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Key Points: 

• Irrigation is included as a factor of production in a global CGE model which 

distinguishes between rainfed and irrigated crop production 

• Global irrigation requirements in 2050 are projected to be 8.5-11% higher than in 

2004 

• All currently water-challenged regions maintain or even further expand the pressure 

over renewable freshwater resources 

• Production of vegetables, fruits and wheat induces the largest increase in irrigation 

water requirements 
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1. Introduction 

1.1. Scope 
Irrigated crop production is the single-most important blue water user representing 70% of total 

worldwide withdrawals [1]. Developing regions have an even higher share of withdrawals dedicated 

to irrigation due to the importance of agriculture in their economies. At the same time, meeting 

global crop demand relies to a large extent on enhancing moisture of water-deficient soils, with 40% 

of world crop output currently being obtained on irrigated land [1]. As a consequence, the use of 

irrigation has continuously grown in the past decades leading to a doubling of the global area 

equipped for irrigation in the 1961-2010 timeframe (Figure 1).  

 
Figure 1 - Global area equipped for irrigation 1961-2010 

 

Data source: FAOSTAT 

Demand for agricultural goods is expected to further expand in the next half of century due to 

continued demographic and economic growth [1]. Therefore it is important to understand the role 
that irrigated production together with yield improvements and land-use changes will play in 

meeting this increased demand. Increases in water withdrawals for irrigation are thus anticipated 

especially in high-growth developing regions that are quickly running out of suitable cropland and in 

which equipping arable land with irrigation leads to a boost in yields. 

 
Therefore, in this research, we seek to assess the future irrigation pressure over freshwater resources by 

taking into account alternative socioeconomic development storylines in the 2004-2050 timeframe.  

These storylines are derived from downscaled data of three Shared Socioeconomic Pathways (SSPs) [2]. 

Withdrawal pressure is expressed using the Irrigation Withdrawal to Availability (IWA) indicator i.e. 

irrigation water requirements relative to total renewable water resources.  Irrigation water demand is 

derived using the RESCU-Water model (Resources CGE UCL Water) - a global dynamic recursive CGE 

model which uses irrigation freshwater as an explicit factor of production. The model distinguishes 

between irrigated and rainfed crop production thus allowing for a differentiated specification of yield 

improvements of the two land types involved. Water requirements in irrigation are therefore determined 

“bottom-up” by accounting for input substitution possibilities and technological advancements detailed 

for every region, crop class and growing method. 

The paper is structured as follows. The remainder of this introduction section provides a critical view on 

past efforts in projecting freshwater uses at a global level. The RESCU model structure and scenario 

implementation are presented in Section 2. Section 3 presents the relevant model results – changes in 

crop output and irrigation requirements, irrigation pressure evolution using the IWA indicator, and 

changes in virtual water flows associated with international trade. The discussion of results and the 
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consideration of limitations of this study are presented in Section 4. Section 5 then draws the 

conclusions. 

1.2. Projections and modelling of freshwater uses 
Over the past two decades, attention has been given to assessing whether freshwater availability will 

suffice to cover future demand. In this respect, various approaches have been used with each bringing 

new light into the present and future state of freshwater resources, but also facing methodological 

limitations. The first large-scale assessment was undertaken in Shiklomanov [3] where the specifics of 

individual uses are considered and past growth patterns of the relevant drivers (population, GDP, 

irrigated land, power production) are extrapolated to determine future freshwater demand. This high-

level assessment method has been employed further in combination with hydrological models in the 

interest of representing water stress evolution at an increasingly fine geographical resolution [4]–[9]. The 

models used in these studies excel at having a spatially-detailed representation of freshwater resource 

distribution, however, they do not embed any underlying microeconomic behaviour driving freshwater 

demand in irrigation e.g. price signals impacts over crop demand, land conversion, crop substitution etc.  

Partial-equilibrium economic modelling has aimed at offering a more detailed representation of 

freshwater demand given future patterns of crop output expansion. In the IMPACT model [10], water 

resources are divided into 320 Food Producing Units (FPU), structured along with country borders and 

major river basins. The model is used to assess future food security under income and population growth. 

Within each FPU freshwater is being allocated to 44 crop classes based on crop prices and on crop water 

requirements along the different crop growth stages. Limits on irrigation withdrawals are imposed when 

total demand exceeds available renewable resources. In IMPACT, the crop sector is considered the lowest 

priority freshwater user i.e. total available resources are determined by deducting non-crop water uses 

first. The model implements income effects through demand income elasticities and profit maximisation 

through an allocation of freshwater resources according to crop profitability. However, as partial-

equilibrium, the model lacks an economy-wide view in the supply and allocation of factors of production 

across sectors given changes in relative prices. For instance, crowding-out effects of labour demand 

outside agriculture with subsequent impacts on crop production costs cannot be taken into account. To 

address some of these limitations, IMPACT is linked in [11] to a global CGE model [12] to incorporate cost 

effects over crop production coming from energy- and subsequently fertiliser price changes under 

different climate change mitigation scenarios. 

The modelling of freshwater uses in crop production through a Computable General Equilibrium (CGE) 

framework has been undertaken extensively at a country-level [13]–[18], and is increasingly gaining 

attention in global modelling [19]–[25]. There are now different methods to represent water as an input 

to crop production using a global economic database as a starting point (see [26] for an overview). Most 

applications of global-level water modelling have focused on the relationship between the supply-side of 

water scarcity and the themes of international trade [27]–[29], food security [19], [30] and climate 

change [22], [25], [31]. However, less focus has been placed on the evolution of water demand coming 

socioeconomic development and its importance for the future state of water stress. 

Except for the GTAP-based model used in [22], [24] and [30], in all these research efforts, total irrigation 

withdrawals are treated exogenously and therefore do not expand or contract as a function of market 

forces. For instance, in GTAP-W2 [31], because of the factor market clearing condition inherent to CGE 

models, it is implicit that any change in run-off induced by climate-change incurs a change in withdrawals 

in the same direction. In GTAP-BIO-W [33], water withdrawals are decided outside the model through 

changes in an irrigation water supply reliability (IWSR) index derived from the IMPACT model. Hence, in 

all regions for which the index remains unchanged, withdrawal changes do not occur regardless of the 

price pressures coming from an expansion of crop demand. In contrast, in [24], the water demand of 

different sectors is explained as a function of sectoral economic output and a sector-specific water 
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intensity coefficient. Thus, demand expansion of irrigation water is explored in relation to different 

socioeconomic development pathways by using “top-down” calculations starting from an overall change 

in crop production. While this approach can be suitable for industrial and household water demand 

where water uses are heterogeneous, water inputs in irrigation are homogenous across crop types being 

determined by evapotranspiration. Therefore a “bottom-up” approach is more suitable in understanding 

the interactions between irrigation water requirements and crop demand changes. This is possible 

through a disaggregated representation of crop production across crop classes and growing methods 

(irrigated and rainfed) which allows for a differentiated representation of technological improvements 

and input substitution, and their impact on crop water productivities and implicitly water requirements. 

Concerning the physical freshwater supply constraints, it is difficult to assess how much freshwater can 

be abstracted from the environment at a global scale and even more so to determine how much can be 

employed for irrigation. On the one hand, there is vast evidence that some river basins are currently 

being overexploited with a considerable reliance on groundwater pumping [34]–[37] thus no upper 

withdrawal limit can be considered unless exploring a sustainability scenario. On the other hand, without 

considering the evolution of other freshwater demand drivers (industry, services and households) by 

systematically using the same assumptions with regard to socio-economic development, it is not possible 

to ascertain the amount that is available to crop production even when a total withdrawal limit can be 

considered. Hence the present assessment of future freshwater requirements does not take into account 

physical limitations in irrigation freshwater supply associated with decreases in water tables or to the 

depletion of river flows. Nevertheless, it is important to acknowledge that it will become increasingly 

challenging to source the required volumes as withdrawals near or even exceed river basin recharge 

rates. Therefore the IWA indicator used in this paper should be regarded as an indicator of pressure and 

not as a reflection of actual future withdrawals. 

 

2. Materials and methods 

2.1. CGE modelling 
The advantage of utilising a CGE framework to determine changes in freshwater withdrawals comes from 

the framework’s capability to capture factor allocation across sectors. CGE models typically consist of a 

multi-sectoral and multi-factor view of an economy in which all markets are cleared at the end of a 

simulation period. The effects of economic growth and those of changes in population can thus be 

captured on the supply side by tracking the accumulation of capital stock and the evolution of labour 

supply and labour productivity.  On the demand side, as described in sections 2.2.4 and 2.2.6, 

socioeconomic development translates into changes in final demand given the spending behaviour of the 

different agents (households, government and investment).  

Furthermore, as an input to production, irrigation needs to be represented in relation to the other factors 

in terms of substitution possibilities and feedback effects as a consequence of technological change. In 

this research, we capture the relationship between cropland productivity gains through yield changes and 

the demand for irrigation. Yield growths lead to a reduction in land requirements per unit of output and 

implicitly reduce the land market prices. These exogenous yield improvements then lower the total cost 

of production resulting in a rebound growth of demand for crops and subsequently of irrigation. 

The use of a global CGE framework is also relevant for tracing the impact of international trade over 

freshwater withdrawals. With crops being some of the most intensely traded commodities, the extension 

of the analysis at a global level enables us to include the effects crop trade over irrigation withdrawal 

pressure. This allows us to analyse whether regions that are land or water constrained are likely to 
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replace some of the domestic production of irrigation-intensive goods with imports and thus avoid 

further increases in pressure over its endowments.  

CGE models can, therefore, be used to map the flows of ‘virtual water’ embedded in international trade. 

The virtual water concept was established in Allan [38] and is now used to determine the water footprint 

of world regions [39] and that of international trade [40], [41], [27], [42]. As our research focuses on 

irrigation, the virtual water results refer to the embodied blue water content associated to crop trade. 

 

2.2. RESCU model overview 
To simulate irrigation water requirements in the 2004-2050 time horizon, we use the RESCU model which 

is a global recursive-dynamic model using the GTAP database for the base year calibration. It comprises 

20 world regions and 24 sectors aggregated from the 140 countries and 57 sectors present in the GTAP9 

database (see Tables S1 and S2 in Supplementary Material A). The regional aggregation was done to 

reflect differences in growing conditions according to agro-ecological zoning and water availability.  

2.2.1. Crop production functions 
The model details irrigated and rainfed production distinctly for the eight crop classes represented. Both 

production functions assume a Leontief nest (perfect complements) between value-added VA and the 

intermediate goods bundle INT - Figure 2. For irrigated production, value added VA is a Constant Elasticity 

of Substitution (CES) nest composed of the Irrigation-Land the capital-labour KL bundles. Irrigation-Land 

is a Leontief composite of irrigable land IrrLand and Irrigation. The zero substitution elasticity σIRR 

assumption in Irrigation stems from the consideration that without irrigation water, irrigable land can no 

longer provide the same yields as initially assumed. In the rainfed production nesting, the Irrigation-Land 

bundle is replaced by rainfed land RfLand, allowing for substitution between this factor and the capital-

labour KL composite. The exogenous expected yield improvements derived from the IMPACT model data 

[43] for a medium GDP and population growth scenario are applied to the productivity parameters of 

Irrigation-Land  (λIrrLand,crop) for irrigated crops and to those of RfLand (λRfLand,crop) for rainfed crops. 

The Irrigation factor in each crop production function has an associated blue water intensity φirr,crop  

which is specific to each crop type. Therefore considering that Irrigation is a fully mobile factor, the move 

of its use from one crop production to another would lead to different irrigation water requirements 

depending on the differences between crop water intensities. 

Figure 2 – RESCU Irrigated and rainfed crop production functions 

 

Compared to the other global CGE models covering freshwater as a distinct factor of production, RESCU 

further specifies crop production nesting. In the GTAP-W and GTAP-BIO-W models, all land types were 

bundled with capital, labour and energy1, allowing for direct substitution between any pair of factors. The 

isolation of the capital-labour substitution in the RESCU model is based on the assumption that 

                                                             
1
 Both GTAP-W and GTAP-BIO-W are an evolution of the energy and environment GTAP-E model [59] 
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agricultural intensification, especially when moving to modern agricultural practices, implies a shift from 

labour to capital use. Furthermore, the labour and capital interaction is also of a particular interest in the 

present research, bearing in mind that capital and labour supply have different dynamics in the 

socioeconomic pathways considered.  

2.2.2. Base year irrigation valuation 
Irrigation is not recognised as a component of value added in national input-output accounts, and 

therefore the GTAP database does not directly provide the value information for this factor in the base 

year. Nevertheless, in a global modelling setting, it is tipically assumed that the value of irrigation can be 

derived from that of irrigated land i.e. irrigation improves crop yields and this is then reflected in higher 

rents of irrigated land. As detailed in Supplementary Material B, we introduce an improved valuation 

method in which we relate the value of irrigation water to the production losses when irrigation does not 

occur. This is done by using the crop production and yield change information determined by the ‘no 

irrigation’ scenario of the GCWM model [44].  

2.2.3. Factor supply 
The model comprises six factors of production - capital, labour, pasture land, rainfed land, irrigable land 

and irrigation. The supply of the former three is specified exogenously. Pasture land
2 is considered to be 

fixed throughout the simulation horizon, whereas capital and labour are changed given socio-economic 

development – capital stock follows investment and depreciation while labour is adjusted based on the 

evolution of the 15-65 years age groups within each region. As the base year comprises investment levels 

in developing regions that are high and unlikely for the long run notably, investment shares are being 

adjusted following the dynamics determined by the macro-econometric MaGE model [45] for each SSP 

considered. Also, a labour productivity factor is endogenised in order to meet the annual GDP growth 

targets in the model simulations. It is assumed that labour productivity in agricultural activities is lower 

than that of other sectors. Hence gains here are half those of non-primary sectors. 

Rainfed and irrigable land are supplied through a two-stage mechanism. In the first stage, total available 

arable land supply for each region Alandr  is specified using a logistic function: 
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                                                                                (1) 

The function is calibrated by an upper arable land expansion limit LandMaxr derived from the GAEZ 

database [46]. The εr parameter is used to shift the sigmoid supply curve to the equilibrium point in the 

base year. The kland parameter determines the steepness of the supply curve. A value of 0.02 was 

chosen in all regions which leads to an initial land supply elasticity in the range of 0.33-1.87% depending 

on the size of LandMaxr in each region. In this research, LandMaxr excludes land obtained through 

deforestation. The availability of cropland thus reacts to market prices – when the price of land PALand 

exceeds the regional price index PINDEX, additional supply is brought in to counter price inflation. In a 

second stage, crop land is split into rainfed and irrigated land using a CET function. Given that there are 

no estimates of the transformation elasticities for the two land types at national or regional levels, the 

CET function is calibrated by assuming an elasticity of 2. The choice of this value is made to indicate a 

moderate ease of conversion from one type of land to another3. Nevertheless, the impact of altering this 

assumed value does not change the model results significantly (see sensitivity analysis in Supplementary 

Information). 

The supply of irrigation is driven by its price PIrr relative to the regional price index through a logistic 

function similar to that of arable land: 

                                                             
2
 Non-crop land serves as an input only to livestock after the RESCU land disaggregation 

3
 We use a lower value than in GTAP-BIO-W [60] where a value of 10 is employed 
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We follow the observation that an upper physical limit for freshwater withdrawals cannot be established 

due to the large reserves of groundwater4 and the lack of information on freshwater uses in other 

sectors. Therefore considering the Leontief (no substitution) nesting of irrigable land (IrrLand) and 

irrigation, the supply of Irrigation is calibrated to follow the changes in available arable land such that this 

would not impose a significant constraint on the expansion or contraction of the Irrigation-Land bundle 

demand5. This is done by setting IrrMax to a value higher than LandMax for every region. 

2.2.4. Agent behaviour 
In line with standard specifications of CGE models, firms are profit maximising price takers and 

households are utility maximising agents subject to the disposable income balance. Final domestic 

demand is split between households, government and investment, each with a distinct spending 

function. Households choose their consumption basket based on a linear expenditure system (LES). The 

utility function thus comprises a subsistence component for each consumer good which is calibrated 

using the income and own-price elasticities of demand from the GTAP database. Subsistence levels are 

updated to track population changes throughout the simulation horizon. Government and the 

investment sector use Leontief demand functions (fixed shares) subject to total tax revenues and 

household savings respectively. 

The aggregated domestic demand by commodity is met by domestic production and imports. For 

international trade, the RESCU model incorporates the Armington assumption [47] in which foreign and 

domestic varieties are regarded as imperfect substitutes. 

2.2.5. Irrigation water requirements 
The inclusion of irrigation as a distinct input to production allows for an accounting of irrigation water 

requirements that tracks the changes in crop output and substitution effects between factors of 

production. Requirements for each crop class within a region are determined by multiplying the RESCU 

Irrigation factor uses by a blue water intensity coefficient ϕcrop,r which is both region and crop specific 

(Figure 3). Total requirements within a region are thus calculated using the summation: 

�
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�
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@
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                         (3) 

 

Here ηr represents the regional irrigation efficiency which includes field application and conveyance 

losses. We calculate efficiency rates for each RESCU region by following the procedure and irrigation 

country data from Rohwer et al.[48]. The obtained overall values range from 38% to 86% depending on 

the conveyance method and the technological mix of irrigation within each region. 

 

 

 

 

 

 

                                                             
4
 10,530,000 km

3 
groundwater reserves compared to 42,000 km

3 renewable freshwater resources [61] 
5
 This is observed in model simulations without yield changes embedded where price differentials of IrrLand 

and IrrWater are negligible 
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Figure 3 - Blue water intensities of irrigation water value added - by crop and by region 

 

Source: GTAP RESCU database 

 

2.2.6. Expansion mechanisms of irrigation water use 
Starting from the two main drivers – socio-economic development and technological change - 

modifications in total water requirements can occur through multiple channels (Figure 4). We distinguish 

between a ‘scale’ effect determined by changes in the output of irrigated crops and a ‘substitution’ effect 

determined by factor substitution within crop production functions and between crop types.  

Figure 4 - Mechanisms of changes in withdrawals 

 

Source: own compilation 

 

For the ‘scale’ effect, income and population growth lead to higher overall demand for crops given the 

household LES utility function and the underlying commodity income elasticities. These changes in 

demand are met either by domestic supply or through international trade. Given the CGE market clearing 

and zero economic profit conditions, changes in labour and capital stock availability induced by socio-

economic evolution also have a scale impact over domestic supply through changes in costs of domestic 

production. 

Relative price changes of production factors lead to a ‘substitution’ effect between inputs as suggested 

by the elasticities in the nested production functions from Figure 2. At the same time, the Irrigation-Land 

and rainfed land productivity changes (λIrr-Land,crop and λRfLand,crop respectively) through inherent yield 

changes differentiated by crop class have an impact on crop production costs. Hence, a substitution 

between crop classes and also between the irrigated and rainfed varieties within the same crop class can 
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occur based on cost advantages of one commodity over the other. These changes in the crop production 

mix determine a reallocation of irrigation across crop types and ultimately lead to changes in water 

requirements. 

2.2.7. Irrigation Withdrawals to Availability indicator 
To measure the evolution of pressure coming from irrigated crop production we introduce the Irrigation 

Withdrawals to Availability (IWA) indicator. The indicator is a measure of total water requirements 

relative to Total Renewable Water Resources (TRWR) in each RESCU region: 

�I�
 =  
�

56
758� 9
7�
 
�:;5
�<��7=


JKIK

                                             (4) 

TRWR for each country represents the sum of all internal resources and that of all inflows from its 

neighbours. To correct the double counting issue coming from river basins being shared by several 

countries within a region, we determine the TRWR values at a regional level by taking into account only 

inflows between regions and not within regions. The values taken into account are outlined in Table S4 in 

Supplementary Material A.   

In line with the Withdrawals to Availability (WTA) indicator introduced in Alcamo et al.[49] and the Water 

Stress Index (WSI) from Fischer et al.[50], we set an IWA threshold of IWA ≥ 0.2 for medium pressure and 

IWA ≥ 0.4 for severe pressure of irrigation withdrawals exerted over available renewable resources. 

2.3. Alternative futures scenarios 
The irrigation requirements and IWA values are determined for three future scenarios taken from [2] - 

SSP1 “Sustainability”, SSP2 “Middle of the Road” and SSP5 “Conventional Development”. A description of 

the selected futures is presented in Table S5 and Figure S1 in Supporting Information. It should be noted 

that SSP1 is labelled as the “sustainability” pathway from a greenhouse gas emissions perspective and 

not necessarily from that of all resources. Also, while the growth patterns assumed by these storylines 

are linked to carbon concentration outcomes, importantly these do not incorporate the possible 

feedback effect of climate change on socioeconomic development 

In the RESCU model, the SSPs are implemented through GDP growth rates and demographic changes. 

GDP growth leads to an overall increase in demand of goods as total income rises whilst the demographic 

evolution has two distinct consequences. On one hand, the subsistence consumption component of the 

LES utility function expands due to population growth. On the other hand, the supply of labour follows 

the changes in total active population stemming from a flattening of population growth by 2050.  

Downscaled socioeconomic data are taken from the IIASA SSP database6. For each future scenario, the 

derived growth rates of the relevant variables (real GDP, subsistence consumption, active population) are 

applied over the 2004-2050 horizon through annual simulation time steps. 

3. Results 
In order to explain the link between socioeconomic development and irrigation water requirements, we 

analyse the crop output evolution and the outcomes regarding irrigation use patterns across the eight 

crop classes. The impact of international trade over irrigation withdrawals and regional changes in 

pressure on renewable resources is also determined by tracing the flows of virtual water related to crop 

trade, i.e. the water requirements to produce the crops which are later exported.  

3.1. Crop output 
Crop output expands across all regions and virtually across all crop classes. Globally, crop production is 

projected to grow by 87.6% (SSP1), 83.2% (SSP2) and 101.1% (SSP5) by 2050 from 2004 values. At a 

                                                             
6
 https://tntcat.iiasa.ac.at/SspDb (accessed 16 September 2016) 
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regional level, total crop output growth ranges from 12% (Northeast Asia) to 294% (Sahel) in SSP2 (See 

Table S6 in Supplementary Material A). Higher output expansion takes place in regions with more 

pronounced socioeconomic development (Africa, Middle East, South Asia) and in those regions that are 

important crop exporters (Australia, USA). Irrigation production grows more than that on rainfed land 

across all regions mainly due to larger inherent yield improvements. Overall, irrigated agriculture 

increases its importance in world crop output, however, rainfed production continues to represent the 

larger share at a global level. 

GDP growth and yield improvements have the highest impact on crop production in all regions (Figure 5). 

Income expansion leads to an increase in demand for crops, whilst yield improvements further boost this 

through a reduction in costs of production. Increases in subsistence consumption driven by population 

growth have a limited effect, however still visible in many regions. This is due to a significant expansion of 

disposable income which reduces the weight of subsistence spending in the overall household budget. 

Meeting the subsistence consumption becomes thus less of a constraint in the budget allocation across 

consumer goods. 

Figure 5 - Decomposition of crop output growth 2050/2004 - SSP2. GDP and yield improvements are the main 

drivers generating crop output growth. 

 

 

3.2. Projected irrigation water requirements 
Global irrigation water requirements in 2050 are expected to reach 2605 km3 (SSP1), 2583 km3 (SSP2) and 

2645 km3 (SSP5) which is a 9.4%, 8.5% and 11.1% increase for SSP1, SSP2 and SSP5 respectively from 

2004 levels. In most regions water withdrawals expand with changes in Central Africa, India, Sahel and 

Central Asia (Figure 6).  In these regions, higher growth SSPs (SSP1 and SSP5) exacerbate the increases in 

water requirements. In cases where a decrease in irrigation water requirements occurs, the results are 

more mixed – higher global socioeconomic development further alleviates pressure from withdrawals in 

one group (Canada and China) but partially offsets this reduction for another group of regions (Southeast 

Asia, Eurasia and South Asia). The differences between these two groups are dictated by the relative sizes 

of the ‘scale’ and ‘substitution’ effects as outlined in Section 2.2.6. 

The obtained increases in irrigation requirements have a significant impact over already water-challenged 

regions. Irrigation pressure continues to grow in regions with an IWA over 20% in the base year. The 

metric reaches values of 88-92% in Northern Africa, 64-68% in the Middle East (Table 1). India enters the 

high pressure domain with a projected IWA of 42-43% in 2050. Furthermore, Central Asia faces significant 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

increases in the IWA values across the SSP scenarios and hence in SSP5 goes beyond the 20% stress 

threshold for medium pressure. South Asia is the only one in which irrigation water requirements are 

comparable to 2004 levels. However, the IWA of over 100% suggests continued river basin over-

exploitation across the region. These increases in water requirements if translated into actual 

withdrawals will further deteriorate the irrigation water stress map across a wide geographical area 

spanning from Northern Africa to Central Asia (see Figure S3 in Supplementary Material A). 

Figure 6 - Regional irrigation withdrawal changes 2004/2050. Most regions increase the irrigation water 

requirements. Decreases occur in areas in which yield improvements lead to a substitution to rainfed crop 

varieties and less-water intensive crop classes. 

 

Table 1 – IWA in 2004 and 2050 by SSP 

Region 
2004 

 

2050 

 

SSP1 SSP2 SSP5 

South Asia � 103.89% 103.56% 102.78% 103.96% 

Northern Africa ↗ 76.80% 89.70% 88.43% 91.75% 

Middle East ↗ 58.17% 62.17% 62.38% 64.93% 

India ↗ 31.61% 42.32% 41.68% 43.49% 

Central Asia ↗ 16.41% 19.59% 19.75% 20.31% 

China ↘ 12.86% 10.38% 10.45% 10.07% 

USA ↗ 7.58% 8.24% 8.20% 8.16% 

Southern Europe ↗ 7.13% 7.18% 7.15% 7.32% 

Southern Africa ↗ 5.55% 6.12% 6.06% 6.26% 

Southeast Asia ↘ 2.91% 2.87% 2.84% 2.90% 

Australia&NZ ↗ 1.78% 1.91% 1.89% 1.96% 

Northeast Asia � 1.84% 1.84% 1.84% 1.84% 

North Latin Am ↗ 1.37% 1.43% 1.42% 1.43% 

South Latin Am ↗ 1.08% 1.23% 1.23% 1.26% 

Sahel ↗ 0.78% 1.09% 1.00% 1.18% 

Central Africa ↗ 0.61% 1.01% 0.92% 1.11% 

Eurasia ↘ 0.43% 0.42% 0.42% 0.42% 

Brazil ↗ 0.13% 0.14% 0.14% 0.14% 

Northern Europe ↘ 0.07% 0.07% 0.07% 0.07% 

Canada � 0.07% 0.06% 0.07% 0.06% 
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3.3. Irrigation supply and allocation 
If the ‘scale’ effect of socioeconomic development over irrigation withdrawals is highlighted by the 

general crop output expansion, the ‘substitution’ effect is determined by changes in factor allocation 

across time given relative yield improvements and factor availability modifications. This leads to 

alterations in the way irrigation is used across the eight crop classes and implicitly determines changes in 

withdrawals given the differences in blue water intensities between crop classes. 

In SPP2, the supply of irrigation increases 9.0% globally by 2050 for SSP2 (Table 2) with a variation across 

regions ranging from -1.0% (Northeast Asia) to 104.2% (Central Africa). In addition to this overall growth, 

there is a re-allocation of irrigation uses between crops. Wheat production in India nearly doubles the 

use of irrigation water determining the single most important increase in withdrawals. The increase is 

only slightly offset by reductions in irrigation of other crops (plant fibers, oil seeds and other crops). For 

China, despite an overall increase of 13.5% in irrigation supply, total water withdrawals decrease. 

Irrigation here is re-allocated away from cereals (wheat, paddy rice and other grains) to less water-

intensive crops for this region (vegetables&fruits, cane&beet) lowering the withdrawal impact of the 

overall use of irrigation. Globally, changes in irrigation use patterns lead to significant withdrawal 

increases for wheat (coming mainly from India and Central Asia), vegetables&fruits (China, India, South 

Asia, Middle East, Southeast Asia), and decreases for paddy rice (China, Southeast Asia) and plant fibers 

(India, Central Asia). 

 

3.4. Virtual water flows through international trade 
Global flows of virtual water expand from 255 km

3 in 2004 to 288 km
3 (SSP1), 282 km

3 (SSP2) and 296 km
3 

(SSP5) in 2050. Some regions make considerable savings on the own irrigation water requirements 

through international trade (Figure 7) either by reducing the export of water-intensive crops (Central 

Asia) or by increasing imports (Nothern Africa, India, China). On the other side of the spectrum, more 

withdrawals are determined by the export of more crops (South Asia, USA) and through fewer imports 

complemented by an increase in domestic production (Middle East).  

The analysis of virtual water flows shows that water stressed regions are exporting considerable volumes 

of water and many continue to do so in the future (Figure 8). In South Asia, exports of crops (notably 

vegetables&fruits to India) become an important weight in withdrawals by 2050 (6% of TRWR). 

Therefore, in this region, the reduction in withdrawals coming from the reallocation of irrigation across 

crops on the supply side is offset by the growth in net virtual water exports. At the same time, although 

important exporters initially, the Middle East and Northern Africa see a reduction in exports of virtual 

water across all destination regions.  

It should be noted that at a regional level these virtual water flow changes do not necessarily imply 

modifications in the same direction of total physical flows of crops. With different water intensities 

depending on the crop class and the production region, an overall change in virtual water exports may be 

coming from changes in the structure of exported crops. Although volumes of trade in crops may be of 

interest from a food security perspective, these fall outside the scope of this paper. 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

Figure 7 - Net trade of crop virtual water 2004 and 2050 – SSP2. A few regions make savings on irrigation 

withdrawals by increasing virtual water imports or by reducing exports. 

 

Figure 8 - Virtual water flows in 2004 (255 km
3
) and 2050 (288 km

3
). The arrows show the exporter to 

importer direction of flows. Flows within a region are determined by trade between countries belonging 

to the same RESCU region. 
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Table 2- Changes in irrigation uses and withdrawals 2004/2050 - SSP2. Depending on the allocation of irrigation across crop classes, changes in irrigation use and 

water requirements can move in different directions. The largest changes in water requirements occur in regions with extensive irrigation.  

 
Changes in irrigation water requirements (km

3
) Changes in irrigation use (%) 
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Australia&NZ 0.01 1.42 0.14 -0.05 -1.08 -0.08 0.00 0.59 0.95 2% 79% 19% -2% -24% -2% 10% 43% 6% 

Brazil 0.00 0.33 -0.02 0.36 -0.01 -0.26 0.08 0.04 0.53 14% 7% -13% 14% -8% -14% 71% 3% 4% 

Sahel -0.06 -0.33 -0.09 0.75 -0.06 0.52 0.00 1.57 2.31 -26% -7% -32% 62% -60% 63% 101% 184% 38% 

Central Africa -0.09 1.77 -0.29 5.78 -0.50 -1.55 -0.12 3.02 8.01 -99% 24% -34% 305% -73% -85% -91% 99% 104% 

Central Asia 10.55 1.31 9.26 4.43 -7.90 0.32 0.00 -3.20 14.79 220% 29% 148% 58% -19% 71% 1% -47% 28% 

China -23.36 -47.05 -15.58 20.63 -3.83 2.39 0.80 -3.82 -69.82 -38% -23% -29% 109% -50% 73% 6% -90% 13% 

Eurasia -1.06 -0.14 -0.93 0.29 0.19 -0.16 0.11 1.06 -0.62 -17% -10% -20% 10% 19% -21% 50% 35% 2% 

India 178.70 32.84 -10.17 6.63 -10.32 -3.49 -11.75 8.49 190.94 94% 16% -67% 20% -36% -4% -70% 29% 21% 

Middle East -5.52 -1.07 2.17 14.65 2.05 -0.22 1.02 4.25 17.33 -14% -6% 12% 17% 10% -2% 34% 10% 12% 

Northern Africa -6.53 5.44 -10.68 4.58 3.39 4.21 0.32 24.43 25.17 -28% 34% -43% 10% 44% 36% 27% 70% 11% 

Northeast Asia 0.00 -0.10 -0.04 -0.01 0.00 0.00 0.13 0.02 0.00 5% -1% -24% -5% 27% -8% 96% 9% -1% 

Northern Europe 0.00 0.00 0.00 -0.09 0.00 0.04 0.00 0.02 -0.04 -22% 86% -21% -18% 20% 18% -31% 9% 4% 

North Latin Am 2.92 -0.81 -2.99 1.22 0.65 1.10 1.04 0.06 3.18 27% -7% -23% 4% 23% 6% 108% 1% 3% 

Canada -0.17 0.00 -0.11 0.12 0.00 0.00 0.01 -0.11 -0.27 -29% 24% -28% 48% 20% -1% 1% -23% 4% 

Southern Africa -0.10 0.03 0.57 0.68 0.27 -0.59 -0.12 0.31 1.04 -6% 28% 73% 21% 32% -25% -61% 15% 13% 

South Asia -33.07 7.01 5.81 20.63 -1.25 1.70 -0.18 -3.86 -3.21 -28% 12% 44% 147% -3% 7% -11% -15% 9% 

Southeast Asia 8.48 -44.43 -1.37 28.45 -0.04 -1.92 -0.18 6.58 -4.44 80% -28% -75% 290% -30% -16% -19% 144% 9% 

Southern Europe -0.23 0.50 -1.21 -0.37 1.15 0.13 0.84 -0.64 0.17 -12% 13% -10% -1% 22% 6% 28% -7% 0% 

South Latin Am 0.33 0.12 0.88 -0.27 0.12 0.56 1.46 -0.50 2.69 37% 4% 60% -3% 32% 37% 258% -19% 5% 

USA 2.73 6.16 -6.18 2.07 0.21 0.02 8.68 -0.70 12.99 23% 35% -13% 8% 1% 1% 47% -8% 2% 

World 133.54 -36.99 -30.83 110.47 -16.95 2.73 2.15 37.61 201.72 22% -9% -13% 30% 1% 1% 7% 1% 9% 
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4. Discussion 
 

4.1. Importance of socioeconomic drivers and yield changes 
Socioeconomic development impacts the withdrawal levels in a significant way. The results are more 

pronounced in scenarios with higher economic growth for developing economies (SSP1 and SSP5), 

indicating the importance of the relationship between income and pressure over freshwater resources 

for these regions. Furthermore, whilst growth in irrigation use can be explained to a large extent by 

increases in domestic demand for crops, changes in exports can also have a visible impact on irrigation 

water requirements. Hence, some regions face strong virtual water export increases due to growth in 

demand elsewhere (e.g. vegetables&fruits from Southeast Asia and South Asia to India).  

From a technological change perspective, yield improvements are equally an important driver in 

determining withdrawal levels (Figure 9). In the model, increases in yields lead to a reduction in land and 

irrigation demand in most regions (e.g. Central Africa, Northern Africa, Middle East). However, in some 

cases, the resulting cost reductions determine a rebound effect by further stimulating demand for 

irrigated crops and implicitly that for irrigation water (India, Sahel, South Asia). In China, the relative 

changes in yields between rainfed and irrigated varieties are the main factor leading to the considerable 

reduction in irrigation withdrawals. 

Figure 9 - Contribution of socioeconomic drivers and yields to overall water requirements changes from 

2004 to 2050. Socio-economic development is largely an enhancer of water requirements growth, whereas 

yield improvements can both increase and decrease requirements depending on irrigation allocation across 

crop classes. 

 

 

4.2. Comparison to other recent assessments 
The obtained results of an 8.5-11.0% increase in global freshwater withdrawals are situated within the 

range obtained from other studies. The expert judgement in Bruinsma [51] which determines a 70% 

increase in agricultural output globally, leads to an 11% increase in withdrawals. The outlook in 

Alexandratos & Bruinsma [1] gives a 6% increase for withdrawals in 2050 from 2005/2007 levels. The 

higher absolute values obtained (2761 km3initially and 2926 km3 in 2050) comprise some categories 

which are not considered in this paper (irrigation of pasture land and the flooding of paddy rice). At the 
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same time, the lower increases in withdrawal may be explained by the use of a conservative scenario for 

socio-economic development. As an underlying metric to withdrawals, Nelson et al. [43] obtain increases 

in beneficial water consumption over the 2010-2050 horizon by 17.2-28.1% and 7.9-18.0% for a set of 

SRES pathways with and without irrigation efficiency gains respectively. Further on, the IMPACT irrigation 

withdrawal results for SSP2 and no climate change incidence show a 15.9% increase in 2050 from 20057. 

At a regional level, these assessments generally present an increase in irrigation withdrawals across 

developing economies. Therefore, we obtain similar trends for Northern Africa, Central Africa, Middle 

East, India and Latin America but opposing results for China and South Asia. The reduction in irrigation 

water for China is also obtained by IMPACT for the SSP2 scenario with comparable irrigation allocation 

across crops.  For industrialised regions, expert judgement leads to a significant decrease in withdrawals. 

In contrast, IMPACT blue water uses increase in regions with extensive irrigation e.g. USA, similarly to our 

results. We can thus observe that studies which are reliant on expert judgment tend to have a more 

uniform effect of socioeconomic development over withdrawals, whereas modelled projections may lead 

to opposing effects among regions with similar prospects of development. 

Compared to the IMPACT SSP2 results, the most important discrepancies observed for water-stressed 

regions refer to the allocation of blue water across crops in India and withdrawal trends in South Asia. For 

India, we obtain an increase in withdrawals for wheat complemented by decreases for other crops, 

whereas IMPACT obtains a more balanced increase across all crop classes. In South Asia, a marked 

decrease in wheat blue water use is also obtained, however, in IMPACT the growth for all other crops 

overcompensates for this which is leading to an overall expansion in demand for irrigation water.  

 

4.3. Limitations and uncertainties  
CGE results can only provide macro-regional averages as opposed to spatially-detailed models. The IWA 

indicator thus presents the trends of irrigation pressure from a global perspective whilst adding the 

market signals for factor allocation and international trade that spatially-detailed models are not able to 

embed. Hence, even within regions that appear to have enough resources to meet the future demand for 

irrigation water, there may be areas that will suffer from increased stress. These areas can be entire 

countries which are currently bundled in macro-regions in the disaggregated GTAP database (e.g. 

Mauritania, Niger), or river basins within large countries (e.g. North of China, West of Brazil, the Murray-

Darling basin in Australia).  

The irrigation withdrawal results in this paper are only constrained by the irrigation factor supply function 

which takes a logistic form. Therefore further work needs to be undertaken to endogenise withdrawals 

coming from other sectors (livestock, industry, households) to obtain an overall view over freshwater 

abstractions and to determine irrigation uses when considering an absolute regional withdrawal limit. 

Other CGE models have focused on irrigation supply changes stemming from withdrawals of non-crop 

sectors specified exogenously. Therefore these models do not yet have a consistent economy-wide 

representation of withdrawal changes coming from socio-economic development. In future development 

of the RESCU model, we will seek to include all major freshwater users and implement allocation 

mechanisms where withdrawals exceed available renewable resources. 

Some uncertainty for withdrawal results can be attributed to the manner that yield improvements are 

implemented in the production function of irrigated crops. Whilst yield improvements mean less land 

required for the same amount of output, it is not clear from the crop modelling literature whether this 

would also imply lower water requirements. Furthermore, farm-level studies show that there is a trade-

off between yield and water productivity (see Cassman et al. [52]), i.e. a subunitary but positive elasticity 

                                                             
7
 Obtained from the IMPACT model portal - http://impact-

model.ifpri.org/#scenario/SSP2_NoCCwater/outputs/noncommodity (accessed 16 September 2016) 
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of yield to water application. Therefore, for developing regions, we cannot ascertain that closing down 

the observed yield gaps will not imply additional irrigation water per hectare. This is even less clear for 

industrialised regions in which higher yields will come from further R&D with possibly unknown 

implications over beneficial water use. For the time being, the RESCU model assumes that yield 

improvements on irrigated land impact both land and water inputs in the same way, however, more 

research should be dedicated to modelling yield as a function of water input. 

The yield changes applied reflect inherent productivity gains and rule out climate change effects. Hence, 

by using multiple future scenarios to address the range of possible socioeconomic development 

pathways, we have sought to isolate the contribution of income and population growth to changes in 

irrigation withdrawals pressure under perfect mitigation conditions and expected technological advances. 

There is high uncertainty with regard to climate change incidence over local-level mean climatic 

conditions and yields (see for instance Nelson et al. [53] and Schewe et al. [54]). Therefore, we leave this 

topic for a separate analysis which would be required to cover the implications of climate-induced yield 

changes over crop output, freshwater withdrawals and GDP growth as deviations from the patterns 

described by the SSPs. 

5. Conclusions 
In this paper, we considered the evolution of resource pressure coming from blue water use in crop 

production at a global level using a bottom-up approach. Annual withdrawals up to 2050 were 

determined across a range of socioeconomic development pathways complemented by expected 

inherent yield changes. For this purpose, we employed the dynamic CGE model RESCU which uses an 

improved accounting methodology to derive the value of irrigation water as a distinct factor of 

production. The model also comprises a separate representation of irrigated and rainfed crop production 

functions to allow for a better specification of yield improvements of the two land types involved. Thus, 

from a water withdrawals perspective, the effects captured comprise an overall change in irrigation 

demand stemming from crop demand expansion but also importantly a substitution effect between the 

rainfed and irrigated varieties given yield differentials. 

Throughout the 2004-2050 time frame, we obtained an increase in withdrawals at a global level across all 

three SSP scenarios considered. The largest withdrawal changes will occur in developing regions (Central 

Africa, India, Northern Africa, Middle East) but also major crop producers and exporters, e.g. the USA. 

Regions that are already water-stressed will maintain and even expand their pressure causing potential 

bottlenecks, especially where other sectors may compete for these resources. New areas (Central Asia) 

pass the IWA 20% threshold for stress.  China is the only region with extensive irrigation that sees a 

considerable decrease in blue water uses as a consequence of changes in the crop production mix in the 

region. 

The SSPs with higher income growth for developing regions (SSP1 and SSP5) produce larger withdrawal 

results. Therefore, SSP1, although labelled as the 'sustainability' pathway, leads to more pressure from 

irrigation than the ‘middle of the road’ SSP2. These findings highlight the relationship between income 

and water uses in agriculture hinting towards the need for more efforts to improve irrigation water 

efficiency in crop production in order to determine a more sustainable use of freshwater resources. 
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Supplementary Material A 

A1. Model configuration 

Table S1. RESCU-GTAP regional aggregation  

RESCU region GTAP9 countries 

AUZ – Australia and New Zeeland Australia, New Zeeland, Rest of Oceania 

SEA – South East Asia Brunei, Cambodia, Indonesia, Laos, Myanmar, 

Philippines, Singapore, Thailand, Vietnam, Nepal, 

Rest of SE Asia 

CNA- China China, Hong Kong, Taiwan 

NEA – North East Asia Japan, Korea Republic of, Rest of East Asia 

SAS – South Asia Bangladesh, Pakistan, Sri Lanka, Rest of South Asia 

IND – India India 

CEA – Central Asia Mongolia, Kazakhstan, Kirgizstan 

MEA – Middle East Asia Bahrain, Iran, Israel, Jordan, Kuwait, Oman, Qatar, 

Saudi Arabia, Turkey, UAE, Rest of Western Asia* 

EUA – Eurasia Belarus, Russia, Ukraine, Rest of Eastern Europe, 

Rest of Former Soviet Union*, Armenia, Azerbaijan, 

Georgia 

NEU – Northern Europe Belgium, Denmark, Estonia, Finland, Germany, 

Ireland, Latvia, Lithuania, Luxembourg, Netherlands, 

Poland, Sweden, Great Britain, Switzerland, Rest of 

EFTA* 

SEU – Southern Europe Austria, Cyprus, Czech Republic, France, Greece, 

Hungary, Italy, Malta, Portugal, Slovakia, Slovenia, 

Spain, Albania, Bulgaria, Croatia, Romania, Rest of 

Europe* 

NAF – Northern Africa Egypt, Morocco, Tunisia, Rest of North Africa*, Rest 

of Eastern Africa* 

CAFH – Central Africa Humid Benin, Burkina-Faso, Cameroon, Cote d'Ivoire, 

Ghana, Guinea, Nigeria, Togo, South Central Africa*, 

Ethiopia, Kenya, Madagascar, Mauritius, 

Mozambique, Rwanda, Tanzania, Uganda 

CAFD – Central Africa Dry Rest of Western Africa*, Rest of Central Africa*, 

Senegal 

SAF – Southern Africa Malawi, Zambia, Zimbabwe, Botswana, Namibia, 

South Africa, Rest of South African Customs Union* 

NOA – Canada Canada, Rest of North America* 

USA – United States United States 

NLAM – North Latin America Mexico, Bolivia, Columbia, Ecuador, Peru, 

Venezuela, Rest of South America*, Costa Rica, 

Guatemala, Honduras, Nicaragua, Panama, El 

Salvador, Rest of Central America*, Dominican 

Republic, Jamaica, Puerto Rico, Trinidad Tobago, 

Caribbean* 

BRA – Brazil Brazil 

SLAM – South Latin America Argentina, Chile, Paraguay, Uruguay, Rest of the 

World* 
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Table S2. RESCU-GTAP sectoral aggregation 

RESCU sector GTAP 9 sector 

PDR_IRR – paddy rice irrigated PDR 

PDR_RFC – paddy rice rainfed 

WHT_IRR – wheat rice irrigated WHT 

WHT_RFC – wheat rice rainfed 

GRO_IRR – other grains irrigated GRO 

GRO_RFC – other grains rainfed 

V_F_IRR – veg&fruits irrigated V_F 

V_F _RFC – veg&fruits rainfed 

OSD_IRR – oil seeds irrigated OSD 

OSD_RFC – oil seeds rainfed 

C_B_IRR – cane and beet irrigated C_B 

C_B_RFC – cane and beet rainfed 

PFB_IRR – plant fibres irrigated PFB 

PFB_RFC – plant fibres rainfed 

OCR_IRR – other crops irrigated OCR 

OCR_RFC – other crops rainfed 

LSTK – Livestock CTL Cattle, OAP Animal products, RMK Raw milk, 

WOL wool 

AGRO – Agriculture other FRS forestry, FSH Fish 

PCF – Processed food OMT Meat products, VOL Vegetable oils, MIL 

Dairy products, PCR Processed rice, SGR Sugar, 

OFD Food products other, B_T Beverages and 

tobacco 

MANU – mining and manufacturing TEX Textiles, WEA Wearing apparel, LEA Leather 

products, LUM Wood products, PPP Paper 

products, OMN minerals, CMT cement, CRP 

chemicals, NMM mineral products, I_S iron and 

steel, NFM non-ferrous metals, FMP metal 

products, MVH motor vehicles, OTN transport 

equipment, ELE electric equipment, OME 

machinery, OMF manufactures, WTR water  

SERV – Services OSG Public Administration, CMN Communication, 

OFI Financial services, ISR Insurance, OBS Business 

services, ROS Recreational services 

TRSP – Transport OTP Transport, WTP Water Transport, ATP Air 

transport 

CONS – Construction CNS Construction, DWE Dwellings 

ENE - Energy COA coal, OIL oil, GAS gas, P_C petroleum coal, 

ELY Electricity, GDT gas distribution 
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Table S3. RESCU-GCWM crop mapping 

RESCU crop class GCWM crop class 

PDR – paddy rice Wheat (1) 

WHT – wheat Rice (3) 

GRO – other grains Maize (2), Barley (4), Rye (5), Millet (6), Sorghum (7) 

V_F – vegetables and fruits Potatoes (10), Cassava (11), Groundnuts (16), Citrus 

(18), Date palm (19), Grapes (20), Other perennial 

(24) 

OSD – oil seeds Soybeans (8), Sunflower (9), Oil palm (14), 

Rapeseed/canola (15) 

C_B – cane and beet Sugar cane (12), Sugar beet (13) 

PFB – plant fibres Cotton (21) 

OCR – other crops Pulses (17), Cocoa (22), Coffee (23), Others annual 

(26) 

Not mapped Managed grassland (25), Maize forage (27), Rye 

forage (28), Sorghum forage (29) 
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Table S4. TRWR estimation for RESCU regions in km3. ATRWR, TRWR, IRWR values are taken from 

FAO [55], inflow values are taken from the country profile data from the FAOSTAT database. 
1country-level inflow data not available. 2ATRWR values represent total actual renewable resources 

are determined by deducting the volumes included in water treaties from the total the TRWR metric. 

Region Values considered Total value (km
3
) 

Canada  ATRWR 2902 

USA ATRWR / Alaska not considered 2089.4 

Northern Latin America IRWR 
+ inflows: 

USA -> Mexico 5.4 km
3
 

6937.5+ 
5.4 

=6942.9 

Brazil ATRWR 8233 

South Latin America IRWR 
+ inflows: 

Brazil -> Paraguay 73.3 km
3
 

Brazil -> Argentina 442.5 km
3
 

Brazil -> Uruguay 70 km
3
 

Bolivia -> Argentina 10.1 km
3
 

Bolivia->Paraguay 5.9 km
3
 

1269.2+ 
601.8 

=1871  

Northern Europe IRWR 1299.9 

Southern Europe IRWR 

+ total inflows 
France 25.2 km

3
 

Italy 8.8 km
3
 

Austria 22.7 km
3
 

873.6+ 

56.7 
= 930.3 

Northern Africa IRWR 

+ total inflows: 
Sudan 119 km

3
 

97.3+ 

119 
=216.3 

Sahel IRWR
1

 1039.2 

Central Africa IRWR
1 

2624.7 

Southern Africa ATRWR for Zambia 105.2 km
3
 

IRWR for other 
+ total inflows: 

Angola -> Namibia 10 km
3
 

105.2+ 
89.6+ 
10 

=204.8 

Middle East IRWR 

+ total inflows: 
Southern Europe ->Turkey 3.5 km

3
 

Afghanistan->Iran 6.7 km
3
 

411+ 

10.2 
=412.2 

Central Asia IRWR 
+ total inflows: 

Russia -> Kazakhstan 9.2 km
3
 

China -> Kazakhstan 21.5 km
3
 

China -> Kyrgyzstan 0.5 km
3
 

Iran -> Turkemnistan 1.1 km
3
 

411+ 
32.3 

= 443.3 

Eurasia IRWR 

+ total inflows: 
China ->Russia 119 km

3
 

Turkey -> Armenia 9.9 km
3
 

4511.6+ 

128.9 
= 4640.5 

South Asia IRWR for Pakistan
 

ATRWR for Afghanistan
2
 

+ total Pakistan inflows: 
170 km

3
 (Indus Treaty) 

55+ 
65+ 

170 
= 290 

India ATRWR 1896.7 

Southeast Asia IRWR 

+ total inflows: 
China -> Southeast Asia 217.8 km

3
 

India -> Bangladesh 1121.6 km
3
 

5349.2+ 

1339.4 
=6778.6 

China ATRWR 2896.6 

Northeast Asia ATRWR 561.85 

Australia and New Zealand ATRWR / Rest of Oceania excluded 819 

Total  42020.35 
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Table S5. SSP pathway description 

SSP scenario Details 

SSP1 – 

Sustainability 

Rapid development of low-income countries, reduction of inequality between 

economies; globalised economy; reduced dependency on fossil fuels and reduced 

resource intensity; adoption of clean energy technologies awareness of 

environmental degradation 

Model implications: high GDP growth in developing countries and medium in 
developed countries,  medium  population growth 

SSP2 – Middle of 

the Road 

Same trends as in previous decades; disproportionate development of low-income 

economies; global income per capita increases at a medium pace; reduction of 

energy intensities; some decrease of dependency on fossil fuels  

Model implications: medium GDP growth, high population growth 

SSP5 – 

Conventional 
Development 

Orientation towards economic growth; energy systems dependent on fossil fuels; 

highly-engineered infrastructure 
Model implications: high GDP growth, medium population growth 

 

Figure S1. Regional GDP and population growth in 2050 relative to 2004 
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A2. Additional results 

Table S6. SSP2 crop output growth in 2050 relative to 2004 

wheat 
paddy 

rice 

other 

grains 

veg& 

fruits 

plant 

fibres 

cane& 

beet 

oil 

seeds 

other 

crops 
combined irrigated rainfed 

Aus&NZ 81.4% 120.6% 75.1% 122.7% 111.4% 39.7% 21.1% 48.4% 91.4% 104.4% 80.1% 

Brazil 131.0% 63.3% 50.8% 69.8% 120.8% 88.0% 129.5% 65.5% 86.6% 135.6% 78.4% 

Sahel 54.6% 187.1% 346.8% 333.8% 175.5% 186.9% 248.1% 120.4% 293.9% 274.6% 297.0% 

Central Africa 670.4% 283.8% 327.9% 324.8% 239.4% 232.9% 238.0% 124.5% 281.9% 586.3% 265.4% 

Central Asia 239.6% 301.8% 324.2% 264.6% 129.4% 259.7% 110.9% -25.0% 222.5% 237.6% 191.1% 

China 15.7% 18.8% 106.4% 72.7% 197.4% 138.2% 33.8% 35.7% 64.9% 108.9% 39.8% 

Eurasia 73.7% 94.0% 69.8% 72.4% 160.4% 99.6% 91.5% 99.3% 75.3% 95.2% 73.1% 

India 222.7% 70.3% 303.1% 56.5% 114.3% 19.6% 89.3% 42.6% 86.0% 108.9% 71.6% 

Middle East 129.4% 107.3% 153.2% 129.0% 206.6% 145.3% 204.0% 106.4% 135.9% 159.6% 100.5% 

Northern Africa 177.6% 104.3% 95.6% 143.8% 213.5% 149.5% 120.0% 154.7% 147.7% 132.3% 178.5% 

NE Asia 38.1% 2.4% 116.5% 16.2% 73.9% 1.2% 75.3% 14.2% 12.0% 8.4% 14.7% 

Northern Europe 34.4% 158.6% 41.1% 18.8% 43.3% 57.9% 34.7% 43.9% 36.2% 49.6% 34.3% 

Northern Latin Am 23.4% 46.3% 61.2% 49.8% 126.5% 93.2% 42.3% 19.9% 47.9% 60.5% 39.3% 

Canada 97.5% 54.3% 76.5% 184.1% 57.0% 61.7% 59.0% 46.5% 90.3% 132.0% 84.8% 

Southern Africa 260.2% 89.8% 186.4% 133.1% 143.2% 131.7% 87.4% 113.0% 141.8% 162.2% 118.6% 

South Asia 30.8% 57.8% 156.0% 274.0% 73.3% 104.6% 158.6% 16.3% 109.8% 98.7% 172.0% 

SE Asia 476.1% 24.9% 53.3% 139.6% 193.9% 37.8% 80.1% 33.5% 74.4% 110.2% 61.2% 

Southern Europe 56.8% 67.3% 43.6% 27.4% 40.8% 86.5% 80.4% 58.8% 50.5% 73.9% 38.0% 

Southern Latin Am 81.4% 53.7% 87.5% 49.6% 162.3% 91.1% 88.6% 25.3% 73.9% 93.5% 66.9% 

USA 121.9% 133.1% 50.2% 82.0% 127.7% 43.0% 121.4% 73.1% 83.4% 91.3% 74.3% 

World 97.7% 38.0% 109.5% 90.9% 149.2% 79.0% 95.8% 52.5% 83.2% 101.3% 73.0% 
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Table S7. Withdrawal levels in 2004 and 2050 by SSP in km3
 

Region 2004 

 

2050 

 

SSP1 SSP2 SSP5 

South Asia 301.28 296.32 296.32 295.68 

Northern Africa 166.12 190.72 186.39 198.28 

Middle East 239.78 274.01 273.00 283.69 

India 599.56 822.02 814.54 843.20 

Central Asia 72.75 105.42 107.03 109.94 

China 372.47 312.79 315.35 302.49 

USA 158.39 184.57 182.37 189.17 

Southern Europe 66.33 63.28 62.99 63.97 

Southern Africa 11.36 10.68 10.63 10.90 

North Latin Am 95.14 105.56 104.65 106.15 

Southeast Asia 196.97 185.84 184.33 187.30 

Australis&NZ 14.56 16.30 16.06 17.29 

Northeast Asia 9.09 9.53 9.49 9.60 

South Latin Am 20.28 24.40 24.14 25.15 

Central Africa 16.02 27.55 24.77 30.44 

Sahel 8.09 8.63 8.28 8.98 

Eurasia 20.05 19.66 19.61 19.53 

Brazil 10.70 10.32 10.26 10.42 

Northern Europe 0.97 1.18 1.18 1.22 

 

Figure S2. Global irrigation water requirements by SSP 
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Figure S3. IWA heat maps – SSP2 2004 and 2050 
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A3. Land conversion sensitivity analysis 
 

To test the robustness of model results in relation to land conversion assumptions, we ran a sensitivity 

analysis by varying the CET elasticity σAL. For most regions, a reduction in the elasticity leads to a 

reduction in withdrawals as a marker of increased friction in converting rainfed land to irrigated land, 

whereas an increase in the elasticity value leads to higher withdrawals.  

Overall, irrigation withdrawal changes are small and do not influence the conclusions significantly 

regarding the pressure of irrigation withdrawals over the renewable resource base in each region (Figure 

S4). This is particularly important for high elasticity values (σAL=10) where the largest increase is 1.3% 

(Central Africa), whilst water scarce regions have negligible changes. 

Figure S4. Changes in regional irrigation withdrawals. The different cases are determined by the 
different σAL values considered around the central value of 2. Changes indicate deviations from the 

withdrawal levels obtained in the central case for SSP2. 
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Supplementary Material B 

B1. RESCU irrigation water accounting framework 
 

The production of crops in RESCU is split into rainfed and irrigated types using the 

production data from the GCWM model [44]. GCWM is a crop simulation model dedicated 

to calculating green and blue water consumption occurring through crop 

evapotranspiration. To undertake this calculation, it combines monthly gridded data (5 arc-

min resolution) for growing areas of 26 crop classes with national and sub-national statistics 

covering irrigated and rainfed production and yields. GCWM then determines annual water 

consumption requirements based on cropping patterns, daily climate conditions and daily 

soil water balances by using the Penman-Monteith approach [56].  Blue and green water 

consumption are thus calculated at the level of 402 administrative units for the 1998-2002 

period. In addition to the actual crop production data, the GCWM model calculates drops in 

yields and production on irrigated land for crops under a water deficit caused by a ‘no 

irrigation’ scenario. For the RESCU database, the mean values for yields and consequently 

for production across the 1998-2002 period are updated to the 2004 simulation base year 

by factoring in crop-specific annual yield improvements due to technological change. 

We derive the value of irrigation in two steps. First, we split crop production into the rainfed 

and irrigated varieties. Thus, the GCWM crop classes are mapped onto the eight GTAP 

classes. In this respect, representative FAO commodity prices are factored in to convert 

GWCM production physical quantities to dollar values. We then calculate output shares 

αcrop,m,r for the two growing methods m (rainfed or irrigated) that are consequently used in 

the GTAP Splitcom tool [57] to split the output for each crop sector in each region r into the 

rainfed and irrigated varieties: 

N@
8A,<,
 =
O8<@
8A,<,


∑ O8<@
8A,<,
<
                                                                (5) 

 

where vomcrop,m,r represents the modified monetary value of GTAP crops derived from the 

GCWM production data. The production split is done by assuming an identical cost structure 

of the two varieties. The land rents that are part of the rainfed variety production costs 

become rainfed land rents, whilst land rents in the irrigated variety become rents to the 

Irrigation-Land bundle. 

In the second step, the value of Irrigation is obtained as a share of the Irrigation-Land rents. 

The shares βcrop,r are calculated as the ratio between the monetary value of lost production 

under the ‘no irrigation’ GCWM scenario and the initial value of irrigated output: 
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The use of yield losses information for the GCWM ‘no irrigation’ scenario leads to 

significantly different outcomes for the value of irrigation compared to the accounting 

method used in GTAP-W and GTAP-BIO-W. In these models, it is assumed that when 

irrigation is disabled yields on irrigable land equal those on the rainfed type. This 

assumption is oversimplifying as from the GCWM ‘no irrigation’ data, we obtained that in 

only a fifth of cases yields on irrigable land without irrigation are similar to those on rainfed 

land (see Section B2 below). 

Figure S5 - Regional value share of irrigation input in irrigated crop costs – comparison of 

the two accounting principles. The use of ‘no irrigation’ yields largely leads to a higher 

weight of irrigation in the crop production costs. *negative value added of irrigation 

obtained through the principle used in GTAP-W/GTAP-BIO-W. 

 

Source: own compilation 

Figure S5 compares the weights of irrigation in total irrigated crop costs for the two 

irrigation valuation principles. By using the ‘no irrigation’ production losses, the value of 

irrigation is increasing in most regions. Consequently, the share of irrigation in irrigated 

output for water-scarce regions (South Asia, India, Middle East and Northern Africa) grows 

considerably. At the same time, in some areas, the initial irrigated yield values are 

consistently inferior to those on rainfed land. Thus, applying the valuation principle from the 

other two GTAP-based models leads to a negative value added of irrigation, i.e. yields are 

improved when irrigation is not used. Therefore, in Canada, the comparison of results using 

the two valuation methods is not even possible. 
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B2. Comparison of irrigation valuation methods in GTAP-

based models 

In GTAP-W [21] the value of land entering crop production is split into rainfed land and an 

irrigable land-water composite (Figure S6) based on production share values obtained from 

the IMPACT model. Next, the value of the latter is further separated into irrigable land and 

irrigation water based on yield differences between irrigated and rainfed areas.  

With GTAP-BIO-W [23], irrigated and rainfed land endowments are split by first specifying 

the production on each land type in a distinct function. At this stage in the disaggregation 

process, it is inferred that the cost structure of the two varieties is identical. The shares used 

to break the initial GTAP crop output is determined by irrigated and rainfed production 

values derived from Portmann et al. [58]. The value of rainfed land is equalised to the sum 

of land value added entering rainfed production of all GTAP crops, whereas total land value 

added in irrigated crop production equals the value of a land-water bundle. Land-water is 

then split into (irrigated) land and water based on differences between output values per 

hectare of irrigated and rainfed land within the same region (Figure S7). 

 

Table S8. Irrigation water valuation steps in GTAP-based water models 

 

Model 
Rainfed/Irrigated production 

distinction 

Irrigation water / irrigable land value 

distinction 

GTAP-W 
No – land is split in rainfed and 
irrigated instead 

Based on yield differences from the 
IMPACT model 

GTAP-BIO-W 
Based on production shares from 

MIRCA2000 [Portmann et al., 2010] 

Based on yield differences from 

MIRCA2000 [Portmann et al., 2010] 

RESCU 
Based on production shares from 

GCWM [Siebert & Döll, 2010] 

Based on value of lost production – 

‘no irrigation’ scenario of the GCWM 

model 

 

Hence, both models use the same premise concerning the effect of irrigation on production: 

that in the absence of irrigation water, yields on irrigated land return to the values observed 

on rainfed land (Table S8). In the irrigation water accounting framework for the RESCU 

model, we challenge this assumption. In many instances, the practice of irrigation takes 

place on land that is endowed with different growing conditions compared to the rainfed 

variety within the same region. In this regard, we employ the ‘no irrigation’ scenario of the 

GCWM model which determines the production and yield outcomes for irrigated land when 

the irrigation facility is turned off. Figure S7-A confirms that yields on irrigated land using 

irrigation are superior to rainfed land in most cases. However, in the ‘no irrigation’ scenario, 

yields on irrigable land rarely return to values similar to those on rainfed land (Figure S8-B), 

with the large majority of cases leading to diverging outcomes (with both poorer and better 

yield results).   
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Figure S6. GTAP-W crop production tree. Source: Calzadilla et al. [21] 

 

 

Figure S7. GTAP-BIO-W crop production tree. Source: Taheripour et al. [23] 
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Figure S8. Yield comparison of irrigated and rainfed land across the 140 regions and 8 crop 

classes in GTAP v9. *yields differing by no more than ±5%. Actual yields on arable land with 

irrigation are largely superior to those on rainfed land (A). With no irrigation, yields on 

irrigable land are mostly different to those on rainfed land (B). Calculation: GCWM yields for 

the two scenarios (actual and ‘no irrigation’) mapped onto the GTAP crop classes. In 510 out 

of 1120 cases, either one or both growing methods were absent at the GTAP regional level.  

 
 

 


