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ABSTRACT 

Buckling-restrained braces (BRBs) are often employed for the seismic retrofit of existing build-

ings and the design of new structures, given their significant contribution in terms of stiffness and 

added damping. However, BRBs are characterized by a low lateral post-elastic stiffness, leading 

to excessive residual deformations that may compromise reparability. Moreover, accumulation of 

plastic deformations in the BRBs may compromise the capability of withstanding multiple earth-

quakes and aftershocks. The objective of this paper is to provide insight into the performance and 

residual capacity of dual systems made of BRB frames coupled with moment-resisting frames, 

through a simplified single-degree-of-freedom model. A non-dimensional formulation of the 

equation of motion is introduced, the statistic of the normalized peak, residual displacements and 

cumulated ductility of the system is evaluated for a set of ground motion records. Different values 

of the BRB target maximum ductility and coupled frame properties are considered.  

SOMMARIO 

I controventi ad instabilità impedita (BRB) sono spesso impiegati per l’adeguamento sismico di 

edifici esistenti e per la progettazione di nuove strutture, grazie al loro contributo significativo in 

termini di rigidezza e smorzamento aggiunto. Tuttavia, a causa della ridotta rigidezza in campo 

post-elastico, l’uso dei BRB potrebbe indurre eccessive deformazioni residue compromettendo la 

riparabilità. Inoltre eccessivi accumuli di deformazione plastica nei BRB potrebbero compromet-

tere la capacità di sostenere terremoti ripetuti o aftershocks. L’obiettivo di questo lavoro è di for-
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nire una visione d’insieme delle prestazioni e capacità residua di sistemi duali caratterizzati 

dall’accoppiamento di telai momento-resistenti e telai con BRBs. A tal fine si considera un mo-

dello ad un grado di libertà e una formulazione adimensionale dell’equazione del moto, e si valuta 

mediante un’analisi parametrica estesa la statistica degli spostamenti normalizzati, residui e della 

duttilità cumulata per un gruppo di terremoti, considerando diversi valori della domanda di duttili-

tà dei BRBs e diverse proprietà dei telai accoppiati.  

1 INTRODUCTION 

Buckling-restrained braced frames (BRBFs) are a type of minimal damage structure where the 

horizontal forces are resisted and their energy dissipated by elastoplastic passive devices named 

buckling-restrained braces (BRBs) [1]. The use of BRBs is gaining popularity as lateral resisting 

system in seismic areas to be employed both for new constructions and rehabilitation of existing 

buildings. In BRBs, a sleeve provides buckling resistance to an unbonded core that resists axial 

stress. Hence, the core of the BRB can develop axial yielding in compression in addition to that in 

tension, ensuring an almost symmetric hysteretic behavior [1]. While the large and stable dissipa-

tion capacity of BRBs has been proven by many experimental studies [2], their low post-yield 

stiffness may result in inter-story drift concentration [1] and residual interstorey drifts in the range 

of 40 to 60% of the maximum drift [3] leading to high repair costs and disruption of the building 

use. This issue, which may impair the cost-effectiveness of BRBFs, could be avoided by using 

special steel moment-resisting frame (SMRF) in parallel with the BRBF to create a dual system 

configuration [4][5]. In [4] the seismic response of a 3-story and a 6-story BRBFs with and with-

out a parallel SMRFs designed to resist the 25% of the design base shear is investigated, showing 

that the SMRF in parallel allows to reduce the residual drifts by about 50%, while providing simi-

lar performances in terms of peak inter-story drift demand. The efficiency of dual BRBF-SMRF 

systems is also demonstrated in [5] investigating a 7-story frame. BRBs are also employed to en-

hance the lateral strength, stiffness as well as the dissipation capacity of existing reinforced con-

crete buildings [6] forming a dual system. These studies evaluated the efficiency of dual BRBF-

SMRF systems by considering only few case studies, without providing general indications on the 

influence on the seismic performance of values of important parameters such as the shear ratio, 

the stiffness ratio and target design ductility of the two systems.  

In this paper, a comprehensive parametric investigation is carried out to shed light on this prob-

lem, and provide useful recommendations on the preliminary design. The problem is analyzed by 

assuming that both the BRBF and the SMRF can be described as single degree of freedom 

(SDOF) systems. While this approach is not suitable for describing the behavior of complex mul-

ti-level frames, it allows to derive a non-dimensional formulation of the problem and highlight the 

few characteristic parameters that control the seismic performance. The variation of these parame-

ters permits to explore the performance of a wide ranges of configurations.  

2 PROBLEM FORMULATION 

The equation of motion governing the seismic response of a SDOF system representative of a du-

al system, as represented in Fig. 1(a), can be expressed as: 

     
f f b g

mu t c u t f f u t     (1) 

where m and cf denote respectively the mass and the viscous damping constant of the system, ff 

the resisting force of the frame, fb the resisting force of the BRB, üg(t) the ground acceleration 

input. The frame is assumed to have an elastoplastic behavior, with initial stiffness kf, yield dis-

placement ufy and ductility capacity fc as reported in Fig. 1(b). A specific hysteretic constitutive 
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model [1] is used for the BRB with initial stiffness kb, yield displacement uby and ductility capaci-

ty bc as reported in Fig. 1(b).  
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Fig. 1. (a) SDOF dual system with BRB, (b) Constitutive laws of the dual systems 

Such a SDOF model can describe a wide range of structural configurations, e.g. the case of 

BRBFs combined with SMRFs to form a dual system [4][5] or retrofit applications involving 

BRBs inserted into existing reinforced concrete frames [6]. The seismic input uncertainty is treat-

ed by introducing a seismic intensity measure (im) [7]. The ground motion randomness for a fixed 

intensity level, im, usually denoted as record-to-record variability, can be described by selecting a 

set of ground motion realizations characterized by a different duration and frequency content and 

scaling these records to the common im value. The system response for a ground motion with an 

intensity im can be expressed as: 

     
f f b g

mu t c u t f f im u t      (2) 

where  
g

u t  denotes the ground motion records scaled such that im = 1 for that record. In this 

paper, the spectral acceleration, Sa(0,), at the fundamental circular frequency of the system, 0, 

for the damping factor  is employed as im. 

2.1 Nondimensionalization of equation of motion 

Based on Eqn.(2), the maximum relative displacement of the system, umax, can be expressed as: 

 
max

, , , u , , u ,
f f fy b by

u f m c k k im  (3) 

The 8 variables appearing in Eqn.(3) have dimensions: [umax]=L, [m]=M, [cf]=MT-1, [kf]=ML-2, 

[ufy],=L, [kb]=ML-2, [uby]=L, [im]=LT-2 where the 3 physical dimensions are the time T, the mass 

M, and the length L. By applying the Buckingam -theorem [8], Eqn.(3) can be conveniently re-

formulated in terms of dimensionless parameters, denoted as -terms identifying the parameters 

that control the seismic response of the system and also reducing the number of variables. The 

problem involves 3 physical dimensions and 8 dimensional variables, thus, only 8  3 = 5 

dimensionless parameters are needed. By selecting the systems mass m, the seismic intensity 

measure im, and the initial frame stiffness kf as repeating variables, the -terms can be derived 

and after manipulation, the following alternative set of terms can be obtained: 

2

max 0 max max

0

 ,   ,   ,   ,   
2

f b

u f b

fy by f

cu u u f

im u u m f


   


       (4) 

where 0
2 = (kb + kf)/m denotes the square of the circular frequency of the SDOF dual system. 

The parameters, f and b denote the ductility demand of the frame and the BRB respectively, 

while u denotes the displacement demand normalized with respect to im/0
2. It is noteworthy 

a) b) 
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that by considering Sa(0,) as im, the nondimensional response u, can be interpreted to as the 

displacement amplification factor being the ratio between umax and the pseudo-spectral displace-

ment Sd(0,) = Sa(0,)/0
2. The parameter  [6] is the ratio between the strength capacity of 

the bracing system and that of the frame. While the parameters f, b and u depend on the re-

sponse of the system through umax,  and  are independent from the response. Other response 

parameters of interest such as the normalized cumulative plasticity demand of the BRB b,cum, and 

the normalized residual displacement of the system res, can be expressed as: 

 ,

,
, ,  ,  ,

bp cum

b cum f b u

by

u
f

u
                

2

0

  , , , ,
res

res f b u

u
f

im


        (5) 

It is noteworthy that the system response in terms of these parameters depends on the characteris-

tics of the input via the circular frequency 0 [9]. 

3 PERFORMANCE ASSESSMENT METHODOLOGY 

The objective of the proposed methodology is to evaluate how the coupled system behaves in cor-

respondence of the design condition, i.e. when the design earthquake strikes the coupled system 

whose properties are defined by prefixed performance criteria. Account is made of the fact that 

the BRBs are designed to control the imposed seismic demand, whereby an optimal condition cor-

responds to the BRBs and the frame reaching simultaneously their target ductility capacity under 

severe earthquake intensities [6][10]. In this way the maximum exploitation of the system dissipa-

tion capacity is ensured and the design criterion imposes a constraint on the values that can be 

assumed by the problem nondimensional parameters. 

By assuming a target ductility capacity bc for the BRB, and a target ductility capacity fc for the 

frame, the design condition is attained when b = bc and at the same time f = fc under the de-

sign earthquake input. In design practice, this condition is ensured by considering a deterministic 

performance measure [11], i.e. by considering the mean demand obtained for the different earth-

quake inputs describing the record-to-record variability effects. Given the system properties inde-

pendent from the response 0, , fc, bc, , the design condition can be found by the following 

optimization problem: find the value u
* of the normalized displacement demand such as 

f fc
   and 

b bc
  , where the over score denotes the mean across the samples. The follow-

ing procedure can be applied to ensure the attainment of the design condition under the set of rec-

ords employed to describe the seismic input: 

1. Select arbitrary values of 
*

max
u  and m, e.g. 

*

max
u  = 1m and m = 1ton, the corresponding 

nondimensional parameter values are: 

0
2

f
c m  ,  

*

max
/

fy f
u u  ,  

*

max
/

by b
u u  ,  

2

0

1 /
f

fy by

m
k

u u







,   /

b fy by f
k u u k ; 

2. Scale the records to a common value of the intensity measure e.g. im = 1; 

3. Perform nonlinear dynamic analyses for the different records; 

4. Evaluate the mean system displacement response 
max

u , if 
max

u  is equal to the target val-

ue 
*

max
u , then u =u

* where max
* = 

* 2

max 0
u im , and go to step 5, otherwise multiply 
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im by the ratio 
*

max max
/u u and restart in step 2 (this procedure corresponds to a linear in-

terpolation between the relation 
max

u  and im); 

5. Evaluate the statistics of res and of b. 

Steps 1-4 ensure that the design condition of the frame and the BRBs attaining simultaneously 

their performance target under the design earthquake input is achieved. 

4 PARAMETRIC STUDY 

4.1 Assumptions and seismic input description 

The performance of the systems corresponding to different values of 0, , fc, bc,  is studied in 

this section considering the constraint posed by the attainment of the design condition, which cor-

responds to u =u
*. The parameter 0 is varied in a range corresponding to a vibration period T0 

= 2/0 in the range between 0s and 4s. The strength ratio  assumes the values in the range be-

tween 0 and 100. The lower bound  =0 represents the case of the bare frame, whereas the upper 

bound represents the case of frame with pinned connections where the horizontal stiffness and 

resistance is provided only by the BRB. The parameter fc assumes values in the range between 1 

and 4. The case fc = 1 corresponds to a design condition where the frame behaves in its elastic 

range under the design earthquake. The case fc = 4 corresponds the a highly ductile behavior of 

the frame under the design earthquake. The parameter bc assumes values in the range between 5 

and 20. Values of 15-20 are typical of the ductility capacity of a BRB device. In some situations, 

such as the seismic retrofit of RC frames [6], the BRB device is arranged in series with an elastic 

brace exhibiting adequate over-strength. This leads to reduced values of the ductility capacity 

which may attain the lower bound of 5 for a very flexible elastic brace [12]. The value of 2% is 

assumed for the damping factor . 

A set of 28 ground motions is selected from the PEER strong motion database [13] on the basis of 

three fundamental parameters: site class, source distance, and magnitude. Ground motions associ-

ated with site class B, as defined in Eurocode 8 [14], a source-to-site distance, R, greater than 

10km, and a moment magnitude, Mw, in the range between 6.0 and 7.5 are considered. 

4.2 Parametric study results 

Fig. 2 shows the median value of the normalized peak displacement demand u
* versus the base 

shear ratio , for different values of the target BRB ductility bc. The different figures refer to 

different values of T0 and of the target frame ductility fc. All the curves attain the same value for 

 = 0 (SMRF only), and in particular for fc =1 they attain a value of about 1. This result is ex-

pected, since for  = 0 the response is not dependent on the BRBs ductility capacity, and for  

fc = 1 the system behaves (on average) elastically, so that the inelastic displacement coincides 

with the elastic one. On the other hand, for  = 0 and fc =4, a simple bilinear oscillator is ob-

tained and u can be significantly different than 1. In particular, higher values of the normalized 

peak displacement u
* are observed for low values of the period T0. In the case of dual system ( 

> 0), for low periods and increasing values of , the normalized peak displacement increases, 

whereas for high periods u
* remains almost constant and slightly less than 1.  

Fig. 3 shows the median value of the normalized residual displacement demand res versus the 

base shear ratio , for different values of the target BRB ductility bc. The different figures refer 

to different values of T0 and of the target frame ductility fc. It can be observed that when the sys-
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tem behaves linearly ( = 0,fc =1), the residual displacements are zero. Obviously, adding in 

parallel to a linear system a nonlinear one ( > 0 in Fig. 3 (a, c, e)) results in an increase of resid-

ual displacements. This increase is higher for higher values of the target BRB ductility bc and for 

lower vibration periods. On the other hand, if the frame exhibits a nonlinear behavior with a target 

ductility fc = 4, then it is characterized by high residual drifts of the order of 50-60% of the peak 

ones, and adding in parallel the BRBs ( > 0 in Fig. 3 (b, d, f)) does not increase them. It is note-

worthy that the values of res for  = 0 are consistent with the ones observed in [15] on bilinear 

oscillators. 

 

 

Fig. 2. Median value of the normalized peak displacement demand u
* vs the base shear ratio , 

for different values of T0 (0.1, 1 and 4s), of fc (1 and 4) and of bc (5, 10, 15 and 20) 
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Fig. 4 shows the median value of the cumulative plastic ductility demand in the BRBs b,cum ver-

sus the base shear ratio , for different values of the target BRB ductility bc. The different fig-

ures refer to different values of T0 and of the target frame ductilityfc. In general, the cumulative 

ductility demand reduces by increasing  because the system undergoes less cycles of vibrations. 

In other terms, by increasing  the system becomes more nonlinear and period elongation gener-

ally results in less cycles and less ductility accumulation under the same earthquake histories. In 

the case of pure BRBF (i.e. = 100), the cumulative ductility increases with the target ductility 

level. This increase is different for the different period considered. The obtained trends are quite 

different from those observed in [16], showing that the accumulated ductility ratios are nearly 

constant in BRBFs with T0 > 0.1s. Moreover, there is an almost linear relation between b,cum and 

bc. Thus, the curves b,cum/bc collapse into a single master-curve. 

 

Fig. 4. Median value of cumulative plastic ductility demand in the BRB b,cum vs the base shear 

ratio , for different values of T0 (0.1, 1 and 4s), of fc (1 and 4) and of bc (5, 10, 15 and 20) 

5 CONCLUSIONS 

This paper presented the results of study on the seismic performance of dual systems consisting of 

BRB frames coupled with moment-resisting frames, designed according to a criterion which al-

lows to control the maximum ductility demand on the BRB frame and the coupled frame. A sin-

gle-degree-of-freedom system assumption and a non-dimensional problem formulation allow to 

estimate the response of wide range of configurations while limiting the number of simulations. 

This permits to evaluate how the system properties, and in particular the values of the ratio  be-

tween the base shear of the BRB frame and the moment resisting frame, affect the median de-

mand of normalized displacements, residual displacements, and cumulative BRB ductility. The 

study results provide information useful for the preliminary design of the coupled system, and for 

the performance assessment of existing frames coupled with BRBs. 
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