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Abstract

I present a behavioral model of a “data analyst”who extrapolates a

fully specified probability distribution over observable variables from a

collection of statistical datasets that cover partially overlapping sets of

variables. The analyst employs an iterative extrapolation procedure,

whose individual rounds are akin to the stochastic-regression method

of imputing missing data. Users of the procedure’s output fail to

distinguish between raw and imputed data, and it functions as their

practical belief. I characterize the ways in which this belief distorts

the correlation structure of the underlying data generating process

- focusing on cases in which the distortion can be described as the

imposition of a causal model (represented by a directed acyclic graph

over observable variables) on the true distribution.
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“Data Monkey: One who spends the majority of their time running data and

creating useless PowerPoint slides to please the upper echelons of manage-

ment.”(Urban Dictionary, http://www.urbandictionary.com)

1 Introduction

Members of modern organizations are often required to process and present

statistical data. Conventional economic models assume that agents in such

situations act as impeccable statisticians. In reality, the typical analyst will

not reach the heights of statistical sophistication that characterize, say, an

academic econometrician. He will often perform statistical procedures with-

out putting much thought to them, without understanding the implicit as-

sumptions behind them, and without internalizing their implications for the

validity of various inferences.

Even when the analyst does know what he is doing, he faces pressure

to present data in an easily digestible format and underplay its noisiness.

As a result, his final report may shroud the underlying data limitations and

data-processing methods. For instance, Silver (2012) criticizes economic fore-

casters’ tendency to present point estimates without providing confidence

intervals. Within organizations, the pressure to avoid technical details in

communication with “upper echelons of management”is known in manage-

ment folklore as one of “Putt’s Laws”: “Technical analyses have no value

above the midmanagement level” (see Putt (2006, p. 109)). Finally, the

analyst’s successors may be unaware of “how the data sausage was made”

(the analyst himself may later forget this), due to imperfect organizational

memory.

The upshot in all these situations is that users of the processed data are

likely to take it at face value, without accounting for how the bottom line was

reached. I refer to a data analyst who communicates processed data without

imparting the underlying data limitations and data-processing methods to

2



his audience as a “data monkey”, adapting the motto’s colloquial term.

One example of this general phenomenon involves extrapolation from

“non-rectangular”databases. Analysts regularly confront datasets with miss-

ing values, or multiple datasets that cover different sets of variables. Turning

them into presentable output requires the analyst to adopt methods for han-

dling missing data. However, these methods often remain hidden. In the

world of academic research, this problem has been documented in various

areas, including medicine (Burton and Altman (2004), Wood et al. (2004),

Mackinnon (2010)), education studies (Manly and Wells (2015)) and eco-

nomics (Kaplan and Schulhofer-Wohl (2012), Meyer et al. (2014)). In par-

ticular, Kaplan and Schulhofer-Wohl describe how an undocumented change

in the US Census Bureau’s method of imputing missing data in the CPS had

led economists and demographers to identify a spurious trend in geographic

mobility. They speculate that a certain break in the data may be due to an

unknown aspect of the data-processing methods employed by the Census Bu-

reau. I am not aware of systematic evidence about this phenomenon outside

academia, but causal observation suggests that it is at least as high.

This paper presents a model of an analyst who employs a natural proce-

dure for extrapolating a probability distribution from partial statistics. Users

of the procedure’s output (including possibly the analyst’s future self) take

it at face value and it becomes their practical belief. I take this attitude

of users as given, and do not try to derive it from a more basic model. I

characterize the ways in which this belief distorts the correlation structure

of the underlying data generating process. My perspective in this paper is

descriptive rather than normative. I do not deal with how processing, re-

porting and consuming statistical data should be done, but rather with (a

stylized model of) how they are done, and I am interested in the belief errors

that result from the failure to distinguish between raw and imputed data.
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1.1 An “Oligopoly”Example

To introduce the main idea, consider the following scenario. A fresh business

graduate has just landed a job as a junior analyst in a consulting firm. The

analyst is ordered to write a report about an oligopolistic industry. He is not

told who is going to use this report or for what purpose. The analyst gathers

data about three variables: the product price (denoted y) and the production

quantities chosen by producers 1 and 2 (denoted x1 and x2). Specifically, he

manages to get hold of two proprietary datasets. Each dataset i = 1, 2,

belonging to producer i, consists of a large number of historical realizations

of the product price and producer i’s quantity. The datasets cover different,

non-overlapping time periods.

Having collected the data, the analyst wishes to prepare a file that subse-

quent users (himself included) can readily process. As a first step, he merges

the two datasets into a single spreadsheet, which is schematically illustrated

by the following table:
x1 x2 y

+ − +

− + +

Each row in this table represents a block of observations originating from

one of the datasets; a “+”(“−”) sign in a cell indicates that the value of the
relevant variable is recorded (missing) in the relevant spreadsheet fields.

Because the original datasets cover different sets of variables, the merged

spreadsheet is “non-rectangular” - i.e., it contains missing values. The an-

alyst wants to fill the missing cells, in order to produce a “rectangular”

spreadsheet that is amenable to rudimentary statistical analysis that can be

conveyed to users in the form of plot diagrams, tables, simple regressions,

etc. The rub is that subsequent users of the analyst’s report may treat the

processed spreadsheet as if it purely consisted of raw data, whereas in fact it

mixes raw and imputed values. The frequencies of (x1, x2, y) in the rectangu-

larized spreadsheet will serve as a practical estimate of the joint distribution

4



over prices and quantities in the industry, and this de-facto belief may sys-

tematically distort the true underlying data generating process.

Our analyst employs the following method for filling the missing cells in

his spreadsheet. When the value of x1 is missing in some row, he relies on the

observed realization of y in the row, combined with the joint distribution over

(x1, y) given by the first underlying dataset, to impute a value for x1 in this

row. Specifically, he draws this value from the first dataset’s distribution over

x1 conditional on y. Likewise, when the value of x2 is missing in some row,

the analyst draws its imputed value from the second dataset’s distribution

over x2 conditional on the realization of y in the row.

This extrapolation method is intuitive: the analyst fills the missing values

of x1 and x2 according to his best available evidence (namely, how these

variables are correlated with y), without invoking any explicit prior theory

about the joint distribution of x1 and x2, for which he has no evidence.

The method also has professional credentials: in fact, it is a variant on a

familiar imputation method known as “stochastic conditional imputation”

or “stochastic regression”(Little and Rubin (2002, Ch. 4), Gelman and Hill

(2006, Ch. 25)). Thus, the diffi culties are not with the procedure per se, but

with the danger that users will take its output at face value.

To see these diffi culties, let us derive the distribution over (x1, x2, y) in the

rectangularized spreadsheet. First, we need to specify the data generating

process. Suppose that each observation in each of the original datasets was

independently drawn from an objective joint distribution p over (x1, x2, y).

Assume further that the two datasets are arbitrarily large. Therefore, the

first dataset enables the analyst to learn the true marginal distribution

p(x1, y), whereas the second dataset enables him to learn the true marginal

distribution p(x2, y). As a result, in the block of observations that origi-

nates from the first dataset, frequencies of (x1, x2, y) in the rectangularized

spreadsheet are given by q1(x1, x2, y) = p(x1, y)p(x2 | y). Similarly, in the

block that originates from the second dataset, these frequencies are given by

5



q2(x1, x2, y) = p(x2, y)p(x1 | y). The overall frequencies in the final spread-

sheet, denoted q, are thus given by a weighted average of q1 and q2, where the

weights match the blocks’relative size. However, observe that by the basic

rules of conditional probability,

q1(x1, x2, y) = q2(x1, x2, y) = p(y)p(x1 | y)p(x2 | y) (1)

Thus, both blocks in the rectangularized spreadsheet exhibit the same

frequencies, such that q will be given by the R.H.S of (1), independently of

the original datasets’relative size. It is evident from this expression that q

satisfies the conditional-independence property x1 ⊥ x2 | y. Indeed, both
q1 and q2 satisfy it. This property is a direct consequence of the analyst’s

extrapolation method; it may be violated by the objective distribution p

itself. When users of the analyst’s report ignore the extrapolation method

behind it and treat it as raw data, they will misperceive the true correlation

structure of p and potentially make economically significant errors.

For instance, a user may notice that q can be expressed by the R.H.S of

(1). This formula suggests that the price is an exogenous variable and that

producers are independent “price takers”. This is a causal story that can

be summarized by the directed acyclic graph (DAG) x1 ← y → x2 - i.e., the

price is a primary cause, whereas quantities are conditionally independent

consequences. However, this “price taking” account is empirically ground-

less - it is merely an artifact of the data limitations and the imputation

procedure. Alternatively, suppose that the report’s user does not reach the

insight that q is consistent with a causal model. Instead, he directly mea-

sures the correlation between x1 and x2 induced by q. It is easy to construct

objective distributions p for which x1 and x2 are statistically independent

and nevertheless deemed correlated by q. Upon noticing this correlation, the

user may suspect that producers coordinate their activities, in violation of

anti-trust regulations. However, this is a false interpretation of the data: it is

due to the fact that the imputation procedure makes these variables appear
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independent conditionally on y.

Finally, suppose that at some later point in time, our analyst receives a

third dataset that documents the joint distribution of y and x3, the produc-

tion quantity of a third producer (without giving any information that relates

realizations of x3 to simultaneous realizations of x1 or x2). By then, the ana-

lyst has forgotten the origins of his earlier report, having left no record of its

preparation. Like earlier users of that report, he treats q as raw data. The

following is a schematic illustration of the spreadsheet that is produced by

merging the earlier processed database and the new dataset (the star sym-

bol indicates imputed values - although this is a distinction that the analyst

himself does not make):
x1 x2 y x3

+ ∗ + −
∗ + + −
− − + +

The analyst proceeds to extrapolate a new joint distribution from this

database, using the same “stochastic conditional imputation”method. When

the value of x3 is missing in some row, he relies on the observed realization

of y in the row, combined with the distribution q over (x1, x2, y), to impute

a value for x1 in this row. And when the value of (x1, x2) is missing in some

row, he relies on the observed realization of y in the row, combined with

the distribution p(y, x3) provided by the new dataset, to impute a value for

(x1, x2) in this row. The overall frequencies in the first and second blocks of

the newly rectangularized spreadsheet, denoted r1 and r2, are given by

r1(x1, x2, y, x3) = q(x1, x2, y)p(x3 | y)

r2(x1, x2, y, x3) = p(y, x3)q(x1, x2 | y)

Plugging (1) for q, we see that r1 and r2 coincide and can be written as
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follows:

r(x1, x2, y, x3) = p(y)p(x1 | y)p(x2 | y)p(x3 | y)

As before, this formula for r suggests a causal story that can be described

by a DAG:
x1 ← y → x2

↓
x3

This is essentially the same causal story as before: all three producers are

“price takers”whose quantities are conditionally independent consequences

of the exogenous product price y. Thus, the basic extrapolation procedure

can be iterated as new datasets continue to arrive, and its output can be

consistent with increasingly elaborate causal models.

1.2 Preview of the Model and the Main Results

In Section 2, I define the notion of an ordered database as a sequence of vari-

able sets for which the joint distribution p is given. In the oligopoly example,

the ordered database consisted of the datasets {product price, producer 1’s

quantity}, {product price, producer 2’s quantity} and {product price, pro-

ducer 3’s quantity}. I formalize the iterative extrapolation procedure, which

takes the ordered database as an input and produces a fully specified prob-

ability distribution as an output. The main question is how this output

distorts the correlation structure of the true distribution p.

In Section 1.1, we saw how the procedure’s output distorts the objective

distribution p as if it imposes a causal model on it. I generalize this idea and

define the notion of a “DAG representation”of systematic belief distortion -

following Spiegler (2015), which itself drew on the Bayesian-networks litera-

ture (Cowell et al. (1999), Pearl (2009)). In Section 3, I apply the iterative

extrapolation procedure to a few economically motivated examples of ordered

databases, and I examine whether the output has a (possibly “mixed”) DAG
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causal interpretation.

Section 4 is the analytical heart of this paper. I introduce a combinatorial

property of ordered databases - known in the Bayesian-networks literature

as the “running intersection property”- which requires that the intersection

of every dataset with the union of its predecessors is contained in one of

them. The “oligopoly”example satisfies this property. It turns out that the

running intersection property ensures that the iterative extrapolation proce-

dure’s output has an essentially unique DAG representation. (The result is

in fact stronger, as it is based on a weaker, analogous property of unordered

databases.) Moreover, it forces the DAG to be “perfect” - i.e., it has the

property that if two variables are perceived as direct causes of some third

variable, they must be directly linked (the DAGs in the “oligopoly”exam-

ple are perfect because they vacuously satisfy the antecedent). Conversely, I

show that if a given collection of datasets cannot be ordered with a running

intersection, the procedure’s output lacks a DAG representation - i.e., for

every DAG we can find p for which the procedure’s output does not distort

p according to the DAG.

As a corollary of these two results, I obtain the paper’s main result: A

DAG representation can be justified as the procedure’s output if and only if

the DAG is perfect. Perfect DAGs are special in the sense that the direction

of their links cannot be identified from observational data: for any link in

the DAG, we can find an observationally equivalent DAG that inverts it.

The lesson is that the only DAG representations that can be extrapolated

from ordered databases (via the iterative procedure) are ones whose causal

interpretation is vacuous. Armed with this result, I comment on whether

familiar examples of misspecified subjective models (involving phenomena

such as correlation neglect) can be justified as the outcome of procedural

extrapolation from partial statistics. In later parts, I examine two variations

of the model: an alternative extrapolation method based on the maximal-

entropy principle, and extrapolation from selective datasets.
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2 Datasets and Extrapolation

Let x1, ..., xn be a collection of observable random variables, where n ≥ 2

and xk takes values in the set Xk. Denote X = X1 × · · · × Xn. Let N

be the set of variable indices. For most purposes, it will be simplest to set

N = {1, ..., n}. However, in examples, it is often useful to notate indices such
that their relation to the variables is more transparent. For every S ⊆ N ,

denote xS = (xk)k∈S and XS = ×k∈SXk. Let p ∈ ∆(X) be an objective

probability distribution. I use pS ∈ ∆(XS) to denote the marginal of p over

XS.

An analyst obtains partial statistical data regarding p, in the form of a

sequence of m datasets, enumerated 1, ...,m. The interpretation is that the

datasets gradually become available to the analyst. The kth dataset consists

of infinitely many observations of a subset of variables Sk ⊂ N . Each of

these observations is a random independent draw from p. Therefore, the kth

dataset enables the analyst to learn the true marginal pSk . The sequence

(S1, ..., Sm) is referred to as an ordered database and denoted S̄, whereas
the set {S1, ..., Sm} is referred to as an unordered database and denoted S.
For every k = 1, ...,m, denote Bk = ∪j≤kSk. Assume Bm = N - i.e., S
is a cover of N . This reflects the definition of x1, ..., xn as a collection of

observable variables. I also assume that no two subsets S, S ′ ∈ S contain
one another; this assumption is made purely because it simplifies notation

at certain points.

At first glance, my formulation of databases does not fit the “spreadsheet”

metaphor. However, the extrapolation procedure that I present below can

be defined for a more elaborate formulation that matches the metaphor more

closely. Indeed, when stated in such terms, the procedure’s interpretation as

a method of imputing missing values becomes manifest. However, because

the results in this paper are the same under either formalism, I opted for the

simpler version. For this reason, I will tend to avoid the term “imputation”

in the sequel and use the more neutral term “extrapolation”instead.
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2.1 An Iterative Extrapolation Procedure

The analyst extends the collection of marginals (pS1 , ..., pSm) into a fully

specified probability distribution over X, according to the following itera-

tive procedure, which consists of m rounds. The output of each round is a

provisional belief qk ∈ ∆(XBk), defined inductively as follows:

• For k = 1, q1 = pS1 .

• For every subsequent round k = 2, ...,m, define two auxiliary distribu-

tions over XBk :

qk1(xBk) = qk−1(xBk−1)p(xSk−Bk−1 | xSk∩Bk−1) (2)

qk2(xBk) = p(xSk)q
k−1(xBk−1−Sk | xSk∩Bk−1)

and let

qk = αk · qk1 + (1− αk) · qk2 (3)

where αk ∈ (0, 1) is some constant.

The distribution qm is the procedure’s final output, which I also denote by

f(S̄, α, p).

This procedure is a straightforward iteration of the basic “stochastic

conditional imputation”method described in Section 1.1. In round 1, the

analyst only has access to the dataset that covers the set of variables S1,

and this enables him to learn pS1 . In round 2, he receives an additional

dataset that covers S2, and he employs the “stochastic conditional imputa-

tion”method to extrapolate the learned marginals pS1 and pS2 into a distri-

bution q2 ∈ ∆(XS1∪S2). By the end of round k − 1, having confronted the

partial (ordered) database (S1, ..., Sk−1), the analyst has tentatively extended

the marginals pS1 , ..., pSk−1 into a probability distribution qk−1 ∈ ∆(XBk−1).

He subsequently treats qk−1 as if it were “raw” data - although (for every

11



k > 2) it is partly a consequence of earlier extrapolations. And when he

receives the kth dataset, he once again employs “stochastic conditional im-

putation”to extrapolate qk−1 and pSk into a distribution qk ∈ ∆(XBk−1∪Sk).

The procedure is terminated at the end of round m, such that the belief qm

is the procedure’s final output.

Each round k in the iterative extrapolation procedure (referred to as IEP
henceforth) involves two simultaneous extrapolations, given by the auxiliary

distributions qk1 and q
k
2 . The coeffi cient α

k is the weight of qk1 in determining

the provisional output of round k. These weights may reflect some intuitive

perception of the quality of different data sources, the importance of the

variables they cover, or the datasets’ relative size (although they are all

assumed to contain infinitely many observations, this is a mere approximation

for large finite datasets).

The latter interpretation fits the “spreadsheet”metaphor. Let σk > 0 rep-

resent the size of the kth dataset. When the analyst performs “stochastic con-

ditional imputation”in round k, this method produces αk = 1−σk/
∑

j≤k σj.

The reason is that rectangularizing the spreadsheet blocks that cover Bk−1

and Sk into a single block that covers Bk = Bk−1 ∪ Sk involves two steps:
using pSk to impute missing values of xSk−Bk−1 in the first block, and using

qk−1 to impute missing values of xBk−1−Sk in the second block. The two steps

yield qk1 and q
k
2 , respectively. In the rectangularized block, the weights that

qk1 and q
k
2 get depend on the relative size of Bk−1 and Sk.

The IEP is entirely non-parametric and invariant to the variables’mean-

ing. This is an attractive feature when X lacks intrinsic structure. In con-

trast, when variables get real values and the analyst has prior reasons to

hypothesize, say, a linear relation among variables, it would be plausible to

incorporate this hypothesis into the extrapolation process (by literally using

a linear regression in the construction of qk1 and q
k
2). Thus, while the proce-

dure’s generality makes it widely applicable, it also calls for adjustments in

certain applications.
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2.2 DAG Representations

I now formally introduce the notion of a DAG representation, which is a class

of functions that systematically distort the correlation structure of objective

probability distributions as if they fit them to a causal model. The IEP’s

output in the “oligopoly”example of Section 1.1 belongs to this class.

Let (N,R) be a directed graph, where N (the set of variable indices) is

the set of nodes and R is the set of directed links. (In some cases, as in the

oligopoly example, I abuse notation and take the variable labels themselves to

be the nodes, in order to make the DAG’s meaning more transparent.) I use

the notations jRi and j → i interchangeably. The graph is acyclic if it does

not contain any directed path from a node to itself. From now on, I identify

R itself with the DAG. For every i ∈ N , denote R(i) = {j ∈ N | jRi}.
Fix a DAG R. For every objective distribution p ∈ ∆(X), define

pR(x) =
∏
i∈N

p(xi | xR(i)) (4)

The distribution pR is said to factorize p according to R. For instance, when

R : 1→ 2→ 3← 4, pR(x) = p(x1)p(x4)p(x2 | x1)p(x3 | x2, x4).
A DAG and the set of distributions that it factorizes constitute a Bayesian

network. In what follows, I refer to pR as a DAG representation. Its interpre-

tation here and in Spiegler (2015) differs from existing interpretations in the

Statistics and Artificial-Intelligence literature (e.g., see Cowell et al. (1999)),

in that p is viewed as a true “steady state”distribution, such that pR system-

atically distorts an objective distribution into a subjective belief. Following

Pearl (2009), a DAG can be interpreted as a causal model, such that the link

i→ j means that xi is considered to be an immediate cause of xj. From this

point of view, R(i) represents the set of immediate causes of the variable xi.

Different DAGs can be equivalent in terms of the distributions they fac-

torize.
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Definition 1 (Equivalent DAGs) Two DAGs R and Q are equivalent if
pR = pQ for every p ∈ ∆(X).

To take the simplest example, the DAGs 1 → 2 and 2 → 1 are equiva-

lent, since p(x1)p(x2 | x1) = p(x2)p(x1 | x2). Likewise, all fully connected
DAGs are equivalent: in this case, the factorization formula (4) reduces to a

textbook chain rule.

Frydenberg (1990) and Verma and Pearl (1991) provided a complete char-

acterization of the equivalence relation. The skeleton of R, denoted R̃, is its

non-directed version - that is, iR̃j if iRj or jRi. The v-structure of a DAG

R is the set of all triples of nodes i, j, k such that iRk, jRk, i /Rj and j /Ri.

Proposition 1 (Verma and Pearl (1991)) Two DAGs R and Q are equiv-
alent if and only if they have the same skeleton and the same v-structure.

For instance, 1 → 3 ← 2 and 1 → 3 → 2 have identical skeletons but

different v-structures. Therefore, these DAGs are not equivalent: there exist

distributions that can be factorized by one DAG but not by the other. In

contrast, 1 → 3 → 2 and 1 ← 3 ← 2 are equivalent because they have the

same skeleton and the same (vacuous) v-structure. As will see in the next

section, two DAGs can be equivalent in terms of Definition 1, and yet differ

in terms of the plausibility of their causal interpretation.

3 Examples

The following examples illustrate the IEP and examine whether its output

has a DAG representation. By this, I mean that the IEP’s output qm is

equal to the formula (4) for some DAG R and for every possible objective

distribution p (or, in some cases, for every p in some restricted domain).
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Example 3.1: An “availability bias”

Let m = n − 1. The unordered database is S = {{1, k + 1}}k=1,...,m. This
specification fits the “oligopoly”example of Section 1.1. An alternative story

is that each observation in a dataset consists of various characteristics of

some individual. A basic demographic characteristic such as age or gender

- summarized by x1 - is available in every dataset. Other characteristics -

summarized by x2, ..., xn - are domain-specific (e.g., tax or health records)

and appear in one dataset only. Each dataset is a large sample drawn from

an arbitrarily larger population, such that the probability that the same

individual appears in multiple samples is negligible.

For any ordering of S, the output of the IEP is

qm(x1, ..., xn) = p(x1) ·
n∏
i=2

p(xi | x1)

The proof is by simple induction. Without loss of generality, order the data-

base as follows: S̄ = ({1, 2}, ..., {1,m}). Suppose that the provisional output
of round k ≥ 2 is

qk−1(x1, ..., xk) = p(x1) ·
k∏
i=2

p(xi | x1)

For k = 2, this can be established exactly as in Section 1.1. In round k + 1,

the auxiliary distribution qk+11 is by definition

qk+11 (x1, ..., xk+1) = qk(x1, ..., xk) · p(xk+1 | x1) = p(x1) ·
k+1∏
i=2

p(xi | x1)
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The auxiliary distribution qk+12 is

qk+12 (x1, ..., xk+1) = p(x1, xk+1) · qk1(x1, ..., xk | x1) = p(x1, xk+1) ·
k∏
i=2

p(xi | x1)

= p(x1)p(xk+1 | x1) ·
k∏
i=2

p(xi | x1) = qk+11 (x1, ..., xk+1)

hence qk+1 = qk+11 , which completes the proof.

The output qm is a DAG representation, where the DAG R consists of all

links 1→ k, k = 2, ...,m. It is consistent with a causal story: the individual’s

basic demographic characteristic is a primary cause and the other character-

istics are conditionally independent consequences. This causal interpretation

suffers from an “availability bias”: One characteristic ends up appearing like

as a cause of the others, only because it happens to be available in every

dataset. Moreover, by Proposition 1, every other DAG in the equivalence

class of R reverses exactly one link (otherwise, the DAG’s v-structure would

not be preserved), such that x1 is perceived as the cause of all other variables

save one. I will comment on the generality of this availability bias in Section

4.1.

Example 3.2: “Education”

Our tireless analyst now performs a consulting job for a higher-education

institution. He gets access to three datasets that cover (in total) four indi-

vidual characteristics: number of years of schooling (denoted s), outcome

of a childhood intelligence test (denoted c), father’s number of years of

schooling (denoted f) and wage earnings in adulthood (denoted w). Let

δy denote the index of any variable y = s, c, f, w. The ordered database is

S̄ = ({δf , δc}, {δc, δs}, {δs, δw}). The interpretation is that datasets arrive
gradually over time, and each dataset only covers recent variables. For in-

stance, records about individuals’wage earnings are likely to indicate whether

they have a college degree, but less likely to specify their childhood test per-
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formance. Here is a schematic illustration of the “spreadsheet”that merges

the datasets:
f c s w

+ + − −
− + + −
− − + +

Let us execute the IEP. In round 1, q1(f, c) = p(f, c). Round 2 works

exactly as in Example 1.1, such that q2(f, c, s) can be written as

q2(f, c, s) = p(c)p(f | c)p(s | c) = p(f)p(c | f)p(s | c) = p(s)p(c | s)p(f | c)

Here is what our metaphorical spreadsheet looks like at the end of round 2:

f c s w

+ + ∗ −
∗ + + −
− − + +

Let us turn to the final round, by writing down explicit formulas for the

auxiliary distributions:

q31(f, c, s, w) = q2(f, c, s)p(w | s) = p(f)p(c | s)p(s | c)p(w | s)

and

q32 = p(s, w)q2(f, c | s) = p(s)p(w | s)p(c | s)p(f | c) = q2(f, c, s)p(w | s)

The two distributions thus coincide, such that the procedure’s final output

can be written as

q3(f, c, s, w) = p(f)p(c | f)p(s | c)p(w | s) (5)
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As in previous examples, the exact values of the coeffi cients (αk) are irrelevant

for the final output.

Formula (5) is a DAG representation, where the DAG f → c → s → w

can be interpreted as a causal chain: an individual’s paternal education

causes his childhood test performance, which in turn causes his schooling,

which in turn causes his adult earnings. This causal interpretation is intu-

itive, because it tracks the chronological order of the variables’realizations.

However, it may be false - e.g., when all four variables have a common un-

observed cause. In this case, the conditional-independence properties of q3

(such as s ⊥ f | c) will not be satisfied in reality. A user of the analyst’s

output may falsely infer that when he controls for children’s test scores, he

can predict their future school performance independently of their father’s

education.

Comment: Order effects

Unlike Example 3.1, here the IEP’s output is sensitive to the order in which

datasets appear. To see why, let S̄ = ({δf , δc}, {δs, δw}, {δc, δs}). The provi-
sional output of round 2 is q2(f, c, s, w) = p(f, c)p(s, w). In the final round,

we have q31 = q2 and q32(f, c, s, w) = p(c, s)q2(f, w | c, s). The procedure’s
final output is

q3(f, c, s, w) = q2(f, w | c, s)
[
α3q2(c, s) + (1− α3)p(c, s)

]
Consider an objective distribution p under which each of the variables f and

w is independently distributed, whereas the variables c and s are mutually

correlated. Then, q2(f, c, s, w) = p(f)p(c)p(s)p(w). Therefore,

q3(f, c, s, w) = p(f)p(w)
[
α3p(c)p(s) + (1− α3)p(c, s)

]
This expression underestimates the objective correlation between c and s (to

an extent given by α3). By comparison, under the same assumptions on p,

expression (5) would be reduced to p(f)p(w)p(c, s), which fully accounts for
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the objective correlation between c and s.

Comment: The causal interpretation of qm

the interpretation that I pursue in this paper is that the analyst lacks any

prior theoretical prejudice: his objective is to obtain a rectangular database

that is amenable to simple, presentable statistical analysis, and he employs

an intuitive extrapolation procedure toward that end. It is not essential

to this interpretation that a user of the procedure’s output notices that it

exhibits conditional-independence patterns that suggest a causal mechanism.

Suppose, however, that the user does notice that qm is consistent with a

DAG R. This may suggest a causal interpretation to him. And indeed, in

cases like Example 3.2, the causal story is intuitive because it matches the

variables’chronological ordering. This may reassure the user of the validity of

the analyst’s report, exacerbating his lack of interest in the methods behind

it. However, recall the equivalence relation over DAGs. In Example 3.2, the

procedure’s output could be equivalently written as q3(f, c, s, w) = p(w)p(s |
w)p(c | s)p(f | c), an expression that manifestly factorizes p according to
the DAG w → s → c → f . This DAG entirely reverses the chronological

ordering and therefore makes no sense as a causal chain.

In other cases, qm factorizes p according to some DAG R, and yet no

DAG in the equivalence class of R would make sense as a causal model. For

instance, in the context of the “education” story of Example 3.2, suppose

that the database is as in Example 3.1, consisting of three datasets that

record the correlation of w with each of the other variables f, c, s. Then,

although q3 has a DAG representation, the DAG necessarily regards w as an

immediate cause of at least two other variables (per our discussion at the

end of Example 3.1). This causal interpretation is absurd, because w is the

last in the chronological order of the variables’realizations. In situations like

these, when the user notices that qm is consistent with an implausible causal

story, he may be impelled to probe into the methods behind qm, and thus

become a more sophisticated user of processed statistical data.
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Example 3.3: “Partial cursedness”

Let N = {1, 2, 3}, where x1 represents the action of an uninformed player
in a simultaneous-move game, whereas x2 and x3 represent the information

and action of the player’s opponent, respectively. In this story, we could

identify the analyst with player 1 (or rather his strategic advisor). Consider

the ordered database S̄ = ({1, 2}, {1, 3}, {2, 3}). The first two rounds of the
IEP are the same as in the previous examples. The provisional output of

round 2 can be written as q2(x1, x2, x3) = p(x1)p(x2 | x1)p(x3 | x1). Turning
to the final round, note that q31 = q2, whereas

q32(x1, x2, x3) = p(x2, x3)q
2(x1 | x2, x3) = q2(x1, x2, x3)

p(x2, x3)

q2(x2, x3)

This expression does not coincide with q31. The final output is

q3(x1, x2, x3) = q2(x1, x2, x3)

[
α3 + (1− α3) p(x2, x3)

q2(x2, x3)

]
(6)

This is not a DAG representation, and cannot be rewritten as such. How-

ever, the above simultaneous-game story suggests that we should restrict the

domain of permissible objective distributions p to those for which x1 ⊥ x2, x3

- equivalently, those that are consistent with the DAG R∗ : 1 3 ← 2.

The domain restriction implies q2(x1, x2, x3) = p(x1)p(x2)p(x3), and there-

fore q2(x2, x3) = p(x2)p(x3). The formula (6) is then simplified into

q3(x1, x2, x3) = p(x1)p(x2)
[
(1− α3)p(x3 | x2) + α3p(x3)

]
(7)

This is an example of what Spiegler (2015) calls a “mixed-DAG repre-

sentation” - namely, a convex combination of two DAG representations -

assigning weight 1− α3 to R∗ and weight α3 to the empty DAG. It matches
what Eyster and Rabin (2015) call “partial cursedness”, where α3 measures

player 1’s “degree of cursedness” - i.e., the extent to which he neglects the

correlation between the opponent’s information and action. In this sense,
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the IEP provides a foundation for partial cursedness. However, this foun-

dation crucially relies on the assumption that {2, 3} is the last dataset in
the ordered database; any other ordering would have let to an output that

factorizes any objective distribution in the restricted domain according to

R∗. Also, the foundation does not extend to other restricted domains of

p with a simultaneous-game motivation. For instance, when x2 represents

an uninformed opponent’s action and x3 represents the game’s outcome, the

natural domain restriction is x1 ⊥ x2, and then q3 loses the partial-cursedness

structure.

4 General Analysis

In this section I characterize databases for which the IEP’s output has a

DAG representation, and the class of DAG representations that can emerge

as outputs of the IEP. A few preliminaries are in order before I can state the

main results. First, let us introduce a few properties of databases.

Definition 2 An ordered database S̄ = (S1, ..., Sm) satisfies the running
intersection property (RIP) if for every k = 2, ...,m, Sk ∩ (∪i<kSi) ⊆ Sj

for some j < k.

Definition 3 An unordered database S satisfies RIP∗ if there exists an or-
dering S̄ of S that satisfies RIP.

Definition 4 An ordered database (S1, ..., Sm) is maximally overlapping
if |Sk ∩ (∪j<kSj)| ≥ |Si ∩ (∪j<kSj)| for every k = 2, ...,m − 1 and i = k +

1, ...,m.

RIP requires that the intersection between any set along the sequence S̄
and the union of its predecessors is weakly contained in one of them. This
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combinatorial property is familiar from the Bayesian-network literature - see

below. Although it lacks an a-priori appealing economic interpretation, it

happens to hold in a number of realistic situations (including Examples 3.1

and 3.2).

RIP∗ requires that the collection S can be ordered with a running inter-
section. It holds trivially form = 2. To illustrate the definition form = 3, let

S ={{1, 3, 5}, {2, 4, 5}, {1, 2, 5}}. If we order S as ({1, 3, 5}, {2, 4, 5}, {1, 2, 5}),
RIP is violated because {1, 2, 5} ∩ ({1, 3, 5} ∪ {2, 4, 5}) = {1, 2, 5} is not
contained in any of the first two sets in the sequence. In contrast, the se-

quence ({1, 3, 5}, {1, 2, 5}, {2, 4, 5}) satisfies RIP because {2, 4, 5}∩({1, 3, 5}∪
{1, 2, 5}) = {2, 5} ⊂ {1, 2, 5}. Therefore, {{1, 3, 5}, {1, 2, 5}, {2, 4, 5}} satis-
fies RIP∗. Conversely, the database {{1, 3}, {1, 2}, {2, 3}} violates RIP∗; its
members cannot be ordered in a way that satisfies RIP.

The maximal-overlap property requires that Sk has at least as many vari-

ables in common with previous observed datasets as any subsequent dataset.

This property makes particular sense when, for instance, variables are real-

ized according to some chronological order, and as new datasets arrive over

time, they tend to cover recent variables. Example 3.2 fits this interpretation.

The property can also reflect the analyst’s own initiative: in his attempts to

broaden the database, he deliberately seeks datasets that maximally overlap

prior datasets, because he wishes to extrapolate as little as possible.

The following result, proved by Noga Alon, links the three properties.

Lemma 1 (Alon (2016)) Suppose that the database S satisfies RIP*. Then,
every maximally overlapping ordering of S satisfies RIP.

This lemma provides a simple tool for checking whether S satisfies RIP∗:
order this collection according to any maximally overlapping sequence, and

check whether the sequence satisfies RIP.
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Perfect DAGs

Let us turn from properties of databases to a property of DAGs. A subset

of nodes C ⊆ N is a clique in R if iR̃j for every distinct i, j ∈ C. A clique is
maximal if it is not a strict subset of another clique. A clique C is ancestral

if R(i) ⊂ C for every i ∈ C.

Definition 5 (perfect DAGs) A DAG R is perfect if whenever iRk and

jRk, it is the case that iR̃j.

Equivalently, R is perfect if R(i) is a clique for every i ∈ N .1 To illustrate the
definition, 3 ← 1 → 2 → 4 is perfect, whereas 3 ← 1 → 2 ← 4 is imperfect.

When R is perfect, I refer to pR as a perfect-DAG representation.

Remark 1 Two perfect DAGs are equivalent if and only if they have the
same set of cliques. In particular, we can set any one of these cliques to be

ancestral w.l.o.g. (This is a direct implication of Proposition 1.)

What is the meaning of perfection in light of the causal interpretation

of DAGs? By definition, all the postulated causes of a variable in a perfect

DAG are also presumed to have direct causal links among them. However,

Remark 1 implies that the causal interpretation of perfect DAGs is spurious

in the following sense: every causal link postulated by the DAG is reversed

in some equivalent DAG.

Perfect DAGs are related to RIP∗, via the following result, which is fa-

miliar in the Bayesian-networks literature.

Remark 2 (Cowell et al. (1999, p. 54)) The set of maximal cliques in
a perfect DAG satisfies RIP*.

1Note that by the definition of R(i), it is a clique if and only if R(i) ∪ {i} is a clique.
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Which marginals get distorted by a DAG representation?

The DAG representation pR generally distorts the objective distribution p:

unless R is fully connected, there exists an objective distribution p for which

pR 6= p. However, certain marginal distributions are not distorted by pR. The

following proposition, which will be useful in the proof of the main result,

characterizes these cases. The proof is relegated to Appendix I.

Proposition 2 Let R be a DAG and let C ⊆ N . Then, pR(xC) = p(xC) for

every p if and only if C is an ancestral clique in some DAG in the equivalence

class of R.

Thus, the marginal distribution overXC induced by pR never distorts the true

marginal if C is an ancestral clique in R, or in some DAG that is equivalent

to R. Note that if R is perfect, then by Remark 1, pR(xC) = p(xC) for every

p and every clique C in R.

The intuition for Proposition 2 can be conveyed through the causal in-

terpretation of DAGs. Suppose that C consists of a single node i. When

i is ancestral, it represents a “primary cause”. The belief distortions that

arise from a misspecified DAG concern variables that are either independent

of xi or (possibly indirect) effects of xi. These distortions are irrelevant for

calculating the marginal of pR over xi. In contrast, suppose that i is not

ancestral in any DAG in the equivalence class of R. Then, there must be two

other variables xj, xk, deemed independent by R, which function as (possibly

indirect) causes of xi. This failure to account for the full dependencies among

the causes of xi can lead to distortion of the marginal distribution over xi.

4.1 The Main Results

We can now state the first main result. If an unordered database S satisfies
RIP∗, then for any maximally overlapping ordering of S, the IEP will generate
an output that can be written as a perfect-DAG representation. Moreover,
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the DAG is essentially unique, because its set of maximal cliques is S (and
by Remark 1, all perfect DAGs with the same set of cliques are equivalent).

Theorem 1 Suppose that S satisfies RIP∗. Let R be any perfect DAG whose
set of maximal cliques is S. Then, f(S̄, α, p) = pR for every maximally

overlapping ordering S̄ of S, collection of coeffi cients α = (αk)k=1,...,m and

objective distribution p ∈ ∆(X).

Proof. I will show that for every p and every k = 1, ...,m, the belief qk ∈
∆(XBk) has a perfect-DAG representation, where the DAG Rk is defined over

Bk and its set of maximal cliques is {S1, ..., Sk}. The proof is by induction
on k. Let k = 1. By definition, q1 = pS1 , which is trivially a perfect-DAG

representation (the DAG R1 is fully connected over B1 = S1).

Now consider k ∈ {2, ...,m}. By assumption, S = {S1, ..., Sm} satisfies
RIP∗ and S̄ =(S1, ..., Sm) is some maximally overlapping ordering of S. By
Lemma 1, (S1, ..., Sm) satisfies RIP. This immediately implies that (S1, ..., Sk)

satisfies RIP, too. By assumption, S does not include sets that contain one
another. Therefore, Sk − Bk−1 and Bk−1 − Sk are both non-empty. The

auxiliary beliefs qk1 and q
k
2 over Bk = Bk−1 ∪ Sk are given by (2).

Consider the expression for qk1 . The inductive hypothesis is that q
k−1 has

a perfect-DAG representation, where the DAG Rk−1 is defined over Bk−1,

and its set of maximal cliques is {S1, ..., Sk−1}. By RIP, Sk ∩Bk−1 is weakly

contained in one of the sets S1, ..., Sk−1. Extend Rk−1 to a DAG Rk over

Bk, by adding a link i → j for every i ∈ Sk ∩ Bk−1 and j ∈ Sk − Bk−1,

as well as adding directed links among all nodes in Sk − Bk−1 without de-

stroying acyclicity. The DAG Rk is perfect and its set of maximal cliques

is {S1, ..., Sk}. Thus, qk1 is a perfect-DAG representation, where the DAG is
Rk.

It remains to show that qk2 coincides with q
k
1 , such that by (3), q

k = qk1 for

any αk. If Sk ∩ Bk−1 = ∅, this is self-evident. Now suppose Sk ∩ Bk−1 6= ∅.
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Note that qk1 and q
k
2 can be written as

qk1(xBk) = p(xSk)q
k−1(xBk−1) ·

1

p(xSk∩Bk−1)
(8)

qk2(xBk) = p(xSk)q
k−1(xBk−1) ·

1

qk−1(xSk∩Bk−1)

Since qk−1 is a perfect-DAG representation - where the DAG is Rk−1, and

Sk ∩ Bk−1 is a clique in Rk−1 - Remark 1 implies that w.l.o.g it is an an-

cestral clique. Proposition 2 then implies that qk−1(xSk∩Bk−1) = p(xSk∩Bk−1).

Therefore, qk2 coincides with q
k
1 .

The following result is a converse to Theorem 1, which shows that RIP∗

is necessary for the IEP’s output to have a DAG representation.

Theorem 2 Suppose that S violates RIP∗. Then, for every DAG R and

every ordering S̄ of S, there exists an objective distribution p ∈ ∆(X) such

that f(S̄, α, p) 6= pR for any collection of coeffi cients α.

Proof. Suppose that S violates RIP*. Then, any ordering of S violates
RIP. Note that this means m ≥ 3. Let k > 2 be the earliest round for which

Sk∩Bk−1 is not weakly contained in any of the sets S1, ..., Sk−1. By the proof

of Theorem 1, qk−1 ∈ ∆(XBk−1) has a perfect-DAG representation, where the

perfect DAG Rk−1, defined over Bk−1, is characterized by the set of maximal

cliques {S1, ..., Sk−1}. It follows that Sk ∩ Bk−1 is not a clique in Rk−1.

By Proposition 2, there exist distributions p for which qk−1(xSk∩Bk−1) 6=
p(xSk∩Bk−1). Therefore, by (8), there exists p for which q

k
1 and q

k
2 do not

coincide. I now construct a family of such distributions.

Since Sk∩Bk−1 is not a clique in Rk−1, it must contain two nodes, denoted

w.l.o.g 1 and 2, that are not linked under Rk−1. Let p be an arbitrary

objective distribution for which xi is independently distributed for every
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i 6= 1, 2, whereas x1 and x2 are mutually correlated. Then,

qk−1(xBk−1) =
∏

i∈Bk−1

p(xi)

It follows that qk1 and q
k
2 can be written as

qk1(xBk) = p(x1)p(x2) ·
∏

i∈Bk−{1,2}

p(xi)

qk2(xBk) = p(x1)p(x2 | x1) ·
∏

i∈Bk−{1,2}

p(xi)

such that

qk(xBk) =

 ∏
i∈Bk−{2}

p(xi)

 · [αk · p(x2) + (1− αk) · p(x2 | x1)
]

Since all the variables i 6= 1, 2 are independently distributed under p and

αk ∈ (0, 1) for every k, the continuation of the IEP will eventually produce

a final belief of the form

qm(x) =

(∏
i 6=2

p(xi)

)
· [β · p(x2) + (1− β) · p(x2 | x1)]

where β ∈ (0, 1) is some combination of αk, ..., αm. Since p(x2 | x1) 6= p(x2)

for some x1, x2, qm−1 does not have a DAG representation.

The key to understanding Theorems 1 and 2 is whether the provisional

distribution qk (at any round k in the IEP) distorts the true marginal over

XSk∩Bk−1 . When the ordered database (S1, ..., Sk) satisfies RIP, Sk ∩ Bk−1

is weakly contained in some dataset Si, i ≤ k − 1. This means that the

ith dataset contains complete raw information about the marginal of p over

Sk ∩ Bk−1. The proof-by-induction of Theorem 1 employs the properties of

perfect DAGs to ensure that this information is not lost or distorted by the
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time we reach round k, and therefore the marginal of qk−1 over XSk∩Bk−1

does not contradict the true marginal of p over this set, which is given by

the dataset Sk.

In contrast, when the ordered database violates RIP, there will be a round

k for which Sk ∩ Bk−1 is not weakly contained in any dataset Si, i ≤ k − 1.

This means that the marginal of qk−1 over XSk∩Bk−1 is not exclusively based

on raw data, and thus inevitably involves extrapolation, potentially missing

correlations among variables in Sk ∩Bk−1. As a result, the marginal of qk−1

over XSk∩Bk−1 may contradict the true marginal of p over this set, which is

given by the dataset Sk. In other words, the kth dataset will disagree with

the provisional output of round k − 1 over the correlation structure of the

variables in Sk ∩ Bk−1. This disagreement will persist until the procedure’s

very end, such that its output will lack the coherent correlation structure

that characterizes a DAG representation.

Example 3.2 demonstrated the role of the maximal-overlap property.

The unordered database satisfied RIP∗, and yet we saw that it could be

ordered in a way that violates the maximal-overlap property. This order-

ing gave rise to an output that lacked a DAG representation. However,

unlike RIP∗, the maximal-overlap property is not necessary for the IEP’s

output to have a DAG representation. For instance, the ordered database

({1, 2, 3}, {3, 4}, {2, 3, 5}) fails the maximal-overlap property but satisfies
RIP, and therefore the IEP’s output in this case has a DAG representation.

The availability bias illustrated in Example 3.1 is a general feature of

the model, in the following sense. Consider a database that satisfies RIP∗.

Suppose that the database records the correlation between some variable xi
and many other variables, but does not record the correlation among the

latter. Then, for any DAG representation of the IEP’s output, xi will appear

above the other variables (with the exception of at most one of them) in the

DAG’s causal hierarchy.
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The following corollaries of Theorems 1 and 2 examine the relation be-

tween DAG representations and the IEP from a different perspective. Rather

than taking the database as primitive and checking whether it leads to a DAG

representation, we can take the representation as given and ask whether it

can be justified as the procedure’s output for a suitably specified database.

Corollary 1 Suppose that R is a perfect DAG. Let S be an unordered data-
base consisting of the maximal cliques of R. Then, for every maximally over-

lapping ordering S̄ of S and any collection of coeffi cients α, f(S̄, α, p) = pR

for all objective distributions p ∈ ∆(X).

Corollary 2 Suppose that R is an imperfect DAG. Then, for every or-

dered database S̄, there exists an objective distribution p ∈ ∆(X) such that

f(S̄, α, p) 6= pR for any collection of coeffi cients α.

Corollary 1 is an immediate implication of Remark 2 and Theorem 1.

Corollary 2 is a consequence of Proposition 1, which implies that imper-

fect and perfect DAGs can never belong to the same equivalence class. By

Theorem 1, if S satisfies RIP∗, the procedure’s output has a perfect-DAG
representation. And by Theorem 2, if S violates RIP∗, the procedure’s output
lacks a DAG representation altogether. Therefore, no database can generate

an imperfect-DAG representation.

4.2 Which Causal Models can be Extrapolated?

Corollaries 1 and 2 have special significance when we consider the causal in-

terpretation of DAGs. Recall that perfect DAGs do not postulate identifiable

causal links (in the sense that if iRj, there exists an equivalent DAG R′ such

that jR′i). In contrast, every imperfect DAG R contains at least two identi-

fiable causal links that belong to the graph’s v-structure: these links remain

unreversed in any DAG in the equivalence class of R. Corollaries 1 and 2
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imply that only causal models that make unidentifiable causal assumptions

can be extrapolated (via the IEP) from partial statistics. This is consistent

with the familiar motto “correlation does not imply causation”: the analyst’s

dataset contains purely observational data; the extrapolation method that

the analyst employs does not create meaningful beliefs about causality out

of thin air.

The two corollaries enable us to shed light on whether natural classes

of subjective causal models can be justified as the outcome of procedural

extrapolation from partial statistics. The following are a few examples.

Fixed-lag causal models

Consider a decision maker whose subjective belief q over X distorts the ob-

jective distribution p by treating each variable as a stochastic function of its

L immediate predecessors:

q(x1, ..., xn) = p(x1, ..., xL)
n∏

i=L+1

p(xi | xi−L, ..., xi−1) (9)

For instance, when L = 1, q(x1, ..., xn) = p(x1)p(x2 | x1) · · · p(xn | xn−1).
This specification fits environments in which variables have a natural chrono-

logical ordering, and where subjective perception of the variables’history de-

pendence is “coarse”or “truncated”(as in Piccione and Rubinstein (2003)).

For any L < n, the ordered database S̄ = ({k, ..., k+L})k=1,...,n−L satisfies
RIP and generates (9) as the IEP’s output. Thus, a fixed-lag subjective

causal model can be justified (via the IEP) as the outcome of extrapolation

from datasets with memory of fixed length. Example 2.2 illustrates this result

for n = 4, L = 1.

Correlation neglect

Let n = 3, and consider the DAG R : θ → z ← a, where θ represents a

state of Nature that affects the value of an object, a represents the bidding

behavior of a player in some trading mechanism, and z represents the mech-
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anism’s outcome. Then, pR(θ, a, z) = p(θ)p(a)p(z | θ, a). The DAG R can

be interpreted as a subjective model that postulates the independence be-

tween the player’s bidding behavior and the object’s value. If p violates this

independence property - because in reality the player conditions his behav-

ior on some unobserved signal of θ - we have pR 6= p, and thus pR exhibits

“correlation neglect”(as in Eyster and Rabin (2005) or Jehiel and Koessler

(2008)).

Is it possible for an analyst who has access to partial statistics about

θ, a, z to extrapolate the correlation structure given by R? Because R is

imperfect, Corollary 2 implies that no database will generate an output that

factorizes every p according to R. The intuition for this impossibility is

simple. In order to estimate the term p(z | θ, a), the analyst must have

access to joint observations of all three variables. But this would also enable

him to grasp whatever correlation exists between θ and a, whereas pR treats

them as mutually independent.

Thus, the particular form of correlation neglect captured by pR cannot be

justified by our notion of extrapolation from partial statistics. Of course, this

failure is specific to the present example; other forms of correlation neglect

are consistent with the IEP (see Example 3.3).

It is easy to see from this expression why it cannot be obtained by the

IEP.

Observability structures

Let N = {1, 2, 3, 4}. Each variable xi represents the action of a different
player in an extensive game. Each of the following two DAGs represents a

game form in which each player moves once and the order of moves is fixed.

A link i → j means that j always observes i’s move. DAGs thus represent

what Eyster and Rabin (2014) refer to (in the context of a social-learning
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model) as “observability structures”.

2 ← 1 → 3

↘ ↙
4

4 ← 1 → 2

↘ ↓
3

The question is whether an outside observer could extrapolate a belief in

these observability structures from some partial statistical data. The left-

hand DAG is imperfect (R(4) = {2, 3}, and yet 2 and 3 are not linked).

Therefore, no database can generate an output that factorizes every p ac-

cording to this graph. In contrast, the right-hand DAG is perfect, and it will

be extrapolated from any ordering of S = {{1, 2, 3}, {1, 4}}.

What is the broader significance of these examples? When a subjective

causal model is consistent with the IEP, we can tell an “as if” story about

the model’s origin: Agents do not necessary have an explicit prior theory

regarding the correlation structure of their environment; instead, their belief

is based on procedural extrapolation from partial statistics (possibly per-

formed by another agent - our eponymous “data monkey”); and the belief

only appears as if the agent were trying to impose an explicit causal model

on the true distribution. This argument is in the spirit of axiomatic decision

theory: DAG representations are a tractable formula that captures a range of

systematic belief distortions and possesses a natural (causal) interpretation;

it is instructive to know whether they have a plausible “origin story”.

5 Relation to the MaxEnt Problem

The IEP is a “behaviorally motivated”procedure for extending partial sta-

tistics into a fully-specified probability distribution over X. An alternative,

more “normatively motivated”extrapolation method is based on the crite-

rion of maximal entropy. Consider the unordered database S, which enables
the analyst to learn the marginals (pS)S∈S . The analyst’s problem is to find
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a probability distribution q ∈ ∆(X) that maximizes entropy subject to the

constraint that for every S ∈ S, the marginal of q over XS is pS. A more

general version of this problem was originally stated by Jaynes (1957) and

has been studied in the Machine Learning literature, where it is known as

the MaxEnt problem.

The maximal-entropy criterion generalizes the “principle of insuffi cient

reason”(recall that unconstrained entropy maximization yields the uniform

distribution). The idea behind it is that the analyst wishes to be “maximally

agnostic”about the aspects of the distribution he has not learned, while being

entirely consistent with the aspects he has learned. For instance, suppose

that the analyst only manages to learn the marginal distributions over all

individual variables - i.e., S = {{1), ..., {n}}. Then, the maximal-entropy
extension of these marginals is p(x1) · · · p(xn).2

The following is an existing result, reformulated to suit our present pur-

poses.

Proposition 3 (Hajek et al. (1992)) Suppose S satisfies RIP∗. Then,

the maximal-extension entropy of the marginals (pS)S∈S is pR, where R is

any perfect DAG whose set of maximal cliques is S.

This result establishes a connection between the IEP and the MaxEnt prob-

lem: the former can be viewed as an algorithm for implementing the latter

whenever S satisfies RIP∗. Recall that RIP* holds automatically for m = 2.

Thus, the basic extrapolation method employed in the first round of the

IEP always implements the maximal-entropy principle. Indeed, I motivated

this method by the idea that the analyst wishes to use all available evidence

without making any active assumption about things for which he has no evi-

dence. This is essentially the maximal-entropy principle; and the proposition

2For a more recent study of information-theoretic methods of extrapolation from limited
data, see Miller and Liu (2002).
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formalizes the connection for m = 2. When m > 2, the unqualified equiv-

alence between the IEP and the maximal-entropy principle breaks down; it

holds only when S satisfies RIP∗.

6 Related Literature

This paper draws on two literatures in statistics: graphical models and sta-

tistical inference with missing data. Both links were explained earlier in the

paper. This section focuses on the paper’s connection to literature within

economics. Recent years have seen intensified interest in equilibrium models

with “boundedly rational expectations”, in which agents’subjective beliefs

systematically distort the correlation structure of the steady-state distribu-

tion. The distortions take various forms: “coarse”beliefs that neglect corre-

lations (Piccione and Rubinstein (2003), Jehiel (2005), Koessler and Jehiel

(2008), Mullainathan et al. (2008), Eyster and Piccione (2013)); failure to

realize how action-consequence correlation would change if off-equilibrium

actions were played (Esponda (2008)); belief in spurious correlations due to

naive extrapolation from small samples (Osborne and Rubinstein (1998)); or

attributing fluctuations in a certain variable to the wrong cause (Eyster and

Rabin (2005), Ettinger and Jehiel (2010)).

A common justification for models of this kind is that agents receive

partial feedback as they try to learn statistical regularities in their environ-

ment, and therefore their subjective beliefs distort the correlation structure

of the steady-state distribution. In some cases (e.g. Osborne and Rubinstein

(1998), Jehiel (2005)), this idea is formally built into the definition of equi-

librium. In other cases the “limited feedback” justification is informal and

outside the model. The exercise in this paper can be viewed as a novel for-

malization of this justification and an exploration of its limits. Note that the

maximal-entropy aspect of the IEP is akin to the “Occam’s Razor”aspect

of the notion of analogy-based expectations in Jehiel (2005), which assumes
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that the agent imposes an analogy partition on the set of possible contin-

gencies and requires the agent’s belief to be measurable with respect to that

partition.

The link between partial data and non-rational expectations was studied

from an explicitly dynamic perspective in two recent papers. Esponda and

Pouzo (2016a) propose a general game-theoretic framework, in which each

player has a “subjective model”, which is a set of stochastic mappings from

his action a to a primitive set of payoff-relevant consequences y he observes

during his learning process. The feedback is limited because in the true

model, other “latent”variables may affect the action-consequence mapping.

Esponda and Pouzo define an equilibrium concept in which each player best-

replies to a subjective distribution (of y conditional on a) that is closest in his

subjective model to the true equilibrium distribution. Distance is measured

by a weighted version of Kullback-Leibler divergence. Esponda and Pouzo

justify this equilibrium concept as the steady-state of a Bayesian learning

process.

Schwartzstein (2014) studies a dynamic model in which an analyst tries

to predict a variable y as a function of two variables x and z. At every period,

he observes the realizations of y and x. In contrast, he pays attention to the

realization of z only if his belief at the beginning of the period is that z is

suffi ciently predictive of y. When the analyst chooses not to observe z, he

imputes a constant value. Schwartzstein examines the long-run belief that

emerges from this learning process, and in particular the analyst’s failure to

perceive correlations among the three variables.

Finally, the broad notion of decision makers as “imperfect statisticians”

is far from original and has many precedents in the literature - too many

to cite here. What is arguably new about this paper is the emphasis on

the processing of explicitly statistical data, and the distortions that arise

when users of processed data take it at face value and do not internalize the

processing methods.
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7 Conclusion

Economists have two prevailing images of how agents form beliefs. At one

extreme, we have the conventional view of the economic agent as an infallible

(Bayesian) statistician. At the other extreme, we have the image promoted

by behavioral economics, which emphasizes the role of intuition in belief for-

mation. These two pictures have implications for the kind of data that could

be involved in the agent’s reasoning. By definition, the conventional picture

is compatible with any data - from espresso-machine gossip to large statis-

tical tables. In contrast, intuitive judgments are more naturally associated

with the former kind. It makes sense to think about intuitive probability

judgments in response to a rumor, an anecdote or a terse statement about

probabilities; it makes weaker sense to think in such terms when we describe

reasoning about data that are arrive in the form of large spreadsheets. If we

wish to depart from the view of the economic agent as a supreme statistician,

a different metaphor is needed for such situations.

In this paper I offered the image of a “data monkey”, to describe an eco-

nomic agent who faces partial statistical data and subjects it to some method

of extrapolation in order to produce a digestible output. Such an agent may

have an imperfect understanding of his own methods, or he may fail to im-

part such understanding to his audience. This belief-formation error can be

viewed as an organizational, data-saturated analogue to the phenomenon of

“base rate neglect”that has been observed in the context of intuitive prob-

ability judgments (Tversky and Kahneman (1974)).3 Of course, the “data

monkey” image is not restricted to the extrapolation problem; developing

other “behaviorally motivated”models of how people reason about large sta-

tistical datasets is an exciting direction for future research.

3The idea that agents over-interpret posterior beliefs because they neglect the prior the-
ories that shaped them is related to other psychological phenomena, such as confirmatory
bias (see Rabin and Schrag (1999)).
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Appendix I: Proof of Proposition 2
For convenience, label the variables in C by 1, ...,m. Let us write down the

explicit expression for pR(xC):

pR(xC) =
∑

x′m+1,...,x
′
n

pR(x1, ..., xm, x
′
m+1, ..., x

′
n) (10)

=
∑

x′m+1,...,x
′
n

∏
i∈C

p(xi | xR(i)∩C , x′R(i)−C)
∏
i/∈C

p(x′i | xR(i)∩C , x′R(i)−C)

(i). Assume C is an ancestral clique in R. Then,

∏
i∈C

p(xi | xR(i)∩C , x′R(i)−C) = p(x1)
m∏
i=2

p(xi | x1, ..., xm−1) = p(xC)

Expression (10) can thus be written as

p(xC)
∑

x
′
m+1,...,x

′
n

(
n∏

i=m+1

p(x′i | xR(i)∩C , x′R(i)−C)

)
= p(xC)

Therefore, pR′(xC) = p(xC) for every R′ that is equivalent to R.

(ii). Let us distinguish between two cases.
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Case 1 : C is not a clique in R (and therefore also not a clique in any DAG

that is equivalent to R). Then, C contains two variables, labeled w.l.o.g 1

and 2, such that 1 /R2 and 2 /R1. Consider an objective distribution p, for

which every xi, i > 2, is distributed independently, whereas x1 and x2 are

mutually correlated. Then, expression (10) is simplified into

m∏
i=1

p(xi)
∑

x
′
m+1,...,x

′
n

n∏
i=m+1

p(x′i) =
m∏
i=1

p(xi)

whereas the objective distribution can be written as

p(xC) = p(x1)p(x2 | x1)
m∏
i=3

p(xi)

The two expressions are different because x2 and x1 are not independent.

Case 2 : C is a clique which is not ancestral in any DAG in the equivalence

class of R. Suppose that for every node j ∈ C, j has no “unmarried parents”
- i.e., if there exist nodes k, k′ such that kRj and k′Rj, then kRk′ or k′Rk.

In addition, if there is a directed path from some i /∈ C to j, then i has no

unmarried parents either. Transform R into another DAG R′ by inverting

every link along every such path. The DAGsR andR′ share the same skeleton

and v-structure. By Proposition 1, they are equivalent. By construction, C

is an ancestral clique in DAG that is equivalent to R, a contradiction.

It follows that R has the following structure. First, there exist three

distinct nodes, denoted w.l.o.g 1, 2, 3, such that 1, 2 /∈ C, 1R3, 2R3, 1 /R2 and

2 /R1. Second, there is a directed path from 3 to some node s ∈ C, s ≥ 3. For

convenience, denote the path by (3, 4, ..., s) - i.e., the immediate predecessor

of any j > 3 along the path is j − 1. It is possible that s = 3, in which case

the path is degenerate. W.l.o.g, we can assume that i /∈ C for every i 6= s

along this path (otherwise, we can take s to be the lowest-numbered node

that belongs to C along the path).
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Consider any p which is consistent with a DAG R∗ that has the following

structure: first, 1R∗2R∗3 and 1R∗3; second, for every j ∈ {4, ..., s}, R∗(j) =

{j−1}; and R∗(j) = ∅ for every j /∈ {2, ..., s}. (Note that the latter property
means that every xj, j /∈ {2, ..., s} is independently distributed. Then,

p(x) = pR∗(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) ·
s∏
i=4

p(xi | xi−1) ·
∏
j>s

p(xj)

In contrast,

pR(x) = p(x1)p(x2)p(x3 | x1, x2) ·
s∏
i=4

p(xi | xi−1) ·
∏
j>s

p(xj)

By definition, every i = 4, ..., s− 1 does not belong to C. Denote

q(x′) = p(x′1)p(x
′
3 | x′1, x′2)

(
s−1∏
i=4

p(x′i | x′i−1)
)
p(xs | x′s−1)

Therefore,

p(xC) =
∏

j∈C−{s}

p(xj)
∑
x′

p(x′2 | x′1)q(x′)

pR(xC) =
∏

j∈C−{s}

p(xj)
∑

x′1,...,x
′
s−1

p(x′2)q(x
′)

It is easy to see from these expressions that we can find a distribution p which

is consistent with R∗ such that pR(xC) 6= p(xC) for some x.
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Appendix II: Selective Datasets
An assumption that runs throughout the paper is that the process that gen-

erates missing data is independent of variables’ realizations. This is what

enables the analyst to learn the true marginal of p over XS from the dataset

that covers the set of variables S. However, this independence property is

naturally violated in many contexts. For example, data about a politician’s

quality is more likely to arrive when he is elected for offi ce. Likewise, data

about the value of an investment is more likely to arrive when the investment

is taken. Because the decision to elect a politician or make an investment

is typically based on information that may be correlated with the variable

in question (the politician’s quality, the investment’s value), we cannot as-

sume that the process that generates data is independent of the process that

generates the relevant variables’realizations.

A number of recent works (e.g., Esponda (2008), Jehiel (2015), Esponda

and Pouzo (2016b)) have analyzed models in which agents naively extrap-

olate their equilibrium beliefs from endogenously selective samples. In this

Appendix, I use a basic version of Jehiel’s (2015) model to illustrate how

the current formalism can be adapted to the case of selective datasets, thus

providing a new perspective into this interesting class of models.

In Jehiel’s model, there are three variables: a represents an investor’s

decision whether to invest in a project; θ is the actual value of the project;

and t is the investor’s private information regarding the project’s quality

prior to taking an action. The variable a takes two values, 0 (not investing)

and 1 (investing). The objective distribution p is a long-run joint distribution

over these three variables. A realization of this distribution corresponds to

an episode in which an individual investor faced an investment opportunity

and had some private information regarding its value. Given the variables’

interpretation, it is natural to assume that every distribution in the relevant

domain satisfies the conditional independence property a ⊥ θ | t.
An analyst wishes to understand empirical regularities in this environ-
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ment. His database consists of two datasets. The first dataset is an infinitely

large collection of independent joint observations of θ and t. This enables him

to learn p(θ, t). The second dataset consists of infinitely many joint observa-

tions of θ and a. However, each of these observations satisfies a = 1 - that is,

the dataset only records the value of an investment when it is taken; there

are no observations of an investment’s counterfactual value when it is not

taken. The interpretation is that each observation in this dataset describes

the outcome of a particular investment decision, without recording the pri-

vate information that lay behind it. This dataset is clearly selective; and

it can be described by a distribution p̂ over (a, θ) that is defined as follows:

p̂(a = 1) = 1, and p̂(θ | a = 1) = p(θ | a = 1).

Suppose that the analyst applies the IEP to this database. Because m =

2, any ordering of the database is maximally overlapping. The procedure’s

final output is

q2(a, θ, t) = α2 · p(θ, t)p̂(a | θ) + (1− α2) · p̂(a, θ)p(t | θ)

Because there are no observations of a = 0, q2(a = 0, θ, t) = 0 for every θ, t.

For a = 1, the expression for q2 simplifies into

q2(a = 1, θ, t) = α2 · p(θ, t) + (1− α2) · p(θ | a = 1)p(t | θ)
= p(t | θ)

[
α2 · p(θ) + (1− α2) · p(θ | a = 1)

]
Suppose that the analyst now makes the output of his research available

to a potential new investor who receives a particular private signal t. The

investor knows that not investing leads to a sure payoff of 0, independently

of θ or t. He relies on q2 for estimating the expected payoff from investing

conditional on his signal. In other words, he will invest if and only if∑
θ

q2(θ | a = 1, t)θ > 0
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In the α2 → 1 limit, the conditional distribution q2(θ | a = 1, t) converges

to p(θ | t). This is the quantity a rational investor should calculate, because
p satisfies θ ⊥ a | t. In this case, the new investor will choose to invest if and
only if it is rational to do so.

In contrast, in the α2 → 0 limit, q2(θ | a = 1, t) converges to

p(θ | a = 1)p(t | θ)∑
θ′ p(θ

′ | a = 1)p(t | θ′)

Given our assumptions on p, the term p(θ | a = 1)p(t | θ) can be rewritten
as

p(t)p(θ | t)
∑
t′

p(t′ | θ)p(a = 1 | t′)

Therefore, the new investor will choose to invest if and only if∑
θ p(t)p(θ | t) (

∑
t′ p(t

′ | θ)p(a = 1 | t′)) θ∑
θ p(t)p(θ | t) (

∑
t′ p(t

′ | θ)p(a = 1 | t′)) > 0 (11)

In Jehiel (2015), this inequality is precisely the criterion that defines in-

vestors’subjectively optimal behavior. The distribution p is in equilibrium

when an investor whose private signal is t chooses a = 1 if and only if the

inequality holds. This notion of equilibrium is meant to capture the idea that

when investors try to evaluate the consequences of an investment decision,

they naively extrapolate from a large sample of prior investments, without

taking into account that such a sample exhibits positive selection. The same

criterion emerges from our procedure of extrapolating from partial statistics,

when the dataset that records joint observations of a and θ gets arbitrarily

large weight.

Surprisingly, the investment criterion given by (11) would also emerge

if we assumed that the objective distribution is induced by a population of

investors whose subjective belief over (θ, t, a) is given by a perfect-DAG rep-

resentation, where the DAG is R : t← θ → a. Corollary 1 thus implies that
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a database that consists of non-selective datasets covering (θ, t) and (θ, a)

would have led to the same prediction. That is, the selectiveness assumption

is inessential for the model’s prediction in the α2 → 0 limit.

To derive this result, note that if p(a | t) > 0, then the investor should

find a to be subjectively optimal given t - i.e., a maximizes∑
θ

pR(θ | t, a) · θa

where θa is the investor’s payoff from his decision. Note that

pR(t, a) =
∑
θ

p(θ)p(t | θ)p(a | θ)

=
∑
θ

p(θ)p(t | θ)
∑
t′

p(t′ | θ)p(a | t′)

Therefore, if p(a | t) > 0, then a maximizes∑
θ p(θ)p(t | θ) (

∑
t′ p(t

′ | θ)p(a | t′)) θa∑
θ p(θ)p(t | θ) (

∑
t′ p(t

′ | θ)p(a | t′))

It follows that the DM’s subjective evaluation of a = 0 is zero, and his

evaluation of a = 1 coincides with the L.H.S of (11).

This coincidence is due to the strong structure of the selective dataset. In

Jehiel’s investment problem (as in Esponda’s (2008) leading bilateral trade

example), there are two actions: one action generates a fixed payoff and no

observations, whereas another action generates observations and uncertain

payoffs. As a result, although the IEP’s output q2 does not take the form of

a DAG representation, the behavior it induces in the α2 → 0 limit is as if

the investor’s subjective belief had a perfect-DAG representation.
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