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In this work, we describe the thermodynamics and mechanism of CO2 polymorphic transitions under
pressure from form I to form III combining standard molecular dynamics, well-tempered metadynam-
ics, and committor analysis. We find that the phase transformation takes place through a concerted
rearrangement of CO2 molecules, which unfolds via an anisotropic expansion of the CO2 supercell.
Furthermore, at high pressures, we find that defected form I configurations are thermodynamically
more stable with respect to form I without structural defects. Our computational approach shows
the capability of simultaneously providing an extensive sampling of the configurational space, esti-
mates of the thermodynamic stability, and a suitable description of a complex, collective polymorphic
transition mechanism. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993701]

I. INTRODUCTION

Polymorphism, namely, the possibility that molecular
crystals assemble in the solid phase in different crystal lat-
tices, is ubiquitous in nature. The spatial arrangement of
molecules is a key in defining mechanical, physical, chem-
ical, and functional properties of materials. Understanding
the molecular details of the thermodynamics and mecha-
nisms underlying polymorphism is therefore a key to develop
detailed, rational descriptions of many natural and industrial
processes.1–8

In this direction, a notable effort is put in developing both
ab initio and enhanced sampling techniques to predict poly-
morphs of a molecule (in particular, crystal structure prediction
(CSP) techniques3,9–11), to evaluate their relative stability at
finite temperature and pressure, i.e., at conditions relevant
for the life-cycle of a solid product, and to study the tran-
sition mechanism and kinetics. Among enhanced sampling
techniques, metadynamics5,12–20 (MetaD) and adiabatic free
energy dynamics21–23 (AFED) are employed in the literature to
study polymorphism. Indeed, over the years, these techniques
have been tested, developed, and compared on benchmark sys-
tems and combined with CSP methods. Such studies made a
successful step towards the characterisation of the solid phase
transition, proving these tools to be powerful in the prediction
of new structures and transition pathways as well as of the
phase diagram without any a priori knowledge.

However, a complete and systematic investigation of
polymorphic transitions is still challenging.

In this work, our aim is to exploit state-of-the-art enhanced
sampling simulations to investigate the thermodynamics and
transition mechanisms at play in polymorphic transitions. To
this aim, we combine well-tempered MetaD and committor
analysis in order to identify a suitable low-dimensional

a)Electronic mail: m.salvalaglio@ucl.ac.uk

description of the transition between two polymorphic phases
in collective variable (CV) space. To do so, here we focus our
attention on solid CO2, more precisely on the I-III polymor-
phic transition that characterises CO2 packing polymorphism.
Packing polymorphism arises when two solid phases differ in
the packing of molecules, which have all the same molecular
structure, as opposite to conformational polymorphism.2

In molecular solid phases, CO2 molecules maintain their
gas phase conformation. To a first, crude, approximation, each
molecule can in fact be described as rigid and the bending of
the O–C–O 180◦ angle can be reasonably neglected. Thanks
to such limited conformational flexibility, it is as easy as spon-
taneous to identify each CO2 molecule with a vector passing
through its axis; moreover, the centre of mass corresponds
to the carbon atom at every simulation time. As a result, the
state of each molecule can be completely characterised by the
position of its centre of mass and the vector representing its
orientation in space.

Despite its simple molecular structure, CO2 has a rather
complex solid-state phase diagram24 [partially reported in
Fig. 1(a)]. Indeed, at high temperature and pressure, seven
different crystal structures have been detected so far, among
which many are still debated.24–42 The first form detected was
molecular phase I, also called dry ice, crystallised directly
from the melt; phase III followed, obtained through the com-
pression of dry ice; the discovery of a polymeric structure,
classified as phase V, attracted more interest to the study
of this system, resulting in the identification of two more
phases, II and IV. Phases II and IV are currently the object
of discussion as different groups hold contrasting views on
their nature and role in the transition between molecular and
non-molecular phases.24,26,28–30,33,37,43 Furthermore, an amor-
phous phase (VI) is also identified, and the existence of molec-
ular form VII as a phase itself is still under investigation [see
Fig. 1(a)].

In this work, we study the transition between phases I and
III, which are largely accepted and well characterised in the
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FIG. 1. (a) Details of the phase diagram
of CO2 at high temperature and pressure
from the work of Datchi et al.24 with the
phases of interest of the present work
highlighted (I in blue, III in orange). The
red dots represent the condition of tem-
perature and pressure investigated. [(b)
and (d)] Snapshots of different planes of
the 256-molecule supercell in phases I
and III, respectively. (c) Details of phase
III with the typical 52-degree angle φ
are highlighted; in particular, the red
arrow aligns with the direction of the
side of the box, while the black dashed
one aligns with the CO2 molecular axis.

literature [Figs. 1(b) and 1(d)]. Their structural arrangements
appear to hold several similarities. Both polymorphs, indeed,
are face centred with four molecules in the unit cell, but while
polymorph I’s lattice is cubic Pa3 and III’s is orthorhom-
bic Cmca. A major difference is the orientation of the CO2

molecules: in phase I, the molecular axis is in fact aligned with
the diagonal of the cell, while in phase III, they are arranged
in parallel layers in which molecules describe a characteristic
52◦ angle, φ, with the side of the lattice [Fig. 1(c)].

The I–III transformation takes place at around 11-12
(11.8) GPa24 independently of temperature ( dPI↔III

dT = 0); nev-
ertheless, defining the transition conditions is a difficult task,
and the pressure transition range is suggested to be wider
(7–15 GPa),35 while Olijnyk et al.44 observed transition III
to I under unloading at around 2.5–4.5 GPa at 80 K. There is
good agreement on the occurrence of hysteresis of the specific
volume, which decreases of about 2% from I to III.36,37 It is
also generally accepted that the transition takes place through
a concerted rotation of the molecules together with a defor-
mation of the cubic structure to a parallelepiped, thanks to the
peculiar geometrical features of the two phases.

The early studies of Kuchta and Etters38–40 study such a
transition through NPT Monte Carlo (MC) simulations cou-
pled with equalization of the Gibbs free energy in the phases
under investigation, not without uncertainties.40 Moreover, the
authors identify the orientation of the molecules in the lattice
as the most relevant feature changing in the transition and
thus they employ it as a transition coordinate to estimate the
free energy profile associated with the transformation; their
calculations both at 0 K38 and room temperature40 locate the
transition pressure at 4.3 GPa. Li et al.41 apply instead the
second order Møller-Plesset (MP2) technique to the study of
molecular crystals.42 In their work, they estimate the transition
pressure in the 11.9–12.7 GPa range.

Here we aim at complementing the state-of-the-art by
uncovering the mechanism of the polymorphic transition
between phases I and III. To this aim, we first carry out
well-tempered metadynamics simulations45 at 350 K over a
range of pressures to obtain an exhaustive sampling of the
configurational space of CO2 packing. This allows us to
consistently sample transition pathways between form I and
form III, to identify relevant metastable structures such as

defected configurations, and to estimate their relative ther-
modynamic stability. We then identify the most probable
transition pathway in collective variable space. To assess its
reliability, we carry out a committor analysis and a histogram
test,46,47 which allows us to improve the characterisation of the
transition pathway and to refine our estimate of the associated
free energy barrier.

II. METHODS

To circumvent time scale limitations of standard molec-
ular dynamics, enhanced sampling techniques are designed
to accelerate the sampling of rare events. In this work, we
employ well-tempered metadynamics48 (WTMetaD). Briefly,
WTMetaD is based on the introduction of a history-dependent
bias potential (VG) along a low-dimensional set of collective
variables (CVs).45,48–51 Such a bias allows for an efficient
sampling of phase space, enhancing the escape from long-
lived metastable states. Significantly, this result is achieved
with little a priori knowledge of the free energy landscape
and provides an estimate of the unbiased free energy sur-
face [FES, F(S)]. For a detailed description of WTMetaD, we
refer the interested reader to the studies of Barducci et al.,45,48

and Valsson et al.,51 and for a brief overview of its applications
in crystallisation studies, we refer to the work Giberti et al.52

A. Force field

Here, we employ the rigid three-site Transferable Poten-
tials for Phase Equilibria (TraPPE) force field53,54 (Table I),
with the Lennard-Jones potential and Lorentz-Berthelot com-
bination rules.

This force field is chosen among a variety of models devel-
oped for CO2

24,26,55,56 since, even if it is not tailor-made for
the high temperature and high pressure regime of interest, it
outperforms other models in the description not only of the
liquid-vapor equilibrium at high pressures55 (up to 100 MPa)
but also of the melting curve of dry ice (up to 1 GPa) and
the triple point.56 Moreover, it has a better representation
of the quadrupole, which is indeed relevant in carbon diox-
ide molecules and plays an important role in the solid phase
stabilisation.57
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TABLE I. Parameters for the TraPPE force field.

mC mO σC–C (nm) σO–O (nm) εC–C (kJ/mol)

12 16 0.280 0.305 0.224
εO–O (kJ/mol) qc (e) qo (e) lC–O (Å) αO–C–O (deg)
0.657 0.70 �0.35 1.160 180

We employ two dummy atoms per molecule58 to maintain
the desired rigidity and linearity of CO2, avoiding instabil-
ity caused by the rigid 180◦ OCO angle. The most relevant
limitation of this model might be the rigidity of the CO2

molecules.41

B. Simulation setup

Long-range corrections for the van der Waals interactions
are included through the particle mesh Ewald (pme) method.
From consistency checks on the effect of the cutoff value on
the system volume and energy when treated with pme, we find
that 0.7 nm provides a good trade-off between accuracy and
computational cost.

Isothermal and isobaric (NPT) simulations use a Bussi-
Donadio-Parrinello thermostat59 and a Berendsen anisotropic
barostat60 for T and P control, respectively. The time step
employed is 0.5 fs.

For WTMetaD, the initial height of the Gaussians is
10 kJ/mol, with width 7.81 × 10�3 for both CVs. The bias
factor is either 100 or 200 to allow the exploration of a wide
portion of the phase-space. Moreover, we limit the elongation
of each box side from 1.7 to 3.0 nm through the introduc-
tion of a repulsive potential. This action prevents an excessive
and irreversible distortion of the box when the transition to
the melt is observed under anisotropic control. We highlight
that such restraints are active only when the system undergoes
large fluctuations in the liquid state. The T-P conditions inves-
tigated include areas of the phase diagram where the most
stable phase changes from the melt to phases I to III. At
350 K, the range of pressure investigated ranges from 1 to
25 GPa (1, 3, 5, 8, 12, 25 GPa). The initial configuration
of WTMetaD simulations is phase I, initially equilibrated for
500 ps at NVT, then 5 ns NPT without pme, and additionally
5 ns NPT with pme. All simulation boxes contain supercells
of 256 CO2 molecules.

We perform MD and WTMetaD simulations with Gro-
macs 5.2.161 and Plumed 2.2;62 the building of the cells and the
post processing of the data employs mainly Visual Molecular
Dynamics (VMD),63 to visualise trajectories, and MATLAB
(R2015a).

C. Committor analysis

As mentioned in the opening, we complement our
WTMetaD simulations with a committor analysis. While for
a detailed description, we refer to the studies of Tucker-
man47 and Peters,46 we recall here some useful definitions
and procedures.

The committor is defined as the probability pB(r1, . . . , rN )
≡ pB(r) that a trajectory initiated from a configuration

r1, . . . , rN ≡ r with velocities sampled from a Maxwell-
Boltzmann distribution will arrive in state B before state A.47

In our study, we identify A as phase I and B as III. An important
point on the pathway connecting two basins is the transition
state (TS, indicated with *), which is the ensemble of config-
urations r with CV S(r) = S* that have committor pB(r) = 0.5;
on free energy hypersurfaces, it corresponds to a saddle point,
i.e., the highest energy state along the minimum energy path
connecting two basins.

To locate the saddle point, we extract 135 configurations
along the transition pathway, and for each of them, we run
between 10 and 40 unbiased NPT simulations with differ-
ent initial velocities randomly generated from a Maxwell-
Boltzmann distribution. Simulations are stopped when they
commit either basin I or III and they are assigned an outcome
value of 0 or 1, respectively. The average of the outcome val-
ues obtained from the set of trajectories generated for a given
configuration provides an estimate of the committor pIII (r) for
that configuration.

We have further analyzed the histogram test, which,
instead, studies the committor distribution, P(pB(r)), which is
the probability that a configuration r with S(r) = S* has com-
mittor pB(r) = p∗. The shape of this distribution is a descriptor
of the capability of the CVs to represent the transition mech-
anism: a Gaussian distribution results from good CVs, while
a flat or parabolic distribution corresponds to CVs that do not
describe adequately the transition state ensemble.

To evaluate the committor probability, we consider 41
configurations with CVs close to the estimated transition state,
and for each of them, we evaluate the committor, pm

III , as
previously described, and build the histogram of P(pIII ).

D. Collective variables

In this work, we use a CV developed by Salvalaglio
et al.64–66 and employed it also in the work of Giberti et al.67

In particular, every crystal structure has a unique typical local
environment around each CO2 molecule, a fingerprint of the
arrangement, and this order parameter, hereafter called λ,
exploits this feature to effectively distinguish polymorphs.
Indeed, λ describes crystallinity, a global property of the
ensemble, as the sum of local contributions, Γi; each Γi takes
into account both the local density, ρi, within a cutoff, rcut ,
around the i-th molecule, and the orientation, θij, with respect
to its neighbours [Fig. 2(a)]. The value of λ ranges between
0 and 1, as it expresses the portion of molecules in the sys-
tem that are ordered according to the geometry of a defined
polymorphic structure.

A complete description of the formulation of this param-
eter is reported in the supplementary material and the cited
literature.

From the characterization of the local order in polymorphs
I and III, we can observe and compare peculiarities of the
angle distribution of each phase [Figs. 2(b) and 2(c)], useful in
the following tuning of CVs. First of all, the arrangements of
phases I and III present similarities, as there is overlap between
the distributions of two characteristic angles, which are how-
ever centred in different values (in around 70.2◦ and 109.8◦

for form I, while in around 75.6◦ and 104.4◦ for form III).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
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FIG. 2. (a) Visual model of the environ-
ment around a CO2 molecule within the
sphere of radius rcut . [(b) and (c)] Angle
distribution over a range of temperature
for phases I at 5 GPa (b) and III at 25 GPa
(c). The green arrow points an exam-
ple for the melt. [(d) and (e)] CV-space
(λI -λIII ) for phase I, within the dotted
blue line, and phase III, within the dot-
ted orange line at 5 GPa over a range of
T from 50 to 1000 K (d) and at 350 K
over a range of P from 5 to 25 GPa (e);
the arrows point the direction of growing
temperature or pressure.

Moreover, phase III populates two additional characteristic
angles, with values smaller than 10◦ and bigger than 170◦,
which might relate to the presence of layers. We remark also
that the melt has a sinusoidal distribution of angles, con-
sistent with a random orientation of molecules. As a final
note, increasing temperature enhances the fluctuations of the
molecules in the crystal without modifying the mean value of
the characteristic angles; an exception to this are the layer
angles of form III that, instead, change from 1◦ to 8◦ and
from 179◦ to 172◦ with increasing temperature. The number of
neighbours in the first coordination shell shows, instead, a nar-
row distribution and the same value for the two structures, i.e.,
12. Such observations lead to the tuning of two CVs, namely,
λI and λIII (see supplementary material).

Order parameter, λI : This CV expresses the degree of
phase I-likeness. The purpose of the tuning is to maximize λI

when the crystal structure is phase I. To reach this aim, two
characteristic angles, θk , are included, which are the ones of
phase I (Table II).

Order parameter, λIII : Similarly, the tuning of λIII aims
at maximising the parameter in the presence of phase III.
However, in this case, we do not talk about phase III-
likeness because as θk we select only the specific angles that
characterize layers (Table II).

For both CVs, the cutoff rcut is set to 4.0 Å, as it delimits
the first coordination shell; the width of the Gaussians asso-
ciated with the angles, σk , instead, is in both cases set to
maximise the difference between the value of λ in phase I and
the melt and it is the same for both the characteristic angles
due to the symmetry (Table II).

TABLE II. Tuning of the λ-order parameters. The angle set, θ1 and θ2, and
only one Gaussian width, as for symmetry reasons it is the same for both
angles, are reported. The cutoff values for the number of neighbours, ncut , and
the coordination shell, rcut , are presented as well.

θ1 (deg) θ2 (deg) σ1 = σ2 (deg) ncut rcut (Å)

λI 70.47 108.86 14.32 5 4
λIII 8.02 171.89 11.46 5 4

The phase-space evaluated on unbiased MD simulations
suggests that the CVs are effective in the distinction of separate
and well-defined areas for each phase [Figs. 2(d) and 2(e)].
Furthermore, the average order parameters can be extracted as
an ensemble average.

Temperature and pressure act on the location where phases
are projected in CV-space: on the one hand, increasing temper-
ature decreases the values of both λs while widening their fluc-
tuations, consistently with the fact that the volume increases
and the molecules vibrate more; on the other hand, increas-
ing pressure leads to an increase in the absolute value of the
parameters, while narrowing their distribution.

III. RESULTS
A. Free energy of the I-III polymorphic transition
as a function of pressure

In the following, we present the results of our study of the
I–III polymorphic transition in CO2.

First, we just mention that from preliminary MD unbiased
simulations, phase III has a smaller volume than phase I under
all conditions investigated (∼2%, in agreement with exper-
imental results); the volume predictions, however, slightly
overestimate the experimental values (Fig. S4 in the supple-
mentary material). In addition, for the same T-P settings, form
I presents a lower potential energy than III: the potential energy
of the system is thus not a good indicator of the relative thermo-
dynamic stability at finite temperature. We report the outcome
of MD in the supplementary material.

Then, we discuss the results obtained from WTMetaD
simulations run with the setup discussed before.

To begin with, we observe the temporal evolution of the
CVs, for the explicative case at 350 K, 5 GPa [Figs. 3(a)
and 3(b)]; the other conditions investigated (Fig. S5 in the
supplementary material) behave in a reasonably similar way. In
the plots in Fig. 3, it is possible to identify the system arranged
in phase I as λI (a) is high (fluctuations between 0.7 and 0.9)
and λIII (b) is below 0.05 and does not present relevant fluc-
tuations, while the box edges (c) have the same length. The

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
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FIG. 3. Time evolution of the CVs λI (a) and λIII (b) over 150 ns, and of the
box edges (c) for the first 30 ns, of WTMetaD at 350 K, 5 GPa.

exploration of phase III’s basin, instead, shows wider fluctua-
tions in the range of 0.36–0.6 for λI (a) and 0.1–0.4 for λIII (b);
the box edges, moreover, fluctuate around the unbiased aver-
age. Thanks to this clarification, it is possible to spot in Fig. 3
that the system undergoes a significant number of recrossings
between polymorphs I and III, in particular, four in slightly
more than 5 ns at the beginning of the run. In addition, the
system explores areas of the CV-space which do not represent
any of these polymorphs, feature that will result more evident
from the plots of the free energy surface (Fig. 4). On the same
surfaces, it will be possible to notice the important role that
the mentioned fluctuations of the CVs have on the shape of the
basins for the two phases.

Furthermore, by observing the output trajectories and data
of WTMetaD, we remark two interesting behaviours: on the
one hand, CO2 molecules in the simulation box rearrange with
a concerted motion during a phase transition; on the other
hand, we find that such a transition is anisotropic, meaning
that each side of the box is equally likely to either elongate
or shorten from I to III [Fig. 3(c)]. In particular, this latter
observation is important since by biasing as CVs order param-
eters that account for the spatial orientation of molecules, we
obtain the consequential deformation of the supercell, without
considering the box volume or edges as CVs, as instead done
in previous MetaD works on polymorphism.5,13–16,18–20

Next, we present the free energy surfaces (FESs) recon-
structed by WTMetaD. In such FESs, the free energy is
expressed as a function of the CVs: G(λI , λIII ) [Figs. 4(a) and

4(f)–4(i)]. Before proceeding with the discussion, we under-
line that the FES at 25 GPa is not reported, as no recrossing
is sampled from phase III; in addition, the results at 1 GPa are
taken into account only qualitatively since under such condi-
tions phase III is so unstable that spontaneously evolves to I in
standard MD and it is thus not possible to locate its basin.

Some considerations can be drawn from the study of the
FESs. First of all, the location of the minima on the FES for
phases I and III is accurately close to the prediction in Figs.
2(d) and 2(e). Moreover, phase III has a much wider basin
than phase I and it develops mainly along λIII , while phase I’s
mainly along λI , as underlined for the temporal evolution of
the CVs (Fig. 3). As mentioned before, the system explores a
wide area of CV-space and, in particular, the presence of black
boxes in Fig. 4 highlights the presence of defected phase I
structures, which we shall analyze in detail later on. Relevant
structural arrangements are reported in Figs. 4(b)–4(e).

In order to compare the results of WTMetaD with the
experimental phase diagram, we study quantitatively the
relative stability between polymorphs.

Keeping in mind that the free energy is a function of the
probability distribution of the CVs, it is possible to evaluate
∆GI−III as follows:

∆GI−III = GI − GIII = −β
−1 ln

(
ppI

ppIII

)
, (1)

where ppI is the probability of phase I, ppIII is the probability
of phase III, and β is 1/kT. The probability of each phase is
computed as the integral of the distribution within the basin it
occupies on the CV-space,

ppI =

∫
I

p(λ) dλ =
∫ ∫

λI ,λIII ∈I
p(λI , λIII ) dλI dλIII , (2)

ppIII =

∫
III

p(λ) dλ =
∫ ∫

λI ,λIII ∈III
p(λI , λIII ) dλI dλIII . (3)

The integration domains are identified by coloured boxes on
the FES in Figs. 4(a) and 4(f)–4(i). In Fig. 5(a), we report
relevant ∆G values over the range of pressure considered.
The relative stabilities in Fig. 5(a) together with the FESs
in Fig. 4 allow us to draw some considerations on the phase
diagram. We observe that while the boundary of the solid-
melt transition is in good agreement with experiments, the
I–III transition pressure appears to be underestimated. From
the ∆GI−III pattern shown in green in Fig. 5(a), the transi-
tion pressure at 350 K can be estimated as around 4.5 GPa.
Despite underestimating the experimental value, the transition
pressure agrees with the literature results obtained by treating
CO2 as a rigid molecule.38–40 We also recall that commonly
experimental works rather than a single value report a tran-
sition pressure interval (see the Introduction), to which our
estimation is closer.

Nevertheless, it is possible to notice that WTMetaD sim-
ulations are able to represent the overall trend observed in the
phase diagram: increasing pressures increase the stability of
phase III, while at decreasing values of pressure, phase I is
more stable, ultimately reaching the boundary with the melt.

Since the behaviour of solid carbon dioxide is so well
described, it is possible to consider a translation of the phase
diagram.
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FIG. 4. FESs at 350 K under a range of pressure: 1 GPa (f), 3 GPa (g), 5 GPa (a), 8 GPa (h), and 12 GPa (i). The colour bar spaces for all surfaces from 0 to
1400 kJ/mol. Blue boxes locate the basin of phase I, orange boxes locate the basin of phase III, and the melt is within a green box while black rectangles identify
phase I with defects. In addition, (a) reports also the minimum free energy transition path (red). The structures reported are III in (b), I in (c), and two examples
of packing faults in (d) and (e); the letters are an aid to compare the packing. Only one plane is displayed as the most explicative of defects; however, while one
of the not shown planes is almost perfect, the other has the correct motif, but the layers are not perfectly aligned.

FIG. 5. Relative stability between different phases (a) and breakdown of the free energy (b) at 350 K and increasing pressure from 3 to 12 GPa. In (a), green
squares represent ∆G between phase I and III, red squares represent ∆G between perfect phase I and defected structures I, while blue squares represent ∆G
between a comprehensive phase I, including configurations with and without defects, and phase III. Positive values of ∆G mean that phase III (green, blue) and
defected I (red) are more stable. The error bars are obtained from a weighted averaged on simulation time, similar to the work of Berteotti et al.68 In (b), the
focus in on the contributions to the relative stability between phases I and III: ∆G obtained by WTMetaD is again plotted in green, yellow represents the internal
energy difference of the two phases from MD, and red represents their difference in mechanical work from MD, while blue represents the entropy difference
obtained from the definition of Gibbs free energy [Eq. (4)]; we report the entropic contribution as -T∆S so that for all the terms considered negative values
stabilize phase I and positive phase III. In both graphs, dashed lines are an aid to the eye to visualise the trend.
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A further step in the analysis of the I–III relative stabil-
ity is the breakdown of the free energy in its internal energy,
mechanical work, and entropy contributions. With this aim,
we first evaluate the difference in internal energy, ∆U, and
mechanical work, P∆V , between phase I and phase III from
the ensemble averages computed from the unbiased MD sim-
ulations; the entropy is thus obtained from the macroscopic
definition of Gibbs free energy,

∆G = ∆U + P∆V − T∆S. (4)

From the results in Fig. 5(b), it is possible to notice some major
features. First of all, the internal energy, ∆U, stabilizes form
I, while P∆V is significant in the stabilisation of phase III;
in both cases, their contribution becomes more relevant with
growing pressures. The entropic term, instead, tends to favour
form I, a part from a pressure of 12 GPa.

1. Defected phases

As mentioned in the analysis of the CVs (Fig. 3) and of
the FESs (Fig. 4), at pressure equal and above 3 GPa, our sim-
ulations allow us to identify additional basins corresponding
to structures which are not known a priori and correspond to
defected phase I configurations [Figs. 4(d) and 4(e)]. Indeed,
such structures are similar to phase I, being almost cubic
and having a comparable arrangement; however, they display
packing faults, planar defects that break the orientation motif
recognisable in perfect phase I structures. The phase I arrange-
ment presents the repetition of rows of CO2 that alternate the
orientation with respect to the Cartesian axis according to an
ABABABAB sequence [Fig. 4(c)], while the defected struc-
tures replicate two or more AA or BB motifs [Figs. 4(d) and
4(e)]. To complete the analysis of these configurations, we run
unbiased simulations of the defected structures under the same
T-P conditions as the corresponding WTMetaD. These trajec-
tories show that defected configurations do not spontaneously
undergo any transition, confirming that these configurations
are metastable structures and that the appearance and disap-
pearance of defects is an activated event. It should be noted

that close to the form I melting line, defected phase I con-
figurations do not correspond to local minima in the FES
[Fig. 4(f)] and do not emerge as metastable intermediates in
the melting process which, at 350 K and 1 GPa, resembles
a single barrier crossing event rather than a defect-mediated
process.69,70 It is particularly remarkable of the capability of
WTMetaD to consistently sample such structures since despite
this phenomenon can take place in experiments, it is consid-
ered to be under-represented in the current literature.71 In
addition, we note that the stability of the defected config-
urations increases with pressure, becoming ultimately more
stable than phase I without defects at 12 GPa [∆G in red in
Fig. 5(a)]. A thorough analysis of this trend is beyond the scope
of this paper and we reserve to discuss it in depth in a future
study.

B. Committor analysis

In the first part of this work, we have shown that our λ-
order parameters are effective CVs in sampling the transition
between polymorphs I and III, evaluating their relative stabil-
ity, and exploring the phase space. In the following, we focus
instead on the mechanism of the title transition. In particu-
lar, such an analysis allows us to evaluate the goodness of
the CVs in the representation of the process and to estimate
quantitatively the transition pathway and the energy barrier to
overcome.

First of all, we characterize the minimum free energy path
(MFEP) that connects the free energy minima correspond-
ing to phases I and III. The MFEP provides a representation
in CV-space of the most probable set of intermediate states
involved in the transition. Furthermore, the free energy profile
along this path yields an estimate of the free energy barrier
associated with the polymorphic transition. As an initial esti-
mate of the MFEP, we propose an approximation obtained
as the combination of the projection of FES along the CVs,
more precisely, of basin I along λI and of basin III along
λIII , due to the observation of typical L-shaped FES; fur-
ther details about these approximations are provided in the

FIG. 6. (a) Transition pathway in the space of CVs at 350 K over the range of pressures investigated. (b) Projection of the free energy along the curvilinear path
coordinate at 350 K over a range of pressures. The progression along the MFEP spaces between 0 in phase III and 1 in phase I. The minimum of phase I’s basin
is the free energy reference. In both graphs, blue dots represent phase I, while orange represent phase III.
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supplementary material. We then employ such a path as edu-
cated guess for an optimisation routine that enables to obtain
the actual MFEP from a series of trial moves, whose accep-
tance is based on the free energy value. The algorithm is robust

and the path converges to the same route from different and
less educated initial guesses.

In Fig. 4(a), we report the MFEP on the FES at 350 K,
5 GPa, while in Fig. 6(a), we compare transition pathways

FIG. 7. Committor analysis results, with the transition mechanism described only by the CVs [(a) and (c)] or by the CVs and the box anisotropy [(b) and (d)–(f)].
In (a), coloured dots represent configurations, r, extracted along the MFEP (black) on the CV-space; their colour is based on the committor of each configuration,
shading from black for pIII (r) = 0 to red for pIII (r) = 1. The same colour code applies to the inset in (a), which reports the committor as a function of the
progression along the MFEP; in the same graph, the sigmoid dashed line is an aid to the eye to read the trend. The histogram test on configurations r so that λ(r)
= λ∗ of the TS shows three peaks (c). The inclusion of the box anisotropy to the λ-order parameters to describe the mechanism requires a 3D representation,
and thus in (b), we report the free energy as a function of these three parameters through a colour plot and the transition path through red dots; the results of the
histogram test (d) on configurations with the same λI , λIII , and anisotropy of the TS confirm that this set of parameters is effective and complete. In (e), the free
energy is plotted as a function of the progression along the 3D path highlighted in (b), with reference in phase III. An orange dot locates phase III (at progression
zero along the path), a blue dot locates phase I (at progression 1), and a red dot locates the transition state; representations of the structures of phase I, phase III,
and the TS are within blue, orange, and red rectangles, respectively. The same colour code is employed for the angle distributions for phase I, phase III, and the
TS presented in (f).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
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evaluated at different pressures. Interestingly, pressure only
slightly affects the typical L-shape of the transition pathway,
with the major difference being the location of the minima.
Moreover, at this level of detail, the energy barrier to overcome
from phase I to III appears similar at all pressures investi-
gated [Fig. 6(b)]. We also highlight that the MFEP converges
much earlier than the simulation, and no alternative routes con-
necting polymorphs I–III arise (Fig. S7 in the supplementary
material).

The next step towards a quantitative characterization of the
transition mechanism is the validation of the MFEP through a
committor analysis,46,47 with a histogram test on the apparent
transition state. We discuss hereafter the explicative case of
350 K, 5 GPa.

To begin with, we locate the transition state by evaluat-
ing the committor of 135 configurations extracted along the
MFEP. Interestingly, configurations with the committor dif-
ferent from zero and one are not evenly distributed along the
transition pathway, but grouped in a narrow area around the
saddle point, estimated in λ∗I = 0.65, λ∗III = 0.034; as a result,
the cumulative distribution along the path resembles a steep
sigmoid [Fig. 7(a)]. The behaviour shown in Fig. 7(a) suggests
that the order parameters alone might not be enough to account
for the transition mechanism. The validation proceeds with a
histogram test on the saddle point. We evaluate the committor
of 41 configurations with λ(r) around λ∗ and represent the
results on a histogram [Fig. 7(c)]. Such a histogram shows
three peaks, a sign that our CVs alone are not effective reac-
tion coordinates and other parameters need to be included in
the mechanism description.

In order to identify the additional parameters to take into
account, we deepen our analysis and further investigate the
dependence of pIII (r) on properties such as potential energy,
volume, and box dimensions (Fig. S6 in the supplementary
material). The results suggest that the deformation of the lattice
plays a role in the representation of I–III transition mecha-
nism. We define this deformation through the simulation box
anisotropy, i.e., the ratio between the longest and the shortest
sides of the cell; its value spans from 1 in cubic phase I to
1.35 in orthorhombic phase III. As a result, we note that only
configurations r along the pathway with anisotropy of the box
between 1.14 and 1.145 have a committor non-identical to 0
or 1, and, in particular the TS is uniquely located in λ∗I = 0.65,
λ∗III = 0.034, anisotropy∗ = 1.1421, while characteristic orien-
tations are presented in Fig. 7(f). We thus repeat the histogram
test on 19 configurations with CVs and anisotropy close to
the TS and the outcome shows, as expected, a Gaussian shape
[Fig. 7(d)]: as a result, to effectively describe the mechanism of
the I–III transition of solid CO2, all three parameters, namely,
λI , λIII , and anisotropy, have to be taken into account.

We thus evaluate72 the free energy as a function of the
three parameters of interest: G(λI , λIII , anisotropy). On such
FES, we identify the 3D MFEP that connects phase I to phase
III [Fig. 7(b)]: its projection on the λI − λIII plane reasonably
overlaps with the MFEP previously evaluated; moreover, the
anisotropy of the box monotonically increases from I to III,
and vice versa.

Summing up the analysis carried on in this second part
of the work, the transition from cubic phase I to orthorhombic

phase III can be thus described as the sequence of the following
actions:

• The CO2 molecules first tend to distort the typical
phase I lattice and, as a consequence, the value of λI

decreases, with no relevant increase of λIII (horizontal
branch of the L-shaped pathway); at the same time, the
box starts deforming, elongating one side and reducing
the others, thus increasing its anisotropy.

• Then, when the deformation of the cell reaches the
anisotropy threshold value of the transition state, the
system completes the rearrangement to phase III;
indeed, the molecules start organizing into parallel
layers and the volume decreases. From this point, the
transformation proceeds on the vertical branch of the
L-shaped pathway, with increasing λIII for relative
small variations of λI .

The motion of the molecules in the crystal during the transition
is concerted.

From the investigation of the 3D MFEP, we obtain also
quantitative information about the height of the barrier for the
polymorphic transformation: for a system composed by 256
CO2 molecules at 350 K, 5 GPa, the transition state is located
at about 202 kJ/mol [Fig. 7(e)], with reference zero in phase
III, i.e., the absolute minimum of the FES.

IV. CONCLUSIONS

In this work, we investigated the I–III transition in
CO2 under pressure by combining molecular dynamics, well-
tempered metadynamics, and committor analysis.

First, we performed WTMetaD simulations at 350 K over
a range of pressure (1–25 GPa) with two order parameters as
CVs. These parameters, λI and λIII , are built on the local order
around each CO2 molecule and account for the reorientation
of the molecules in the crystal. This feature allows us to clearly
distinguish in the λI -λIII CV space configurations that belong
to phase I or phase III and to clearly resolve amorphous con-
figurations. Moreover, metadynamics exploration with these
CVs allows us to sample the formation of packing faults in
phase I. Interestingly, we observe the deformation of the cell,
a global rearrangement of the configuration, taking place as
a consequence of biasing along variables λI and λIII , which
account for local order. The rotationally invariant character
of these variables also allowed us to sample the I–III transi-
tion without defining a priori a deformation direction for the
simulation box.

From the FESs resulting from WTMetaD, we evaluated
the free energy difference between polymorphs; we observed
that the predicted trend of the I–III relative stability over pres-
sure is in agreement with the carbon dioxide phase diagram:
increasing pressures move from the melt-phase I boundary,
to the region of stability of phase I, and to the one phase III.
We estimate the transition pressure at ∼4.5 GPa, in agreement
with previous literature studies that considered carbon dioxide
as a rigid molecule.38–40 Furthermore, our model suggests that
the stability of the defected configurations increases with pres-
sure. While at low pressures, form I without defects is more

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-011735
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stable than the ensemble of its defected counterparts, and at
high pressures, the latter dominate.

Alongside a description of the I-III transition thermody-
namics, we assess the I-III polymorphic transition mechanism
for the representative case at 350 K, 5 GPa. To this aim, we
identify the MFEP connecting phase I to phase III in CV space
and we validated the pathway carrying out a committor anal-
ysis and a histogram test on an ensemble of configurations
corresponding to the saddle point in CV space. From this
analysis, it emerges that to quantitatively identify the tran-
sition mechanism, we need to consider the anisotropic defor-
mation of the CO2 supercell alongside the order parameters
accounting for the local arrangement of CO2 molecules. This
analysis allowed us to identify a reliable approximation of the
transition pathway, to characterise the I-III transition as a con-
certed distortion process, and to quantify the free energy barrier
associated with the transition.

Our work shows that by combining opportunely designed
order parameters with state-of-the-art enhanced sampling
methods and committor analysis, we can provide an in-depth
characterisation of both thermodynamics and transition mech-
anisms of polymorphic transformations in molecular crystals
at finite temperature.

SUPPLEMENTARY MATERIAL

See supplementary material for further details on the col-
lective variables and additional results on MFEP, committor
analysis, and unbiased simulations.
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