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Preface

This book contains six articles that I wrote in the
1990s under the pen-name Tracker. They appeared
in On Track, the Newsletter of the International
Fission-Track Community. I have re-produced them
here with minor corrections and edits, and I have
re-drawn most of the figures. I hope that having
them available in one volume will be appreciated
by old and new trackers and their colleagues.

Tracker ’s articles were intended to be
instructive — explanations of statistical concepts
relevant to researchers in the fission track
community (and to scientists in other fields) — and
hopefully sufficiently light hearted to entice such
readers. They arose mainly from topical questions
put to me at scientific meetings and in corres-
pondence. Fission track analysis was developing as
a new science, not only for dating events on
geological time scales but also for learning about
geological thermal histories, provenance and
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landscape evolution. Fission track analysis is
inherently statistical in nature: tracks form
continuously over time and are subject to heating
and other processes that characterise the statistical
distributions of their numbers, lengths and
orientations — so ideas of probability and statistics
are at the heart of the subject. I found it amazing
how the microscopic fission track measurements
can give such detailed quantitative information on
geological time scales.

There are at least two further pieces that Tracker
failed to write: A Fit of Peak, about finite mixture
models, and Projected Rights and Wrongs, about
inferences from projected fission track lengths and
angles, conventionally denoted by r and ω. The
latter was motivated (or would have been) by
mathematical fallacies that can arise when line
segments randomly generated in three dimensional
space are observed in two dimensions; and also by
a Gary Larson cartoon showing two scientists in
white coats studying a complicated equation on a
blackboard — having r on the right hand side and
various terms such as 4(Wr)2 on the left — with
the caption “Yes, yes, I know that Sydney
. . . everybody knows that! . . . But look: Four wrongs
squared, minus two wrongs to the fourth power,
divided by this formula do make a right.” These
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topics and many others are covered at greater
depth in my book Statistics for Fission Track Analysis,
Chapman & Hall/CRC, 2005.

The fission track community in the 1990s
consisted almost entirely of geologists, physicists,
geochronologists and geophysicists. The imaginary
Tracker tried to pose as one of these but sometimes
betrayed himself by an ignorance of geology and a
surprising familiarity with the history of statistics
at University College London. As most readers
will know, I was a teacher and researcher in
statistical science at UCL. I was introduced to
fission track dating by Paul Green, when he
worked there before moving to Melbourne, and I
was lucky to have a brilliant statistical ally, Geoff
Laslett, who lived in Melbourne. We worked
closely with the leading scientists in this field, who
accepted us as part of their community. We were
both passionate about science and about the use of
statistics in science, and we shared a love of
literature, cricket and cryptic crosswords. Sadly
Geoff died of cancer in 2010. I thank both Paul and
Geoff for their inspiration and encouragement.

I have added a list of names of fission-trackers
(Tracker’s contemporaries) at the end of the book, in
alphabetical order of given name, as that is how I
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remember them. Like most such lists, it is
somewhat arbitrary, and I apologise to anyone I
may have omitted. I have personally met or
corresponded with the vast majority of these
people and I have learnt much from them — not
only about this field but also about how science
works. I thank them all for that and for the
pleasure of their company. I also thank Jane
Galbraith, my wonderful wife and colleague and
much more.

Rex Galbraith, February 2017.
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It’s All a Plot

My famous namesake wrote The Age of Uncertainty,
a lofty enterprise well suited, no doubt, to the
whimsical world of economics, where time is
money and the only certainties are death and taxes.
But in the hard world of rock and acid, of hot times
and revealing cleavages — down, so to speak, at
the apatite face — it is the uncertainty of ages that is
of greater concern. And not only the uncertainty
but also the variation.

Fission track age

What is a fission track age? You need to
distinguish between a true age and an estimate. An
estimate is what you get from observed data. A
true age is what your estimate is an estimate of:
the value, if you like, that the age equation would
deliver if zeta, rho-d, rho-s and rho-i were
measured perfectly, with zero error (and let’s not
worry here about what we mean by error). The
true age may or may not have a true meaning: it
may correspond to the time since your sample
cooled below some temperature, or it may be
something more ethereal — a reflection of a

1
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meandering thermal history, reminiscent, perhaps,
of Mae West’s invitation — full of promise but
almost certainly later.

For a sample of grains, the age estimates will
vary even when the true ages are the same. And
when the true ages differ, the spread of estimates
will be greater than the spread of true ages.

Chi-square test

Some years ago, I was disconcerted to see a
headline in the London Times:

Chi-Chi dying

The thought that this noble statistic might be
falling into disuse, implausible though it seemed,
was alarming indeed. One could well imagine how
the report would go:

“The world of fission track dating was
rocked to its foundations today when it was
revealed that . . . ”

which would be echoed in other newspapers under
headlines like “Test frequency fails to reach
expectation” (Guardian), “Only 5% reported use of
statistic” (Financial Times), “Dating agency drops
age test” (Daily Mirror) and “Chi-square out for



it ’s all a plot 3

the count” (Sun Sport). But it turned out to be a
story about London Zoo’s giant panda, which in its
own way was no less tragic, I suppose. Today it is
London Zoo itself that is dying.

What does the chi-square test do? It tells you
whether your sample age estimates are consistent
with a single true age, or whether there is evidence
of a spread in true ages. If your data are consistent
with a single true age, this does not mean that
there really is a single true age, but merely that
there is little evidence to the contrary. And if there
is evidence of a spread, it doesn’t directly tell you
how much spread. To put it another way, the upper
chi-square tail probability (the P-value) measures
the amount of evidence, not the amount of spread.

Of course, if there is a large spread (of true
ages) and you have moderately large counts, you
will get a large chi-square statistic. But you may
also get a large chi-square statistic, or small
P-value, even when there isn’t much spread
because you have large counts — you have a lot of
evidence that there is some spread.

On the other hand, it often happens that your
data “pass” the chi-square test even when there
really is a spread, just because there isn’t much
evidence — usually because the spontaneous track
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counts are small. Your data can be consistent with
a single true age and, at the same time, be
consistent with a spread of true ages. And if the
counts are very small there could be quite a large
spread.

So what do you conclude? If you are dating an
age standard, or determining your zeta, then you
know that your sample age estimates should agree
and you would expect your data to “pass”. (I use
the common jargon, though I prefer to quote the
P-value and avoid the pass/fail language — after
all, the messages from P = 0.04 and P = 0.06 are
essentially the same.) If it does, and if you have
sufficient data that you would have found a spread
in ages if there was one, then you have increased
confidence in your result. If it “fails” you would
look to your experimental procedure for an
explanation.

But if you are analysing a field apatite sample
with an unknown thermal history, you may suspect
that some track annealing has taken place and that
there is a spread in true ages. So even if your data
did “pass” the chi-square test, you would not
automatically assume that there is no spread.
Especially if you have small counts. You would
normally consider track length measurements and
related samples and view all the evidence in a
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wider context. And if your data “fail” the
chi-square test it could be due to genuine variation.

At this point, I wish to scotch, once and for all,
a pernicious rumour that heretofore has been
largely contained beneath the earth’s crust, even if,
to pursue the metaphor, it has not been deeply
buried, but of late seems to have been gaining
credibility in certain quarters. I refer, of course, to
the scurrilous notion that there is nothing new
about the chi-square test — some have even said it
is as old as the hills. I wish to state categorically
that there is absolutely no truth in this totally
unfounded allegation. It was as recently as 1900
that Karl Pearson, founder of the UCL Statistics
Department, and almost certainly a genius, for
R.A. Fisher disliked him intensely, first derived the
chi-square test for assessing the agreement
between observed and expected frequencies.
Fisher’s animosity — indeed it was mutual — was
greatly reinforced in 1922 when he pointed out that
Pearson had got his degrees of freedom wrong —
and although Fisher provided the essential
mathematics it was as late as 1957 that David
Finney, renowned in statistical circles for his work
on selecting insecticide doses that kill bugs half
dead, explicitly applied it to pairs of counts from
independent Poisson distributions when
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comparing two paper cleaners. And even then it
wasn’t used for ages.

Radial Plots

“A man and his hobby-horse . . . ” quoth Tristram
Shandy, though it would be difficult to find a man
with such a hobby-horse as to compare with that of
his Uncle Toby: yet will I follow his example who
“would use no other argument to prove his
hobby-horse was a hobby-horse indeed, but by getting
upon his back and riding him about — leaving the
world, after that, to determine the point as it
thought fit”.

So “What the devil does the plot signify, except
to bring in fine things?” The question could hardly
be better put. If you have two estimates, one very
precise and the other not, you place more credence
in the precise one — you do not weight them
equally. A radial plot displays your single grain
ages so that they can be seen and compared at face
value. It automatically gives them the right weights
in accordance with their precisions. If you plot just
the ages, ignoring their differing precisions, it is
practically impossible to compare them sensibly.

In a general sense, there are two reasons why
age estimates vary: because they differ from the
true ages (there is uncertainty) and because the true
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ages themselves vary (there is variation). In a radial
plot, you can display the uncertainty so it is easier
to assess the variation. You can judge whether
single grain ages look homogeneous, and check
your view, if necessary, by the chi-square test. And
you can go further and assess visually the spread
in ages, comparing it with possible explanations or
possible models. It is a tool for assessing your data,
and it is a tool for showing it to others.

But let us climb upon our hobby-horse and ride
him about.
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Barrabool Hills data
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The plot of age estimates from the Barrabool
Hills, Otway Ranges — only a stone’s throw from
that delightful restaurant in Apollo Bay (opening
hours are extended to 9:30 pm on Fridays) —
illustrates apatite data with a clean thermal history.
These grains were cooled at about 120 Ma and have
not experienced significant heat since. The
estimates look homogeneous on the graph and the
chi-square test confirms that there is no evidence to
the contrary. (The chi-square statistic is 10.0 with
19 degrees of freedom, giving a P-value of 0.95.)
We have plenty of data and the picture seems clear:
if there really was a spread in true ages we feel we
would see more sign of it.

The Flaxmans -1 apatites, also from the Otway
Basin, are from a depth of 2.6 km and a current
temperature of 92◦C. Fission tracks have been
annealed by varying amounts and so the true ages
vary between grains. There is clear heterogeneity
in the graph; the estimates vary from 0 to 120 Ma
and the pattern invites further study. The
heterogeneity is so obvious that a formal test is not
necessary. In fact the chi-square statistic is 241.4
with 29 degrees of freedom. It is large partly
because there is a wide spread and partly because
there is a lot of information. These two examples
reinforce each other.
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Radex and bar exercises

Before the next plot, try the following exercises.
Draw a straight line on a strip of transparency: this
is your radial extrapolator or radex, for short. Place
it on the graph so that it passes through the origin
and through a point. Read off the age on the
circular scale.

Make a copy of the ±2 y-scale, also on a piece
of transparency. This is your two-sigma error bar;
the same bar applies to any point. Centre the bar,
parallel to the y-scale, on a point; hold one end of
your radex at the origin and move the other end up
and down as much as possible so that it always
intersects the bar. The resulting interval on the age
scale is the two-sigma age confidence interval for
that grain. Repeat this for other points. See how
you get a shorter confidence interval from a more
precise estimate. Optimists can do one-sigma
confidence intervals in similar style.

What about the pooled age and its standard
error? For this you might need more space (your
local bar will do nicely) and an extended radex.
Simply plot the (x, y) point corresponding to the
pooled age on your graph (probably off the page),
centre your error bar there and repeat the previous
exercise. (In the above graphs, the pooled age is at
y = 0 and x = twice the square root of the total
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number of tracks — spontaneous plus induced —
for all grains. This ignores error in zeta and rho-d
but you can add that roughly in your head.)

To compare several estimates together, place
your radex line so that it goes from the origin
through the middle of the points. Slide the centre
of the error bar along the line, keeping the bar
parallel to the y-axis; see if you can catch all (or
nearly all) of the points inside the bar. Adjust the
line and repeat if necessary. If you can, the
estimates are roughly consistent with each other.
There will be times when is isn’t obvious whether
or not they are; you can check formally using a
chi-square test. You could do this with all of the
points, or with a prescribed subset. With two lines
you could see whether the estimates are consistent
with a two-component mixture.

Turn the graph so that the y-scale is horizontal.
Imagine that you are standing at the origin looking
out to the age scale. Slowly tip the paper away
from you so you are eventually looking along the
line from the origin through the points. Tip the
paper back and forth a few times. See how many
points you can cover visually with the y error bar.
Also, if the points with higher precision tend to fan
out more than those with lower precision, that is
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evidence of variation in true ages. This is dynamic
graphics. Now lean on the bar . . .

A convenient fiction

The last graph shows two sets of data I
collected myself. In the first set, plotted as open
circles, the pairs of counts representing numbers of
spontaneous and induced tracks are (2, 18), (3, 6),
(6, 14), (9, 30), (11, 60) and (22, 53). I confess I
made them up. I used only six grains so the graph
would not get too cluttered. They look reasonably
homogeneous. The chi-square statistic is 7.0 with 5
degrees of freedom, giving a P-value of 0.22. There
is not much evidence here of any heterogeneity.

To get the second set of data, plotted as closed
circles, I multiplied every count in the first set by 3.
The ratios Ns/Ni are exactly the same as before
and so are the single grain ages. Each point has
moved away from the origin along its radius. The
mean age is the same for the two data sets, as is the
standard deviation, or indeed any calculation done
on just the ages. But the second set doesn’t look
homogeneous — the closed circles scatter too much
in the y direction. The chi-square statistic is 21.1
with 5 degrees of freedom, giving a P-value of less
than 0.001 and strong evidence of heterogeneity.
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Fictitious data
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There are two messages here. One is that the
precisions carry information and methods that
ignore this are wrong in principle. Any calculation
using just the ages would give the same answer for
both sets of data. But in the second set, the
precisions are higher; there is more information.
Indeed we have counted more tracks!

The other message is the fallacy of assuming
that a hypothesis is true just because data are
consistent with it. We may have data something
like the first set, but if we had counted bigger areas
per grain we might have got something like the
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second set. Of course this fallacy is inherent in all
scientific inference and is well known, but it is still
a common source of misjudgement.

Sometimes there are many grains with very few
or even no spontaneous tracks. What about these?
Can we put them on a radial plot? What happens
to the chi-square test? Who wants to know? For
answers to these and other mysteries we must visit
Alaska, in the next chapter.
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A Message from Alaska

“Once upon a time there were no bears at all.”

Our old school teacher would tell us that story
when he was in a hurry. Not even Chi-Chi I would
sometimes think, which at least made the story a
bit longer. But why did they think there were no
bears? Because there were no tracks? That might
just be because there was no snow.

No fossil tracks

L ikewise if there are no fossil tracks, it might be
because there are no fossils — the sample is young
— or because there isn’t much uranium. A common
problem these days is how to estimate a single
grain age when Ns = 0. For EDM data, the
conventional formula estimates ρs/ρi as Ns/Ni
with relative standard error

√
1

Ns
+

1
Ni

.

If we blindly put Ns = 0 in these formulae we get
an age estimate of zero with infinite relative
standard error, a result that is neither useful nor

17
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sensible. These formulae are fine when applied to
reasonably large counts but they break down when
Ns = 0, and are not too good for very small
non-zero counts either.

So several people have asked: “How do we
assign an error to a zero age?” and “How can we
put zero ages on a radial plot?” With inimitable
charm (and pedantry) I usually start by pointing
out that the phrase “zero age” is misconceived; for
when Ns = 0, it does not mean that the true age is
zero, or even that it is necessarily sensible to
estimate it as zero — indeed it is easy to find a
better estimate than zero. So let’s talk about zero
counts, not zero ages.

The essence of the problem is easily seen.
Consider two grains, both having Ns = 0 (no
spontaneous tracks) but one has Ni = 5 and the
other Ni = 50. With the (0, 5) grain we might think
that either it is young or else it might be quite old
and just have a low uranium content. With the
(0, 50) grain though, we would be more inclined to
think it was young. The two grains do not carry
the same information. It follows that any method
that treats them as if they do is wrong in principle.
This applies also to non-zero counts, especially
small ones; it matters less with large counts.
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Interval estimates

To answer the first question, we must change
our concept: when Ns = 0 it is not sensible to
quote a point estimate with an associated standard
error. Instead we can calculate a confidence interval
— a range of values (ages) that the observed data
are consistent with. (“He who has never ended a
sentence with a preposition has never tried to
explain what a confidence interval is” — New
Zealand proverb). When Ns = 0, a 95% confidence
interval for ρs/ρi goes from 0 to

201/(Ni+1) − 1

which can be substituted into the age equation to
get a 95% confidence interval for the age.

So the idea is to calculate an upper 95%
confidence limit for ρs/ρi and hence for the single
grain age. When Ns = 0 the upper x% confidence
limit is (

100
100− x

)1/(Ni+1)

− 1 .

To get a 95% upper age, put x = 95 in this formula
and substitute the result in place of ρs/ρi in the age
equation. Of course the age interval will depend on
ζ and ρd also. Note that this formula does the right
thing: it depends on Ni and it gets closer to zero as
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Upper 95% confidence limits when Ns = 0

Ages are in Ma using ζ = 355 and ρd = 1.5×10 6 cm−2

Ns Ni ρs/ρi Age Ns Ni ρs/ρi Age

0 1 3.4721 863.9 0 40 0.0758 20.2
0 2 1.7144 441.0 0 50 0.0605 16.1
0 3 1.1147 290.2 0 60 0.0503 13.4
0 4 0.8206 214.9 0 80 0.0377 10.0
0 5 0.6475 170.1 0 100 0.0301 8.0

0 6 0.5341 140.7 0 120 0.0251 6.7
0 7 0.4542 119.8 0 150 0.0200 5.3
0 8 0.3950 104.3 0 200 0.0150 4.0
0 9 0.3493 92.3 0 300 0.0100 2.7
0 10 0.3130 82.8 0 500 0.0060 1.6

0 15 0.2059 54.6 0 1000 0.0030 0.8
0 20 0.1533 40.7
0 25 0.1221 32.4
0 30 0.1015 27.0
0 35 0.0868 23.1
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Ni increases. If Ni is very large and Ns = 0 we
really would think that the true age was close to
zero.

The table opposite shows values of this formula
for x = 95 and varying Ni. Such limits could be
quoted in routine practice.

For illustration I have also shown the age limits
you would get using ζ = 355 and ρd = 1.5× 10 6.
For example, the 95% interval for a (0, 5) grain is
0–170 Ma while for a (0, 50) grain it is 0–16 Ma.
Quite a difference! (Go on, get out your calculator
and check it: just put 0.6745 in place of ρs/ρi and
similarly 0.0606 . . . don’t tell me, you’ve forgotten
the age equation.) You can interpolate in this table
if necessary. Put it on your wall next to Madonna
or in the space where Fergie used to be.

By the way, these confidence intervals do not
allow for error in estimating ζ and ρd. They are
appropriate for comparing EDM age estimates for
grains that were irradiated together. When
calculating the standard error for the pooled age,
the error in estimating ζ and ρd would normally be
included. I have not yet seen data where the total
Ns for all grains is zero, but no doubt it will
happen one day.
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Binomial and Poisson probabilities

Where does the above formula come from?
Consider the following statistical problem:

suppose that in a large population a proportion θ

of individuals have some attribute. A random
sample of n individuals is chosen and r of them
have the attribute. We wish to estimate θ, in
particular when r = 0.

The observation r = 0 is consistent with the
hypothesis that θ = 0. It is also consistent with θ

being small and non-zero. The probability of
observing r = 0 is (1− θ)n, which decreases as θ

increases — and the value of θ for which this
probability equals 0.05, say, gives an upper 95%
confidence limit for θ. Solving the equation

(1− θ)n = 0.05

gives
θ = 1− 0.051/n

or equivalently

θ

1− θ
= 201/n − 1 .

Actually this value of θ is known to be conservative
in the sense that the interval has a slightly greater
chance than 0.95 of including the true θ, and a
more accurate result is obtained by using n + 1 in
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place of n. In statistical jargon, the formula with
n + 1 is the Bayes estimate for a uniform prior.

What has all of this got to do with Ns and Ni?
Imagine the n = Ns + Ni tracks to be a sample

from a population in which a proportion θ are
spontaneous and the others are induced, where
θ = ρs/(ρs + ρi). The observed number of
spontaneous tracks is r = Ns. We want to estimate
ρs/ρi in the age equation, which is the same as
θ/(1− θ). This is just what we have done above.
Although this analogy seems contrived, it is in fact
legitimate; it follows from the fact that Ns and Ni
have independent Poisson distributions. As Goethe
remarked, mathematicians are like Frenchmen:
whatever you say to them they translate into their
own language and forthwith it is something
entirely different.

You can calculate “exact” confidence intervals
from small non-zero counts also, though the
formula, which uses the Binomial probability of
observing Ns spontaneous tracks gets more
complicated as Ns increases. I did this in Table 2 of
my radial plot article but did not explain the
method. Having read the above you may be
pleased that I didn’t.
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Arcsin transformation

What about putting zero counts on a radial plot?
I said earlier that when Ns = 0 it is not sensible

to calculate a point estimate and standard error for
the age. But we can just about calculate an estimate
and standard error for something else, namely ν,
where

ν = arctan
√

ρs/ρi .

If we know ν we can find ρs/ρi = tan2 ν and put
this in the age equation. So we estimate the arctan
square root of ρs/ρi, though this is commonly
known as the arcsin transformation and written in
the equivalent form

ν = arcsin
√

ρs/(ρs + ρi) .

Sir David Cox more stylishly calls it the angular
transformation. Perfectionists may point out that it
is not necessarily the best transformation, but it is
quite good nevertheless.

Thus, for the radial plot we can use z, an
estimate of ν, given by

z = arctan

√
Ns + 0.375
Ni + 0.375

and its approximate standard error given by

σ =
1

2
√

Ns + Ni + 0.5
.
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Of course z and σ must be calculated for each
grain, not just those for which Ns = 0. These
behave sensibly even when Ns = 0; both z and σ

are positive and decrease as Ni increases. Moreover,
even when Ns = 0, tan2 (z + 2σ) compares fairly
well with the upper 95% limits in the above table.
The comparison is a bit rough for a (0, 1) grain, but
there is very little information in a (0, 1) grain.
What about a (0, 0) grain? Now there’s a challenge
— but Ian says that’s not fission track dating!

Adding 0.375 and 0.5 to the counts in the above
formulae are refinements suggested by Frank
Anscombe, who did for the arcsin transformation
what J.B.S. Haldane did for the log odds trans-
formation, and several years earlier apparently.
Haldane was Professor of Biometry at UCL. I
inherited his arm chair until it was taken over by
mice. According to his colleague, Nobel Laureate
Peter Medawar, Haldane was “in some ways the
cleverest and in other ways the silliest man I have
ever known”. Nevertheless Haldane has a room
named after him whereas Medawar has only a
building. Anscombe worked at Rothamstead
Experimental Station, so he probably visited UCL
at least once.
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Chi-square test

There is another point about small counts, which
is that the chi-square test for homogeneity may
need modification. When the counts become
sufficiently small, the P-value obtained from the
chi-square distribution ceases to be a good
approximation. It is possible (but not easy) to
calculate the exact P-value: you have to add up the
multiple hypergeometric probabilities for all
possible sets of data that have the same row and
column totals as the actual data and which have a
chi-square statistic larger than that for the actual
data. There is statistical software available now
(e.g., the StatExact package) that will do this.

A simpler alternative is to pool grains to get
larger counts. This has the benefit of increasing
power also, but one must be objective about which
grains to pool. It should be done on the basis of
numbers of induced tracks, i.e., low uranium, not
on the basis of low spontaneous track counts. Even
a homogeneous sample may appear heterogeneous
when counts from grains with like ages are pooled
together.
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Alaska at last

The graph shows a radial plot of some data from
Alaska that are very instructive. Out of twenty
grains there are ten with 0 spontaneous tracks, five
with 1 spontaneous track and one each with 2, 6, 9,
14 and 18. The numbers of induced tracks vary
from 4 to 166. The ages look homogeneous. The
chi-square statistic is 17.6 with 19 degrees of
freedom, giving a nominal P-value of 0.55, which
seems to suggest no evidence of heterogeneity. The

Alaska data
Radial plot using arcsin transformation
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zero count grains are easily recognised: they lie on
a downward sloping line. Both the estimate and
the upper two-sigma confidence limit decrease as
Ni increases in accordance with good sense. This is
what the “exact” formula does too, and what the
usual “large count” formula does not do.

The first thing to say is that because many of
these counts are so small, the P-value of 0.55 is
unreliable. But even if we calculated an “exact”
P-value, I don’t think it would indicate any
heterogeneity. Secondly, and more importantly
perhaps, because there are so many small counts
the chi-square test will not be very powerful.
Suppose we ignore the grains with fewer than 20
induced tracks and look at just the remaining five.
These by themselves don’t look quite so homo-
geneous. The chi-square statistic for just them is
7.9 with 4 degrees of freedom and a P-value of
0.098. Not strong evidence of heterogeneity, but
more suggestive than before.

A more powerful test is to pool the 16 grains
with small numbers of induced tracks and use the
total Ns and Ni from these. This ensures that all
expected frequencies are at least 5, the well known
rule of thumb learnt by first year statistics students.
There is a prima facie case for doing this as these 16
grains clearly agree with a common age. This now
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gives a chi-square statistic of 10.39 with 4 degrees
of freedom and a P-value of 0.044, indicating there
is some evidence of heterogeneity after all.

But the main message is that there is not much
information about whether or by how much the
true ages vary. Such small counts are simply not
very informative. So it would be foolish to assume
that there was no variation just because these data
look homogeneous. In fact more evidence was
obtained subsequently from this sample: more
grains were dated and they really did show a
spread of ages.

It is of interest too, not only to look for evidence
of heterogeneity, but also to estimate how much
spread there is. For these Alaska data, the true
ages could easily vary by 30% or even 40% of their
central value, even though they look homogeneous.
How can we estimate the central age and age
dispersion? As Uncle Toby said, that’s another
story.
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at the microscope with the healthy apatite and the prismatic

face.



Middle Age Spread

When Noah ’s Ark finally reached land, back
in the mid-Holocene, there was a lengthy
disembarkation procedure. The animals lined up,
two by two, for Noah to complete their customs,
immigration and quarantine documentation,
record personal statistics and tell them to “Go forth
and multiply”. Presently there came two lowly
creatures, appearing from under the coiled rope
(they have one on every ship’s deck, for practising
the art of rope coiling) who said “We can’t
multiply, we are only adders.”

God ’s instructions on this delicate matter, as on
many others, had been somewhat lacking in detail
and there was little that Noah could do other than
to keep them waiting under his table until he had
finished dealing with the other animals. Naturally
this took some time, though the formalities were
fairly straightforward in most cases. There was a
problem with the giant pandas, who didn’t seem to
know which was which (their names didn’t help)
and who’s future seemed uncertain. Eventually
Noah sent them away, trusting to faith, and,
wondering how far faith would take him, looked

31
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under his table for the two reptiles. They were both
still there, along with numerous little ones, all
looking very pleased with themselves. “I thought
you said you were only adders and could not
multiply” said Noah. “Ah yes,” they replied “but
this is a log table.”

Napier’s invention

That awful story was told to us long ago by our
school teacher in a desperate attempt to interest us
in logarithms. I swear I have not repeated it until
now and, as the average reader of On Track has
probably never used a log table — at least for
multiplication — there is little chance that it will
go further. We had to use common logs, the only
ones readily available, though we knew that John
Napier in 1614 had suggested replacing 10, 100,
1000, . . . by 2.71828, 7.38906, 20.08554, . . . , which he
said was natural.

Notwithstanding this obvious insight, Henry
Briggs ten years later published the first great log
table: logarithms to base 10, to ten decimal places,
of all the numbers from 1 to 100,000. Exactly three
hundred years later, A.J. Thompson calculated
them to twenty decimal places with the aid of a
computer — who, as was customary, was female
and nameless. This was essentially an act of
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chauvinism: the French had threatened to publish
fourteen decimal places and the Germans fifteen.
They are now published in two volumes by the
Department of Statistical Science, UCL, under the
title Logarithmetica Britannica, price £20, o.n.o. Their
weight is ideal for flattening posters, door stops,
etc., and together with the three-and-a-half foot
high statue of Napier himself behind the common
room door, they are an inspiring reminder of the
single most useful advance in mathematics since
“before Noah was a sailor”.

Manuel’s law

They also inspired other tables: an industry that
produced tables for the distribution of the
correlation coefficient, for testing the significance in
a 2× 2 table, symmetric functions and allied tables
(a popular title), beta functions and gamma
functions which are incomplete. But it was
Manuel I of Byzantium (1143–1180) who inspired
the most wonderful result. Nine coins from his
first coinage had the following silver contents, in
parts per hundred:

5.9, 6.8, 6.4, 7.0, 6.6, 7.7, 7.2, 6.9 and 6.2.

You can see the coins in the Fitzwilliam Museum,
Cambridge, UK, provided you promise not to
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subject them to fission track analysis. The mean
and standard deviation of these measurements are
6.74 and 0.543 pph, so the relative standard
deviation is 0.543/6.74 = 0.0806. Now if we find
the logarithm (the natural log) of each measurement
and calculate the ordinary standard deviation of
these, it comes to 0.0806. The same!

Amazing though this is, it is apparently no
accident: here are the silver contents of seven coins
from Manuel’s fourth coinage:

5.3, 5.6, 5.1, 6.2, 5.5, 5.8 and 5.8.

These have a relative standard deviation of 0.0646
and the standard deviation of their logarithms is
0.0644. Practically the same! Moreover the mint
precision has improved from 8.1% to below 6.5%,
an achievement so commendable that one scarcely
notices that the mean silver content has dropped
from 6.74 to 5.61 pph. The Byzantine government,
as well as originating and establishing a standard
monetary unit, was apparently well versed in other
modern fiscal practices, including printing money
when needed and surreptitious devaluation — here
by 17%, presumably without a formal announce-
ment from the Bank of Constantinople.
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But the really interesting thing about Manuel’s
law is that it has nothing whatever to do with
Byzantine coins. It simply states that the relative
standard deviation of any set of measurements
approximately equals the standard deviation of
their logarithms. Natural logs of course.

To prove it, just take any set of numbers you
like (any ten numbers between 80 and 120, say)
and calculate their relative standard deviation and
the standard deviation of their logs. Hey presto!
Practically the same result. Not exactly the same
but close enough provided that the numbers are
positive (of course) and their relative standard
deviation is “small”. Actually the word “small’ is
misleading here: the agreement is excellent even
for a relative standard deviation as high as 0.50
(i.e., 50%). In practice, one’s relative standard
deviations are usually well below 50%, so the
approximation works where we want it to work.
(Adherents of Murphy’s law may notice an
apparent contradiction, but the general form of
Murphy’s law implies that Murphy’s law itself can
go wrong.)

It won’t have escaped you that the great value
of Manuel’s law is not so much in the calculation
(few would regard calculating the standard
deviation of the logs the easier option) but in the
concept. That is the real power of mathematics.
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Central ages

What is a central age and how is it calculated?

Imagine a population of a large number of
crystal grains. Imagine that each grain has a
unique true value of ρs/ρi, the ratio of its
spontaneous to induced track density. For example,
imagine that ρs could be measured exactly, without
error, for each and every grain, that they could
then all be irradiated together and ρi measured
exactly in an external detector for each grain —
and hence each ratio ρs/ρi could be determined
exactly. We don’t have to know what all these
values are, but just that they exist in principle.

Now let µ and σ be the mean and standard
deviation of their logarithms. (Why? Because that’s
natural.) Then the central age is the age corres-
ponding to µ. That is, the age obtained by putting
ρs/ρi equal to exp(µ) in the fission track age
equation. We call it the central age because it is in
the centre of a distribution of ages. Pedants might
prefer to say that its logarithm is in the centre of a
distribution of log-ages, but anti-log central log-age
would never catch on, and in any case it is really
the age corresponding to the anti-log central log
spontaneous to induced track density ratio. Moreover,
by Manuel’s law, σ, being the standard deviation of
log(ρs/ρi), is the relative standard deviation of



middle age spread 37

ρs/ρi. And because ρs/ρi is effectively proportional
to the age, σ is the relative standard deviation of
the population ages. We call σ the age dispersion.
The central age and age dispersion together
summarise the distribution of population ages.

In practice, we just have a sample of grains
from the population. If we could determine ρs/ρi
exactly for each sample grain, we could then
estimate µ and σ (e.g., from the sample mean and
standard deviation of their logarithms). But we
cannot determine ρs/ρi exactly, even for a sample
grain; we can only estimate it from track counts.
Nevertheless, we can still estimate µ and σ, though
to do so is more comp- licated because (a) there is
an extra component of variation from the track
counts (Poisson variation) and (b) this component
differs between grains.

An efficient method (i.e., one that uses the data
well) is to assume that the population values of
log(ρs/ρi) follow a Normal distribution, and to use
the method of maximum likelihood. It is not
possible to write down the estimates explicitly. A
simple algorithm is available on request and is
included in a written (and submitted) version of
Galbraith and Laslett (1992). The estimate of σ

comes from the “extra-Poisson” variation — i.e.,
over and above the Poisson variation.
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To understand the estimate of µ, note that if σ is
large and dominates the Poisson variation, then
each grain is weighted equally, while if σ is small,
the Poisson variation dominates and µ is estimated
from the pooled track counts. In general, the
estimate of µ lies between these two values. Also,
the precisions of the estimates of µ and σ will
depend not only on the number of sample grains,
but also on how well each ρs/ρi is estimated — i.e.,
on the track counts.

Rufford well

When might the above model (for it is a model)
be relevant?

Suppose a number of contemporaneous apatite
grains experienced a common thermal history
severe enough to shorten tracks. And suppose that
each grain had a different chlorine content, so that
tracks would shorten by different amounts in
different grains. Then the true values of ρs/ρi
would vary between grains. Consequently, the true
“ages” (as given by the age equation) would vary
between grains. The age dispersion tells us how
much they would vary, and the central age tells us
the central age. For example, if the age dispersion
was 0.20 (20%) and the central age was 100 Ma,
then about 95% of the population ages would be in
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the range

exp(log 100± 2× 0.20) = 100 e±40

i.e., between 67 and 149 Ma.

This is just one scenario and there may be others
for which the model is applicable. Usually we
don’t know much about how chlorine contents
vary — their distribution may be very irregular —
or about the precise effect of amount of chlorine on
track length reduction at various temperatures. So
to assume that log(ρs/ρi) is Normal is something
of an act of faith. Nevertheless the parameters µ

and σ can provide a useful description of a sample
that can serve as a summary and as a basis for
comparison with other samples.
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The graph opposite shows radial plots of fission
track ages for four samples from different depths
in a well. The top sample, at depth 320 m and a
current temperature of 20◦C, has an estimated
central age of 231 Ma and an age dispersion of 19%.
There is evidence of a spread, suggesting that
tracks have been shortened more in some grains
than in others.

In the next sample, at depth 780 m and 35◦C,
some grains have ages comparable with the top
sample, while others are much younger. Their
distribution has a lower central age of 96 Ma and a
higher dispersion of 71%. In the third sample, at
depth 890 m and 39◦C, many more of the ages are
younger; the central age is now down to 62 Ma and
the dispersion has gone down again to 27%.

In the bottom sample, at depth 1030 m and
temperature 43◦C, the single grain ages are
consistent with each other and with the central age
of 58 Ma. The age dispersion is now down to zero.
(When the dispersion is zero, the central age
estimate coincides with the usual pooled age.) The
inference here is that there has been sufficient heat
to anneal completely all tracks formed before
58 Ma, since there is no evidence of tracks being
shortened by differing amounts, and that little or
no shortening has taken place since that time.
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Of course, such data should be viewed along
with track length measurements and other relevant
context information. For the record, the numbers
of confined tracks measured, along with their
means and standard deviations in cm were, from
top to bottom (95, 11.63, 2.03), (19, 11.02, 2.93), (94,
12.62, 2.03) and (81, 12.17, 1.81).

This pattern of the age dispersion increasing
and decreasing again as the central age decreases is
quite common and has, I am sorry to say, been
referred to as Middle Age Spread. It generally occurs,
to differing degrees, in apatite samples that are in a
sequence of increasing temperature — down a
borehole of over an area — and may be a useful
indicator of such a sequence.

To see the pattern on a graph, an important
feature is that the different samples are plotted
with respect to data frames having the same age
scale, centred at the same place, and with the same
x and y scales. Edward Tufte calls this type of
graphical design “small multiples” and says
“constancy of design puts emphasis on changes of
data, not changes in data frames.”

Such designs are useful for comparing data
between samples, as opposed to within a sample,
and are often a better alternative to superimposing
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several samples on the same data frame. So we are
back to multiplication.
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Your man at the microscope with the geological time and

inclination.



Trials and Errors

Recent disclosures concerning bears and
Byzantine coins have prompted several letters from
readers:

Grand Canyon Hotel, Denver, Colorado.

Dear Tracker,

My wife and I have been trying to reduce
our errors for ages, but we find that the
older we get, the bigger they become. Are
we Normal?

Yours, CW.

P.S. Nancy says that our relative errors have
gone down a bit, though.

Oasis Bar, Surfers’ Beach, California.

Dear Tracker,

I have discovered that I can reduce my
standard errors by dating younger things.
Unfortunately, this seems to lead to
increased relative errors. Yesterday I dated
a groovy piece that had an age of
0.0000030 Ma with relative standard error
4000%. Is this a record?

Yours, Trevor.

45
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Windsor Castle, Windsor, Victoria.

Dear Tracker,

In your otherwise admirable explanation of
Manuel’s law (On Track, 2, ii) it can’t have
escaped your attention that there is one
feature that does not ring true. Not only
was the silver content reduced in the later
minting, but also the relative standard
deviation went down. As every analyst
knows, when the true value goes down, the
variation also goes down, but the relative
variation tends to go up. What is going on?
I think we should be told.

Carry on, G.

The Hat Shop, Grizzly Mountain, Alaska.

Sir,

In a recent issue of your tracking magazine,
you allude to bears that leave no tracks in
the absence of snow, a conjecture whose
authenticity is questionable to say the least.
As one with no little experience of the
heavier thick-furred plantigrade
quadrupeds, I submit that evidence of their
proximity can usually be inferred from a
rudimentary knowledge of the geological
environment in a variety of climatic
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conditions. To quote a bard from an earlier
age:

Farewell!
The day frowns more and more:

thou art like to have
A lullaby too rough. I never saw
The heavens so dim by day. A

savage clamour!
Well may I get aboard! This is

the chase:
I am gone forever.

[Exit, pursued by a bear.]

Furthermore, the giant panda is never seen
in these parts: what sort of tracker are you?

I remain, yours, etc., D. Crockett.

The last correspondent is clearly receiving
On Track in error, probably as a free offer, and is
best ignored. The first three, though, have put their
collective finger on a useful point. A relative
standard error, being the ratio of a standard error
to the value of the quantity being estimated, will
tend, other things being equal, to be small when
the true quantity is large and large when the true
quantity is small. Of course, this is not the full
story. In some experimental procedures, the
absolute standard error is naturally dependent on
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the value of the quantity being estimated, while the
relative standard error is not, or not strongly so at
least. This is the case for fission track ages, as
observed by both CW and Trevor.

A fiscal mystery

Our correspondent G is referring to the following
data from the reign of Manual I:

Silver content x (pph)
mean s.d. s.d./mean

First coinage 6.74 0.543 0.081
Fourth coinage 5.61 0.363 0.065

He points out that while the mean and standard
deviation both went down in the later coinage, so
did the relative standard deviation, from 8.1% to
6.5%.

How did this happen? My theory is this:
Manuel needed to produce more coins but did not
wish to use more silver than before, so what did he
do? He added more alloy. Let us look not at the
silver content of each coin, but at its alloy content —
the number of parts of alloy per part of silver:

Alloy content 100/x
mean s.d. s.d./mean

First coinage 14.91 1.20 0.081
Fourth coinage 17.88 1.15 0.064
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Now in the later coinage, the mean alloy content
has gone up, the s.d. is much the same (surely
evidence that we are on track) and the relative
standard deviation has gone down, in accordance
with G’s desire.

Indeed, the two relative standard deviations are
practically the same as before — and a moment’s
thought tells you that this must be so: by Manuel’s
law, the relative s.d. equals (to a close approx-
imation) the s.d. of the logs; and furthermore,
because log(100/x) = log(100)− log(x), the s.d. of
log(100/x) must equal the s.d. of log(x). Manuel’s
law is powerful indeed!

A Poisson situation

But let us take a simpler situation: estimating a
track density. Consider a count N that is a random
quantity with expected value Aρ, where A is
known (for example, a known area of crystal
surface) and ρ is an unknown density to be
estimated. Suppose N has a Poisson distribution.
(Today we will leave aside the question of why we
suppose this — contrary to popular opinion, it has
little to do with deaths from horse kicks.) Then the
variance of N is Aρ, equal to the mean. The
standard deviation is therefore

√
Aρ and the

relative standard deviation (or coefficient of
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variation) is
√

Aρ/Aρ = 1/
√

Aρ .

Suppose we observe N = r and we wish to
estimate ρ. The natural estimate is

ρ̂ = r/A (1)

which has standard error

se(ρ̂) =
√

Aρ/A =
√

ρ/A (2)

and relative standard error

se(ρ̂)/ρ = 1/
√

Aρ . (3)

Notice that if the density ρ is fixed and the area A
is large then both the standard error (2) and the
relative standard error (3) will be small. If the
expected count Aρ is large then the relative
standard error (3) will be small, though the
absolute standard error (2) may not be. However, if
ρ is small the standard error (2) will be small but
the relative standard error (3) will be large —
simply because it is relative to something small. To
see how good your estimate is, you may need to
express its precision more directly, possibly as a
confidence interval.
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An approximate standard error

Now equations (2) and (3) depend on ρ which is
unknown, so we can’t calculate them. (And if we
knew ρ we wouldn’t want to calculate them as we
wouldn’t need to estimate ρ, an irony familiar to
statistics students long before Yossarian’s famous
Catch 22.) In order to get an idea of the precision it
is standard practice to substitute the estimate r/A
to get approximate values

se(ρ̂) ≈
√

r/A (4)

and relative standard error

se(ρ̂)/ρ ≈ 1/
√

r . (5)

Remember that (4) and (5) are approximate. They
are likely to be poor approximations when r is
small, and effectively nonsense when r = 0. It can
easily happen (and does) that r = 0 even though ρ

is not zero.
But there is another aspect to consider when r

is small. It is not only that (4) and (5) are poor
approximations, true though this is, but also (2)
and (3) are themselves poor measures of precision
in this circumstance. To understand why, we need
to think about standard errors.
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A probability distribution of possible estimates

The standard error se(ρ̂) is a measure of how
imprecisely the parameter ρ has been estimated. It
is the standard deviation of all of the possible
estimates that the experiment might have
produced. These estimates have a probability
distribution which is derived from the Poisson
distribution — i.e., the distribution of N/A, where
A is fixed and N has a Poisson distribution. (In
statistics jargon, this probability distribution is
called the sampling distribution of ρ̂ because it is the
distribution from which ρ̂ has been sampled.)

If the standard error is small, the probability
distribution of estimates is closely concentrated
around the true value; but the usefulness of the
standard error as a measure of precision also
depends on the shape of this distribution.

If Aρ is large enough, the distribution of N/A
is approximately Normal with mean ρ and
standard deviation se(ρ̂) =

√
ρ/A, as given by (2).

Then, for example, ρ̂± 2se(ρ̂) is an approximate
95% confidence interval for ρ.

But if Aρ is not large, the distribution of
possible estimates is not approximately Normal.
Then se(ρ̂) is not such a useful measure of
precision, and ρ̂± 2se(ρ̂) does not provide an
approximate 95% confidence interval. This applies
to (2), and therefore to (3), when r is small. There
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are better things to do in these circumstances, such
as transforming to a different scale or using
confidence intervals directly.

A mean length

So much for errors; what about trials?

Before the 1992 Philadelphia Workshop,
aliquots of two apatite samples were sent to several
labs for analysis, both for dating and for making
track length measurements; and in several of the
labs, the apatites were analysed by more than one
analyst. For the present purpose, let us regard this
simply as an exercise in estimating the mean length
of tracks in the original apatite samples. And let us
suppose that everyone is trying to estimate the
same thing. In practice, people measured lengths
of horizontal confined tracks according to their
normal procedure, uncorrected for length-biased
sampling.

The graph overleaf is a radial plot of the mean
length estimates for Apatite 1, made by 20 analysts
from 7 labs. For each analyst, the estimate is the
mean of the length measurements made, and its
standard error is their standard deviation divided
by the square root of the number of tracks
measured. Thus if an analyst measured the lengths
of 100 tracks with a mean of 14 microns and a
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standard deviation of 1 micron, the standard error
used on the radial plot would be 1/

√
100 = 0.1

microns, and the point would plot close to (slightly
above and to the right of) that by Analyst 11. It is
clear from the graph that the estimates are not all
in agreement with respect to this measure of
precision; there are other sources of variation.

Where might variation come from? You will
easily tell me. For example, differences in etchant
used, etch time and microscope conditions will
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lead to differences between labs. Differences in the
way tracks are selected as well as actual differences
between aliquots, may result in length differences
between analysts. Even two different analysts from
the same lab measuring exactly the same tracks
may get systematically different mean lengths.
(One person I know claims to have better eyesight
than his colleagues and can see the track ends
better.) It would be possible to estimate the sizes of
systematic and random differences from suitably
designed studies — and this could be a worthwhile
exercise.

Within and between

Looking at the Apatite 1 graph more closely,
you can see that differences between analysts from
the same lab are generally not so great as those
from different labs. The ‘within-lab’ variation is
less than the ‘between-lab’ variation. In fact, within
some labs (2, 6 and possibly 1 and 3) there is little
evidence of any extra variation between analysts.
Treating all variation as being random, I have
estimated the between-lab standard deviation to be
0.35 microns, and the between analyst (within lab)
standard deviation to be 0.19 microns. These
represent extra components of variation: for
example, mean lengths measured by different
analysts in the same lab, each having a sub-sample
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standard error of 0.1 microns, will vary with a
standard deviation of

√
0.192 + 0.102 = 0.21 microns

and for such analysts in different labs they would
vary with a standard deviation of

√
0.352 + 0.102 = 0.41 microns .

The practical importance of these extra
components of variance will depend on the context.
For example, if reduction in mean length is of
interest, rather than the absolute mean length (as
in some annealing studies) it will be important for
the same analyst to measure all the samples to be
compared, or to be able to combine measurements
from different analysts without introducing
systematic biases. Furthermore, differences
between analysts in reduction in mean length might
be much smaller than for absolute length. These
things are unknown, but are relevant to studies
that use data from different labs.

A second apatite

The graph below shows the estimates obtained
by the same analysts for the second apatite sample
(except for analyst 15 who didn’t measure this
sample).
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Again there is extra variation between labs and
some extra variation between analysts within labs.
It is interesting to compare relative positions of the
corresponding points for the two graphs. For both
apatites, Analysts 17 and 18 (the two from Lab 6)
are slightly higher than the overall average but not
systematically different from each other. Analysts
19 and 20 (the two from Lab 7) are in similar
relative positions, with 19 above the average and 20
below the average in both cases. Analysts 1 and 2
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(from Lab 1) are in good agreement for both
apatites, but somewhat lower than average for
Apatite 2. Analysts 15 and 16 (both from Lab 5)
quote the highest precisions.

There are other patterns, and exceptions also. It
seems likely that there are both systematic and
random effects between analysts and between labs.

An anova

There are two sorts of people. Ordinary folk like
you and me, who derive simple pleasure from
hydrothermal intrusions in a sedimentary basin, or
an alpine fault in a parauthochthonous terrane. But
to those other people, beauty is analysis of variance.

Here is what they would do with the data from
the two graphs (leaving out Laboratory 5 for
simplicity):

Source of variation D.f. Mean square

Apatites 1 2.8274
Labs 5 0.3765
Apatites × Labs 5 0.1794
Analysts (within labs) 12 0.0994
Residual 12 0.0706

Naturally d.f. stands for degrees of freedom and
mean square stands for variance.

To read this table, start at the bottom. The
residual mean square of 0.0706 represents the
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variance between estimates having accounted for
all systematic differences between apatites, labs
and analysts. If there were no such differences, all
the other mean squares would roughly equal this
one. The residual standard deviation (the square
root of 0.0706) is 0.27 microns. Actually, part of this
is known (the part corresponding to the standard
errors in the graphs) and if we take away this part
(a less than trivial exercise) the remaining part
comes to 0.21 microns. This represents the
standard deviation of random differences between
analysts (within labs) and agrees well with the
figure of 0.19 microns found earlier.

The mean square for Analysts (within labs) is
0.0994, a bit larger than 0.0706. The extra bit is due
to systematic differences between analysts in the
same lab. The three other mean squares are even
larger. The Apatites mean square of 2.8274 reflects
the fact that the mean track lengths for the two
apatites are different (14 microns for Apatite 1 and
13.5 microns for Apatite 2). If they were more
different, it would be even larger. The Labs mean
square of 0.3765 is also quite large, reflecting
systematic differences between labs. And the
Apatite × Labs mean square of 0.1794 reflects the
fact that the differences in mean lengths between
labs differ for the two apatites.

Beauty indeed!
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A laboratory difference

In the absence of more information, the figure
of about 0.2 microns for the extra within-lab
standard deviation may have implications for
current laboratory practice. Differences between
labs, on the other hand, are usually relatively large
and not so easily interpreted as being random.
Naturally a laboratory will tend to trust its own
results and discount others if they do not agree. As
a laboratory track counter once remarked (in a
slightly different context): “There are three sorts of
laboratories: those that can count, and those that
can’t.”

Sources

Bortkewitsch, L. von (1898) Das Gesetz der kleinen Zahlen,
Teubner, Leipzig. (Data on numbers of deaths from
horse kicks in the Prussian army.)

Heller, Joseph (1961) Catch-22.

Miller, D.S. et al. (1992) Results of interlaboratory
comparison of fission track ages for the 1992 Fission
Track Workshop. Presented at the 7th International
Workshop in Fission Track Thermochronology, Philadelphia,
13–17 July, 1992.

Moore, D.S. (1989) “There are three sorts of mathematicians
. . . ” After dinner speech to the International Conference on
Teaching Statistics, Dunedin, NZ.



trials and errors 61

Shakespeare, William (c1608) The Winter’s Tale, III, iii.

Tracker (1992) A Message from Alaska, On Track, 2, i.

Tracker (1992) Middle Age Spread, On Track, 2, ii.

First published in On Track in May 1993, by Tracker, Your man

at the microscope with the Fish Canyon T-shirt and the

Durango jeans.
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A Negative Association

The following letter arrived recently by
express post:

Dave’s Hat Shop,
Grizzly Mountain, Alaska,
June, 1993.

Dear Mr. Tracker,

I admit that I have never fought the giant
panda, but I do know something about hats.
Your recent article Trials and Errors (OT,
May 1993) apparently contains more Errors
than intended. Practically every rho has a
missing hat. Not only is this extremely
untidy, as Ophelia would often complain:

"Lord Hamlet, with his doublet all unbraced;
No hat upon his head; his stockings fouled,
Ungart’red, and down-gyvéd to his ankle ..."

but also it makes a complete nonsense of
the whole hat industry, with which many of
us have been associated from an early age.
Furthermore, some rho’s have gone Latin
and your square roots are ambiguously
truncated to say the least.

I remain, yours etc.,

D. Crockett.

63
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A mad hatter it seems. But the honest fellow is
perfectly correct. We use a Greek rho (ρ) to denote
the real track density, and rho-hat (ρ with a ˆ on
top) to denote the measurement, or estimate, of ρ.
The Greeks naturally use the opposite convention,
which accounts for the rarity of Greek statisticians.
In the aforementioned article,1 therefore, the first ρ

in each equation (1) to (5), but not the others,
should have a hat on. Also, a standard error refers
to the estimate, not the true value, so when you see
the expression se(ρ) or ρ± 2se(ρ), the ρ should
have a hat on. I leave you the exercise of retrieving
your ancient issue of On Track, adding the
appropriate hats, changing r to ρ in the first two of
the three sentences before equation (4), and
clarifying all square root signs. I regret the
confusion and can only assume that our editor has
Greek relations.
[τηατ ωασ α πρεvιoνσ εδιτoρ, Ed.]

But why are we so fussy about hats? Why do we
distinguish between the “true” value of a quantity
and the value observed when we measure it?
Because not to do so can cause misunderstanding
and mistakes, as I was unsuccessfully trying to

1This refers to the original article in On Track, May 1993,
which contained a number of typesetting errors. These have
been corrected in the present volume.
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explain. Plotting age against uranium is a good
example.

Age and uranium

Ann Blythe, in the November issue of On Track,
plotted fission track age against uranium
concentration for three zircon samples, and found
that older grains tended to have lower uranium
concentration than younger grains. She conjectured
a partial resetting of ages through metamictization
of high-U zircons, but also noted a possible
“counting bias” problem where old high-U grains
(and young low-U grains) were more difficult to
count. A similar negative association between age
and U was noted by Andy Carter at Besançon, who
also cited earlier references to it. He considered
several possible causes, including variable
annealing rates, poor thermalisation of the reactor,
imperfect matching of detector, variable etching
and counting bias.

Now, as AB and AC recognised, there will
indeed tend to be a negative association between
age and uranium within a sample due to selection
of grains. Paul Green describes common practice
for selecting zircons thus:

“Start at one corner of the mount and
traverse across looking at every grain and
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counting all (or enough) of those grains that
fulfil the usual criteria (prismatic surface,
well etched, etc.). The main criterion is that
the track density should be countable — too
high and you can’t count it, too low and the
tracks don’t etch properly because the
background alpha damage isn’t sufficiently
intense and the grain etches anisotropically.
In practice, the band of acceptable track
densities is probably around 5E5 to 5E6. I
don’t think anyone selects grains for
uranium content, or takes account of grains
with rho’s that are too high to count. Chuck
and Nancy published a paper some time
ago (in Nuclear Tracks I think) suggesting
different etch times to select grains of
different track densities within one sample,
but in practice I’ve never been convinced on
this because when all is said and done the
range of countable track densities is pretty
narrow.”

So a major limitation is that the spontaneous track
density ρs should be in the acceptable range. Now
ρs is roughly proportional to the product of age
and U concentration, so if a grain is old, it stands
to reason that it will need to have a lower U
concentration in order to keep ρs to within the
limits. And vice versa. Although I have expressed
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this in terms of the underlying true track density, in
practice grains will be selected on the basis of the
observed counts per unit area. Thus for example, if
uranium concentrations are high enough, the
observed numbers of spontaneous tracks may vary
sufficiently that some will be uncountable, even if
the true ages are the same for each grain. And if
the true ages also varied, we would expect the
selection effect to be stronger.

If you were trying to discover a real relationship
between age and uranium, how could this bias be
avoided? One way might be to select grains by
looking at the induced tracks. Then you would
sometimes select grains where spontaneous tracks
are too dense to count (or inadequately etched).
The spontaneous track counts for these grains
would need to be treated as censored data — a
statistical procedure much less exciting than it
sounds. Nevertheless it could be done in principle.

Related measurements

But there is another, more subtle, statistical
association that arises when you plot “age” against
“uranium”, even, indeed especially, when age and
uranium are practically constant. What is really
plotted is measured age against measured uranium
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(i.e., age-hat against U-hat). The former is roughly
proportional to the ratio ns/ni while the latter is
proportional to ni/A, where A is the area of crystal
surface in which tracks are counted.

Even if the true ages and uranium contents
were the same for each grain, the counts would
differ because of their natural Poisson variation.
Furthermore a larger than expected ni would
produce, other things being equal, a smaller than
expected ns/ni and vice versa, resulting in a
negative correlation. In other words, the measured
ages and U-concs are not independent because
they use the same ni, and ni is imprecise.

Let us say this with numbers. Let the true
ρs = 50, and ρi = 100, so ρs/ρi = 0.5. And let us
count tracks in equal areas, which we take to be
unit area.

Suppose we observe ns = 50 (fortuitously equal
to the true value of ρs) and ni = 108, which is a
random value from a Poisson distribution with
mean 100. Then our estimate of uranium
concentration (in suitable units) will be 108, which
is a bit larger than the true value 100, while our
estimate of ρs/ρi will be 50/108 = 0.46, a bit lower
than the true value of 0.5. If instead we had
observed ni = 94, which we might well have, we
would estimate the uranium concentration to be 94
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(an under-estimate) and simultaneously estimate
ρs/ρi as 50/94 = 0.53 (an over-estimate).

For several grains with the same ρs = 50 and
ρi = 100, induced track counts greater than 100
will tend to produce lower age estimates while
induced track counts less than 100 will tend to
produce higher age estimates. Thus when we plot
the age estimates against the corresponding U
estimates there will be a negative association.

In practice, other things also vary —
spontaneous track counts, areas, uranium
concentrations and possibly true ages — which
may partially hide this effect, but it will still exist.
It is essentially a correlation between the estimation
errors of age and uranium concentration. It exists
precisely because ni is imprecise.

Two associations

So there are two negative associations. When
assessing any relation between age and uranium,
we need to understand not only how grains are
selected but also how the measurements are
related.

Which effect is greater? As far as selection is
concerned, the counter must get some feel about
whether a high proportion of grains are rejected
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because ρs is outside the acceptable range. This
effect seems likely to be relatively strong when
both the true ages and uranium concentrations
vary substantially. The correlation due to the
related measurements, on the other hand, is easy to
estimate and take account of if necessary. Its effect
will be greatest when the true ages and Us are
constant. And it will arise just as easily in apatite
samples. For example, I happen to have results
from Ian Duddy for the two apatite samples used
for the Besançon interlaboratory trial. The sample
correlations between the ages and uranium concen-
trations (20 grains each) are −0.41 and −0.42.

In fact it is possible to measure age and uranium
“independently” by the external detector method.
After counting ns, irradiating and counting ni, send
your grains back to the reactor to irradiate them
again (using a new detector) and obtain a second
induced track count ni2 for the same matched
areas. Use ns/ni to measure age and ni2 to
measure uranium, and you will not see the latter
negative relation. Furthermore, any relation you do
see will then have some other cause.

Some years ago Chuck Naeser sent me some
fission track age determinations for zircons from
the Fish Canyon Tuff, where two irradiations were
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done to obtain duplicate induced track counts for
the same 48 grains. The counts are beautiful,
mostly between 200 and 400 for both spontaneous
and induced tracks. The sample correlation
between single grain ages (Ma) and uranium
concentrations (ppm), using results from the first
irradiation only, is −0.27. But the correlation
between age from the first irradiation and uranium
from the second irradiation is only −0.09, much
nearer zero. I would expect the selection effect to
be small here and the correlation of −0.27 to be
essentially due to non-independence of the
measurement errors.

Random numbers

You can demonstrate these correlations with
random numbers, shown in the graphs overleaf.
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Figure 1: constant age and uranium
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Figure 2: 10% age and 20% uranium variation
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In F igure 1 there are 50 notional grains each
with the same true Aρs = 40 and Aρi = 80. The
counts have random Poisson values with these
means. For simplicity suppose that the same area
A is always used.

The left panels plot the ‘true’ values: Aρs
against Aρi (top left) and ρs/ρi against Aρi
(bottom left), all of which are the same for each
grain. The right panels plot the corresponding
‘observed’ values: ns against ni, and ns/ni against
ni, where the Poisson variation is added.

The bottom left panel is effectively true age
against true uranium while the bottom right panel
is effectively measured age against measured
uranium — and clearly shows the negative
correlation that we now expect.

In F igure 2, I have generated random values of
Aρi with a 20% coefficient of variation and indep-
endent random values of ρs/ρi with a 10% c.v.

The true ages and U-concentrations vary
between grains, but are independent (bottom left),
while the measured values are negatively
correlated (bottom right). Now the association is
not so strong. If the true ages and amounts of
uranium vary enough, this variation will mask the
Poisson variation and hide the correlation.
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Figure 3: 50% age and 50% uranium variation

F igure 3 illustrates effects of both selection and
related measurements when the true ages and
uranium contents are independent and both have a
50% c.v. The top left panel plots independent
random values of ρs/ρi against Aρi for 50 grains,
and shows a practically zero correlation. The top
right panel plots the measured values ns/ni against
ni. The correlation is now slightly negative, but still
quite near zero — the larger variation in true age
and U has largely masked the Poisson variation.
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In the bottom panels I have selected only those
grains whose spontaneous track count ns is
between 10 and 80. The real selection criterion is of
course much more subtle than this. For these
grains, there is a clear negative correlation between
the true ages and Us due to selection (bottom left
panel) and an even stronger one between the
measured values, due to both selection and
non-independence (bottom right panel). All panels
use the same scales, so those with keen eyes can
discern which points have been selected and which
have been most affected by Poisson’s law.

A formula

I have worked out an approximate formula for
the correlation between ns/ni and ni/A based on
the following assumptions. Areas A are randomly
chosen with mean ν and coefficient of variation δ;
values of ρi are randomly chosen with mean µ and
coefficient of variation α; and values of ρs/ρi are
randomly chosen with mean λ and coefficient of
variation β. Then the correlation between ns/ni
and ni/A is approximately

1/
√

1 + νµα2(1 + δ2)

× 1/
√

1 + λ−1 + νµβ2(1 + α2 + δ2 + α2δ2) .



76 tracker

A few simulations suggest that this formula
slightly under-estimates the strength of the
correlation, but by substituting reasonable values
for the various means and coefficients of variation
it will probably give a good idea of the size of this
effect. If all areas are equal, put δ = 0. Substituting
δ = 0, νµ = 80, λ = 0.5, α = 0.2 and β = 0.1, which
are the parameters used for Figure 2, gives a
correlation of −0.25, close to the empirical value of
−0.23 that we found.

When all true ages, uranium concentrations and
areas are the same, then α = β = δ = 0 and the
above formula reduces to

−1/
√

1 + λ−1

which can also be expressed as

−
√

ρs/(ρs + ρi) .

This is the formula cited by Andy Carter.
Substituting λ = 0.5 gives a theoretical value of
−0.58, in miraculous agreement with the empirical
value in Figure 1. Of course it is not possible to
give a general formula for the correlation due to
selection.
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Change against initial value

Spurious negative associations have often arisen
in the scientific literature, particularly in medical
and social sciences, where measurements contain a
substantial “random” component. Measurements
on a number of individuals are taken before and
after some treatment or intervention, and in order
to see if the treatment effect might depend on the
underlying level of the variable in question, the
change (or treatment effect) is plotted against the
initial measurement. A “significant” negative
correlation is reported, often with much
excitement, and it is concluded that the treatment
reduces the response for those with an initial high
value, but has an opposite effect for those with an
initial low value. The fact is that there would be a
negative correlation even if the treatment had no
effect at all. What would be really interesting is if
there were no correlation!

Eliminate the negative

Actually, there is a clever trick for trying to see
if any change depends on the size of the
measurement, which is: plot the change (after
minus before) against the mean of the before and
after values. This seems intuitively wrong because
the second measurement includes the treatment



78 tracker

effect. But when the treatment effect is additive
and the random component of variation is about
the same for both the before and after
measurements, this has the magical effect of
eliminating the negative correlation. A trend on
this plot might thus be of real interest — the
average treatment effect might depend on the
initial level, or the treatment might change the
variance of the responses. I attribute this idea to
the late Patrick Oldham, though our American
friends might claim it to be one of John Tukey’s
many inventions.

Now I can hear you thinking “If you plot the
logarithm of ns/ni against the logarithm of ni, is that
not the same as plotting a difference against the
initial value?”

So it is — and therefore can we not “Eliminate
the Negative” by plotting log ns/ni against the
mean of log ns and log ni? Not quite, because ns
and ni have different variances, but we could fix
that up by using a weighted mean. For fun, I have
worked out how to do it for the constant age and U
case, as in Figure 1: any linear function of
ρs log ns + ρi log ni will do.

In the next figure, the upper panel shows ns/ni
against ni for 50 grains with the same parameters
as for Figure 1, but now using log scales. The lower
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panel uses for the x-axis effectively log ns + 2 log ni
instead of log ni, though I’ve first added log 2 and
then divided by 3 to get the same range of x as in
the upper panel. Thus on the x-axis we have the
cube root of 2ns times the square of the cube root
of ni, plotted on a log scale. Hey presto! No
correlation! Fun lovers are invited to find the right
x-axis function for Figure 2.
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Good news from Ghent

The international workshop in Ghent
contained much good news. No more
hydrothermal intrusion, crustal cooling, tectonic
exhumation, extensional unroofing or (regrettably)
uplift and erosion. Just denudation!

But, as every English schoolboy remembers,
Ghent is the famous origin of some earlier good
news, though what this news actually was, he has
long forgotten, as have the inhabitants of Aix. I
was reminded of this some years ago while visiting
my wife’s aunt. The first course of dinner was a
rather thin consommé with croutons — or so I
thought, until I noticed some paper floating in my
bowl. To my astonishment it had writing on it:

I sprang to the stirrup, and Joris, and he;
I galloped, Dirck galloped, we galloped all

three

The text became somewhat faded, but I could just
make out how it ended:

No voice but was praising this Roland of
mine,

As I poured down his throat our last
measure of wine,
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Which (the burgesses voted by common
consent)

Was no more than his due who brought
good news from Ghent.

An English aunt is by nature eccentric, but this
needed more explanation. “A wonderful idea”,
I said, “to serve poetry with the soup, but isn’t it
rather difficult to read?”

“Yes, I was curious too”, she replied, "but Mrs
Beeton clearly said: If the Mixture fails to Thicken,
put a little Browning in."
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How Many Greens in a Tony?

“What are the units of zeta?”

Not a question that one expects to be asked in
polite company, or indeed anywhere. We were
revising our book chapter in response to an
impressively meticulous analysis from our editor.
A peaceful activity in which I would read aloud,
first our offending sentence, then the editor’s
suggested alternative and then, occasionally, an
essay by the editor’s friend. My co-author would
idly tap his keyboard in consideration, possibly
changing a hyphen here or a comma there, before
moving to the next sentence. Occasionally, with a
gasp of satisfaction, he would find another log and
change it to ln.

Oxford blues

Commas were, in fact, of some concern. It was
clear that our editor had no time for that noble
literary construction the Oxford comma, for they
had been ruthlessly blue-pencilled, except for a few
late ones that we put down to luck and one that
was, unaccountably, inserted. Here is an example:

83
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“... this would normally involve using
suitable graphical displays, numerical
summaries and diagnostics, and the fitting
of models that reflect the geological
environment.”

The Oxford comma is the one before the “and”.
Of course we are taught that a comma should not
precede an and or an or. But in this case it does
serve a purpose of separating the first three
activities, to which the verb “using” applies, from
the other activity (the fitting of models) to which
the verb “fitting” applies. Without it, the meaning
is less clear and the grammar dubious. You may
well say why not write something more interesting,
but that is not the point.

An Oxford comma, incidentally, should not be
confused with an Oxford Street comma, which
would come between Dickens and Jones and Marks
and Spencer and Waring and Gillow. Alas, these
last names are rarely heard in Oxford Street
nowadays, of whom the late Sir Maurice Kendall
memorably recalled:

Waring and Gillow,
Slept on one pillow,
Not for economy,
But for reasons of bonhomie.
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S ir Maurice ’s speech was on the importance of
being a pair — and on the relative importance of
choosing a partner whose name starts later in the
alphabet. Examples included Neyman and Pearson,
Durbin and Watson, Box and Cox, and of course
Kendall and Stuart. Waring and Gillow were the
exception, which may also explain their demise.
But, while becoming a double act was a sound
recipe for success, MGK (as he was known)
warned us against collaborations of more than two,
unless you came first, for fear of vanishing into et
al. He would therefore be astonished to learn that
the latest edition of Kendall and Stuart’s Advanced
Theory of Statistics is called Kendall’s Theory of
Statistics by Stuart and Ord.

Chicago style

Our editor, presumably out of fairness of mind,
had in addition inserted a number of what can
only be described as Chicago commas, such as:

In statistical science, it is standard practice to use . . . ,

For some data sets, it is not obvious whether ...

and

With the external detector method, we could . . .

so that the overall comma density, ρc, was
practically unchanged. However, the main rule of
Chicago English is that “however” is invariably
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replaced by “but”, which is undoubtedly a good
thing.

Prepositions were another contentious matter.
A preposition, so the saying goes, is something you
should never end a sentence with. But it is
impossible to explain naturally the meaning of a
confidence interval without ending with a
preposition — it is the range of values of the
parameter that the data are consistent with. Our
school teacher, who was not acquainted with the
finer concepts of statistical inference, would say
that ending a sentence with a preposition was
something up with which he will not put, thereby
avoiding a double-fault. This must be an extreme
position, otherwise why would Shakespeare have
written:

My pulse as yours doth temperately keep
time,

And makes as healthful music – it is not
madness

That I have uttered, bring me to the test
And I the matter will re-word, which

madness
Would gambol from.

?

It is of course possible to end a sentence with
more than two prepositions. I believe the record is
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five, held by the child who said “What did you
bring that book I didn’t want to be read to out of
up for?”

A basic unit

Our editor ’s question came as a shock for
another reason, for we had just been pondering a
more basic question: “What are the units of track
density?” Tracks per square centimetre, you will no
doubt say, writing it as t/cm2. Of course “tracks” is
short for “number of tracks” and is not really part
of the units, so the official symbol would be cm−2.
But no one thinks of tracks per square cm, as shown
by the following typical conversation in the lab:

kerry : Those zircons from China are too
dense to count.

cherry : We must have over-dosed them.
What was row dee?

kerry : One point three.

For Kerry/Cherry, you can substitute Andy/Sandy,
Barry/Thierry, Casey/Tracy, Danni/Yanni, or
Hari/Shari as necessary. Kerry says “One point
three” while looking at some computer output
displaying the number 0.13287936E+07, which
would no doubt later become 1.33× 10 6 cm−2 in a
report.
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Our editor had also doggedly inserted
×10 6 cm−2 wherever we gave a numerical track
density. But Kerry does not say “One point three
times ten to the six”. The natural unit of track
density is surely millions of tracks per square cm,
that is, 10 6 cm−2, rather than cm−2. This unit
needs a name: I propose Nancy, with international
symbol Ny. The above track density would then be
1.33 Ny. As a side effect, this would also help the
computer to avoid printing unreadable columns of
8-digit numbers followed by an exponent.

Units of zeta

Well, what are the units of zeta?

A phone call to a nearby authority confirmed
that the FT community is suspiciously silent on the
matter. Clearly a name is required here also. My
colleague proposed Tony, and I heartily agreed,
with international symbol Ty. Zeta historians will
note that the symbol ζ was first proposed by
Fleischer and Hart (1972), long before Hurford and
Green (1983) firmly established the viability of zeta
calibration and promoted its routine use. There is
therefore a prima facie case for Bobs or Harts. Greens
would be another possibility, but they would
undoubtedly be confused with Grays by future
generations of dating undergraduates. No doubt
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there will be much further debate during which
someone may discover that Archimedes used ζ to
calibrate the hydrothermal displacement in a
domestic basin.

In the mean time let us try to work out what a
Tony is. The modern fission track age equation is
usually written as

t = λ−1
d log(1 + g λd ζ ρd ρs/ρi)

where g is the geometry factor, taking the value 1
2

for the external detector method and 1 for the
population method. Now t is a time and λd is a
rate (reciprocal time) so that λdt is dimensionless.
Multiplying both sides of the equation by λd shows
that the term inside the log( ) must therefore be
dimensionless. Also ρs/ρi is dimensionless, as is
the geometry factor g. Therefore λdζρd must be
dimensionless. But λd is reciprocal time and ρd is
reciprocal area, so ζ must have the dimension of
area × time (or L2T, as we used to say). The units
of zeta may therefore be taken to be “square
centimetre years”, or cm2×a, which may also be
written as Ma×cm2/10 6, or in other words Ma/Ny.
Therefore a Tony is a million years per Nancy, or, if
this is easier to remember: one Nancy Tony equals
one Ma.



90 tracker

While on the subject of the FTA equation and
units, let us resolve to express λd as 1.55125× 10−4

Ma−1 instead of 1.55125× 10−10 a−1, and ρd in
Nancys (millions of tracks per square cm). Then
the age t will automatically be in Ma, which is
what we want, and we need never again worry
about whether or not we should have multiplied ρd
by 10 6 or about writing decimal numbers like
0.0000000000155. Thus Kerry’s λd and ρd would be
1.55125× 10−4 and 1.33 instead of 1.55125× 10−10

and 1.33× 10 6, respectively.

Real Age

Readers are invited to join the Campaign for
Real Age, in which the fission track age equation is
written with the factor µs/µi included, i.e., as

t = λ−1
d log

(
1 + g λd ζ ρd (ρs/ρi) (µi/µs)

)

or, in the linearised version,

t = g ζ ρd (ρs/ρi) (µi/µs) ,

where µs and µi are the mean (equivalent isotropic)
lengths of spontaneous and induced tracks. This is
natural, because ρs/ρi is a ratio of areal densities of
intersections of tracks with a surface, whereas it is
the ratio of volume densities of fissioned 238U and
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235U atoms, τs/τi say, that might be regarded as
the more fundamental quantity. The ρs are related
to the τs by the equations

ρs =
1
2 τsµs and ρi =

1
2 gτiµi

so that g(ρs/ρi)(µi/µs) = τs/τi and the simple
fission track age equation is really

t = ζ ρd τs/τi .

Fleischer and Hart (1972) explicitly
expressed ζ as a product of several factors,
including the ratio of etching efficiencies of
induced and spontaneous tracks and the ratio of
their etchable ranges. So this real age equation
effectively extracts the latter ratio from ζ. This
formally changes the meaning of zeta, but not the
units. With much relief I will leave it to others —
such as Hurford (1988) or Van den haute et al
(1998) — to discuss what zeta actually is.

Incidentally, I have noticed a recent disturbing
practice of presenting papers at conferences without
citing the age equation. Indeed, I have even seen
presentations containing no equation at all! My
advice to the young tracker is to program the
equation into your logo or header so that it is
displayed at the top of each slide. Then you can
safely ignore it and still maintain credibility. After
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all, at least we have an equation, and a more
interesting one than most, so let us flaunt it!

What is a Tony worth?

How should we interpret a measurement of one
Tony?

The obvious way is to put ζ = 1 in the FTA
equation, along with standard values of the other
terms. A problem with a direct interpretation is
that the value of the induced track density, ρi,
depends on the neutron fluence used, which in
turn is measured by the dosimeter track density, ρd,
which in turn will depend on the standard glass
used. The value is also specific to the mineral and
to the analyst. Also, as noted above, the real FTA
equation has another factor µi/µs inside the
parentheses. So we assume that µs = µi, which will
be appropriate for an age standard, but not for a
sample that may have been annealed. Then the
condition gρs/ρi = 1 means that the concentrations
of fissioned 238U and 235U atoms are the same, i.e.
τs = τi. This is the natural condition, rather than
ρs = ρi. Equally naturally we take ρd = 1 Nancy.
Then, substituting all of these values in the FTA
equation gives an age of t = 1 Ma.
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Thus, eventually, we get the meaning of one Tony:

the number of square centimetre
years required to produce an age of
1 Ma when dating an age standard
with equal concentrations of fissioned
238U and 235U atoms and a dosimeter
track density of one Nancy.

Actually, the age you get is 0.99992 Ma, but 1 Ma is
close enough for Geology.
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