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Summary: Persistent herpesviruses, including CMV, HSV-1, and HHV-6 were associated 

with greater telomere attrition over time in a sample of healthy adults aged 53-76. 

Abstract: 
The determinants of telomere attrition, a potential marker of cellular aging, are 

not well understood. Persistent herpesvirus infections including cytomegalovirus (CMV) 

infection may be particularly important for telomere dynamics via mechanisms such as 

inflammation, oxidative stress, and their impact on peripheral blood lymphocyte 

composition. This study examined the association of four human herpesviruses (CMV, 

HSV-1, HHV-6, and EBV) with change in leucocyte telomere length (LTL) over three 

years in 400 healthy individuals (ages 53-76) from the Whitehall II cohort. CMV, HSV-1, 

and HHV-6 infection were independently associated with greater 3-year LTL attrition, 

with no association found for EBV. Their magnitudes were large, e.g. the equivalent of 

almost 12 years of chronological age for those CMV seropositive. Seropositivity to a 

higher number of herpesviruses was additively associated with greater LTL attrition (3 

herpesviruses vs. none β=-0.07, p-value= 0.02, 4 infections vs none β=-0.14, p-value< 

0.001). Higher IgG antibody levels among those seropositive to CMV were also 

associated with shorter LTL at follow-up. These associations were robust to adjustment 

for age, sex, employment grade, BMI, and smoking status. These results suggest that 

exposure to infectious agents should be an important consideration in future studies of 

telomere dynamics.  
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Introduction: 

The length of telomeres, the DNA-protein structures that cap and stabilize the 

physical ends of chromosomes, has been proposed as a marker of cellular aging [1, 2].   

In most cells these telomeres shorten with each round of cell division, with critically 

short telomeres leading to cellular senescence and genomic instability [1, 3]. Shortened 

leukocyte telomere length (LTL) is associated with all-cause mortality and progression of 

age-related diseases - in particular cardiovascular disease, cancer, diabetes, and dementia 

[4, 5].  Shorter telomere length may also play a role in clinically important age-related 

declines in immune function, as signified by the reduced lymphocyte proliferative 

capacity and associated impaired response to vaccines and acute infections [6, 7].  

While overall telomere shortening with age is well-established, there is large 

variation in TL among individuals of the same chronological age, with age accounting for 

only 10% or less of inter-individual telomere length variation [8]. While environmental 

factors such as diet, obesity, and smoking have been associated with shorter LTL, these 

findings have been inconsistent across studies [9, 10]. Additional exposures underlying 

inter-individual variation in LTL are not well characterized but may include infection 

history, particularly chronic viral infections [11-13]. Herpesviruses such as 

cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus type 1 (HSV-

1), and human herpes virus 6 (HHV-6) are commonly acquired in childhood or early 

adulthood [14]. In most cases, the host is generally unable to eradicate these infections 
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the virus remains in a quiescent  (i.e., latent) state in the host’s cells, with intermittent 

phases of reactivation. The containment of herpesvirus replication takes up considerable 

immune resources, with CMV in particular seeming to be immunodominant, becoming 

the primary target of 10-30% of all circulating CD4 T lymphocytes and up to 50% of all 

circulating CD8 T lymphocytes in CMV infected elderly individuals [15, 16]. These 

CMV-specific T cells contribute to large shifts in the cellular composition of peripheral 

blood, including a large increase in the number of so-called ‘effector-memory’ T 

lymphocytes that are characterized by shorter telomeres [12, 17]. Such dramatic 

expansion of T cells that exhibit short telomeres is not seen for EBV and has not been 

well investigated for other herpesviruses [18-20]. However, there is some evidence that 

EBV-CMV co-infection may influence the human T cell repertoire beyond the impact of 

each individual infection [19, 21]. The potential impact of other herpesviruses on 

peripheral blood telomere length is less well explored, though it is known that HHV-6 

achieves latency through integration with human telomeres and may lead to dysfunction 

of the enzyme telomerase which is responsible for elongating telomeres, with clinical 

implications for stem cell transplants [22, 23]. Herpesviruses infections may contribute to 

telomere attrition through pathways other than repeated proliferation and subset 

differentiation, such as by stimulating inflammation and oxidative stress processes [24, 

25].   

To our knowledge, no prospective studies have examined the association between 

CMV or other herpesviruses and changes in LTL. Previous cross-sectional analyses in the 

current study population found an association between CMV infection and lower 

telomerase activity among women [26], but no association between CMV infection and 
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cross-sectional LTL. This cross sectional association with telomerase activity suggested 

potential longer-term impacts of CMV on telomere dynamics that could only be explored 

with data on telomere change over time [26]. Longitudinal studies of telomere change are 

also important due to the large genetic component of LTL [27], which implies that cross-

sectional associations with shorter LTL could reflect predispositions to risk factors and 

disease rather than causal associations [28]. The current study evaluated the association 

of seropositivity to four herpesviruses (CMV, HSV-1, HHV-6, and EBV) at baseline and 

change in telomere length over three years of follow up. The analyses considered the 

contribution of serological evidence of infections with the individual herpesviruses as 

well as their combination in relation to LTL change. Associations between LTL and IgG 

antibody levels to each herpesvirus were also examined, given evidence of positive 

associations between higher proportions of (short-telomere) peripheral blood 

lymphocytes[29] and previous cross-sectional associations between higher CMV IgG and 

lower telomerase activity in this sample [26]. 

 

Materials and Measures 

Sample: 

Participants were from the Heart Scan sub-sample of the Whitehall II epidemiological 

cohort, recruited during 2006 to 2008, to investigate the psychosocial, demographic and 

biological risk factors for coronary heart disease [30]. Participants were aged 53-76 at 

baseline and were screened to ensure that they had no history or objective signs of 

coronary heart disease, and no previous diagnosis or treatment for hypertension, diabetes, 

inflammatory diseases or allergies. Volunteers were of white European origin and 56.5% 
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were in full-time employment. Socioeconomic status was defined by current (or most 

recent) grade of employment within the British civil service, and selection into the study 

was stratified to include representation of higher, intermediate and lower grade 

employment groups. Participants were invited for reassessment after 3 years (mean 1087 

days interval). Measurement of LTL did not commence at the beginning of the study; 

therefore, only 434 participants have LTL data at baseline, with a total of 400 

respondents having complete data on LTL and at both time points and infection data at 

baseline. Ethical approval was obtained from the University College London Hospital 

Committee on the Ethics of Human Research, and all participants gave signed informed 

consent.  

 

Isolation of Peripheral Blood Mononuclear Cells 

For the assessment of LTL at baseline and at follow-up, we used an adaptation of 

the method first described by Cawthon[31]. Genomic DNA was extracted from PBMCs 

in a QIAcube workstation (baseline) or manually (follow-up) with the QIAamp DNA 

blood mini kit (Qiagen, Crawley, United Kingdom) according to instructions of the 

manufacturer and stored in 10 mmol/L Tris-hydrochloride, 0.5 mmol/L ethylenediamine 

tetraacetate, pH 9.0 at -20°C (baseline) or -80oC (follow-up). Relative mean TL was 

measured by a monochrome multiplex quantitative real-time polymerase chain reaction 

(PCR) assay with a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad, Hemel 

Hempstead, United Kingdom) for samples obtained at baseline, and with a Roche 

Lightcycler 480 real-time PCR machine (Roche Diagnostics Corporation, Indianapolis, 

IN) on follow-up. Reactions containing serial dilutions of a reference DNA standard were 
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included in each polymerase chain reaction plate to generate the telomere (T) and β-

globin gene (S) standard curves required for quantitation, and relative mean TL, 

expressed as a T/S ratio, was derived. The coefficient of variation of these assays was 

2.3%.  Absolute measures of telomere length can vary across laboratories, but rankings of 

relative length are highly correlated [32]. We therefore computed standardized telomere 

length scores Z-scores for the baseline and follow-up samples as a robustness check, and 

statistical findings were identical to those for absolute values, so the latter are presented. 

CMV, HSV-1, EBV (EBV-EBNA), and HHV-6 IgG antibody titers were measured from 

thawed serum samples using a solid-phase enzyme immunoassay system as described 

previously [33]. Briefly, diluted aliquots of serum were reacted with the specific antigen 

bound to a solid-phase surface. Following the addition of enzyme-linked anti-human IgG 

and enzyme substrate, quantification of IgG antibody titers was determined by the 

amount of color generated from the reaction of antigen-bound enzyme and soluble 

substrate and measured as optical densities read by a spectrophotometer. In each assay 

run a standard sample was employed and the results were expressed as a ratio between 

the amount of color generated by the test sample and the amount generated by the 

standard. A sample was categorized as seropositive if the optical density ratio was >1.2. 

 

Additional covariates 

We adjusted for several potential confounders; factors potentially associated with both 

infections and LTL. Employment grade was used as an indicator of socioeconomic status 

(SES); participants were classified according to their current or most recent civil service 

grade at baseline into lower (administrative assistant, administrative officer and executive 
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officer), intermediate (higher executive officer and senior executive officer) and higher 

(grades 7 to 1) SES. Smoking status at baseline was assessed by questionnaire and 

categorized as current, former, or never.  Body Mass Index (BMI (kg/m2) at baseline 

based on measured height and weight was categorized as normal weight (18.5-24.9), 

overweight (25.0-29.9), and obese (>=30). 

 

Statistical Analysis 

Associations between serostatus for each individual infection at baseline as well as the 

total number of infections (0-4) and telomere length measured prospectively were 

analyzed using separate multivariable regression models. Telomere length at follow-up 

was the dependent variable, with age, gender, grade of employment, smoking status, BMI 

and TL at baseline included as controls. Additional models using change in LTL between 

periods (Time 2 minus Time 1) were also run with very similar results (available upon 

request). 

 

Results 

[Table 1 about here] 

The mean T/S ratio averaged 0.992 ± 0.07 at baseline, and 0.897 ± 0.15 at follow-

up. This indicates a significant decrease in T/S ratio among the study population over the 

3-year follow up period (p < 0.001). Telomere length at follow-up was inversely 

associated with age (p < 0.001), and was greater in women than men (p < 0.001).  47.3% 

of the sample was CMV+ at baseline, 21% HSV1+, 59% HHV-6+, and 63.3% EBV+ .  

[Table 2 about here] 
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Serological evidence of CMV infection was associated with shorter LTL at 

follow-up (β = -0.061, SE = 0.014, p < 0.001), which was also true for HSV-1 (β = -

0.049, SE = 0.016, p = 0.002), and HHV-6 (β = -0.033, SE = 0.015, p = 0.024) adjusting 

for baseline age, sex, smoking, employment grade, BMI, and LTL (Table 2, Model 1). As 

associations for individual infections may be confounded by exposure to other 

herpesviruses, Model 2 mutually adjusted for all infections. The coefficient estimates 

were virtually unchanged, but the association with HHV-6 lost statistical significance at 

conventional levels (p = 0.065). The coefficient for EBV infection was close to zero in 

both models. The other independent predictors of shorter telomeres at follow-up were 

older age, male sex, and shorter LTL at baseline. Compared to these factors, the 

magnitude of the coefficient for CMV seropositivity was substantial, roughly equivalent 

to the coefficient for females vs. males (β = -0.062, SE = 0.014, p <0.001), or the 

equivalent of 11.8 years of additional age (βCMV/ βAGE). Smoking status, BMI, and 

employment grade were not significant predictors of LTL at follow-up in any model. 

[Table 3 about here] 

Serological evidence of exposure to multiple herpesviruses was also significantly 

associated with shorter telomere length at follow-up (Table 3).  Being seropositive for 

three herpesviruses vs. none was associated with a decrease in telomere length (β = -

0.069, SE = 0.029, p=0.019), with a doubling of this effect size for four infections 

compared to none (β = -0.139, SE = 0.037, p=<0.001).  Figure 1 illustrates the pattern of 

mean change in telomere length across the two time periods by the total number of 

infections for which an individual was seropositive.  



	 10	

To explore whether one particular herpesvirus, such as CMV, was primarily 

driving these results, we explored all combinations of infection pairs and their association 

with telomere length, illustrated in Table 3 and Figure 2. The Benjamini-Hochberg 

procedure was used to adjust for multiple comparisons/false discovery rate, with adjusted 

p-values shown in Table 3 [34]. Overall, there was evidence of an important role for 

CMV infection and some interaction effects with other herpesviruses. Co-infection with 

both HSV-1 and CMV showed the strongest association with shorter telomere length, 

suggesting an interactive effect of being seropositive for both infections compared to only 

one. Co-infection with HHV-6 and CMV also showed a stronger association than either 

infection by itself.  In both of these cases, exposure to HHV-6 and HSV-1 among those 

who were CMV seronegative was not independently associated with shorter telomeres, 

but their presence amplified the association with telomere length among those who are 

CMV seropositive. This interaction was not seen for CMV and EBV.  Table 3 also shows 

the remainder of co-infection pair-wise combinations, with some evidence for the 

importance of co-infection HHV-6 for the association of HSV-1 and LTL.  

 IgG Antibody Response and LTL 

Finally, as higher CMV IgG antibody has previously been associated with 

reduced telomerase activity, we also examined LTL with respect to continuous IgG 

immune response among the CMV seropositive (N=189).  Higher CMV IgG antibody 

levels (mean 3.01, S.D. 0.77) were significantly associated with greater LTL attrition (β = 

-0.029, SE = 0.013, p =0.028).  Higher EBV IgG antibody levels among those 

seropositive was also associated with shorter LTL (β = -0.023, SE = 0.009, p =0.019). No 
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significant associations were found for IgG levels of HSV-1 (β = 0.085, SE = 0.075, p 

=0.261) or HHV-6 IgG (β = -0.019, SE = 0.013, p =0.160).  

 

Sensitivity Analysis: 

Because of previous findings of associations between CMV and telomerase activity in 

women only, we tested for interactions between sex and each infection as well as burden 

of infection. No significant sex-infection interactions were found. Since inflammation is a 

hypothesized mechanism through which infections may impact telomere shortening, we 

also tested models adjusting for available markers of inflammation (serum C-reactive 

protein, IL-6, and fibrinogen, measured at baseline).  None of these inflammatory 

markers were associated with LTL shortening, and thus did not mediate the associations 

between infections and LTL.  

 

Discussion 

Although leukocyte telomere length is correlated with many important aging-

related outcomes, its determinants are not well understood. Persistent viral infections may 

be an important determinant of individual variation in LTL, but have not been extensively 

studied in vivo [11, 12]. This study was the first to test the association of multiple highly 

prevalent persistent herpesvirus infections with prospective leukocyte TL in humans. We 

found decreases in LTL associated with infections of a substantively important 

magnitude-the equivalent of almost half of a standard deviation in LTL for those CMV+ 

vs CMV-, and a full standard deviation in LTL for those infected with all four 
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herpesviruses compared to none. These findings suggest an important role for these 

infections for understanding LTL dynamics.  

There are several reasons why CMV, more so than other pathogens, may 

contribute to telomere shortening. CMV infection is thought to be associated with a 

continuous low-grade reactivation, causing a highly characteristic differentiation among 

T cells that yields a robust expansion of T cells that downregulate telomerase and exhibit 

short telomeres [35]. A study of 159 healthy volunteers aged 20-95 found that CMV 

seropositivity amplified the association of increased age with shorter telomeres in T-cell 

populations, particularly in the lymphocytes of those aged 60 and over. The causality of 

this association was confirmed in the same paper, showing primary CMV infection 

among 19 renal transplant recipients coincided with a steep drop in lymphocyte TL. This 

drop in lymphocyte TL was related to the change in the T cell subset distribution towards 

a differentiated low TL phenotype of T cells in both CD4 T cells and CD8 cells [11]. 

Thus, the TL decreases associated with CMV infection may in part be driven by a change 

in the cellular composition of the peripheral blood, the main cellular source of TL 

determination, and not a direct cellular effect of telomere attrition. 

  The association between CMV and LTL shortening may also involve endocrine 

pathways. Recent results from this sample found that greater cortisol responsivity to 

acute stressors predicted more rapid telomere attrition[36]. CMV can infect and replicate 

in human adrenocortical cells, thereby triggering steroidogenesis [37], which in turn has 

been shown to inhibit telomerase activity in CD4 and CD8 T cells [38]. This group has 

previously reported an altered diurnal cortisol slope in healthy CMV-positive individuals 

where those that are infected exhibited a flatter decline over the day compared to those 
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not infected[39]. Such a flattened secretion pattern of cortisol has repeatedly been 

associated with impaired immunity and enhanced inflammatory activity[40, 41], which, 

in turn, may further promote elevated viral reactivation. Indeed, studies have suggested 

that cells exposed to glucocorticoids increased replication of HSV and CMV in vitro [42].   

The mechanisms underlying the observed associations of HSV-1 and HHV-6 and 

telomere shortening are not known and should be replicated and explored in future work. 

Likewise, the synergistic effects seen for CMV co-infection with HSV-1 and HHV-6 

merit additional study. The lack of an association of EBV with shorter LTL compared to 

the other herpesvirus infections is consistent with fundamental differences in how these 

viruses modulate the host immune system, with dramatic expansion of T cells with short 

telomeres not seen in EBV relative to CMV [18-20].  

A major strength of this study is that our findings come from a well-characterized 

longitudinal population cohort, in contrast to the previous small clinical sample that 

explored CMV and lymphocyte telomere length [11].  The prospective assessment of 

LTL over 3 years and data on the serostatus to multiple herpesviruses at baseline is also 

novel. Our findings identify for the first time independent associations between HSV-1 

and HHV-6 and telomere length. Previous cross-sectional work showed that CMV 

seropositivity was associated with lower levels of telomerase in women [26], but this did 

not appear to generalize to shorter telomere length in that sample. The present study 

indicated that despite the lack of association of CMV with baseline LTL, both CMV 

seropositivity and CMV IgG antibody response were associated with prospective change 

in LTL. Future work should test whether CMV plays a role, at least in part, in the 

association between LTL and the onset of chronic disease, especially vascular disease. 
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Results from a small clinical study found that telomere length in CD8+ cytotoxic T cells 

was shorter in CMV+ compared to CMV- coronary heart disease patients, and this TL 

shortening was correlated with a decrease in left ventricular function in CHD patients, 

suggesting a role for CMV in the co-evolution of CHD and immunosenescence [43].  

Our findings of an association between higher CMV IgG and shorter telomeres 

warrants further investigation, particularly given epidemiological evidence that higher 

CMV IgG is associated with mortality[44], weaker vaccine response[29], and lower 

levels of psychological well-being[45]. There are also strong and consistent associations 

observed between stress and increased herpesvirus IgG [46]. Given the evidence that 

chronic stress contributes to shorter telomeres [47], our results could have implications 

for understanding the pathways through which psychosocial factors impact cellular aging. 

The role of stress-related reactivation of herpesviruses as a mediator of stress and 

telomere dynamics should be further explored.   

There are several limitations to our study. Telomere length was measured in 

PBMCs, and values may differ in lymphocyte subpopulations. Future flow cytometric 

analysis of cell subpopulations would allow better mechanistic understanding of how 

infections decrease LTL. Measures were also made with two different PCR machines at 

baseline and follow-up; while this may affect comparisons of absolute values, it did not 

impact the relative results shown here, as indicated by identical findings with 

standardized measures of telomere length. Furthermore, our results are virtually identical 

utilizing data on LTL only at follow-up, providing further assurance that changes in LTL 

measurement methods are not driving our results. Since IgG antibodies reflect any past 

exposure, it is not known when these herpesviruses were acquired, though it is likely that 
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many were acquired early in life given the concentration of risk factors for exposure to 

these infections in early life [48]. Furthermore, while shorter LTL has been shown to 

increase the risk of experimentally induced upper respiratory infections in younger adults 

[7], the infections examined here were not associated with LTL at baseline, reducing the 

risk that reverse causality from shorter LTL to increased risk of infection was driving the 

observed associations. 

In conclusion, our results suggest large and significant associations between 

highly prevalent persistent herpesvirus infections and telomere shortening in humans.  

The magnitude of the association for CMV seropositivity was equal to almost half of a 

standard deviation in LTL, or the equivalent of 12 years of chronological age as 

estimated in this sample. In contrast, previously identified risk factors for cross-sectional 

LTL including smoking, obesity, SES, and inflammatory markers were not associated 

with LTL attrition in this sample, suggesting that infection history may be a more robust 

predictor of LTL than these prior commonly identified risk factors. The strong 

associations seen for CMV and LTL may be clinically important and are consistent with 

evidence that CMV is associated with increased risk of mortality in the overall population 

[49, 50]. We encourage additional research to replicate these findings and continue to 

advance our understanding of the infectious determinants of cellular aging. Such 

knowledge could improve primary prevention and potentially reduce telomere related 

chronic disease and accelerated aging.   
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Figure Legends 

Figure 1: Number of herpesvirus infections at baseline and mean leukocyte telomere 

length change (T/S Ratio) over 3 Years 

Figure 2: Association of herpesvirus co-infections at baseline and leukocyte telomere 

length (T/S ratio) at follow-up (β coefficient, linear regression model adjusted for age, 

sex, and TL at baseline). Error bars indicate 95% confidence intervals. 
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Table	1:	Descriptive	Statistics-Baseline,	N=400	
Variable	 Mean/%	 S.D	
TL	Time	2	(T/S	ratio)	 0.897	 0.15	
TL	Time	1	(T/S	ratio)	 0.992	 0.07	
Age	(time	1)	 63.413	 5.63	
Female	 53.25%	 	
CMV	+	 47.25%	 	
HSV1	+	 21.00%	 	
HHV6	+	 59.00%	 	
EBV	+	 63.25%	 	
Total	Pathogen	
Burden	

	 	

0	 7.75%	 	
1	 28.25%	 	
2	 36.25%	 	
3	 21.25%	 	
4	 6.50%	 	
	



Table	2:	Herpesvirus	infections	and	Telomere	Length	in	Whitehall	Heartscan	Study	(N=400)	
	 TL	(T/S	ratio	(Time	2)	 	 	

Whitehall	Heart	Scan	Study	 β	(s.e.)	 P-value	 β	(s.e.)	 P-value	
	 Model	1	 	 Model	2	 	

Pathogens	 	 	 	 	
CMV+	 -0.061	(0.014)	 <0.001	 -0.059	(0.014)	 <0.001	
HSV-1+	 -0.049	(0.016)	 	0.002	 -0.047	(0.017)	 <0.006	
HHV6+	 -0.033	(0.015)	 	0.024	 -0.027	(0.014)	 	0.065	
EBV+	 	0.001	(0.015)	 	0.949	 	0.009	(0.015)	 	0.521	
Covariates	 	 	 	 	
Age	 	 	 -0.005	(0.001)	 <0.001	
Female	 	 	 	0.062	(0.014)	 <0.001	
TL	at	Baseline	 	 	 	0.523	(0.093)	 <0.001	
Current	vs.	Never	Smoking	 	 	 -0.007	(0.031)	 	0.831	
Obese	vs	normal	weight	 	 	 -0.021	(0.021)	 	0.312	
All	models	adjusted	for	age,	sex,	smoking,	employment	grade,	categorical	BMI	&	baseline	TL		
Model	1	shows	coefficients	for	separate	regressions	with	individual	infections	
Model	2	mutually	adjused	for	the	other	infections	



Table	3:	Pathogen	burden,	Co-infection,	and	TL	 	 	
	 TL	(T/S	ratio	(Time	2)	 	 	

Whitehall	Heart	Scan	Study	 β (s.e.) P-value 	
Total	Pathogen	Burden	(0-4)	 	 	 	
0		(N=31)	 ref	 	 	
1		(N=113)	 -0.014	(0.028)	 0.624	 	
2	(N=145)	 -0.025	(0.027)	 0.362	 	
3	(N=85)	 -0.069	(0.029)	 0.019	 	
4	(N=26)	 -0.139	(0.037)	 <0.001	 	
Pathogen	Combinations	 	 	 	
HSV-/CMV-			(43.00%)	 ref	 	 	
HSV+/CMV-		(9.75%)	 -0.030	(0.024)	 0.684	 	
HSV-/CMV+		(36.00%)	 -0.050	(0.015)	 0.013	 	
HSV+/CMV+	(12.25%)	 -0.118	(0.023)	 <0.001	 	

	 	 	 	
HHV6-/CMV-			(22.50%)	 ref	 	 	
HHV6+/CMV-		(30.25%)	 -0.008	(0.018)	 0.684	 	
HHV6-/CMV+		(18.50%)	 -0.041	(0.021)	 0.583	 	
HHV6+/CMV+	(28.75%)	 -0.082	(0.019)	 <0.001	 	

	 	 	 	
EBV-/CMV-			(21.50%)	 ref	 	 	
EBV+/CMV-		(31.25%)	 0.009	(0.018)	 0.684	 	
EBV-/CMV+		(15.25%)	 -0.066	(0.022)	 0.041	 	
EBV+/CMV+	(32.00%)	 -0.051	(0.018)	 0.060	 	

	 	 	 	
EBV-/HSV-			(30.00%)	 ref	 	 	
EBV+/HSV-		(49.00%)	 0.012	(0.016)	 0.684	 	
EBV-/HSV+		(6.75%)	 -0.027	(0.029)	 0.684	 	
EBV+/HSV+		(14.25%)	 -0.048	(0.021)	 0.240	 	

	 	 	 	
HHV6-/EBV-			(15.50%)	 ref	 	 	
HHV6+/EBV-		(21.25%)	 -0.010	(0.023)	 0.684	 	
HHV6-/EBV+		(25.50%)	 0.019	(0.022)	 0.684	 	
HHV6+/EBV+		(37.75%)	 -0.020	(0.021)	 0.684	 	

	 	 	 	
HHV6-/HSV-		(35.00%)	 ref	 	 	
HHV6+/HSV-		(44.00%)	 -0.015	(0.016)	 0.684	 	
HHV6-/HSV+		(6.00%)	 -0.026	(0.031)	 0.684	 	
HHV6+/HSV+		(15.00%)	 -0.069	(0.020)	 0.015	 	
All	models	adjust	for	age,	sex,	smoking,	employment	grade,	and	TL	at	Time	1	
For	pathogen	combinations,	p-values	are	adjusted	for	
Benyamini-Hochberg	False-Discovery	Rate	
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