social cognition as assessed on the The Awareness and
102	Social Inference Test (TASIT, McDonald et al., 2003) and informants' ratings of empathy,
103	perspective taking and neuropsychiatric symptoms in a bvFTD sample. Further, Gregory et

Brain Impairment

104	al. (2002) found a significant relation between performance on tests of theory of mind (ToM:
105	an aspect of social cognition) and neuropsychiatric and behavioural dysfunction on the
106	Neuropsychiatric Inventory (NPI) in individuals with bvFTD. Thus, in the bvFTD literature,
107	the evidence suggests that social cognition plays an important role in neurobehavioral
108	outcome.
109	However, there is very little research examining the relationship between social
110	cognition and behaviour in DAT. This paucity of research may reflect the view that people
111	with DAT do not suffer from problems of social cognition. There is, however, increasing
112	evidence that individuals diagnosed with DAT do suffer from impairments in social
113	cognition, specifically emotion processing (Phillips, Scott, Henry, Mowat & Bell, 2010)
114	including recognising emotions from faces (Hargrave, Maddock, & Stone, 2002), voices
115	(Roberts, Ingram, Lamar, & Green, 1996) and body movements (Koff, Zaitchik, Montepare,
116	& Albert, 1999). Only one study to date has investigated the relationship between social
117	cognition and behaviour in DAT. Shimokawa et al. (2001) explored the relationship between
118	the Emotion Recognition Test (ERT; Shimokawa et al., 2001), and interpersonal behaviour
119	changes as assessed by the Interpersonal Behaviour Checklist (IBC, Shimokawa et al., 2001).
120	They found that behaviour change on the IBC scale correlated with ERT scores, but not with
121	MMSE performance, suggesting that the behaviour of patients with DAT does not depend on
122	deterioration of cognitive ability but rather on a decreased ability for emotion comprehension
123	(Shimokawa et al., 2001).
124	While this study does attest to the relationship between social cognition and behaviour
125	in DAT, a major drawback is the use of tests of social cognition that do not have ecological
126	validity. Studies exploring emotion recognition in individuals with DAT have largely relied
127	on Ekman and Friesen's (1976) 60 Faces Test (FEEST; Henry et al., 2008), a static display of
128	black and white photographs of human faces displaying one of the six basic emotions:

129	'happy', 'disgust', 'fear', 'sadness', 'anger' and 'surprise', as well as neutral faces
130	displaying no emotion. While results from these studies suggest impairments across all stages
131	of the disease progression (e.g. Phillips et al., 2010; Hargrave, Maddock, & Stone, 2002),
132	these tasks are highly artificial and therefore limited in the extent to which they reflect real-
133	life social exchanges (McDonald, Flanagan, Rollins & Kinch, 2003). Indeed, it has been
134	demonstrated that people with DAT perform much better when asked to identify emotions
135	from realistic, audiovisual displays compared to static black and white photos (Henry and
136	colleagues, 2008). Henry and colleagues (2008) concluded that it is possible that more
137	traditional measures of affect recognition, i.e. FEEST, over-estimate the degree of
138	impairment that participants with DAT experience in their day-to-day life. Thus, the current
139	study aimed to examine the relationship between social cognition and behaviour using an
140	ecologically valid measure of emotion recognition.
141	Finally, the current study also aimed to determine whether social cognition
142	impairments observed in people with DAT can be accounted for by their non-social cognitive
143	deficits. Real-time social exchanges make demands on attention, language, information
144	processing skills and memory. It is quite possible that these factors play an important role in
145	any social impairments experienced by people with DAT. Thus, it was predicted that general
146	cognitive ability will account for a significant amount of the variance in relation to social
147	cognition in participants with DAT.
148	Thus, the current study examined the relationships between general cognitive ability,
149	social cognition, problem behaviours and relationship continuity. The main hypotheses for
150	this study were: 1) Participants with DAT would be impaired on a social cognition task in
151	comparison to their partners and that this would be partially accounted for by general
152	cognitive ability and 2) there would be a significant negative correlation between the i.e.
153	social cognition task and behaviour ratings in participants with DAT particularly with regard

Brain Impairment

154	to behaviours such as apathy, disinhibition, irritability and agitation and 3) that social
155	cognition and behaviour would be related to relationship continuity as reported by partners.
156	
157	Method
158	Participants
159	
160	Twenty-seven participants with DAT and their partners were recruited. All couples
161	were currently living together and had been married between 22 and 73 years (M=51.81,
162	SD=10.83). Of the participants with dementia, 17 were female and 10 were male; age ranged
163	from 71 to 94 years (M=78.9, SD=4.83). Partners were aged between 65 and 96 (M=78,
164	SD=6.22). Consultant Old Age Psychiatrists within the relevant health boards had made all
165	dementia diagnoses, between one and 8 years previously (time since diagnosis $M=3.12$,
166	<i>SD</i> =1.68).
167	Inclusion criteria for participants with DAT were: i) a medical diagnosis of probable
168	DAT according to the National Institute of Neurological and Communicative Disorders and
169	Stroke and the Alzheimer's Disease and Related Disorders Association (NINDS-ADRDA;
170	McKhann et al., 2011) and DSM-V (APA, 2013) criteria, ii) mild to moderate DAT with a
171	score between 0.5 and 2 in the Clinical Dementia Rating (CDR; Morris, 1997), iii) an
172	absence of major depression or psychiatric disorder, as defined by DSM-V criteria (APA,
173	2013), iv) living with a partner who is willing to participate, v) English spoken fluently, vi)
174	able to give informed consent to participate in the present research and vii) living at home
175	with their partner.
176	All participants were recruited through the Scottish Dementia Clinical Research

177 Network (SDCRN) across two health boards in Scotland. The study received ethical approval

178 from the East of Scotland Research Ethics Service (EoSRES-1) in May 2012, was conducted

179 in accordance with the Declaration of Helsinki and all volunteers gave their informed consent

180 to participate.

181 Measures

182 General Cognitive Ability

183 The Addenbrooke Cognitive Examination Revised (ACE-R; Mioshi et al., 2006) is a 184 brief, sensitive and specific cognitive screening test which incorporates five subdomain 185 scores: orientation/attention, memory, verbal fluency, language and visuo-spatial abilities. 186 Mioshi et al. (2006) found sound psychometric properties for this measure, with good 187 reliability (α = 0.8) and validity, showing significant correlations with the CDR (*r*=.321, 188 *p*<.01). Four participants with DAT and two partners were excluded from the analysis as they 189 were aged over 86 years.

190

191 Social Cognition

192 The Awareness of Social Inference Test (TASIT, McDonald, et al., 2003) is an audio-193 visual tool designed for the clinical assessment of social perception with alternate forms for 194 re-testing. Part I, the Emotion Recognition Test (TASIT-ERT), shows 28 short video-195 vignettes (20 to 40 seconds each) of individuals depicting one of seven emotions: 'happy', 196 'surprised', 'neutral', 'sad', 'angry', 'fear' or 'digusted'. Part II, the Social Inference-197 Minimal (TASIT-SIM) test, shows 15 short video-vignettes (20 to 40 second each) of 198 everyday conversational exchanges. This test examines a person's understanding of 199 conversational meanings determined by paralinguistic cues such as facial expression, tone of 200 voice or gestures. The video vignettes in this test use neutral scripts, which are enacted by 201 professional actors and can represent either 'sincere' or 'sarcastic' (simple and complex) 202 social exchanges. An individual's ability to understand these social exchanges is then 203 assessed using four questions regarding the actor's beliefs (i.e. what they know), meaning

	Social Cognition and Behaviour
204	(i.e. what they mean by what is said), intentions (i.e. what they intend to do) and feelings (i.e.
205	what they feel) (McDonald et al., 2003).
206	Part III, the Social Inference-Enriched test (TASIT-SIE), shows 16 short video-
207	vignettes (20-40 seconds each) of everyday conversational exchanges. Each vignette contains
208	a literally untrue comment enacted in one of two ways: as sarcasm meant to amplify the truth
209	or as a lie meant to conceal or minimise the truth. This test distinguishes between visual and
210	text cues to determine the meaning of paralinguistic features and assesses an individual's
211	understanding of the situation using the same four questions as in Part II: beliefs, meaning,
212	intentions and feelings (McDonald et al., 2003). As per TASIT manual (Rollins, Flanagan, &
213	McDonald, 2002), composite scores can be created in all three parts of the TASIT by adding
214	the relevant sub-scores. The composite scores in each part are: Part I include 'positive', (i.e.
215	the sum of 'surprise', 'happy' and 'neutral' scores) 'negative' (i.e. the sum of 'revolted',
216	'sad', 'angry' and 'anxious' scores) and 'Total ERT' (i.e. the sum of both 'positive' and
217	'negative' total scores), part II include, 'sincere', simple sarcasm', ' complex sarcasm' and
218	'Total SIM' and part III include 'textual', 'visual' and 'Total SIE' composite scores.
219 220	Test re-test reliability for TASIT ranges from 0.74-0.88. TASIT has significant
221	associations with other measures of social cognition (e.g. FEEST, $r=.69$, $p<.01$ [TASIT-
222	ERT], $r=.50$, $p<.01$ [TASIT-SIM], $r=.37$, $p<.01$ [TASIT-SIE]; First/second order ToM $r=$
223	.68, p<.05 [TASIT-SIM]) (McDonald, Bornhofen, Shum et al., 2006).

224

225 Relationship Continuity

The *Birmingham Relationship Continuity Measure* (BRCM, Riley et al., 2013) has been validated to measure relationship continuity when caring for a partner with dementia. The BRCM is a 26-item instrument measuring carers' perceived continuity of spousal relationship, where one individual in the couple cares for the other, due to a diagnosis of

- 230 dementia. The BRCM contains six domains: i) changes in relationship; ii) changes to the
- 231 person; iii) changes in feelings; iv) sense of loss; v) sharing and togetherness and vi)
- 232 expressions of affection and attachment. Each item in the BRCM is scored using a Likert
- scale from 1 'disagree a lot' to 5 'agree a lot'. The psychometric properties of this scale were
- assessed by Riley et al. (2013) and showed good internal consistency (Cronbach's α = .94),
- 235 good test-retest reliability (α = .96) and good concurrent validity (e.g. Closeness and conflict
- scale, r=. .43, p<.05; (Marwit-Meuser Caregiver Grief Inventory [MMCG-I; Marwit &
- 237 Meuser, 2002] r = .54, p < .01). Scores for the relationship continuity scale, as rated by partners
- on this study were normally distributed (M=76.04, SD=22.39).

239 Neurobehavioural Problems

240 The Neuropsychiatric Inventory Test (NPI; Cummings, 1994; Kaufer et al., 1998) is an

241 interview measure which assesses the presence of neuropsychiatric disturbances in a patient

242 with dementia from information provided by an informed caregiver. A clinician conducted

the interview which each of the carers enrolled in the study while not in the presence of the

244 partner with dementia. The NPI assesses twelve common neuropsychiatric disturbances in

245 dementia (delusions, hallucinations, agitation, dysphoria, anxiety, apathy, irritability,

- 246 euphoria, disinhibition, aberrant motor behaviour, night-time behaviour disturbances and
- 247 appetite and eating abnormalities). For each domain, a screening (yes/no) question is initially
- 248 given to determine whether problems in that domain are present. If the screening question

249 determines that problems in that domain are present, the informant is asked to indicate the

- 250 severity of behaviour within each domain, as measured on a 3-point Likert scale, the
- 251 frequency, as measured on a 4-point scale and the distress these behaviours cause is measured
- on a 5-point scale. For each behavioural domain there are four scores that can be calculated: a
- 253 frequency, severity, total (frequency x severity) and a caregiver distress score. Cummings

254	(1997) established content validity (subjectively), concurrent validity (e.g. Hamilton
255	Depression scale [HDS, Hamilton, 1960], all correlations p <.05), inter-rater reliability (93.6
256	to 100%), and test re-test reliability ($r = .79$, $p < .01$ [frequency], $r = .86$, $p < .01$ [severity]) of
257	the NPI. A total NPI score can be calculated by adding the scores of the first 10 domain
258	scores together. In most cases, the two neurovegetative items (appetite and night time
259	behavior disturbance) are not included in the NPI total score. The distress score is not
260	included in the total NPI score. In this study, the total distress score is generated by adding
261	together the scores of the first 10 items of the NPI distress questions.
262	
263	Additional Measures
264	Additionally, a premorbid measure of intelligence, the Wechsler Test of Adult Reading
265	(WTAR; The Psychological Corporation, 2001) was administered to all participants (see
266	Duff, Chelune & Dennett, 2010). Finally, a screen for emotional distress, the Hospital
267	Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) was taken for all
268	participants.
269	
270	Results
271 272	Exploratory Data Analysis
273	The study contacted 132 couples, of which 27 agreed to participate (20 percent). Data
274	was initially examined for normality of the distribution. Tests of skewness and kurtosis were
275	performed for the variables: age and total scores on the WTAR, ACE-R, BRCM, NPI-D,
276	HADS-A, HADS-D and TASIT (ERT, SIM and SIE). A ceiling effect was identified for
277	partners' ACE-R total scores. Partners' data were non-normally distributed for total scores on
278	the ACE-R (D [27] = .02, $p < .05$), HADS-A (D [27] = .0, $p < .05$), NPI (D [27] = .0, $p < .05$)
279	.05), TASIT-ERT (D [27] = .02, $p < .05$), and TASIT-SIE (D [27] = .0, $p < .05$). The

280	participants with DAT group data were found non-normally distributed for TASIT-SIE (D
281	[22] = .04, p < .05), and HADS-D (D $[27] = .02, p < .05)$. Data for the relevant variables were
282	transformed using a Log10 transformation in an attempt to correct for distributional
283	difficulties. However, even after transformation, tests of normality still showed data for these
284	variables as non-normally distributed. Levene's test was significant ($p < .01$) for the ACE-R,
285	<i>F</i> (1,52)=16.70, <i>p</i> <.01, TASIT-SIM, <i>F</i> (1,551) = 14.52, <i>p</i> <.01 and TASIT-SIE, <i>F</i>
286	(1,48)=6.37, $p<.01$ indicating that variances were significantly different and the homogeneity
287	of variance assumption was not tenable for these scores. As such, non-parametric testing
288	(Mann-Whitney U) was used to compare groups on WTAR, ACE-R scores and social
289	cognition scores. Non-parametric measures of association (Spearman's Rho) were used to test
290	associations between social cognition scores, relationship continuity, partners' mood,
291	cognitive functioning skills and proxy ratings of behaviour. In order to account for Type I
292	error in multiple correlations, the critical α level was reduced to .01 as recommended by Field
293	(2009). Not all participants with DAT were able to complete every part of the TASIT, part I
294	(N= 26), part II (N= 23) and part III (N=22). The study used missing value analysis as
295	recommended by Field (2009) to manage missing data in our database, i.e. a numeric code
296	was used to represent the missing values in the data. Only five participants were unable to
297	complete TASIT-SIE, the most complex of the three TASIT tasks.
298	

299 Premorbid IQ and Cognitive and Emotional Functioning

300 Descriptive statistics for age, standard WTAR score and ACE-R are displayed in

301 Table 1. The two groups were matched for age and estimated premorbid cognitive ability.

302 Significant differences, U(48)=13, Z=6.1, *p*=.0005, were found between participants with

303 DAT and their partners' general cognitive ability as measured by the ACE-R. No significant

304 differences were found in anxiety or depression scores on the HADS between partners and

Social Cognition and Behaviour

305 participants with DAT. 306 ***INSERT TABLE 1 HERE*** 307 **Social Cognition Results** 308 To compare performance between partners and participants with DAT on TASIT 309 (Part 1: ERT, Part 2: SIM and Part 3: SIE Subtest) scores, non-parametric Mann Whitney-U 310 tests were performed. Table 2 outlines the results of these group comparisons. On TASIT-311 ERT, there were significant differences between participants with DAT and their partners for 312 all emotions with the exception of happy. Overall, there were significant differences between 313 groups for positive, negative and total TASIT-ERT, where partners obtained higher scores. 314 On TASIT-SIM, the participants with DAT had lower composite 'sincere', 'simple sarcastic' 315 and 'complex sarcastic' scores, as well as lower overall scores compared to their partners. 316 Similarly, on TASIT-SIE participants with DAT had lower composite 'lie' and 'sarcasm' and 317 total scores compared to their partners. 318 Since the ACE-R scores were highly variable in the DAT group indicating a range of 319 severity of DAT, a follow-up analysis was conducting in order determine whether differences 320 between groups on social cognition were driven by the more severe dementia diagnoses. The 321 DAT group was split into two sub-groups based on a median split of their ACE-R scores. 322 These two severity groups were then compared (using Mann Whitney U tests) to the control 323 group on TASIT scores. The less severe DAT group had significantly lower median TASIT 324 scores (TASIT-ERT median = 18, TASIT-SIM median=38, TASIT-SIE median=34) than the 325 partner group (TASIT-ERT median=24, TASIT-SIM median=49, TASIT-SIE median=55), 326 all p's<.001. Similarly, the more severe group also had significantly lower median TASIT 327 scores (TASIT-ERT median = 12.5, TASIT-SIM median=33, TASIT-SIE median=33) than 328 the partner group, all *p*'s<.001.

329 ***INSERT TABLE 2 HERE***

330	Association between social cognition and cognitive ability in participants with DAT
331	Correlations between social cognition scores and cognitive scores are presented in
332	Table 3. TASIT total scores were not related to ACE-R Total or to any ACE-R sub scores.
333	TASIT-ERT totals scores were associated with ACE-R language ($rho=.55$, $p<.001$) and
334	ACE-R total (<i>rho</i> = .57, p < .001) scores. Further, scores for recognising both positive (<i>rho</i> =
335	.60, p <.001) and negative (<i>rho</i> = .53, p <.001) emotions on TASIT-ERT were also associated
336	with ACE-R total scores. The TASIT-SIM overall score was not related to any ACE-R
337	scores. However, the TASIT-SIM score for complex sarcasm items was related to fluency
338	(<i>rho</i> = .56, <i>p</i> < .001), language (<i>rho</i> = .59, <i>p</i> < .001), visuo-spatial (<i>rho</i> = .58, <i>p</i> < .001) and total
339	ACE-R (rho = .60, p < .001) scores. Neither the TASIT-SIE total score or any of the SIE sub
340	scores were related to any ACE-R scores.
341	*****INSERT TABLE 3 HERE*****
342	Five participants with DAT who were unable to complete some or all of the sections
343	in the TASIT also showed low scores on the ACE-R total score. A comparison between the
344	ACE-R scores of participants who had been able to complete all sub-tests on the TASIT and
345	those who had not revealed significant differences in their ACE-R total scores $U(27)=107$,
346	z= 3.25, <i>p</i> <.001.
347	Neurobehavioural Results
348	The NPI total scores were examined for participants with DAT. Apathy was reported
349	by the most partners (N=20), followed by anxiety (N=14), irritability (N=11), agitation
350	(N=10) and appetite changes (N=10). Behaviours reported to occur most frequently were
351	apathy, appetite disturbances, anxiety and irritability. Behaviours reported to be the most
352	severe were apathy, anxiety, irritability and depression. Finally, behaviours reported to cause
353	the most distress were apathy, anxiety, irritability and depression. Table 4 details the
354	frequency, severity and distress scores for each behaviour assessed.

355	***FIGURE 1 HERE***
356	***TABLE 4 HERE***
357	Association between social cognition and behaviour change in participants with DAT
358	Spearman correlations were conducted between social cognition scores (TASIT ERT,
359	SIM and SIE) and behaviour ratings (NPI total and NPI apathy, anxiety, depression,
360	irritability and agitation). These behaviours were chosen for this analysis given they were the
361	most frequently encountered in our sample and most distressing as rated by partners. There
362	were no significant correlations between social cognition scores and total behaviour ratings
363	(all p's<.05). Similarly, no significant correlations were found between social cognition
364	scores and distress levels for each of the behaviours or the total distress level as measured by
365	the NPI.
366	Association between social cognition/behaviour in participants with DAT and partner's
367	ratings of relationship continuity
368	Spearman correlations revealed no significant correlations between partners' BRCM
369	ratings and social cognition of participants with DAT as measured by TASIT ERT, SIM and
370	SIE (all p's<.05).
371	Significant negative correlations were found between the BRCM total scores and the
372	NPI total scores, $rho =70$, $p < .001$, and NPI total distress scores, $rho =71$, $p < .001$,
373	suggesting that greater presence of problem behaviours and the distress they cause is related
374	to poorer perceived continuity of the relationship. BRCM scores were significantly correlated
375	with some specific behaviours on the NPI; <i>apathy</i> (rho =64, p < .001), it's severity (rho = -
376	.67, $p < .001$) and how distressing it is for partners (<i>rho</i> =63, p < .001), <i>disinhibition</i>
377	frequency (<i>rho</i> =53, p < .001), severity (<i>rho</i> =53, p < .001) and how distressing it is for
378	partners (<i>rho</i> =54, p < .001) and <i>agitation</i> (<i>rho</i> =51 p <.001). None of the other NPI
379	behaviours were correlated with BRCM scores.

380	Because self-reported relationship continuity was related to mood of the partner
381	(HADS A: <i>rho</i> =580, <i>p</i> =.001 and HADS D: <i>rho</i> =43, <i>p</i> =.022), a second analysis strategy, a
382	hierarchical linear regression, was used to determine whether NPI total scores could improve
383	the prediction of self-reported relationship continuity over and above mood (measured by the
384	HADS). This analysis was appropriate for these variables since errors on the BRCM were
385	approximately normally distributed. The full model of HADS A, HADS D and NPI total
386	score to predict BRCM score was statistically significant, R^2 =.632, $F(2,27)$ =13.73, p <.0005;
387	adjusted R^2 =.886. The addition of NPI score to the prediction of BRCM score from the
388	HADS scores led to a statistically significant increase in R^2 of .241, $F(2,27)=15.71$, $p=.001$.
389	
390	Discussion
391	This study examined impairments in social cognition in patients with DAT and
392	whether these impairments were associated with behaviour changes. Further, this study
393	sought to determine whether these behaviour changes and social cognition impairments were
394	related to partner's perceptions of relationship continuity.
395	Participants with mild to moderate DAT showed difficulties on all three parts of
396	TASIT compared to their partners' performance, demonstrating impaired social cognition.
397	This is in line with previous research by Kipps et al. (2009), using the TASIT-ERT, which
398	suggested that people with DAT are poorer than controls at recognising emotions.
399	Interestingly, this was true for both DAT patients with ACE-R scores higher than the median
400	and for those with ACE-R score lower than the median, indicating that the social cognition
401	impairment was not driven by a particularly impaired subgroup of participants with DAT.
402	This suggests that social cognition impairments may be present even in the earlier stages of
403	the disease when cognitive decline is mild. Despite this, general cognitive deficits did
404	account for some of the variance in social cognition impairments, particularly with regards to
405	emotion perception. These findings are in line with suggestions by Shany-Ur et al. (2012) that

Social Cognition and Behaviour

406 general cognitive decline may be partly responsible for difficulties in social cognition in 407 participants with DAT. Interestingly though, parts 2 and 3 of the TASIT, the more complex 408 parts, were largely unrelated to general cognition (with the exception of TASIT-SIM complex 409 sarcasm). Thus it seems that people with DAT are not only impaired at emotion recognition 410 but may also be impaired at decoding complex social messages, and that these impairments 411 are not accounted for by general cognitive decline. 412 Phillips et al. (2010) reported that in order to successfully recognise emotions, 413 individuals needed to rapidly detect the perceptual emotional stimulus and apply higher-level 414 decision making about what verbal descriptor best described a facial expression. It is thus 415 plausible that emotion recognition skills require intact executive functioning skills, such as 416 higher order decision-making skills (Phillips et al., 2010). There is evidence of a link between 417 perceptual decline and general cognitive ability in DAT (Buck & Radford, 2004). Indeed, on 418 tasks with relatively low cognitive and perceptual requirements, participants with DAT were 419 capable of recognising different emotions from nonverbal sources, including facial 420 expressions (Bucks & Radford, 2004; Burnham & Hogervorst, 2004) and vocal prosody 421 (Bucks & Radford, 2004). However, most studies on social cognition have opted for a less 422 sensitive (Feher et al., 1992), shorter, general cognitive ability test, the Mini-Mental State 423 Examination (MMSE; Folstein, Folstein & McHugh, 1975) (e.g. Phillips et al., 2010). The 424 MMSE has shown significant sensitivity problems, particularly to frontal, linguistic and early 425 memory difficulties (Feher et al., 1992). As such, results from studies using this measure as a 426 predictor of social cognition should be interpreted with caution, as this scale may not fully 427 capture impairments in executive and working memory functioning, which form part of an 428 individual's general cognitive skills. Thus, the current finding of an association between the 429 ACE-R and social cognition provides evidence that social cognition impairments in DAT are 430 at least partly attributable to general cognitive impairment.

431	The current study found impairments in participants with DAT on recognition of all
432	emotions except for happy, adding to a growing body of evidence that recognition of positive
433	emotions is preserved following DAT (Adolphs, 2001). This dichotomy is accompanied by
434	evidence of distinct neural substrates for positive versus negative emotion perception and
435	processing within the brain (Adolphs, 2001). Lesion studies appear to show the amygdala is
436	essential in the recognition of emotions from facial expressions, particularly negatively
437	valenced emotions such as fear (Adolphs, 2001). Developmentally, the amygdala has played
438	a crucial role in human survival, by providing almost automatic responses to negative
439	emotions. On the other hand, Rosen et al. (2004) have indicated an association between
440	recognition of positive emotions and damage to the frontal regions of the brain, particularly
441	in the behavioural variant of FTD. However, Rosenberg and colleagues (2014) explored the
442	hypothesis of distinct neural pathways for positive and negative emotions in people with
443	moderate-sever traumatic brain injury. There findings suggested that rather than distinct
444	pathways existing, happiness may simply be an 'easier' emotion to recognise as it relies on a
445	single facial feature, while other emotions require additional information about the complex
446	configuration of the face. They showed that the existing dichotomy in recognising positive
447	and negative emotions may be better explained by a valence difficulty effect on the
448	commonly used emotional expressions, further highlighting a general affect recognition
449	impairment (Rosenberg et al., 2014).

450

This study also sought to determine whether behaviour changes after DAT were underpinned by impairments in social cognition. This link was proposed in view that as disease progresses in dementia, social cognition may become impaired and this may lead to behaviour changes in the individual with DAT, due to difficulties understanding and responding to social interactions and feedback. No significant associations were found between any of the social cognition subtests and behaviour ratings in the NPI. These results

Brain Impairment

457	are in contrast with Shimokawa et al. (2001) who found a relationship between interpersonal
458	behaviour, including indifference to interpersonal relationships and difficulties with patient
459	treatment/management, and recognition of static facial displays of emotion in a sample of 100
460	patients with a diagnosis of DAT. Studies with FTD patients have also established this
461	relationship. For instance, Gregory et al. (2002) found an association between second order
462	ToM tasks and neurobehavioural symptoms on the NPI. This inconsistency in the literature is
463	likely driven by the array of different measurement tools used to tap social cognition and
464	neurobehavioural outcome.
465	Finally, this study aimed to determine whether behaviour changes and social
466	cognition were predictive of partner's perceptions of the continuity of relationship.
467	Correlational analyses revealed that social cognition was not related to partner's perceptions
468	of relationship continuity. Adolphs (2001) theorised a close association between social
469	cognition and functional outcomes on the basis that the ability to process social stimuli is
470	essential for social interactions which are, in turn, essential for the continuation of
471	functioning interpersonal relationships. Although there is evidence of this association
472	between social cognition and interpersonal factors in other neurological patient groups
473	(Bornhofen & McDonald, 2008), no study up to now has assessed this relationship in
474	neurodegenerative conditions. It is also possible that participants with DAT compensate for
475	social cognition difficulties in real-life situations by relying on other social and contextual
476	cues and, thus, that it may not be important in predicting relationship quality. During
477	conversation with couples, it became apparent that most partners' agreed that participants
478	with DAT needed additional support in social situations to understand sarcasm or others'
479	intentions. However, partners did not report this as significantly distressing. Qualitative
480	observations of participants with DAT behaviour in social situations may be useful in
481	understanding the extent of social cognition difficulties in DAT and the ways in which

482 participants and families may have learnt to compensate for those impairments in real-life 483 situations. Most of the evidence relating to partners' or carers' mood in neurodegenerative 484 conditions or ABI has focused on the effects of behaviour difficulties on carer burden or 485 carers' mood symptomatology where increased behaviour change has a significantly negative 486 effect on carers' mood. Despite the lack of association found in the current study, a further 487 exploration both qualitatively and quantitatively of this relationship may provide further 488 insight into the needs and behaviour of individuals with a neurodegenerative condition and 489 the best support for their carers or partners.

490 Despite no association between social cognition and relationship continuity, the 491 current study found that the presence, frequency and severity of behaviour changes in 492 participants with DAT (particularly apathy, agitation or disinhibition) were negatively 493 associated with relationship continuity. Further, behavioural problems measured by the NPI 494 total scores predicted relationship continuity even after accounting for the mood of the 495 partners reporting. This result demonstrates that these behavioural changes are particularly 496 debilitating and threaten the quality of the affected person's relationship with their intimate 497 partner, who also is responsible for their care. Similarly, NPI scores have also been 498 associated with greater change in interpersonal relationships in brain injured populations 499 (Osborne-Crowley, McDonald and Francis, 2016). These findings are particularly important 500 when thinking about supporting an individual following a diagnosis of a possible dementia. 501 In many services the emphasis is placed on supporting the participants with DAT by 502 providing strategies, medication, psycho-education or social interaction, and support for the 503 partner, carer or family is usually only addressed as a reactive strategy or if problems arise 504 and a possible breakdown in relationship is likely. Acknowledging the links between 505 behaviour changes in DAT or mixed dementia and relationship continuity may help services 506 prevent such breakdown and crisis situations by providing guidance and support for families

Brain Impairment

507	and carers and diminish caregiving burden (DoH, 2009). Placing such emphasis in supporting
508	carers and families would also be in line with current national priorities, Scotland (DoH,
509	2009). This study has added to our understanding of the negative effects that behavioural
510	changes in DAT can have on a couple's relationship quality. It has highlighted the
511	importance of managing the behaviour changes in DAT, particularly 'disinhibition', 'apathy'
512	and 'agitation', given the consequences it can have on relationship quality, and stresses the
513	need to conduct more research into how to manage these behaviours in order to improve
514	relationship satisfaction in a couple where one member has a diagnosis of DAT.
515	A few limitations of the current research should be noted. Foremost, the current study
516	was unable to compare social cognition to another dementia patient group in order to
517	determine whether they are a non-specific effect of pathology or a specific DAT effect.
518	Further, only TASIT was used to assess social cognition in this study. Considering the lack of
519	a normative sample for older people on this task, it would have been beneficial to include
520	additional ToM and emotion processing tasks in order to establish concurrent reliability and
521	be able to determine 'impaired' performance and cut-off scores by examining standardised
522	scores allowing for more detailed statistical methodology.
523	The current study was the first to assess the relationship between social cognition,
524	behaviour and relationship continuity in DAT. Previous publications have commented on the
525	lack of research available on the relationship between these factors (e.g. Kipps et al., 2009,
526	Shany-Ur et al., 2012). Significant differences were found in the ability of people with DAT
527	to correctly identify emotions and sarcasm, compared to their partners. Although social
528	cognition scores did not appear to associate with behaviour changes in DAT, the present
529	study found associations between behaviours such as apathy, disinhibition and agitation in
530	DAT with relationship quality, supporting the need to focus interventions in management of
531	these behaviours and minimise the impact on a couple's relationship status.

532

533	Acknowledgments
534	The first author has no conflict of interest to declare. This research was conducted as
535	part of the Doctorate in Clinical Psychology at the University of Edinburgh. This work was
536	supported by the Scottish Dementia Clinical Research Network who received funding from
537	Scottish Ministers through the Chief Scientist Office. The views expressed in this publication
538	are those of the authors and not necessarily those of Scottish Ministers or the Chief Scientist
539	Office.
540	Financial Support
541	
542	This research received no specific grant from any funding agency, commercial or not-for-
543	
544	profit sectors.
545	
546	Conflict Of Interest
547	
548	None
549	
550	Ethical Standards
551	
552	The authors assert that all procedures contributing to this work comply with the ethical
553	
554	standards of the relevant national and institutional committees on human experimentation and
555	
556	with the Helsinki Declaration of 1975, as revised in 2008.
557	
558	
559	
560	

561	References
562 563	Adolphs, R. (2001) The neurobiology of social cognition. Current Opinions in
564	Neurobiology;11231–239.
565 566	Alzheimer's Society (2012). Optimising treatment and care for people with behavioural and
567	psychological symptoms of dementia. A best practice guide for health and social care
568	professionals. UK.
569	American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental
570	Disorders (Fifth ed.). Arlington, VA: American Psychiatric Publishing.
571	Bornhofen, C.& McDonald, S. (2008) Treating deficits in emotion perception following
572	traumatic brain injury. Neuropsychological Rehabilitation, 18, 22–44
573	Bozeat, S., Gregory, C. A., Ralph, M. A., & Hodges, J. R. (2000). Which neuropsychiatric
574	and behavioural features distinguish frontal and temporal variants of frontotemporal
575	dementia from Alzheimer's disease? Journal of Neurology, Neurosurgery Psychiatry,
576	<i>69</i> , 178–86.
577	Burnham H, & Hogervorst E. (2004). Recognition of facial expressions of emotion by
578	patients with dementia of the Alzheimer type. Dementia and Geriatric Cognitive
579	Disorders, 18, 75-9.
580	Bucks, R. S. & Radford, S. A. (2004) Emotion Processing in Alzheimer's Disease. Aging and
582	Mental Health, 8, 222-232.
585 584	Burke, J. R., & Morgenlander, J. C. (1999). Managing common behavioral problems in
585	dementia: How to improve quality of life for patients and families. Postgraduate
586	Medicine, 106, 131–134.
587	Chow, T. W., Binns, M. A., Cummings, J. L., Lam, I., Black, S. E., Miller, B. L., et al.
588	(2009). Apathy symptom profile and behavioural associations in frontotemporal
589	dementia vs. dementia of Alzheimer type. Archives of Neurology, 66, 888-93.

590 591	Coen, R. F., Swanwick, G. R., O'Boyle, C. A., et al (1997) Behaviour disturbance and other
592	predictors of carer burden in Alzheimer's disease. International Journal of Geriatric
593	Psychiatry, 12, 331 -336
594	Cohen, C. A., Gold, D. P., Shulman, K. I., Wortley, J. T., McDonald, G., & Wargon, M.
595	(1993). Factors determining the decision to institutionalize dementing
596	individuals: A prospective study. Gerontologist. 33, 714-720.
597	Cummings, J., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D. A., & Gornbein., J.
598	(1994). The Neuropsychiatric Inventory: comprehensive assessment of
599	psychopathology in dementia. Neurology, 44, 2308-2314.
600 601	Cummings J. L. (1997). The neuropsychiatric inventory: assessing psychopathology in
602 603	dementia patients. <i>Neurology</i> , 48(5 Suppl. 6), S10–S16.
604	Department of Health (2009). Living well with dementia: A national dementia strategy.
605	London, UK.
606	Duff, Chelune & Dennett (2011) Predicting Estimates of Premorbid Memory Functioning:
607	Validation in a Dementia Sample. Arch. Clin. Neuropsychology, Vol 26(6), 701-705
608 609	Ekman, P., & Friesen, W.V (1976). Pictures of facial affect. Palo Alto, CA: Consulting
610 611	Psychological Press.
612	Feher, E. P., Mahurin, R.K., Doody, R.S., Cooke, N., Sims, J., & Pirozzolo, F. J. (1992)
613	Establishing the limits of the mini- mental state examination of 'subtests'.
614	Archives of Neurology, 49, 87–92.
615	Field, A. (2009). Discovering statistics using SPSS. SAGE. UK.
616	Finkel S. I., Costa e Silva J., Cohen G., Miller S., Sartorius N. (1996). Behavioral and
618 (10	psychological signs and symptoms of dementia: a consensus statement on current
619 620	knowledge and implications for research and treatment. Int. Psychogeriatr. 8, 497-
621 622	500.

623 624	Folstein, M. F., Folstein, S. E., McHugh, P. R. (1975). Mini-mental state: A practical
625	method for grading the cognitive state of patients for the clinician. Journal of
626	Psychiatric Research, 12 (3), 189–98.
627	Gallagher-Thompson, D., Dal Canto, P., Jacob, T., & Thomson, L., (2001). A
628	comparison of marital interactions patterns between couples in which the husband
629	does or does not have Alzheimer's disease. Journal of Gerontology, 56B(3), S140-
630	\$150.
631	Garand, L., Dew, M. A., Urda, B., Lingler, J. H., Dekosky, S. T., & Reynolds, C. F.
632	(2007) Marital quality in the context of mild cognitive impairment <i>Western</i>
633	Journal of Nursing Research 29, 976–992
634	Gregory C Lough S Stone V Erzinclioglu S Martin L Baron-cohen S &
635	Hodges J. R. (2002) Theory of mind in patients with frontal variant
636	frontotemporal dementia and Alzheimer's disease theoretical and practical
637	implications 752–764
638	Hargrave R Maddock R I & Stone V (2002) Impaired recognition of facial
639	expressions of emotion in Alzheimer's disease <i>Journal of Neuropsychiatry and</i>
640	Clinical Neurosciences 14 64-71
641	Hébert R. Dubois M. F. Wolfson C. Chambers I. & Cohen C. (2001) Factors
642	associated with long-term institutionalization of older people with dementia:
643	Data from the Canadian study of health and aging <i>Journal of Garontoby</i> 56(11)
644	602 600
645	U93-U99. Henry I.D. Ruffman T. McDonald S. O'Leary M.A. P. Phillins I. H. Brodaty
045	I a Dendell D.C. (2008). Decompition of discret is calesticated and and in
640	H., & Rendell, P. G. (2008). Recognition of disgust is selectively preserved in
647	Alzheimer's disease. <i>Neuropsychologia</i> , 46(5), 1363–70.
648	Hodges, J.R., Patterson, K., Garrard, P., Bak, T., Perry, R., & Gregory, C. (1999). The

649	differentiation of	semantic of	dementia and	frontal lobe	dementia (temporal	and frontal

- 650 variants of frontotemporal dementia) from early Alzheimer's disease: A comparative
- 651 neuropsychological study. *Neuropsychology*, *13*, 31-40.
- Honan, C. A., McDonald, S., Sufani, C., Hine, D. W., & Kumfor, F. (2016). The awareness
 of social inference test: development of a shortened version for use in adults with
- acquired brain injury. *Clinical Neuropsychologist*, 1-22.
- Jalbert, J. J., Daeillo, L. A., & Lapane, K. L. (2008). Dementia of the Alzheimer type. *Epidemiological Reviews*, 30(1), 15-34.
- 657 Kaufer, D. I., Cummings, J. L., Christine, D., Bray, T., Castellon, S., Masterman, D.,
- MacMillan, A., Kelchel, P., & DeKosky, S. T. (1998). Assessing the impact of
- 659 neuropsychiatric symptoms in Alzheimer's disease: the Neuropsychiatric Inventory
- 660 Caregiver Distress Scale. Journal of the American Geriatric Society, 46, 210-215.
- Keane, J., Calder, A. J., Hodges, J. R., & Young, A. W. (2002). Face and emotion
- 662 processing in frontal variant frontotemporal dementia. *Neuropsychologia*, 40,
 663 655-665.
- Kipps, M., Mioshi, E., & Hodges, J. R. (2009a). Emotion, social functioning and activities
 of daily living in frontotemporal dementia. *Neurocase*, *15* (3), 182-189.
- 666 Kipps, C. M., Nestor, P. J., Acosta-Cabronero, J., Arnold, R., Hodges, J. R. (2009b).
- 667 Understanding social dysfunction in bvFTD: the role of emotion and sarcasm
 668 processing. *Brain*, 132(3), 592-603.
- 669 Koff, E., Zaitchik, D., Montepare, J., & Albert, M. S. (1999). Emotion processing in the
- visual and auditory domains by patients with Alzheimer's disease. *Journal of the International Neuropsychology Society*, 5, 1, 32-40.
- 672 Kumfor, F., Irish, M., Leyton, C., Miller, L., Lah, S., Devenney, E., Hodges, J. R. & Piguet,

Brain Impairment

673	O. (2015) Tracking progression of social cognition in neurodegenerative disorders.
674	Journal of Neurology, Neurosurgery and Psychiatry, 85, 1076-1083.
675	Lavenu, I., Pasquier, F., Lebert, F., Petit, H., & Van der Linden, M. (1999). Perception of
676	emotion in frontotemporal dementia and Alzheimer disease. Alzheimer Disease and
677	Associated Disorders, 13(2), 96-101.
678	McDonald, S., Flanagan, S., Rollins, J, Kinch, J. (2003). TASIT: a new clinical tool for
679	assessing social perception after traumatic brain injury. Journal of Head Trauma
680	Rehabilitation, 18, 219-238
681	McDonald, S., Bornhofen, C., Shum, D., Long, E., Saunders, C., Neulinger, K. (2006)
682	Reliability and validity of The Awareness of Social Inference Test (TASIT): a clinical
683	test of social perception. Disability and Rehabilitation, 28 (24), 1529-1542.
684	McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H.,
685	& Mohs, R. C. (2011). The diagnosis of dementia due to Alzheimer's disease:
686	Recommendations from the National Institute on Aging-Alzheimer's Association
687	workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's &
688	dementia, 7(3), 263-269.
689	Milders, M., Fuchs, S. & Crawford, J. R. (2003) Neuropsychological impairments and
690	changes in emotional and social behavior following severe traumatic brain injury.
691	Journal of Clinical and Experimental Neuropsychology, 25, 157–172
692	Milders, M., Ietswaart, M., Crawford, J. R., & Currie, D. (2006) Social behavior following
693	traumatic brain injury and its association with emotion recognition, understanding of
694	intentions, and cognitive flexibility. Journal of the International Neuropsychological
695	Society 14, 318–326
696	Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J. R. (2006). The
697	Addenbrooke's Cognitive Examination Revised (ACE-R): a brief cognitive test

698	battery for dementia screening. International Journal of Geriatric Psychiatry,
699	21(11), 1078-1085.
700	Morris, R. G., Worsley, C. & Matthews, D. (2000). Neuropsychological assessment in
701	older people: Old principles and new directions. Advances in Psychiatric Treatment,
702	6, 362-370.
703	O'Donnell, B. F., Drachman, D. A., Barned, H. J., et al (1992) Incontinence and troublesome
704	behaviors predict institutionalisation in dementia. Journal of Geriatric Psychiatry and
705	Neurology, 5, 45 -52
706	
707	Osborne-Crowley, K., & McDonald, S. (2016) Hyposmia, Not Emotion perception, is
708	associated with psychological outcome after severe traumatic brain injury.
709	Neuropsychology, EPub.http://dx.doi.org/10.1037/neu0000293.
710	Osborne-Crowley, K., McDonald, S. & Francis, H. (2016) Development of an observational
711	measure of social disinhibition after traumatic brain injury. Journal of Clinical and
712	Experimental Neuropsychology. Vol., 38 (3), 341-353.
713	Phillips, L. H., Scott, C., Henry, J. D., Mowat, D., & Bell, J. S. (2010). Emotion perception
714	in Alzheimer's disease and mood disorder in old age. <i>Psychology and aging</i> , 25(1),
715	38–47.
716	Rankin, K. P., & Salazar, A. (2009). Detecting Sarcasm from Paralinguistic Cues:
717	Anatomic and Cognitive Correlates in Neurodegenerative Disease. Neuroimage,
718	47(4), 2005–2015.
719 720	Rascovsky, K., Hodges, J., Knopman, D. S. (2011) Sensitivity of revised diagnostic criteria
720 721 722	for the behavioural variant of frontotemporal dementia. Brain, 134, 2456-2477.
723	Roberts, V., Ingram, S., Lamar, M., & Green, R. (1996). Prosody impairment and associated
724	affective and behavioral disturbances in Alzheimer's disease. Neurology, 47, 1482-

Social Cognition and Behaviour

725	1488.
726	Riley, G.A., Fisher, G., Hagger, B.F., Elliott, A., Le Serve, H., & Oyebode, J.R. (2013).
727	The Birmingham Relationship Continuity Measure: The development and evaluation
728	of a measure of the perceived continuity of spousal relationships in dementia.
729	International Psychogeriatrics, 25, 263-274.
730	Rosen, H. J., Narvaez, J. M., Hallam, B., Kramer, J. H., Wyss-Coray, C., Gearhart, R.,
731	Johnson, J. K., & Miller, B. L. (2004). Neuropsychological and functional measures
732	of severity in Alzheimer disease, frontotemporal dementia, and semantic dementia.
733	Alzheimer Disease Association and Related Disorders, 18, 202–207.
734	Rosenberg, H., McDonald, S., Dethier, M., Kessels, R. P. C., Westbrook, F. R. (2014) Facial
735	emotion recognition following moderate-severe traumatic brain injury (TBI): Re-
736	examining the valence effect and the role of emotion intensity. Journal of the
737	International Neuropsychological Society, 20, 994-1003.
738	Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L.,
739	Gorno-Tempini, M. L. (2008). Frontal paralimbic network atrophy in very mild
740	behavioral variant frontotemporal dementia. Archives of Neurology, 65, 249–255.
741	Shany-Ur, T., Poorzand, P., Grossman, S. N., Growdon, M. E., Jang, J. Y., Ketelle, R. S.,
742	Miller, B. L., et al. (2012). Comprehension of insincere communication in
743	neurodegenerative disease: lies, sarcasm, and theory of mind. Cortex; a journal
744	devoted to the study of the nervous system and behavior, 48(10), 1329–41.
745	Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., & Kohno, M.
746	(2001). Influence of deteriorating ability of emotional comprehension on
747	interpersonal behavior in Alzheimer-type dementia. Brain and Cognition, 47, 423-
748	433.
749	Steele, C., Rovner, B., Chase, G. A., et al (1990) Psychiatric symptoms and nursing home

750	placement of	patients wit	h Alzheimer's diseas	e. American Journa	l of Psychiatry,
-----	--------------	--------------	----------------------	--------------------	------------------

751 147, 1049 -1051.

758

752 The Psychological Corporation (2001). Wechsler Test of Adult Reading, San Antonio,

753 TX: Harcourt Assessment.

- 754 Van Hoesen, G. W., Parvizi, J., & Chu, C.C. (2000). Orbitofrontal cortex pathology In
- 755 Alzheimer's disease. Cerebral Cortex, 10, 1047-3211
- 756 Zigmond, A.S., & Snaith, R. P. (1983). The Hospital Anxiety And Depression Scale.

757 Acta Psychiatrica Scandinava, 67, 361-70.

(1983, .candinava, 67,

760 Table 1. Results of Group Comparisons for Cognitive and Emotional Functioning Variables

		DAT	DAT Partners U-				_	Sia	
	N	Median	Range	N	Median	Range	test	Z	51 <u>g</u> .
Age	27	77.5	71-94	27	78	65-96	456.5	1.59	n.s
WTAR std.	26	110	86-	25	112	92-125	275.5	1.54	n.s
			123						
ACE-R	23	70.50	41-83	25	94	81-100	13	6.10	p<.001
Anxiety	27	9	3-14	27	4	1-12	298.5	-	n.s
								1.15	
Depression	27	4	0-8	27	4	0-11	354.5	18	n.s
NPI Total	27	8	0-60						
BRCM				27	81	23-108			

761 Note. N: number of participants, WTAR std: Wechsler Test of Adult Reading Standard

762 Score, ACE-R: Addenbrooke's Cognitive Examination Revised, NPI: Neuropsychiatric

763 Inventory; U-test: Mann-Whitney U statistic, z: standardised test statistic, Sign: significance

764 level, *n.s.* not significant.

Social Cognition and Behaviour

Table 2. Performance on the TASIT for participants with DAT and their partners

	DAT dementia				Partners				
		Median	Range	N	Median	Range	<u> </u>	2	Γ
TASIT-ERT Total	26	15	7-26	27	24	20-28	20	5.91*	-0.81
ERT Negative Emotions	26	6.5	3-12	27	11	8-12	36	5.64*	-0.77
ERT Positive Emotions	26	9	3-14	27	15	9-16	29	5.77*	-0.79
TASIT-SIM Total	23	38	11-47	27	49	38-58	29	5.49*	-0.78
SIM Sincere	23	14	9-20	27	18	14-20	124	3.66*	-0.52
SIM Simple Sarcasm	23	10	2-20	27	16	8-20	123	3.66*	-0.52
SIM Complex Sarcasm	23	11	0-15	27	17	7-20	56.5	4.97*	-0.71
TASIT-SIE Total	22	17.5	10-27	27	12	8-15	12	5.76	-0.82
SIE Lie	22	10	4-14	27	14	10-16	44	5.12	-0.73
SIE Sarcasm	22	10	2-20	27	16	8-20	31.5	5.38	-0.77

Note. N: number of participants, U-test: Mann-Whitney U statistic, *r*: effect size, z: standardised test statistic, *: significant at p<.001 ERT:

Emotion recognition test, SIM: Test of social inference minimal, SIE: Test of social inference enriched.

		ACE-R	BRCM	NPI Total
		Total	Total	
TASIT-ERT Total	Rho	.57**	.03	16
ERT Positive	Rho	.60**	.09	32
ERT Negative	Rho	.53**	00	08
TASIT-SIM Total	Rho	0.30	.19	14
SIM Sincere	Rho	0.04	.16	20
SIM Simple Sarcasm	Rho	0.13	.21	07
SIM Complex Sarcasm	Rho	.60**	.16	22
TASIT-SIE Total	Rho	0.30	.04	13
SIE Lie	Rho	-0.07	.21	20
SIE Sarcasm	Rho	0.34	.02	.04

Table 3. Spearman Correlations between the ACE-R and TASIT ERT, SIM and SIE Scores.

Note. ACE-R: Addenbrooke's Cognitive Examination Revised; ERT: Emotion Recognition Test from TASIT, SIM: Social Inference-Minimal Test from TASIT SIE: Social Inference-Enriched Test from TASIT, Rho: Spearman's Correlation Coefficient, Sig.: Significance level. ** Significant at p <.001

	Ν	Frequency	Severity	Total (Frequency x Severity)	Distress
Apathy	20	50	27	75	43
Anxiety	14	29	19	47	27
Irritability	11	20	15	43	27
Agitation	10	13	12	20	18
Appetite Disturbances	10	32	19	41	20
Delusions	4	7	4	8	9
Hallucinations	4	8	6	8	8
Depression	9	18	15	28	25
Elation	4	15	7	22	14
Aberrant Motor Behaviour	8	18	10	24	13
Disinhibition	4	10	6	13	9
Night time Behaviours	6	14	11	26	15

Table 4. Neurobehavioural Problems in participants with DAT reported by carers on the Neuropsychiatric Inventory

Figure 1. Frequency of Behaviours as Reported by Carers in the NPI